PLANS PREPARATION MANUAL

VOLUME 2

PLANS PREPARATION & ASSEMBLY
Table of Contents

Introduction
- Chapter 1 Production of Plans
- Chapter 2 Sequence of Plans Preparation
- Chapter 3 Key Sheet and Signature Sheet
- Chapter 4 Summary of Pay Items
- Chapter 5 Drainage Map and Bridge Hydraulic Recommendation Sheet
- Chapter 6 Typical Sections
- Chapter 7 Summary of Quantities
- Chapter 8 Summary of Drainage Structures and Optional Materials Tabulation
- Chapter 9 Project Layout
- Chapter 10 Roadway Plan-Profile and General Notes
- Chapter 11 Special Profiles and Back-of-Sidewalk Profiles
- Chapter 12 Project Control
- Chapter 13 Intersection and Interchange Details/Layouts
- Chapter 14 Drainage Structures
- Chapter 15 Lateral Ditch/Outfalls, Retention/Detention and Mitigation Areas
- Chapter 16 Special Details
- Chapter 17 Soil Survey
- Chapter 18 Roadway Cross Sections
- Chapter 19 Temporary Traffic Control Plan
- Chapter 20 Utility Adjustments
- Chapter 21 Selective Clearing and Grubbing
- Chapter 22 Miscellaneous Structures Plans
- Chapter 23 Signing and Pavement Marking Plans
- Chapter 24 Signalization Plans
- Chapter 25 Lighting Plans
- Chapter 26 Landscape Plans
- Chapter 27 Utility Work by Highway Contractor Agreement Plans
- Chapter 28 Stormwater Pollution Prevention Plan
- Chapter 29 Intelligent Transportation Systems Plans

Appendix A Metric Practice
Introduction

Plans Preparation Manual, Volume 2

PURPOSE:

This *Plans Preparation Manual, Volume 2* sets forth requirements for the preparation and assembly of contract plans for Florida Department of Transportation (FDOT) projects. The information contained herein applies to the preparation of contract plans for both roadways and structures.

AUTHORITY:

Sections 20.23(3)(a) and 334.048(3), Florida Statutes.

SCOPE:

This procedure impacts anyone preparing roadway and structures contract plans for the Department.

PROCEDURE:

The standards and applications contained in this volume of the *Plans Preparation Manual* are requirements for the design and preparation of contract plans used in the construction of FDOT projects. This volume is to be used in conjunction with *Volume 1 of the Plans Preparation Manual (PPM) (Topic No. 625-000-007).*

Special requirements for Non-Conventional Projects, e.g., Design – Build Projects and all Non-Design-Bid-Build Public-Private-Partnership Projects, may be shown in a "Modification for Non-Conventional Projects" box as shown in the following example:
Modification for Non-Conventional Projects:

Delete PPM 27.3.

These boxes are located at the beginning of the chapter or after a section, paragraph or table which is to be modified. The requirements listed within these boxes are only applicable to Non-Conventional Projects.

The Author of a Request for Proposal (RFP) for a Non-Conventional project must use the standard boilerplate language as a starting point in developing RFPs on all Department Design-Build projects. Section V of the Design-Build Boilerplate establishes Department, FHWA and AASHTO criteria, procedures, guidelines and design codes that serve as design constraints to be used in the performance of the work. The governing regulations list in Section V cannot be modified without the approval of the State Construction Office. The standard boilerplate language is available at the FDOT Construction Office website:

http://www.dot.state.fl.us/construction/DesignBuild/DBDocuments/DBDocsMain.shtm

Pre-scoping questions have been developed to aid in the establishment of project constraints and requirements to be included in the RFP. The Pre-scoping questions can be found at:

http://www.dot.state.fl.us/construction/DesignBuild/DBRules/DBRulesMain.shtm

The preparation of roadway and structures plans is primarily a matter of sound application of acceptable engineering criteria, standards and presentation techniques. While the requirements contained in this volume provide a basis for uniformity in plans preparation, precise formatting and presentation standards which apply to individual situations must rely on good engineering practice and judgment. The use of these requirements does not relieve the engineer from the professional responsibility for the accuracy and completeness of the contract plans set(s).

1. PLANS PREPARATION MANUAL, VOLUME 2 - MANUAL ORGANIZATION
 a. Background

 The Florida Department of Transportation’s Plans Preparation Manual was previously published as a two volume set in 1989. The manual preceded Department requirements for use of the Metric System, and featured only English units. Volume 1 contained design criteria and process requirements, while Volume 2 addressed plans preparation and assembly.
This English version of Volume 2 was produced using the same basic format, and closely paralleling, Volume 2 - Metric. This was due in large part to the outdated information in the 1989 English version for such areas as Computer Aided Design Drafting (CADD), plans processing, sheet sizes, etc.

b. Organization

The Plans Preparation Manual, Volume 2 contains specific requirements for plans production and assembly. The manual consists of individual chapters, each addressing the requirements for a plan sheet or component, and is ordered according to the way a standard plans set would be assembled.

2. DISTRIBUTION

This document is available electronically on the PPM web page:

http://www.dot.state.fl.us/rddesign/PPMManual/PPM.shtm

PPM users can register to receive notification of updates and Roadway Design Bulletins online through the Department’s Contact Management Database at:

http://www2.dot.state.fl.us/contactmanagement/

For information on updates and Roadway Design Bulletins, contact:

Roadway Design Office, Mail Station 32
Telephone (850) 414-4310
FAX Number (850) 414-5261
http://www.dot.state.fl.us/rddesign/

3. REVISIONS AND UPDATES

Plans Preparation Manual (PPM) users are encouraged to submit comments and suggestions for changes to the manual to the State Roadway Design Office. When ideas or suggestions are received they will be reviewed by appropriate Roadway and/or Structures Design staff in a timely manner and will be coordinated with other offices affected by the proposed change. Items warranting immediate change will be made with the approval of the State Roadway Design Engineer and/or State Structures Design Engineer in the form of a Design Bulletin.

Roadway Design Bulletins are numbered based on the two digit calendar year and bulletin number (YY-##). Notices are sent to all users who are registered to receive notifications for Roadway Design Bulletins and updates to the PPM. Design Bulletins affecting the PPM will remain effective until either:

1. an official manual revision is published; or
2. the Design Bulletin is made void.
Roadway Design Bulletins are posted online at: http://www.dot.state.fl.us/rddesign/bulletin/

Structures design issues which are subject to modification and revision will be processed in coordination with the State Structures Design Office. See the Structures Manual for more information on this process.

Proposed revisions are distributed in draft form to each District’s Roadway Design Engineer or Structures Design Engineer. These experienced engineers provide the necessary technical and practical input on how the revision will potentially affect their District’s operations and customers. Periodically, these engineers meet collectively with the State Roadway Design Office or the State Structures Design Office to discuss comments on the proposed revisions. Proposed revisions with comments are then presented to the District Design Engineers (DDE) for review and comment. Once the comments are addressed, the Florida FHWA Division Office is given the opportunity to review the revisions as per the Department’s Partnership Agreement with FHWA.

The State Roadway Design Office will also coordinate proposed revisions or additions with affected offices within the Central Office. Substantive revisions that result in policy change may be coordinated with the Executive Committee for adoption.

Revisions and updates are adopted or rejected by the State Roadway Design Engineer (for Roadway Design issues) or the State Structures Design Engineer (for Structures Design issues). Requirements mandated by FHWA or State Rules will be coordinated with the DDEs and affected offices within the Central Office and are considered compulsory.

All revisions and updates will be coordinated with the Forms and Procedures Office prior to publishing to ensure conformance with and incorporation into the Department’s Standard Operating System. The standard interval for publishing updates to the PPM is yearly, in January, when notification of the adopted revisions and addenda will be distributed to registered users of the manual through the Department’s Contact Management Database.

TRAINING:
None required.

FORMS ACCESS:
Documents marked as Exhibits provide only a starting point allowing users to change or alter the document as needed to fit specific situations. These Exhibits or Figures are not official forms of the Department. Templates for these documents are available online at: http://www.dot.state.fl.us/rddesign/PPMManual/NForms/PPMForm.shtm
Chapter 1

Production of Plans

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>General</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2</td>
<td>Displaying Information and Data</td>
<td>1-2</td>
</tr>
<tr>
<td>1.3</td>
<td>Converting from Metric to English</td>
<td>1-3</td>
</tr>
<tr>
<td>1.4</td>
<td>Base Sheet Format</td>
<td>1-4</td>
</tr>
</tbody>
</table>

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Project Information Block</td>
<td>1-4</td>
</tr>
</tbody>
</table>
Chapter 1

Production of Plans

1.1 General

This volume, in conjunction with criteria contained in Volume 1 of the PPM and requirements outlined in the FDOT CADD Manual, forms the basis for contract plans format and assembly.

Many of the chapters in this volume contain “Generic” exhibits to provide examples of the plan sheets covered in those chapters. These exhibits are examples which were developed using FDOT criteria and standards in force at the time of their creation. These exhibits are not to be used as a source for criteria unless specified in the PPM.

Abbreviations may be used where they save time and space. A list of standard abbreviations is given in the Design Standards, Index No. 001. Slight deviations from the standard abbreviations are allowed, provided that the abbreviation used is clear and easily understood.

Standard symbols for Roadway Design are shown in the Design Standards, Index No. 002, the Symbol Cell Library, and in other CADD sources.
1.2 Displaying Information and Data

Text and plan details should be readable from either the bottom or right edge of the sheet. Orientation of text is as follows:
1. Horizontal Line: Read left to right
2. Vertical Line: Read bottom to top
3. Diagonals: Read left to right

Apply the following rules for displaying information and data:

1. Dimensioning Requirements:
 a. Typical Section Elements, including lane widths and shoulder widths - in feet, typically as a whole number.
 b. Horizontal control points on plans, including survey centerline, baseline, intersections and alignment - in feet to 2 decimal places.
 c. Vertical alignment control points, (PVC, PVI, PVT) and profile grade elevations - in feet to 2 decimal places.
 d. Profile Grade - in percent to 3 decimal places.
 e. Proposed flow lines - in feet to 2 decimal places.
 f. Manhole tops and grate elevations - in feet to 2 decimal places.
 g. Ditch elevations - in feet to 1 decimal place (to nearest 0.05 when controlled by percent of grade).
 h. Box or Three-sided Culvert Spans and Heights - Show inside dimensions using “span by height” format (10 x 6 means the span is 10 feet and the height is 6 feet). In feet as a whole number for new construction; in feet to 2 decimal places for extensions of existing box culverts.

2. Display alignment bearings, degree of curve and delta angles for curve data in degrees, minutes and seconds, rounded to the nearest second.

3. Express slope ratios in vertical to horizontal (V:H) format; i.e. show roadside slopes as 1:6, 1:4, etc.
1.3 Converting from Metric to English

1. When converting metric values related to surveys, right of way and other geometric alignment use the U.S. Survey Foot taken to a minimum of 8 decimal places:

\[
1 \text{ foot} = \frac{12 \text{ inches/foot}}{39.37 \text{ inches/meter}} = 0.30480061 \text{ meters}
\]

For other direct mathematical conversions use the SI definition:

1 foot = 0.3048 meters

2. Display direct mathematical (soft) converted values to 2 decimal places.

3. On resurfacing projects where the original construction was done in metric, hard convert typical section dimensions (lane widths, shoulder widths, etc.) where existing conditions permit.

Use direct mathematical (soft) conversion for existing pavement widths in curbed sections, existing right of way widths, and existing median widths.

Further information that may be useful in the converting Metric to English may be found in Appendix A of this volume.
1.4 Base Sheet Format

All plan sheet formats are contained in the FDOT CADD Software. Sheet borders include a project information block to place the Financial Project ID as shown below:

![Figure 1.1 Project Information Block](image)

The road number box is intended for the state road number; i.e. same state road number that is shown on the Key Sheet. Place the prefix “SR” before the number for clarification. When a county road is shown in the box use the prefix “CR”. The box should remain blank when the facility is neither a state nor county road.

The title block immediately left of the project information block is to contain information for the Professional of Record that Signs and Seals the sheet, as required in *Section 19.2, Volume 1*.

Print contract plans to scale to size B (11" X 17"). These prints are to be generated from CADD design files in accordance with the *CADD Manual*. Sheets that feature grids (cross sections, plan-profile, etc.) can be printed with minor grid lines turned off or on. If the minor grids are printed, they are to be half-toned. The FDOT CADD Software provides plot example configuration files for this task.

Plan sheets other than Drainage Maps may use photography (aerial or other) when approved by the District Design Engineer. Using photography for Drainage Maps or SWPPP supplemental site maps do not require approval.
Chapter 2

Sequence of Plans Preparation

2.1 General ... 2-1

2.2 Data Collection and Presentation .. 2-2
 2.2.1 Type of Project .. 2-2
 2.2.2 Presentation of Existing Data .. 2-3
 2.2.3 Proposed Typical Section ... 2-3
 2.2.4 Geometrics ... 2-3
 2.2.5 Cross Sections .. 2-4

2.3 Phase Submittals .. 2-4
 2.3.1 General ... 2-4
 2.3.2 Phases ... 2-5
 2.3.2.1 Requirements for Phase I Submittal .. 2-8
 2.3.2.2 Requirements for Phase II Submittal 2-10
 2.3.2.3 Phase III Plans Submittal .. 2-16
 2.3.2.4 Phase IV Plans Submittal .. 2-16
 2.3.3 Roundabout Review Submittal .. 2-17

2.4 Design-Build Phase Submittals .. 2-18
 2.4.1 General ... 2-18
 2.4.2 Phases ... 2-18
 2.4.2.1 Requirements for Technical Proposal Submittal 2-22
 2.4.2.2 Requirements for 90% Plans Component Submittal 2-24
 2.4.2.3 Final Plans Submittal ... 2-30
 2.4.2.4 Released For Construction Plans .. 2-30
Figures

Figure 2.1 Summary of Phase Submittals 2-6
Figure 2.2 Summary of Design-Build Phase Submittals2-20
Chapter 2

Sequence of Plans Preparation

2.1 General

The set of plans depicting in detail all the desired construction work is known as the "Contract Plans Set". This set consists of all sheets pertaining to roadway design (Roadway Plans), and those of the other component plans. The other component plans are comprised of:

1. Signing and Pavement Marking Plans
2. Signalization Plans
3. Intelligent Transportation Systems (ITS) Plans
4. Lighting Plans
5. Landscape Plans
6. Architectural Plans
7. Structures Plans
8. Toll Facility Plans

Do not use components other than those listed above.

Modification for Non-Conventional Projects:

Delete the last sentence of the above paragraph and see RFP for requirements.

Utility Work by Highway Contractor Agreement Plans have a separate Financial Project ID and are typically treated as a strung project. When utility work is minimal, the District may decide to include these plans as a component set to the lead plans set.

The contract plans set should be prepared systematically, undergoing phases of review and revision to ensure technically correct and clear plans.
If the plans are structures plans and there is no work on the approach roadway, the structures plans become the lead project. Any other sheets incidental to the project typically found within the roadway plans or other component plans (i.e., traffic control plans, signing and marking, etc.), may be included in the structures plans and numbered consecutively in accordance with the *Structures Manual, Volume 2 – Structures Detailing Manual*.

Prepare Toll Facility Plans in accordance with the Florida’s Turnpike Enterprise current *General Tolling Requirements (GTR)*. The *GTR* and *Addendum(s)* to the *GTR* can be downloaded from the following link:

http://www.floridasturnpike.com/design/gtr.html

2.2 Data Collection and Presentation

2.2.1 Type of Project

The type and amount of data required for each project depends on the project. For new construction and reconstruction projects which have had a Project Development and Environment (PD&E) phase the data to be used for plans preparation could include the following:

1. Preliminary Engineering Report
2. Project Scope
3. Project schedule
4. Field survey and/or CADD files (including existing features such as topography, ground elevations, drainage structures, and right of way)
5. R/W requirements
6. Soils information
7. Commitments for environmental permits or mitigation
8. Typical Section Package
9. Traffic Data
10. Pedestrian and bicycle considerations
11. Structural design requirements
12. Commitments to local government(s)
For projects without the PD&E phase, such as RRR or Safety projects, some of the items listed will not be available. Begin all projects with a record search of available data and a field review by the Engineer of Record to determine additional data requirements such as supplemental survey needs, traffic data, utility information, etc.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>See RFP for available data.</td>
</tr>
</tbody>
</table>

Additional information can be found in *Chapters 13-16 of Volume 1*. These chapters contain a comprehensive discussion of the critical issues and major activities for the design process, from initial to final engineering.

2.2.2 Presentation of Existing Data

CADD files generated from the field survey will contain existing topography and other characteristics of the project site. These also include the existing utilities and drainage structures within the limits of the project.

Show data pertaining to topography, horizontal location of existing utilities and drainage structures on the plan portion of the appropriate sheets (whether they are plan view only, or plan-profile).

2.2.3 Proposed Typical Section

Typical sections show the cross sectional design elements of a roadway. In addition to the Typical Section Sheet, certain elements of the typical section are shown on various other plan sheets, such as the Plan-Profile Sheets and Cross Sections. The various chapters for individual plan sheets address the specific requirements for displaying data (including typical section elements) on those sheets. Specific requirements for typical section sheets are presented in *Chapter 6* of this Volume.

2.2.4 Geometrics

The Engineer of Record (EOR) sets the horizontal and vertical geometrics for a project and develops or supervises development of the CADD files used in the production of various plans sheets.
Horizontal geometrics include the baseline survey/centerline construction with bearings, curve data, angles or bearings at street intersections, pavement widths, taper lengths, left turn lanes, and other geometric elements. These elements are plotted on the plan portion of the plan-profile sheets, as well as other appropriate plan sheets.

Vertical geometrics show the vertical curves and grades of the roadway along the profile grade line. On municipal projects back-of-sidewalk profiles are developed to provide a vertical alignment which addresses drainage requirements and harmonizes connections to adjacent properties. The back-of-sidewalk profiles may be included in the roadway plans as directed by the district.

On all projects which include the development of a vertical alignment, the existing ground line along the baseline of survey and the proposed profile grade line must be plotted on the profile portion of appropriate sheets in the roadway or structures plans.

2.2.5 Cross Sections

Information required for plotting existing cross sections is obtained from survey data and CADD files. These data, along with existing utilities and proposed templates, are shown on the cross sections. Refer to Chapter 18 of this volume for additional information.

2.3 Phase Submittals

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete PPM 2.3 and follow PPM 2.4.</td>
</tr>
</tbody>
</table>

2.3.1 General

Requirements relating to the design process for various submittals are given in Chapter 16, Volume 1 of this manual. Refer to that chapter for additional guidance in preparing submittals for review by the Department.

For bridge submittal requirements see Chapter 26, Volume 1.
2.3.2 Phases

The remainder of this section outlines, in detail, the sequence for contract plans preparation and assembly, as well as the information required to be presented on the various plan sheets which are included in design phase submittals.

As stated in Section 16.4 of Volume 1: "The number of submittals and phase reviews is determined on a project-by-project basis and defined in the scope. Submittals allow functional areas to review the development of the project as contained in the scope."

Standard submittal phases are as follows:

SUBMITTAL PHASES
- Phase I
- Phase II
- Phase III
- Phase IV

Minor projects should typically have two phase reviews, which will be defined in the Scope of Services.

Figure 2.1 summarizes the plans sheet status for each submittal. No phase is complete until all review comments have been resolved and documented.

The technical accuracy required for the design is the responsibility of the Engineer of Record. Prior to submitting the plans for a formal FDOT Phase review, the design organization (in-house or consultant) must conduct an internal Quality Control (Q/C) review to ensure technically correct and complete plans. Revisions or corrections noted during the Q/C review must be incorporated into the plans before submittal for the formal Phase review.

When deemed necessary by the Engineer of Record, or as requested by the district, phase submittals may include an additional plan sheet titled "Notes for Reviewers." This sheet is placed as the second sheet in the submittal package. It contains information pertinent to design criteria and special project requirements, as well as other details or notes which call the reviewer's attention to issues and features unique to the project design. The sheet is to be used only in the review process and is not included in the final plans.
Figure 2.1 Summary of Phase Submittals

Provide the sheets listed as applicable

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PHASE I</th>
<th>PHASE II*</th>
<th>PHASE III</th>
<th>PHASE IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Sheet</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Signature Sheet</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Summary of Pay Items</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Drainage Map</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Interchange Drainage Map</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Typical Section</td>
<td>P</td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Summary of Quantities</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Summary of Drainage Structures</td>
<td></td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Optional Materials Tabulation</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Project Layout</td>
<td>P</td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Project Control</td>
<td>P</td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Roadway Plan-Profile</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Traffic Monitoring Site</td>
<td></td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Special Profile</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Back-of-Sidewalk Profile</td>
<td>P</td>
<td>C</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Interchange Layout</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Ramp Terminal Details</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Intersection Layout/Detail</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Drainage Structures</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Three-Sided/Box Culvert Details</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Lateral Ditch Plan-Profile</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Lateral Ditch Cross Section</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Retention/Detention Ponds</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Cross Section Pattern</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Roadway Soil Survey</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Cross Sections</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Stormwater Pollution Prevention Plan</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Temporary Traffic Control Plans</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Utility Adjustments</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Selective Clearing and Grubbing</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Developmental Design Standards</td>
<td>C</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Mitigation Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Structures Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Signing and Pavement Marking Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Signalization Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Intelligent Transportation System (ITS) Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Lighting Plans</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Landscape Plans</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Utility Work by Highway Contractor Agreement Plans</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Contract Time</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Toll Facility Plans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site/Civil</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Architectural</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Structural</td>
<td>P</td>
<td>P</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>Electrical</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Plumbing</td>
<td>P</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Systems</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
</tr>
</tbody>
</table>
Status Key:

- P - Preliminary
- C - Complete but subject to change
- F - Final

* Projects which have a structures plans component are required to submit the latest set of structures plans with the Phase II roadway submittal.
2.3.2.1 Requirements for Phase I Submittal

Unless otherwise directed by the Department, the following elements are required for a Phase I set of plans.

KEY SHEET
- Location Map w/ location of project on map
- All applicable Financial Project ID's
- (Federal Funds) notation, if applicable
- Exceptions & Equations
- County Name
- State Road Number
- Length of project box
- North arrow and scale
- Approval signature lines
- Railroad crossing (if applicable)
- Revision box
- Governing Standards & Specifications dates
- Project Manager's Name
- Begin & end project station and begin mile post
- Begin & end bridge stations
- Consultant's name, address, contract number, Certificate of Authorization number and vendor number (if applicable)

DRAINAGE MAP - PROFILE VIEW
- Preliminary profile grade & existing ground line
- Horizontal & vertical scale
- Begin & end stations of project, bridges, bridge culverts & exceptions
- Equations

INTERCHANGE DRAINAGE MAP
- North arrow and scale
- Stationing along baselines
- Ramp baselines with nomenclature
- Begin and end bridge stationing
- Preliminary interchange configuration
- R/W lines
- Preliminary interchange drainage with drainage areas and flow direction arrows

TYPICAL SECTIONS
- Mainline and crossroad typicals
- R/W lines
- Special details (bifurcated sections, high fills, etc.)
- Traffic data

PROJECT LAYOUT
- Plan-profile sheet sequence (mainline and crossroads)

PROJECT CONTROL
- Benchmarks
- Reference points
- Control points
PLAN AND PROFILE - PLAN VIEW
North arrow and scale
Baseline of survey, equations
Curve data (including superelevation)
Existing topography including utilities
Preliminary horizontal geometrics/dimensions
Existing & proposed R/W lines (if available)
Centerline of construction (if different from the baseline of survey)
Begin and end stations for the project, bridges, bridge culverts and exceptions
Reference points (if project layout sheet not included in plans set)

PLAN AND PROFILE - PROFILE VIEW
Scale
Appropriate existing utilities
Bench mark information
Preliminary profile grade line
Equations
Existing ground line with elevations at each end of sheet
Begin and End Stations for the Project, bridges, bridge culverts and exceptions.

SPECIAL PROFILE
Scale
Ramp profile worksheet including nose sections
Existing ground line of intersections
Preliminary grade line of intersections
Preliminary curb return profiles, if applicable

BACK-OF-SIDEWALK PROFILE (Worksheet)
Scale
Begin and end project stations
Begin and end sidewalk stations
Cross-street locations and elevations
Drainage flow direction arrows
Mainline equations
Existing driveway locations and details
Superelevation details
Back-of-sidewalk profile grades and vertical curve information
Building floor elevations with offset distance left and right

BACK-OF-SIDEWALK PROFILE (Worksheet) (con't)
Gradeline notation: Specifically the numeric difference relative to roadway profile gradeline

INTERCHANGE DETAIL
North arrow and scale
Schematic of traffic flow and volumes
Proposed bridge limits
R/W lines
Preliminary configuration and geometrics
Quadrant Identification
Ramp Labels

INTERSECTION LAYOUT
North arrow and scale
Existing topography (if applicable)
Proposed R/W limits
Length of turn lanes
Taper lengths
Existing Utilities
Geometric dimensions (radii, offsets, widths)

CROSS SECTIONS*
Scale
Existing ground line
Existing survey baseline elevations
Station numbers
Baseline of survey labeled
Existing utilities
Proposed template with profile grade elevations along mainline and cross-streets as necessary

TEMPORARY TRAFFIC CONTROL PLANS
Project specific
Other worksheets as necessary to convey concept and scope.

LANDSCAPE PLANS
Conceptual landscape plan

*May require accompanying cross section pattern sheet
2.3.2.2 Requirements for Phase II Submittal

Unless otherwise directed by the Department, the following elements are required for a Phase II set of plans.

KEY SHEET
- Index of sheets
- Contract plans and component plans list

SIGNATURE SHEET
(Signature Sheet is not part of the Classical Electronic Delivery)
- Sections for each Professional of Record
- Index of sheets for each Professional of Record
- Image of the seal(s)
- Appearance of the Digital Signature only to be applied in Phase IV
 (Note: Digital Signatures are not to be applied in this Phase)

SUMMARY OF PAY ITEMS
- Item numbers with descriptions

DRAINAGE MAP - PLAN VIEW
- Proposed structures with structure numbers
- Proposed storm drain pipes
- Flow arrows along proposed ditches
- Retention/Detention ponds, pond number and area size
- Cross drains with pipe sizes and structure numbers
- Bridges/bridge culverts with begin and end stations
- Flood data (if applicable)

DRAINAGE MAP - PROFILE VIEW
- Ditch gradients including DPIs
- Final roadway profile grade line
- Mainline storm drain pipes
- Mainline flow line elevations
- Mainline structures with structure numbers and pipes
- Bridge, Bridge Culvert
- Cross drains with pipe sizes, structure numbers and flow line elevation

OPTIONAL MATERIALS TABULATION
- Material type
- Structure number station and description
- Durability, cover requirements
- Optional culvert material application
- Culvert service life estimator
- Design service life

PROJECT LAYOUT
- Complete

PROJECT CONTROL
- Complete

PLAN AND PROFILE - PLAN VIEW
- Curb return numbers, station ties and elevations
- Proposed drainage structures with structure no.
- Proposed R/W lines
- Existing utilities
- Proposed side drain pipe requirements (including size) for access and intersections
- Final geometrics and dimensions including radii, station pluses, offsets, widths, taper/transition lengths, curve data
- General notes (if project layout sheet not included)
- Flood data if not shown elsewhere
- Limits of wetlands

PLAN AND PROFILE - PROFILE VIEW
- Final profile grades and vertical curve data
- Mainline storm drain pipes
- Proposed special ditches
- Ditch gradients with DPI station and elevation
- Non-standard superelevation transition details
- High water elevations
- Existing utilities
- Mainline drainage structures with structure numbers
- Cross drains with structure number, size and flow line elevations
TRAFFIC MONITORING SITE
Project Specific

INTERCHANGE DRAINAGE MAP
Final geometrics including PC and PT
Proposed structures with structure numbers
Proposed storm drain pipes
Special ditches with DPI and elevation

TYPICAL SECTIONS
Pavement Design

SPECIAL PROFILE
Final intersection profile grades
Final curb return profiles (if applicable)
Superelevation diagrams as required
Final ramp profile grades including nose sections
Preliminary access and frontage road profiles (may contain one or more types of special profiles.)

BACK-OF-SIDEWALK PROFILE
Complete

INTERCHANGE LAYOUT
Curve data including superelevation and design speed
Coordinate data, stationing and ties
Access and/or frontage roads with dimensions and R/W
Fence location
Ramp identification

RAMP TERMINAL DETAILS
Preliminary geometrics
Radii, transition/taper lengths
Ramp identification

INTERSECTION LAYOUT
Limits of proposed construction along side roads
Applicable notes
Cross drains with structure numbers and pipe sizes
Storm drain pipes including sizes

INTERSECTION LAYOUT (con’t)
Final geometrics including dimensions, radii, offsets, station pluses and taper/transition lengths

DRAINAGE STRUCTURES
Vertical and horizontal scale
Roadway template with profile grade elevation
Underground utilities
Special sections at conflict points
R/W lines (at critical locations)
Storm drain construction notes
Flow arrows
Applicable notes
Structure numbers and location station along right side of sheet
Drainage structures with numbers in numerical order, type, size, location and flowline elevations

OUTFALL / LATERAL DITCH SYSTEM - PLAN VIEW
North arrow and scale
Roadway centerline
Existing and/or survey ditch centerline
Proposed ditch centerline with stationing
Begin and end ditch stations
Equations
Ditch centerline intersection stations
R/W lines
Bearings of ditch and mainline centerlines
Proposed storm drain pipes
Ditch PI stations with deflection angle left or right
Proposed drainage structures with structure numbers
Existing topography, drainage structures, utilities
Limits of wetlands
OUTFALL / LATERAL DITCH SYSTEM - PROFILE VIEW
- Bench mark information
- Scale
- Existing ground line
- Proposed ditch profile with grades
- Begin and end ditch stations
- High water elevations
- Proposed storm drain pipes with size
- Existing Utilities
- Overland flow or overtopping elevations
- Proposed drainage structures with structure numbers
- Typical section can be placed in either plan or profile

LATERAL DITCH CROSS SECTIONS
- Horizontal and vertical scale
- Existing ground line
- Station numbers
- Survey centerline and elevation
- Begin and end ditch stations
- Begin and end excavation stations
- Earthwork quantities
- Existing utilities
- Total earthwork quantity in cubic yards (CY)
- Proposed template with ditch bottom elevation

RETENTION/DETENTION POND DETAILS
- North arrow and scale
- Roadway centerline ties
- Proposed pond centerline with stationing
- Begin and end pond stations
- Side slopes, dimensions, and elevations
- R/W lines
- Berm, fence and gate locations
- Soil boring information
- Proposed pond drainage structures with structure numbers
- Existing topography, drainage structures, utilities
- Pond sections (2 perpendicular to each other)
- Pond Typical Section
- Limits of wetlands

RETENTION/DETENTION POND CROSS SECTIONS
- Horizontal and vertical scale
- Existing ground line
- Station numbers
- Begin and end pond stationing
- Pond centerline and elevations
- R/W
- Soil borings
- Water table
- Extent of unsuitable material
- Earthwork quantities
- Existing utilities
- Proposed template with bottom elevation

CROSS SECTION PATTERN
- North arrow and scale
- Interchange layout
- Access and frontage roads
- Mainline and ramp stationing
- Begin and end bridge stations
- Cross section location lines
- Ramp baselines with nomenclature and stationing

ROADWAY SOIL SURVEY
- Soil data
- Project specific

CROSS SECTIONS
- R/W
- Special ditch bottom elevations
- Equivalent stations for ramps and mainline
- Mainline equation stations
- Soil borings
- Water table
- Extent of unsuitable material
- Proposed template with profile grade elevation
- Earthwork Columns
- Begin and end stationing for project, construction and earthwork, bridge and bridge culvert
- Existing utilities affected by the template and where unsuitable materials are present
STORMWATER POLLUTION PREVENTION PLANS (SWPPP)
Narrative Description (with supplemental topographic maps, when used)

TEMPORARY TRAFFIC CONTROL PLANS
Preliminary traffic control plan
Detour plan
Phasing plan
R/W - existing and additional if required
Existing Utilities

UTILITY ADJUSTMENTS
All existing utilities highlighted

SELECTIVE CLEARING AND GRUBBING
Limits of construction by station and type of selective clearing and grubbing

MITIGATION PLANS
Project Specific

MISCELLANEOUS STRUCTURES PLANS
Retaining walls (Cast in place, proprietary, temporary) if required

SIGNING AND PAVEMENT MARKING PLANS - KEY SHEET
Financial Project ID
(Federal Funds) notation, if applicable
State Road Number
County Name
FDOT Project Manager's Name
Begin/end stations & exceptions
Station Equations (if location map is shown)
Engineer of Record
Consultants name & address, if applicable

SIGNING AND PAVEMENT MARKING PLANS - PLAN SHEETS
North arrow and scale
Basic Roadway Geometrics
Begin/End Stations and Exceptions
Station equations
Conflicting utilities, lighting or drainage
Pavement markings
Sign locations
Applicable pay items

SIGNING AND PAVEMENT MARKING PLANS - SIGN DETAIL SHEETS
GUIDE SIGN WORK SHEETS
Project Specific

SIGNING AND PAVEMENT MARKING PLANS - TABULATION OF QUANTITIES
Project Specific

SIGNALIZATION PLANS - KEY SHEET
Financial Project ID
(Federal Funds) notation, if applicable
State Road Number
County Name
FDOT Project Manager's Name
Begin/end stations & exceptions
Station Equations (if location map is shown)
Engineer of Record
Consultants name & address, if applicable

SIGNALIZATION PLANS - TABULATION OF QUANTITIES
Project Specific

SIGNALIZATION PLANS - PLAN SHEET
North arrow and scale
Basic Roadway Geometrics
Begin/End Stations and Exceptions
Station Equations
Conflicting utilities, lighting or drainage
Signal Pole Location
Type and location of loops
Type and location of signal heads
Pedestrian Signal
Location of Stop Bars
Location of Pedestrian Crosswalks
Sheet Title
Applicable pay items
SIGNALIZATION PLANS - POLE SCHEDULE
Pole location, number, type
Pole dimensions
Pay item number and quantity
Joint use pole details, if applicable
Foundation design

SIGNALIZATION PLANS - INTERCONNECT/COMMUNICATION CABLE PLAN
Placement of interconnect/communication cable
Conflicting utilities, lighting or drainage
Other project specific details

ITS PLANS - KEY SHEET
Financial Project ID
(Federal Funds) notation, if applicable
State Road Number
County Name
FDOT Project Manager's Name
Begin/end stations & exceptions
Station Equations (if location map is shown)
Engineer of Record
Consultants name & address, if applicable

ITS PLANS - TABULATION OF QUANTITIES
Project Specific

ITS PLANS - PLAN SHEETS
Project Specific, but must include:
North arrow and scale
Basic Roadway Geometrics
Begin/End Stations and Exceptions
Station equations
Conflicting utilities, lighting or drainage
Applicable pay items

ITS PLANS - DETAIL SHEETS
Project Specific

LIGHTING PLANS - KEY SHEET
Financial Project ID
(Federal Funds) notation, if applicable
State Road Number
County Name
FDOT Project Manager's Name
Begin/end stations & exceptions
Station Equations (if location map is shown)
Engineer of Record
Consultants name & address, if applicable

LIGHTING PLANS - TABULATION OF QUANTITIES
Project Specific

LIGHTING PLANS - POLE DATA AND LEGEND SHEET
Each pole by number with location, arm length, mounting height and luminaire wattage noted.
Design value for light intensities and uniformity ratios shown.
Legend and sheet title

LIGHTING PLANS - PLAN SHEETS
North arrow and scale
Basic Roadway Geometrics
Begin/End Stations and Equations
Station Equations
Conflicting utilities, drainage, signal poles, etc.
Sheet title
Applicable pay items
Pole symbols shown at correct station location and approximate offset

LIGHTING PLANS - HIGH MAST
Foundation detail sheets (project specific)
Boring data sheets (project specific)
Conflicting utilities, drainage, lighting
LANDSCAPE PLANS - KEY SHEET
Financial Project ID
(Federal Funds) notation, if applicable
Fiscal year and sheet number
State Road Number
County Name
FDOT Project Manager’s Name
Begin/end stations & exceptions
Station Equations (if location map is shown)
Landscape Architect of Record name and registration number
Consultants name, address, and contract number, if applicable
Index of landscape plans

LANDSCAPE PLANS - TABULATION OF QUANTITIES AND PLANT SCHEDULE
Project Specific

LANDSCAPE PLANS - TABULATION OF QUANTITIES AND SCHEDULE FOR IRRIGATION AND SITE AMENITIES
Project Specific

LANDSCAPE PLANS – PLANTING PLAN SHEETS
Project centerline
Edge of pavement (edge of traffic lanes)
Curbs or curb and gutter
Drainage systems
Guardrails
Right of way and/or limited access fence line
Sidewalks or other planned or existing structures
Lighting, signs, and signal poles
Intersections and driveways which are noted in the plans
Existing and proposed overhead and underground utility locations
Clear Zone/Lateral offset (should be plotted or safety setback distances noted frequently on each plan sheet)
View zones for permitted outdoor advertising signs
Canopy limits
Existing vegetation (to remain or be removed)

LANDSCAPE PLANS – PLANTING PLAN SHEETS (con’t)
Existing off site features and conditions that affect or are affected by the project
Fence and gate locations
Setbacks from structural elements or drainage system
Limits of clear sight
Transit facilities
Proposed Planting Plan (Plant symbols and Plant quantities)

LANDSCAPE PLANS - IRRIGATION PLAN SHEETS
(if applicable)
Type of system
Location and size of mainlines and lateral lines
Type and location of spray heads and rotors
Type and location of valves, sleeves, controllers, water sources/point of connection, backflow preventers, and isolation valves

LANDSCAPE PLANS – DETAILS SHEET
Applicable landscape details
Irrigation symbology with associative descriptions (if applicable)
2.3.2.3 Phase III Plans Submittal

Typically, the remaining work to be done is to address Phase II comments, complete quantity calculations, update the Financial Management (FM) system, and provide final drainage tabulations.

Estimate the Work Zone Traffic Control items paid for on a 'per day' basis and include them in the Phase III submittal. The FDOT construction office will perform a biddability review and will establish construction duration as a part of the Phase III review after receiving the plan set. This information should be included in the Phase III review comments transmitted back to the EOR.

Utility Work by Highway Contractor (UWHC) Agreement Plans, consisting of a key sheet, and mainline plan-profile showing proposed utility horizontal and vertical locations, are also to be included in the Phase III submittal.

Review comments must be provided to the EOR for incorporation of the comments into the plans. When the review comments have been resolved and documented by the designer, the plans are ready to proceed to completion.

2.3.2.4 Phase IV Plans Submittal

The plans are considered final (Phase IV Plans) when:

- Corrections noted during the Phase III submittal review are complete,
- Work Zone Traffic Control pay items have been revised based on the established construction duration,
- The assigned Construction Contract number is placed on the Key Sheet(s),
- The cost estimate is complete.

Typically there are two submittals after Phase IV – Specifications (First Mail) and Plans Processing (Second Mail)/CD Submittal. Plans are digitally signed & sealed prior to Plans Processing (Second Mail)/CD Submittal.
2.3.3 **Roundabout Review Submittal**

Roundabout designs require the approval by the State Roadway Design Engineer. Provide a Roundabout Submittal Package to Central Office Roadway Design for review as early in the design process as practical.

The Roundabout Submittal Package includes the following:

1. Plan sheets (PDF and CADD)
 - Key Sheet with location map
 - Roundabout typical sections
 - Roundabout layout, including:
 - dimensions for all major geometric components including splitter islands, circulatory roadway, truck apron, central island, bypass lanes, landscape buffers, sidewalks/multi-use paths, cross walks, bicycle bail-out ramps, etc.
 - existing and proposed right of way lines
 - significant topographic features including buildings, driveways, drainage structures, utilities, bicycle, pedestrian, and transit facilities.

2. Traffic Forecast for Design Year (PDF), including:
 - AM and PM peak hourly through and turning volumes
 - AM and PM peak pedestrian crossing movements
 - Peak hour factor
 - Percentage of heavy vehicles
 - Volume distribution across lanes for multi-lane entries

3. Operational Analysis input and output (PDF)

4. Fastest Path Speed Checks in accordance with NCHRP 672 Section 6.7.1 (PDF and CADD)

5. Swept Path of the Design Vehicle in accordance with NCHRP 672 Section 6.7.2 (PDF and CADD)

6. Sight Distance Checks in accordance with NCHRP 672 Section 6.7.3 (PDF and CADD)
Central Office Roadway Design will provide review comments and schedule a meeting with the project team to resolve any issues. When the agreed to changes to the design have been verified, an approval memorandum will be issued by the State Roadway Design Engineer.

2.4 Design-Build Phase Submittals

Section 2.4 applies exclusively to Design-Build projects.

2.4.1 General

Requirements relating to the design process for various submittals are given in *Chapter 16, Volume 1* of this manual. Refer to that chapter for additional guidance in preparing submittals for review by the Department.

For bridge submittal requirements see *Chapter 26, Volume 1*.

2.4.2 Phases

The remainder of this section outlines, in detail, the sequence for contract plans preparation and assembly, as well as the information required to be presented on the various plan sheets which are included in phase submittals.

For Design-Build projects, the standard submittal phases are as follows:

<table>
<thead>
<tr>
<th>SUBMITTAL PHASES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Proposal</td>
</tr>
<tr>
<td>90% Component Plans</td>
</tr>
<tr>
<td>Final Component Plans</td>
</tr>
</tbody>
</table>

Figure 2.2 summarizes the plans sheet status required for each submittal.

The technical accuracy required for the design is the responsibility of the Engineer of Record. Prior to submitting the plans for a formal FDOT Phase review, the design organization (in-house, consultant, or Design-Build Firm) must conduct an internal Quality Control (Q/C) review to ensure technically correct and complete plans. Any revisions or corrections noted during the Q/C review must be incorporated into the plans before submittal for the formal Phase review.
When deemed necessary by the Engineer of Record, or as requested by the Department, phase submittals may include an additional plan sheet titled "Notes for Reviewers". This sheet is placed as the second sheet in the submittal package. It contains information pertinent to design criteria and special project requirements, as well as other details or notes which call the reviewer's attention to issues and features unique to the project design. The sheet is to be used only in the review process and is not included in the final plans.
Figure 2.2 Summary of Design-Build Phase Submittals

Provide the sheets listed as applicable

<table>
<thead>
<tr>
<th>ITEM</th>
<th>TECHNICAL PROPOSAL</th>
<th>90% PLANS</th>
<th>FINAL PLANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Sheet</td>
<td>P</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Signature Sheet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage Map</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Interchange Drainage Map</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Typical Section</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Summary of Drainage Structures</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Project Layout</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Project Control</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Roadway Plan-Profile</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Traffic Monitoring Site</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Special Profile</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Back-of-Sidewalk Profile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interchange Layout</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Intersection Layout/Detail</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Drainage Structures</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Three-Sided/Box Culvert Details</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Lateral Ditch Plan-Profile</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Lateral Ditch Cross Section</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Retention/Detention Pond Details</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Roadway Soil Survey</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Cross Sections</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Temporary Traffic Control Plans</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Utility Adjustments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selective Clearing and Grubbing</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Developmental Design Standards</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Mitigation Plans</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Structures Plans</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Signing and Pavement Marking Plans</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Signalization Plans</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Intelligent Transportation System (ITS) Plans</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Lighting Plans</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Landscape Plans</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Utility Work by Highway Contractor Agreement Plans</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Toll Facility Plans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site/Civil</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Architectural</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Structural</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Plumbing</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Systems</td>
<td></td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>
Status Key:
P - Preliminary
C - Complete but subject to change
F - Final
2.4.2.1 Requirements for Technical Proposal Submittal

For the Technical Proposal only, the Design Build team must submit a complete set of 11” X 17” plan sheets. As a supplement to the plan set, the team may submit select plan sheets no larger than 24” X 36” or roll plot(s) no larger than 24” X 96”. Supplemental plan sheets or roll plots are desirable for such roadway features that cannot be presented adequately on 11” X 17” sheets, such as complex interchanges, Maintenance of Traffic phases and large complex intersections. Unless otherwise directed by the Department, the following elements are required for a Technical Proposal Submittal:

DRAINAGE MAP - PLAN VIEW
- Drainage divides and flow direction arrows
- High water information as required
- Preliminary horizontal alignment with stationing
- State, Federal, County highway numbers (as appropriate)
- Proposed storm drain trunk line and outfall locations
- Proposed Retention/Detention Pond Locations

INTERCHANGE DRAINAGE MAP - PLAN VIEW
- Preliminary interchange drainage with drainage areas and flow direction arrows

TYPICAL SECTIONS
- Mainline and crossroad typical sections
- R/W lines
- Traffic data
- Pavement Design

PROJECT CONTROL
- Benchmarks
- Reference Points
- Control Points

PLAN AND PROFILE - PLAN VIEW
- North arrow and scale
- Baseline of survey, equations
- Curve data (including superelevation)
- Existing topography including utilities
- Preliminary horizontal geometrics/dimensions
- Existing & proposed R/W lines (if available)
- Centerline of construction (if different from the baseline of survey)

PLAN AND PROFILE - PLAN VIEW (con’t)
- Begin and end stations for the project and stations of equations and exceptions
- Existing utilities
- Guide sign locations
- Limits of wetlands

PLAN AND PROFILE - PROFILE VIEW
- North arrow and scale
- Appropriate existing utilities
- Preliminary profile grade line
- Existing ground line with elevations at each end of sheet
- Begin and end stations for the project and stations of equations and exceptions
- Final profile grades and vertical curve data
- High water elevations

TRAFFIC MONITORING SITE
- Project Specific

INTERCHANGE LAYOUT
- Curve data including superelevation and design speed
- Stationing and ties
- Access and/or frontage roads with dimensions and R/W
- Ramp identification
INTERSECTION LAYOUT
North arrow and scale
Existing topography (if applicable)
Proposed R/W limits
Length of turn lanes
Geometric dimensions (radii, offsets, widths)
Limits of proposed construction along side roads

TEMPORARY TRAFFIC CONTROL PLANS
Project specific
Other worksheets as necessary to convey concept and scope
Preliminary traffic control plan
Detour plan
Phasing plan
R/W – existing and additional if required

SIGNING AND PAVEMENT MARKING PLANS - SIGN DETAIL SHEETS
Preliminary layout of multi-column and overhead guide sign worksheets

TOLL FACILITY PLANS
Site/Civil
Architectural
Structural
2.4.2.2 Requirements for 90% Plans Component Submittal

Unless otherwise directed by the Department, the following elements are required for a 90% Plans Component Submittal:

KEY SHEET
- Location Map with location of project on map
- All applicable Financial Project ID's
- (Federal Funds) notation, if applicable
- Exceptions & Equations
- County Name
- State Road Number
- Length of project box
- North arrow and scale
- Approval signature lines
- Railroad crossing (if applicable)
- Revision box
- Governing Standards & Specifications dates
- Project Manager’s Name
- Begin & end project station and begin mile post
- Begin & end bridge stations
- Consultant’s name, address, contract number, Certificate of Authorization number and vendor number (if applicable)
- Index of sheets
- Contract plans and component plans list

SIGNATURE SHEET
- (Signature Sheet is not part of the Classical Electronic Delivery)
- Sections for each Professional of Record
- Index of sheets for each Professional of Record
- Image of the seal(s)
- (Note: Digital Signatures are not to be applied in this Phase)

DRAINAGE MAP – PLAN VIEW
- North arrow and scale
- Drainage divides and ground elevations
- Drainage areas and flow direction arrows
- Equations
- High water information as required
- Preliminary horizontal alignment
- Section, township, range lines
- Street names

DRAINAGE MAP – PLAN VIEW (con’t)
- Begin & end stations of project, bridge, bridge culverts & exceptions
- Existing structures & pipes with relevant information
- Proposed structures with structure numbers
- Proposed storm drain pipes
- Flow arrows along proposed ditches
- Retention/Detention ponds, pond number and area size
- Cross drains with pipe sizes and structure numbers
- Bridges/bridge culverts with begin and end stations
- Flood data (if applicable)
- State, Federal, county highway numbers (as appropriate)

DRAINAGE MAP - PROFILE VIEW
- Horizontal & vertical scale
- Begin & end stations of project, bridges, bridge culverts & exceptions
- Equations
- Ditch gradients including DPls
- Final roadway profile grade line
- Mainline storm drain pipes
- Mainline flow line elevations
- Mainline structures with structure numbers and pipes
- Bridge, Bridge Culvert
- Cross drains with pipe sizes, structure numbers and flow line elevation

INTERCHANGE DRAINAGE MAP
- North arrow and scale
- Stationing along baselines
- Ramp baselines with nomenclature
- Begin and end bridge stationing
- Final interchange configuration
- R/W lines
INTERCHANGE DRAINAGE MAP (con’t)
Final interchange drainage with drainage areas and flow direction arrows
Final geometrics including PC and PT
Proposed structures with structure numbers
Proposed storm drain pipes
Special ditches with DPI and elevation

TYPICAL SECTIONS
Mainline and crossroad typical sections
R/W lines
Special details (bifurcated sections, high fills, etc.)
Traffic data
Pavement Design

DRAINAGE STRUCTURES
Vertical and horizontal scale
Roadway template with profile grade elevation
Underground utilities
Special sections at conflict points
R/W lines (at critical locations)
Storm drain construction notes
Flow arrows
Applicable notes
Structure numbers and location station along right side of sheet
Drainage structures with numbers in numerical order, type, size, location and flow line elevations

PROJECT LAYOUT
Plan-profile sheet sequence (mainline and crossroads)

PROJECT CONTROL
Complete

ROADWAY PLAN PROFILE – PLAN VIEW
North arrow and scale
Baseline of survey, equations
Curve data (including superelevation)
Existing topography including utilities
Preliminary horizontal geometrics/dimensions
Existing & proposed R/W lines (if available)
Centerline of construction (if different from the baseline of survey)
Begin and end stations for the project, bridges, bridge culverts and exceptions

ROADWAY PLAN PROFILE – PROFILE VIEW
Begin and end stations for the project and stations of equations and exceptions
Existing ground line with elevations at each end of sheet
Final profile grades and vertical curve data
High water elevations
Appropriate existing utilities
Mainline storm drain pipes
Proposed special ditches
Ditch gradients with DPI station and elevation
Non-standard superelevation transition details
High water elevations
Mainline drainage structures with structure numbers
Cross drains with structure number, size and flow line elevations

TRAFFIC MONITORING SITE
Project Specific

SPECIAL PROFILE
Scale
Existing ground line of intersections
Final intersection profile grades
Final curb return profiles (if applicable)
Superelevation diagrams as required
Final ramp profile grades including nose sections
SPECIAL PROFILE (con’t)
Final access and frontage road profiles (may contain one or more types of special profiles.)

BACK-OF-SIDEWALK PROFILE
Scale
Begin and end project stations
Begin and end sidewalk stations
Cross-street locations and elevations
Drainage flow direction arrows
Mainline equations
Existing driveway locations and details
Superelevation details
Back-of-sidewalk profile grades and vertical curve information
Building floor elevations with offset distance left and right
Grade line notation: Specifically the numeric difference relative to roadway profile grade line

INTERCHANGE LAYOUT
North arrow and scale
Quadrant Identification
Ramp Labels
Schematic of traffic flow and volumes
Proposed bridge limits
R/W lines
Final configuration and geometrics
Curve data including superelevation and design speed
Coordinate data, stationing and ties
Access and/or frontage roads with dimensions and R/W
Fence location

RAMP TERMINAL DETAILS
Ramp identification
Final geometrics
Radii, transition/taper lengths

INTERSECTION LAYOUT
North arrow and scale
Existing topography (if applicable)
Proposed R/W limits
Length of turn lanes
Taper lengths
Existing Utilities
Geometric dimensions (radii, offsets, widths)

INTERSECTION LAYOUT (con’t)
Limits of proposed construction along side roads
Applicable notes
Cross drains with structure numbers and pipe sizes
Storm drain pipes including sizes
Final geometrics including dimensions, radii, offsets, station pluses and taper/transition lengths

THREE-SIDED/BOX CULVERT DETAILS
Complete

OUTFALL / LATERAL DITCH SYSTEM - PLAN VIEW
North arrow and scale
Roadway centerline
Existing and/or survey ditch centerline
Proposed ditch centerline with stationing
Begin and end ditch stations
Equations
Ditch centerline intersection stations
R/W lines
Bearings of ditch and mainline centerlines
Proposed storm drain pipes
Ditch PI stations with deflection angle left or right
Proposed drainage structures with structure numbers
Existing topography, drainage structures, utilities
Limits of wetlands

OUTFALL / LATERAL DITCH SYSTEM - PROFILE VIEW
Bench mark information
Scale
Existing ground line
Proposed ditch profile with grades
Begin and end ditch stations
High water elevations
Proposed storm drain pipes with size
Existing Utilities
Overland flow or overtopping elevations
Proposed drainage structures with structure numbers
Typical section can be placed in either plan or profile
LATERAL DITCH CROSS SECTIONS
Horizontal and vertical scale
Existing ground line
Station numbers
Survey centerline and elevation
R/W
Begin and end ditch stations
Begin and end excavation stations
Existing utilities
Proposed template with ditch bottom elevation

CROSS SECTIONS
Scale
Existing ground line
Existing survey baseline elevations
Station numbers
Baseline of survey labeled
Existing utilities
Proposed template with profile grade
elevations along mainline and cross-streets as necessary

RETENTION/DETENTION POND DETAILS
North arrow and scale
Roadway centerline ties
Proposed pond centerline with stationing
Begin and end pond stations
Side slopes, dimensions, and elevations
R/W lines
Berm, fence and gate locations
Soil boring information
Proposed pond drainage structures with structure numbers
Existing topography, drainage structures, utilities
Pond sections (2 perpendicular to each other)
Pond Typical Section
Limits of wetlands

TEMPORARY TRAFFIC CONTROL PLANS
Project specific
Other worksheets as necessary to convey concept and scope.
Final traffic control plan
Detour plan
Phasing plan
R/W - existing and additional if required
Existing Utilities

UTILITY ADJUSTMENTS
All existing utilities highlighted

SELECTIVE CLEARING AND GRUBBING
Limits of construction by station and type of selective clearing and grubbing

ROADWAY SOIL SURVEY
Soil data
Project specific

MITIGATION PLANS
Project specific

MISCELLANEOUS STRUCTURES PLANS
Retaining walls (Cast in place, proprietary, temporary) if required

SIGNING AND PAVEMENT MARKING PLANS - KEY SHEET
Financial Project ID
(Federal Funds) notation, if applicable
State Road Number
County Name
FDOT Project Manager’s Name
Begin/end stations & exceptions
Station Equations (if location map is shown)
Engineer of Record
Consultants name & address, if applicable
SIGNING AND PAVEMENT MARKING PLANS - PLAN SHEETS
North arrow and scale
Basic Roadway Geometrics
Begin/End Stations and Exceptions
Station equations
Conflicting utilities, lighting or drainage
Pavement markings
Sign locations

SIGNING AND PAVEMENT MARKING PLANS - SIGN DETAIL SHEETS
GUIDE SIGN WORK SHEETS
Project Specific

SIGNALIZATION PLANS - KEY SHEET
Financial Project ID
(Federal Funds) notation, if applicable
State Road Number
County Name
FDOT Project Manager's Name
Begin/end stations & exceptions
Station Equations (if location map is shown)
Engineer of Record
Consultants name & address, if applicable

SIGNALIZATION PLANS - PLAN SHEET
North arrow and scale
Basic Roadway Geometrics
Begin/End Stations and Exceptions
Station equations
Conflicting utilities, lighting or drainage
Signal Pole Location
Type and location of loops
Type and location of signal heads
Pedestrian Signal
Location of Stop Bars
Location of Pedestrian Crosswalks
Sheet Title

SIGNALIZATION PLANS - POLE SCHEDULE
Pole location, number, type
Pole dimensions
Joint use pole details, if applicable
Foundation design

SIGNALIZATION PLANS - INTERCONNECT/COMMUNICATION CABLE PLAN
Placement of interconnect/communication cable
Conflicting utilities, lighting or drainage
Other project specific details

ITS PLANS - KEY SHEET
Financial Project ID
(Federal Funds) notation, if applicable
State Road Number
County Name
FDOT Project Manager's Name
Begin/end stations & exceptions
Station Equations (if location map is shown)
Engineer of Record
Consultants name & address, if applicable

ITS PLANS - PLAN SHEETS
Project Specific, but must include:
North arrow and scale
Basic Roadway Geometrics
Begin/End Stations and Exceptions
Station equations
Conflicting utilities, lighting or drainage

ITS PLANS - DETAIL SHEETS
Project Specific

LIGHTING PLANS - KEY SHEET
Financial Project ID
(Federal Funds) notation, if applicable
State Road Number
County Name
FDOT Project Manager's Name
Begin/end stations & exceptions
Station Equations (if location map is shown)
Engineer of Record
Consultants name & address, if applicable

LIGHTING PLANS - POLE DATA AND LEGEND SHEET
Each pole by number with location, arm length, mounting height and luminaire wattage
Design value for light intensities and uniformity ratios shown
Legend and sheet title
LIGHTING PLANS - PLAN SHEETS
North arrow and scale
Basic Roadway Geometrics
Begin/End Stations and Equations
Station Equations
Conflicting utilities, drainage, signal poles, etc.
Sheet title
Pole symbols shown at correct station location and approximate offset

LIGHTING PLANS - HIGH MAST
Foundation detail sheets (project specific)
Boring data sheets (project specific)
Conflicting utilities, drainage, lighting

LANDSCAPE PLANS – KEY SHEET
Financial Project ID
(Federal Funds) notation, if applicable
Fiscal year and sheet number
State Road Number
County Name
FDOT Project Manager’s Name
Begin/end stations & exceptions
Station Equations (if location map is shown)
Landscape Architect of Record name and registration number
Consultants name, address, and contract number, if applicable
Index of landscape plans

LANDSCAPE PLANS – PLANTING PLAN SHEETS
Project centerline
Edge of pavement (edge of traffic lanes)
Curbs or curb and gutter
Drainage systems
Guardrails
Right of way and/or limited access fence line
Sidewalks or other planned or existing structures
Lighting, signs, and signal poles
Intersections and driveways which are noted in the plans
Existing and proposed overhead and underground utility locations
Clear Zone/Lateral offset (should be plotted or safety setback distances noted frequently on each plan sheet)

LANDSCAPE PLANS – PLANTING PLAN SHEETS (con’t)
View zones for permitted outdoor advertising signs
Canopy limits
Existing vegetation (to remain or be removed)
Existing off site features and conditions that affect or are affected by the project
Fence and gate locations
Setbacks from structural elements or drainage system
Limits of clear sight
Transit facilities
Proposed Planting Plan

LANDSCAPE PLANS - IRRIGATION PLAN SHEETS
(if applicable)
Type of system
Location and size of mainlines and lateral lines
Type and location of spray heads and rotors
Type and location of valves, sleeves, controllers, water sources/point of connection, backflow preventers, and isolation valves

LANDSCAPE PLANS – DETAILS SHEET
Applicable landscape details
Irrigation symbology with associative descriptions (if applicable)
2.4.2.3 Final Plans Submittal

Ordinarily, the only other remaining work to be done will be to comply with comments received as a result of the 90% review.

All plan sheets and the Financial Management (FM) system must be updated. Final drainage tabulations must also be furnished for review.

Utility Work by Highway Contractor (UWHC) Agreement Plans, consisting of a key sheet, and mainline plan-profile showing proposed utility horizontal and vertical locations, are also to be included in the Final submittal.

A "marked up" set of the plans and review comments must be returned to the EOR for incorporation of the comments into the plans. When the review comments have been resolved and documented by the designer, the plans are ready to proceed to completion.

2.4.2.4 Released For Construction Plans

After all corrections noted in the Final Plans submittal have been satisfactorily resolved as determined by the Department, the Department’s Project Manager will initial, date and stamp each submittal as “Released for Construction”. Only signed and sealed plans stamped “Released for Construction” by the Department’s Project Manager are valid. All work performed by the Design-Build Firm prior to the Department’s release of Plans will be at the Design-Build Firm’s risk.
Chapter 3

Key Sheet and Signature Sheet

3.1 General

3.2 Key Sheet

- **3.2.1** Financial Project ID, Federal Funds, County Name and State Road Number
- **3.2.2** Construction Contract Number, Fiscal Year and Sheet Number
- **3.2.3** Project Location Map and North Arrow
- **3.2.4** Contract Plans Components
- **3.2.5** Index of Roadway Plans
- **3.2.6** Professional Responsibility
- **3.2.7** Governing Design Standards and Standard Specifications
- **3.2.8** Developmental Design Standards
- **3.2.9** Revisions
- **3.2.10** Strung Projects

3.3 Signature Sheet

- **3.3.1** Digital Signature Placement
- **3.3.2** Digital Signature Appearance
- **3.3.3** Seal
- **3.3.4** Statement of Responsibility
- **3.3.5** Index
- **3.3.6** Revisions
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 3

Key Sheet and Signature Sheet

3.1 General

The Key Sheet is the first sheet of the contract plans. This sheet describes the project and the contents of the plans. The Key Sheet cell can be found in the FDOT CADD Software.

See Exhibits KS-1 for example of a lead Key Sheet with no revisions and Exhibit KS-2 for a lead Key Sheet with revisions. See Exhibit KS-3 for example of a component Key Sheet.

The Signature Sheet is the second sheet of the contract plans. This sheet defines a professional’s area of responsibility for those portions of the document being digitally signed. The Signature Sheet shows the Digital Signature Appearance of the Professional(s) of Record.

See Exhibits SS-1 and SS-2 for examples of a Signature Sheet.

3.2 Key Sheet

3.2.1 Financial Project ID, Federal Funds, County Name and State Road Number

The Financial Project ID is the main number identifying each individual project within the Department. Place the number immediately under the heading "CONTRACT PLANS" in the top center of the sheet. When the project involves Federal funds, place the words "(Federal Funds)" under the Financial Project ID. Place the county name and roadway section number associated with the Straight Line Diagrams under the Financial Project ID or "(Federal Funds)". Place the roadway section number within parentheses. Place the state road number under the county name and roadway section number. A description of project limits may be placed under the state road number; e.g. “Crim Boulevard to Washington Street".
On projects which have one Contract plans set, but multiple Financial Project ID's, place all of the Financial Project ID's immediately under the heading "CONTRACT PLANS" on the key sheet. On all other plan sheets, show only the lead Financial Project ID in the title block.

3.2.2 Construction Contract Number, Fiscal Year and Sheet Number

Show the Construction Contract Number in the “Construction Contract No.” box (lower right corner) on all component Key Sheets. Show the fiscal year for which the Letting is scheduled in the “Fiscal Year” box; i.e., enter 17 in the box for a project that has a Letting date during the July 2016 to June 2017 fiscal year.

The Key Sheet of each component of the contract plans will be numbered as the first sheet of that component.

3.2.3 Project Location Map and North Arrow

Place the project location map in the center of the key sheet with a north arrow on the right side of the map. Orient the map so that the north arrow points toward the top of the sheet. If the north arrow cannot be oriented toward the top of the sheet, then orient the map so that the north arrow points to the right.

The map consists of a reproduced portion of one or more county maps showing the project location. County maps in MicroStation (*.dgn) format or in Portable Document Format (PDF) can be downloaded from the County General Highway Maps web page.

A utility to download the county map and clip out the project location area is provided in the FDOT CADD Software.

The intent of the project location map is to provide enough information so that the project location is easily understood. Show Section, Township, and Range lines and numbers to provide clarity and scale to the project location map. Show county, city and urban limits where applicable.

Designate roads by name and State Road number or U.S. Highway number. Show the name of the next incorporated city at the edge of the map to which these roads lead. Use standard symbols as shown in the Design Standards, Index 002 and FDOT CADD Software.
Indicate project location using a heavy solid line of substantial width. It is sometimes advantageous to show station numbers at regular intervals, particularly with city street projects. Flag and station the following:

- Begin and end project limits. Provide milepost, correct to three decimals, under the project stations.
- Begin and end limits of bridges and bridge culverts. When an existing structure is being replaced, indicate the proposed structure and not the existing.
- Station equations
- Project exception limits (mileposts excluded from project)
- Rail crossings within the limits of construction, including name of railroad, DOT/AAR crossing number, and railroad milepost.

Calculate the end milepost by adding the distance in miles between begin and end project to the begin milepost. Plans are to be prepared using stationing in linear feet. A project may be prepared using mileposts when linear foot stationing is unavailable. All station information is to be consistent with the station information entered into the Work Program Administration system during final design. See Volume 1, Section 14.2.

When several projects are covered by the same set of plans, flag and station begin and end project limits for each Financial Project ID.

Show the project location map only on the lead component Key Sheet.

Show a small-scale state map at the upper right portion of the lead component Key Sheet and indicate the location of the project thereon. The map may be shown on other component Key Sheets, but is not required.

3.2.4 Contract Plans Components

Contract plans are typically assembled as component plans that are associated with a primary work type. Roadway plans are typically the lead component of the contract plans. Provide a list of all component plans included in the contract plans in the upper left corner of the lead component Key Sheet in the following order:

1. Roadway
2. Signing and Pavement Marking
3. Signalization
4. Intelligent Transportation Systems (ITS)
5. Lighting
6. Landscape
7. Architectural
8. Structures
9. Toll Facilities

When sheets covering work types such as signing and pavement markings, signalization, ITS, lighting and landscape are included and numbered consecutively within the roadway plans (or structures plans if structures is the lead component), do not show these as components of the contract plans.

Another component (e.g. structures, signals, landscaping), may become the lead component when there are no roadway plans. Any sheets incidental to the project typically found within the roadway plans or other component plans (e.g. traffic control plans, signing and pavement marking), may be included in the lead component plans and numbered consecutively. Sheet number prefixing is not required for the lead component plan; i.e. “IT-#” is not required for ITS Plans when they are the lead component.

See the Structures Manual, Volume 2 – Structures Detailing Manual when Structures plans become the lead component.

3.2.5 Index of Roadway Plans

Place an index of roadway sheets on the left side of the Key Sheet. Each component Key Sheet will have an index of sheets contained in that component.

Assemble roadway plans in the following order:

1. Key Sheet
2. Signature Sheet
3. Summary of Pay Items
4. Drainage Map
5. Interchange Drainage Map
6. Typical Section
7. Summary of Quantities
8. Summary of Drainage Structures
9. Optional Materials Tabulation
10. Project Layout
11. Project Control
12. General Notes
13. Roadway Plan-Profiles
14. Traffic Monitoring Site
15. Special Profiles
16. Back-of-Sidewalk Profiles
17. Interchange Layout
18. Ramp Terminal Details
19. Intersection Layout/Details
20. Drainage Structures
21. Three-Sided/Box Culvert Details
22. Outfall/Lateral Ditch Plan-Profiles
23. Outfall/Lateral Ditch Cross Sections
24. Special Details
25. Cross Section Pattern
26. Roadway Soil Survey
27. Cross Sections
28. Stormwater Pollution Prevention Plans (SWPPP)
29. Temporary Traffic Control Plans
30. Utility Adjustments
31. Selective Clearing and Grubbing
32. Developmental Design Standards
33. Signing and Pavement Marking Plans*
34. Signalization Plans*
35. ITS Plans*
36. Lighting Plans*
37. Landscape Plans*
38. Mitigation Plans
39. Miscellaneous Structures Plans
40. Toll Facilities*

* When separate component plans are not included in the contract plans.

The roadway plans may require insertion of sheets that were prepared early, or prior to the design process. These sheets may be identified and numbered with the following prefixes:

- CTL-# Project Control
- GR-# Soil Survey and Report of Core Borings normally associated with the roadway plans set (including miscellaneous structures but excluding bridges and walls)
- TR-# Tree Survey Sheets
- UTV-# Verified Utility Locate Sheets

Place these early sheets at the end of the numbered sequence of the index of roadway plan sheets with an asterisk and include a note below the index as shown in Exhibit KS-1.

No plans sheets other than those listed above are to be separated from the component plans.

3.2.6 Professional Responsibility

An Engineer of Record (EOR) is the lead Florida licensed professional engineer in charge of the preparation of the component plans. Place in the lower right corner the name and license number of the EOR. Also show the name and address of the engineering business or agency where the EOR is employed. Include the consultant contract number, certificate of authorization number and vendor number when plans are prepared by an engineering business.

For non-engineering professionals that are in charge of the preparation of the component plans, change title to “Licensed Professional of Record”. Include similar information that applies to their profession.
Place the name of the FDOT Project Manager below the EOR information. Show only the FDOT Project Manager at this location, except for:

- When plans are prepared by Department Personnel, the name of the FDOT designer may be placed immediately below the name of the FDOT Project Manager.
- When appropriate, the name of the GEC Project Manager may be placed immediately below the FDOT Project Manager.

3.2.7 Governing Design Standards and Standard Specifications

Show the governing **Design Standards** and **Standard Specifications for Road and Bridge Construction** on the lead component Key Sheet as shown on Exhibit KS-1. Do not show this reference on other component Key Sheets. For requirements of the Structures General Notes, see the **Structures Detailing Manual, Section 5.2**.

The **Design Standards** are published annually as an **eBook** and posted on the Roadway Design Office website. The release of the **Design Standards eBook (DSeB)** is announced by **Design Bulletin** which specifies the effective date for implementation.

When **Design Standards Revisions (DSRs)** are released by **Design Bulletin**, the engineer must determine which **DSRs** apply to the project and reference them as shown on Exhibit KS-1. If there are no applicable **DSRs**, the note regarding **DSRs** is not required.

3.2.8 Developmental Design Standards

Insert **Developmental Design Standards (DDoS)** at the end of each component plan set as applicable. When included in structure component plans, insert **DDoS** before existing bridge plans. List **DDoS** below the “Index of Sheets” for the plans component in which they are included. Follow the process shown in the “Developmental Design Standards Usage Process for Design-Bid-Build Projects” located in the link provided on the top of the **Developmental Design Standards** website for requesting and using a **DDoS**.
3.2.9 Revisions

The process and requirements for completing plan revisions are provided in Chapter 20, Volume 1.

Show a complete record of all contract plans revisions on the lead component Key Sheet under the “REVISIONS” header located below the project location map. Include the component (such as roadway, structures, signing and pavement marking), the sheet number, and the date for each plan sheet that was revised. Show the unique numbered symbol that corresponds to the Revision Number on the Revision Memo and modified sheets as well.

Show revisions to the Key Sheet in the Key Sheet Revisions block placed below the project location map, and to the right of the “REVISIONS” header. List the revision date and a brief description of the revision. The Key Sheet Revisions block is only used to record changes to the Key Sheet other than recorded revisions under the “REVISIONS” header. A new lead component Key Sheet is required when any sheet within the contract plans is revised.

If a sheet is being deleted, note this under the “REVISIONS” header, and revise the Index of Sheets to show “(DELETED)” next to the deleted sheet. Record the change to the Index of Sheets in the Key Sheet Revisions block.

Revisions made after award (A.K.A. “Post-Let Revisions”) are to be “clouded” in a conspicuous manner.

If there are no revisions to the plans, the “REVISIONS” header is not required.

If there are no Key Sheet revisions, the Key Sheet Revisions block is not required.

3.2.10 Strung Projects

Contract plans that are independently prepared but are let in the same construction contract are referred to as strung projects. For each set of contract plans that are to be strung, place the strung project note on the lead component Key Sheet as shown in Exhibit KS-1. Show the strung project note only on lead component Key Sheets.

List revisions to any strung project on the lead component Key Sheet of the lead project under the “REVISIONS” header, under the respective Financial Project ID.
3.3 Signature Sheet

Projects are to be delivered as individual Signed and Sealed components of the contract plans (e.g. Roadway Plans, Signing and Pavement Marking Plans, Structure Plans). A Signature Sheet is required for component plans that are to be Signed and Sealed by more than one licensed professional. When component plans are to be Signed and Sealed by a single licensed professional a signature block can be placed on the Key Sheet in lieu of using a Signature Sheet (see KS-3).

The Signature Sheet title block is to contain the information for the licensed professional that is responsible for the creation and content of the sheet.

Do not place the Official Record note along the right edge of this sheet.

See Section 19.2, Volume 1 for digital Signing and Sealing requirements. See Exhibits SS-1 and SS-2 for examples of a Signature Sheet.

3.3.1 Digital Signature Placement

By placing a digital signature on the Signature Sheet of a multi-sheet plans set, the licensed professional associates their professional signature with the entire plans set. The Signature Sheet provides a Statement of Responsibility delineating the extent of the professional's responsibility and identifies the specific sheets for which the professional is accepting responsibility.

3.3.2 Digital Signature Appearance

A Digital Signature Appearance is the visual representation of a Digital Signature applied to a document. The Digital Signature Appearance is composed of combinations of informational fields (such as dates or text) and other information. The Digital Signature Appearance must include the professional's name, and the date and time of signing stamp.
3.3.3 Seal

The professional will include a representation of their Seal next to the Digital Signature Appearance. Seal representations are provided with the FDOT CADD Software. Each respective Board of Professional Regulation has enacted in their section of the Florida Administrative Code the requirements for the size and representation of a Seal.

3.3.4 Statement of Responsibility

The Statement of Responsibility is used to define the licensed professional’s limits of responsibility and any exculpatory language. Place this statement below the Seal and Digital Signature Appearance and above the sheet index. The Statement of Responsibility must indicate the applicable Rule of the Florida Administrative Code (F.A.C.).

Exculpatory language may be included in cases where professionals share responsibility for content on any given sheet. In those cases additional text must include the limitations of their responsibility.

3.3.5 Index

The Index is a list of sheets that the licensed professional is responsible for signing and sealing. Place the Index below the Statement of Responsibility for each licensed professional. There may be sheets common to more than one licensed professional, and in such a case, exculpatory language should be used to differentiate each area of responsibility.

3.3.6 Revisions

A revision Signature Sheet is created when more than one licensed professional is required to Sign and Seal a revision package. The revision Signature Sheet is numbered using an alpha suffix (2A, 2B, etc.). Only the licensed professionals required to Sign and Seal the revision are to be included on the revision Signature Sheet. See Exhibit SS-2 for an example of a revision Signature Sheet.
STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION

CONTRACT PLANS

FINANCIAL PROJECT ID 123456-1-52-01
(FEDERAL FUNDS)
BAY COUNTY (46080)
STATE ROAD NO. 22 (WEWA HWY)

INDEX OF ROADWAY PLANS

SHEET NO. SHEET DESCRIPTION
1 KEY SHEET
2 SIGNATURE SHEET
3 SUMMARY OF PAY ITEMS
4 DRAINAGE MAP
5 - 6 TYPICAL SECTIONS
7 TYPICAL SECTION DETAILS
50.1 - 50.6 SUMMARY OF QUANTITIES
8 SUMMARY OF DRAINAGE STRUCTURES
9 OPTIONAL MATERIALS TABLE
10 PROJECT LAYOUT
11 PROJECT CONTROL
12 GENERAL NOTES
13 - 16 ROADWAY PLAN - PROFILES
17 TRAFFIC MONITORING SITE
18 SPECIAL PROFILES
19 INTERSECTION LAYOUT
20 - 26 DRAINAGE STRUCTURES
27 - 33 BOX CULVERT DETAILS
34 LATERAL DITCH PLAN - PROFILES
35 LATERAL DITCH CROSS SECTIONS
36 SPECIAL DETAILS
37 - 47 CROSS SECTIONS
48 STORMWATER POLLUTION PREVENTION PLAN
49 - 52 TEMPORARY TRAFFIC CONTROL PLANS
53 - 57 UTILITY ADJUSTMENTS
58 - 62 SELECTIVE CLEARING AND GRUBBING
GR - 1* ROADWAY SOIL SURVEY

DEVELOPMENTAL DESIGN STANDARDS (DDS):
D450
HIGH TENSION CABLE BARRIER

* This sheet is included in the Index of Roadway Plans only to indicate that it is part of the Roadway Plans. This sheet is contained in a separate digitally signed and sealed document.

GOVERNING DESIGN STANDARDS:
Florida Department of Transportation, FY2016-17 Design Standards ebook (DSb) and applicable Design Standards Revisions (DSRs) at the following website:
http://www.fdot.gov/roadway/DesignStandards/Standards.shtm
APPLICABLE DSRs: DSR400-01, DSR401-01, DSR402-01

GOVERNING STANDARD SPECIFICATIONS:
Florida Department of Transportation, July 2006 Standard Specifications for Road and Bridge Construction at the following website:
http://www.fdot.gov/programmanagement/implemented/SpecBooks

ENGINEER OF RECORD:
LUKE S. WALKER, P.E. NO.: 99991
ROADWAY ENGINEERS, INC.
123 MAIN STREET
TALLAHASSEE, FL 32301
(850) 671-1313

CONTRACT NO.: CO000
VENDOR NO.: 99-999999
CERTIFICATE OF AUTHORIZATION NO.: 12345

FOOT PROJECT MANAGER:
BEN K. UWAIBI, P.E.

CONSTRUCTION
CONTRACT NO.: T0000
FISCAL YEAR: 17
SHEET NO.: 1
CONTRACT PLANS COMPONENTS

- Roadway Plans
- Signing and Pavement Marking Plans
- Signalization Plans
- Intelligent Transportation Systems Plans
- Lighting Plans
- Landscape Plans
- Architectural Plans
- Structure Plans
- Toll Facilities Plans

STATE OF FLORIDA

DEPARTMENT OF TRANSPORTATION

CONTRACT PLANS

FINANCIAL PROJECT ID 123456-1-52-01

(FEDERAL FUNDS)

BAY COUNTY (46080)

STATE ROAD NO. 22 (WEWA HWY)

INDEX OF ROADWAY PLANS

<table>
<thead>
<tr>
<th>SHEET NO.</th>
<th>SHEET DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Key Sheet</td>
</tr>
<tr>
<td>2</td>
<td>Signature Sheet</td>
</tr>
<tr>
<td>3</td>
<td>Summary of Pay Items</td>
</tr>
<tr>
<td>4</td>
<td>Drainage Map</td>
</tr>
<tr>
<td>5 - 6</td>
<td>Typical Sections</td>
</tr>
<tr>
<td>7</td>
<td>Typical Section Details</td>
</tr>
<tr>
<td>8</td>
<td>Summary of Drainage Structures</td>
</tr>
<tr>
<td>9</td>
<td>Optional Materials Tabulation</td>
</tr>
<tr>
<td>10</td>
<td>Project Layout</td>
</tr>
<tr>
<td>11</td>
<td>Control Points</td>
</tr>
<tr>
<td>12</td>
<td>General Notes</td>
</tr>
<tr>
<td>13 - 16</td>
<td>Roadway Plan Profiles</td>
</tr>
<tr>
<td>17</td>
<td>Traffic Monitoring Site</td>
</tr>
<tr>
<td>18</td>
<td>Special Profiles</td>
</tr>
<tr>
<td>19</td>
<td>Intersection Layout</td>
</tr>
<tr>
<td>20 - 26</td>
<td>Drainage Structures</td>
</tr>
<tr>
<td>27 - 33</td>
<td>Box Culvert Details</td>
</tr>
<tr>
<td>34</td>
<td>Lateral Ditch Plan Profiles</td>
</tr>
<tr>
<td>35</td>
<td>Lateral Ditch Cross Sections</td>
</tr>
<tr>
<td>36 - 36A</td>
<td>Special Details</td>
</tr>
<tr>
<td>37 - 47</td>
<td>Cross Sections</td>
</tr>
<tr>
<td>48</td>
<td>Stormwater Pollution Prevention Plan</td>
</tr>
<tr>
<td>49 - 52</td>
<td>Temporary Traffic Control Plans</td>
</tr>
<tr>
<td>53 - 57</td>
<td>Utility Adjustments</td>
</tr>
<tr>
<td>58 - 62</td>
<td>Selective Clearing and Grubbing</td>
</tr>
</tbody>
</table>

DEVELOPMENTAL DESIGN STANDARDS (DDS):

- D450: HIGH-TENSION CABLE BARRIER

*This sheet is included in the Index of Roadway Plans only to indicate that it is part of the Roadway Plans. This sheet is contained in a separate digitally signed and sealed document.

GOVERNING DESIGN STANDARDS:

Florida Department of Transportation, FY 2016-17 Design Standards eBook (DSeB) and applicable Design Standards Revisions (DSRs) at the following website:

http://www.fdot.gov/roadway/DesignStandards/Standards.shtm

APPLICABLE DSRs: DSR400-01, DSR411-01, DSR410-01

GOVERNING STANDARD SPECIFICATIONS:

Florida Department of Transportation, July 2016 Standard Specifications for Road and Bridge Construction at the following website:

http://www.fdot.gov/implemented/SpecBooks

ROADWAY PLANS

ENGINEER OF RECORD:

LUKE S. WALKER, P.E. NO.: 999999
ROADWAY ENGINEERS, INC.
123 MAIN STREET
TALLAHASSEE, FL 32301
(850) 671-1313

CONTRACT NO.: CO0000
VENDOR NO.: 99-999999
CERTIFICATE OF AUTHORIZATION NO.: 12345

FOOT PROJECT MANAGER:

BEN K. UWA/81, P.E.

REVISIONS:

- **FINANCIAL PROJECT ID 123456-1-52-01**
 - Roadway Sheet 1, 2A, 27, & 35A (Revised 10-14-16)
 - Structure Sheets B-1 & C-1 THRU C-10 (Revised 10-14-16)

FDOT PROJECT MANAGER:

BEN K. UWA/81, P.E.

CONSTRUCTION CONTRACT NO.: T0000
FISCAL YEAR: 17
SHEET NO.: 1A
<table>
<thead>
<tr>
<th>SHEET NO.</th>
<th>SHEET DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1</td>
<td>KEY SHEET</td>
</tr>
<tr>
<td>S-2</td>
<td>TABULATION OF QUANTITIES</td>
</tr>
<tr>
<td>S-3</td>
<td>GENERAL NOTES</td>
</tr>
<tr>
<td>S-4 - S-14</td>
<td>PLAN SHEETS</td>
</tr>
<tr>
<td>S-15</td>
<td>GUIDE SIGN WORKSHEET</td>
</tr>
</tbody>
</table>

INDEX OF SIGNING AND PAVEMENT MARKING PLANS

SIGNING AND PAVEMENT MARKINGS PLANS

ENGINEER OF RECORD:

CHUY J. JAMESON, P.E.
ROADWAY ENGINEERS, INC.
123 MAIN STREET
TALLAHASSEE, FL 32301
(850) 671-1313

CONTRACT NO.: C0001

VENDOR NO.: 99-999999

CERTIFICATE OF AUTHORIZATION NO.: 12345

FO DOT PROJECT MANAGER:

BEN K. UWAIBI, P.E.

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION

CONTRACT PLANS

FINANCIAL PROJECT ID 123456-1-52-01
(FEDERAL FUNDS)
BAY COUNTY (46080)
STATE ROAD NO. 22 (WEWA HWY)

LOCATION OF PROJECT:

https://gmpg.org/2005/05/10/34540

DATE: 1/1/17

THIS DOCUMENT HAS BEEN DIGITALLY SIGNED AND SEALED BY:

CHUY J. JAMESON
Date: 2016.10.14
13:53:01 - 04'00'

PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED.
The signature must be verified on the electronic documents.

<table>
<thead>
<tr>
<th>CONSTRUCTION CONTRACT NO.</th>
<th>FISCAL YEAR</th>
<th>SHEET NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0000</td>
<td>17</td>
<td>1</td>
</tr>
</tbody>
</table>

SIGNING AND PAVEMENT MARKINGS PLANS

DATE: 10/23/2016 11:08:46 AM

SIGNING AND PAVEMENT MARKINGS PLANS

ENGINEER OF RECORD:

CHUY J. JAMESON, P.E.
ROADWAY ENGINEERS, INC.
123 MAIN STREET
TALLAHASSEE, FL 32301
(850) 671-1313

CONTRACT NO.: C0001

VENDOR NO.: 99-999999

CERTIFICATE OF AUTHORIZATION NO.: 12345

FDOT PROJECT MANAGER:

BEN K. UWAIBI, P.E.

DATE: 10/23/2016 11:08:49 AM

SIGNING AND PAVEMENT MARKINGS PLANS

ENGINEER OF RECORD:

CHUY J. JAMESON, P.E.
ROADWAY ENGINEERS, INC.
123 MAIN STREET
TALLAHASSEE, FL 32301
(850) 671-1313

CONTRACT NO.: C0001

VENDOR NO.: 99-999999

CERTIFICATE OF AUTHORIZATION NO.: 12345
THE ABOVE NAMED PROFESSIONAL ENGINEER SHALL BE RESPONSIBLE FOR THE FOLLOWING SHEETS IN ACCORDANCE WITH RULE 61G15-23.004, F.A.C.

<table>
<thead>
<tr>
<th>SHEET NO.</th>
<th>SHEET DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KEY SHEET</td>
</tr>
<tr>
<td>2</td>
<td>SIGNATURE SHEET</td>
</tr>
<tr>
<td>3</td>
<td>SUMMARY OF PAY ITEMS</td>
</tr>
<tr>
<td>4</td>
<td>DRAINAGE MAP</td>
</tr>
<tr>
<td>5-6</td>
<td>TYPICAL SECTIONS</td>
</tr>
<tr>
<td>7</td>
<td>TYPICAL SECTION DETAILS</td>
</tr>
<tr>
<td>501 - 506</td>
<td>SUMMARY OF QUANTITIES</td>
</tr>
<tr>
<td>8</td>
<td>SUMMARY OF DRAINAGE STRUCTURES</td>
</tr>
<tr>
<td>9</td>
<td>OPTIONAL MATERIALS TABULATION</td>
</tr>
<tr>
<td>10</td>
<td>PROJECT LAYOUT</td>
</tr>
<tr>
<td>11</td>
<td>GENERAL NOTES</td>
</tr>
<tr>
<td>12</td>
<td>PROJECT CONTROL</td>
</tr>
<tr>
<td>13-16</td>
<td>ROADWAY PLAN-PROFILES</td>
</tr>
<tr>
<td>17</td>
<td>TRAFFIC MONITORING SITE</td>
</tr>
<tr>
<td>18</td>
<td>SPECIAL PROFILES</td>
</tr>
<tr>
<td>19</td>
<td>INTERSECTION LAYOUT</td>
</tr>
<tr>
<td>20-26</td>
<td>DRAINAGE STRUCTURES</td>
</tr>
<tr>
<td>24</td>
<td>LATERAL DITCH PLAN-PROFILES</td>
</tr>
<tr>
<td>35</td>
<td>LATERAL DITCH CROSS SECTIONS</td>
</tr>
<tr>
<td>36</td>
<td>SPECIAL DETAILS</td>
</tr>
<tr>
<td>37-47</td>
<td>CROSS SECTIONS</td>
</tr>
<tr>
<td>48</td>
<td>STORMWATER POLLUTION PREVENTION PLANS</td>
</tr>
<tr>
<td>49-52</td>
<td>TEMPORARY TRAFFIC CONTROL PLANS</td>
</tr>
<tr>
<td>53-57</td>
<td>UTILITY ADJUSTMENTS</td>
</tr>
</tbody>
</table>

THE ABOVE NAMED REGISTERED LANDSCAPE ARCHITECT SHALL BE RESPONSIBLE FOR THE FOLLOWING SHEETS IN ACCORDANCE WITH RULE 63G0-1001.001, F.A.C.

<table>
<thead>
<tr>
<th>SHEET NO.</th>
<th>SHEET DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>SIGNATURE SHEET</td>
</tr>
<tr>
<td>27-33</td>
<td>BOX Culvert DETAILS</td>
</tr>
<tr>
<td>D450</td>
<td>HIGH-TENSION CABLE BARRIER</td>
</tr>
</tbody>
</table>

Signature Sheet

Date: 1/1/17

Signature Sheet

Date: 1/1/17

Signature Sheet

Date: 1/1/17
THE ABOVE NAMED PROFESSIONAL ENGINEER SHALL BE RESPONSIBLE FOR THE FOLLOWING SHEETS IN ACCORDANCE WITH RULE 61G15-23.004, F.A.C.

SHEET NO. SHEET DESCRIPTION
1 KEY SHEET
2A SIGNATURE SHEET
36A SPECIAL DETAIL SHEET

STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION

SR 22 BAY 123456-1-52-01

SHEET NO.
2A

SIGNATURE SHEET

55-2: Revision
Signature Sheet
Date: 1/1/17
Chapter 4

Summary of Pay Items

4.1 General ... 4-1

4.2 Summary of Pay Items Sheet................................. 4-2
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 4

Summary of Pay Items

Modification for Non-Conventional Projects:

Delete *PPM* Chapter 4.

4.1 General

The summary of pay items sheet is generated from information provided by the Engineer of Record (EOR) and input into Designer Interface. The Summary of Pay Items Report is generated in AASHTOWare Project™ Webgate Reporting (formerly Trns*port Reports Menu).

For early phase reviews (up to Phase III, or until the proposal has been created), the Summary of Pay Items Report will include the summary of pay items for the individual project number selected. If multiple projects are anticipated to be let together, download the XML file for each project’s Summary of Pay Items sheet(s) in the plans. Once the proposal has been created, the report will generate all the pay items for multiple projects combined using the lead project financial project number, and the extra downloads will not be required.

Transfer the downloaded XML file to a graphics design file and place on a standard plan sheet available in the FDOT Engineering/CADD Systems Software. Designer Interface must be kept current with the quantities in the plans. It is critical that any revisions to the quantities be updated in the Designer Interface. Once updated, the Summary of Pay Items Report must be rerun to download the new XML to update the graphics design file. The Summary of Pay Items Report file is used to prepare the bid documents and must match the pay items and quantities shown in the plans.
4.2 Summary of Pay Items Sheet

The summary of pay items sheet(s) lists all pay items and quantities for all components for the project, or projects, in a contract.

Place summary of pay items sheets directly behind the lead signature sheet. Place the summary of pay items on the sheet(s) in the order generated in the AASHTOWare Project™ WebGate Reporting menu (formerly Trns*port Reports Menu), Summary of Pay Items Report XML file which the Engineering/CADD Systems Software uses to automate the creation of the sheet(s), or in the same order as the list of Contract Plans components shown on the lead key sheet. Alpha suffixes may be used for sheet numbering to allow for the insertion of additional sheets without renumbering the Index of Sheets.

Strung projects, those that are independently prepared but are to be let in the same construction contract, must combine all pay items and quantities into a single Proposal Summary of Pay Items Report to be placed in the lead project. If the Proposal has not been created for the project yet, the Summary of Pay Items must contain the Summary Reports for all of the individual project numbers included in the strung project.

Only the lead key sheet for the entire contract should contain reference to summary of pay items.

A summary of pay items sheet without quantities is required at the Phase II submittal, and a complete summary of pay items sheet with quantities is required at the Phase III and Phase IV submittals. Refer to Chapter 2 for requirements of phase submittals.

For a list of standard pay item notes see Section 7.2.2 of this volume.
Chapter 5

Drainage Map and Bridge Hydraulic Recommendation Sheet

5.1 Drainage Map ... 5-1
 5.1.1 Plan View ... 5-2
 5.1.2 Profile View ... 5-3
 5.1.3 Flood Data Summary Box 5-4
 5.1.4 Interchange Drainage Map 5-5

5.2 Bridge Hydraulic Recommendation Sheet 5-6
 5.2.1 Required Information on BHRS 5-6
 5.2.1.1 Plan View ... 5-7
 5.2.1.2 Profile View .. 5-7
 5.2.1.3 Location Map and Drainage Area 5-8
 5.2.1.4 Existing Structures Data, Hydraulic Design Data, and Hydraulic Recommendations 5-8
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 5

Drainage Map and Bridge Hydraulic Recommendation Sheet

5.1 Drainage Map

Drainage maps are required for all projects that add mainline capacity or changes to the drainage hydraulics. Maps may be developed using a photographic (aerial or other) base map and included in the construction plans.

Preformatted drainage map sheet cells are located in the FDOT CADD Software. The upper (grid) portion of each sheet is used for plotting the project profile. The standard grid pattern for the profile portion of the sheet is five lines per inch, both in the horizontal and vertical. This will accommodate most scales. An optional grid with four lines per inch is available. This optional grid may be used if appropriate for scale.

Locate the topography of the project area in the remaining portion of the sheet. Utilize a horizontal and vertical scale of the profile so that the stations and elevations can be read directly from the grid without the use of a scale. Use the same horizontal scale for both the plan and profile views. Recommended scales for facility types are as follows:

<table>
<thead>
<tr>
<th>Type of Facility</th>
<th>Horizontal Scale</th>
<th>Vertical Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstate Urban</td>
<td>1” = 500'</td>
<td>1” = 5'/1” = 10’</td>
</tr>
<tr>
<td>Interstate & Other Rural</td>
<td>1” = 1000’/2000’</td>
<td>1” = 10'/1” = 20’</td>
</tr>
<tr>
<td>Municipal & Other</td>
<td>1” = 200’/500’</td>
<td>1” = 5'/1” = 10’</td>
</tr>
</tbody>
</table>
5.1.1 Plan View

The plan view must comply with the following requirements:

1. Show stationing every 500 feet for scales of 1" = 100'/200', every 1000 feet for a scale of 1" = 500' and every 5000 feet for scales of 1" = 1000'/2000'. For additional information see Figure 10.1 in Chapter 10 of this volume.

 Show horizontal alignment station equations and exceptions. Also show begin and end stations of project, construction, bridge, and bridge culverts.

2. Clearly label existing physical land features affecting drainage, such as lakes, streams, and swamps, by name and direction of flow. Show past high water elevations with date of occurrence, if available, and present water elevations with date of reading.

 Where applicable, show drainage divides and other information (such as pop-off elevations and spot elevations) to indicate the overland flow of water. Show drainage areas on maps in acres.

 Use inserts to show areas that are of such magnitude that the boundaries cannot be plotted at the selected scale.

3. Label existing road numbers and street names, drainage structures with type, size, flow line elevations, flow arrows and any other pertinent data. Refer to the FDOT CADD Software and the Design Standards, Index No. 002 for correct symbols for existing drainage facilities. In a situation of limited space, all data relating to existing drainage structures and pipes may be compiled in a table format and shown in either the plan or profile portion of the sheet. Should the space limitations be such that a table will not fit within the plan or profile view, a supplemental drainage data sheet is acceptable.

4. Show proposed drainage structures, cross drains, storm drain pipes, outfall structures and retention/detention pond locations. Label cross drains by pipe size and structure number. Label structures by structure number, storm drain pipes by pipe size, and ponds by pond number and area size. Show arrows to indicate direction of flow along proposed ditches.

5. Label Section, Township, Range, and county lines for rural and urban projects when occurring within the project limits.

6. Include a north arrow and scale, preferably in the upper right corner of the plan view.
7. If the drainage map is to be included in the contract plans set, include the following note:

DO NOT USE THE INFORMATION ON THIS SHEET FOR CONSTRUCTION PURPOSES. This sheet is in the plans for documentation and to assist construction personnel with drainage concerns.

5.1.2 Profile View

The profile view, if shown, must comply with the following requirements:

1. The recommended vertical scale for rural and urban projects is 1" = 5' in level terrain and 1" = 10' in rolling terrain. A scale of 1" = 20' may sometimes be used for rural projects through rough terrain to avoid numerous profile breaks. The profile can be broken for rolling terrain in urban areas. However, a scale of 1" = 20' should never be used at locations of proposed storm drain systems.

2. Station numbers are to be shown along the bottom edge of the profile view.

3. Show elevation datum at each side of the sheet. In cases where the profile block is insufficient and excess space is available on the plan portion of the sheet, the profile block may be expanded.

4. Plot and label the profile of the existing natural ground, and note the existing elevation at each end, just above the station numbers.

5. Plot the proposed profile grade line. Percent of grade need not be shown. Plot the PC, PI, and PT of vertical curves using their respective standard symbols; however, no data (station, elevation, length of curve) needs be noted. Label begin and end project, construction, bridge and bridge culvert stations, station equations, and exceptions. Show profile grade line elevations at begin and end project stations and at the beginning and end of each additional drainage sheet.

6. Plot proposed cross drains and identify by structure number. Do not show skew or pipe slope in plotting, but plot to elevation and location at point of crossing the construction centerline.

7. For projects with storm drain systems, show only the mainline structure and pipes. Laterals need not be shown. Label each structure with its appropriate structure number, and flow line elevations noted for the incoming and outgoing pipes.

8. Show all high water elevations affecting base clearance or roadway grades.
5.1.3 **Flood Data Summary Box**

Show flood data on the drainage map, either in the plan or in the profile portion. If the drainage map is not included in the plans, show the flood data on the summary of quantities sheet or on the first plan-profile sheet.

Design, base and overtopping or greatest flood discharge and stage values are required for all cross structures (culverts and bridges), regardless of size, under the following conditions:

1. All new cross structures
2. All cross structures that are being modified, where modifications affect the existing hydraulic calculations.
3. All cross structures that have a history of flooding or other hydraulic problems, even if the structure is not to be modified; or
4. Cross structures that are not being modified but are being impacted by the modification of another cross structure within the same drainage basin.

Place the following note under the Summary of Flood Data table to avoid misuse and possible responsibility for changes in the flood information values over which the FDOT has no control:

Note: The hydraulic data is shown for informational purposes only, to indicate the flood discharges and water surface elevations which may be anticipated in any given year. This data was generated using highly variable factors determined by a study of the watershed. Many judgments and assumptions are required to establish these factors. The resultant hydraulic data is sensitive to changes, particularly of antecedent conditions, urbanization, channelization and land use. Users of this data are cautioned against the assumption of precision which cannot be attained. Discharges are in cubic feet per second (cfs) and stages are in feet, NAVD 88.

Definitions:

Design Flood: Utilized to assure a standard level of hydraulic performance.

Base Flood: Has a 1% chance of being exceeded in any year (100 yr. frequency).

Overtopping Flood: Causes flow over the highway, over a watershed divide or thru emergency relief structures.

Greatest Flood: The most severe that can be predicted where overtopping is not practicable.
A preformatted summary box with the note and definitions is located in the FDOT CADD Software.

The project drainage engineer must provide the information required to complete the box.

5.1.4 Interchange Drainage Map

If projects include interchanges or rest areas, include a drainage map on a 1" = 200' or 1" = 500' scale. The purpose of this detail is to show the small areas needed to calculate pipe sizes for the tabulation of drainage structures within these special areas. Should major drains pass through one of these areas, include a cross reference note indicating the proper sheet which reflects the drainage area for that through-structure.
5.2 Bridge Hydraulic Recommendation Sheet

When a Bridge Hydraulic Recommendation Sheet (BHRS) is required (see FDOT Drainage Manual, Topic No. 625-040-002), it must be prepared on a preformatted sheet. The cell for this sheet is located in the FDOT CADD Software. The inclusion of this sheet in the contract plans set is required. Place the BHRS in the structures plans for bridges and in the roadway plans for bridge culverts.

Parallel (dual) bridges may be shown on one sheet, although a second sheet should be used, if necessary, to clearly convey the fit of the bridge to the stream bank. When two sheets are used, only the plan and profile information needs to be furnished on the second sheet.

A completed Bridge Hydraulic Recommendation Sheet is shown as Exhibit BHD-1.

5.2.1 Required Information on BHRS

The preformatted BHRS is divided into the four regions listed below. The required information for each region is described in the following sections.

1. Plan View
2. Profile View
3. Location Map and Drainage Area
4. Existing Structures, Hydraulic Design Data and Hydraulic Recommendations
5.2.1.1 Plan View

1. Stationing, scale, and north arrow.
2. Existing topography (i.e., Including existing bridge) and contours (i.e., show elevations). Show sufficient detail in the vicinity of the proposed bridge to depict how the structure will tie to natural ground.
3. Label the name of the water body (i.e., St. Johns River).
4. Arrows showing the direction of the flow.
5. Proposed bridge begin and end station.

5.2.1.2 Profile View

1. Stationing and scale.
2. One cross section which most represents the section at the proposed crossing.
3. Road profile for the proposed structure (i.e., stationing and elevation).
4. Proposed bridge with low member, and pier locations.
5. Abutment locations (e.g., toe of slope).
6. Flood elevations. For non-tidal crossings, show the Normal High Water (NHW) and Design Flood elevations. For tidal crossings, show the Mean High Water (MHW) and Design Flood Stage elevations.
7. Present water elevation with month, day and year of survey.
8. Bridge Number. The bridge number should be for the new (proposed) structure.

5.2.1.3 Location Map and Drainage Area

1. A north arrow.
2. The range and township.
3. An arrow showing the project location.
4. A location map similar to that used on the key sheet for most projects. Use an appropriate scale for the map so that the entire drainage area for the proposed structure is shown. (For projects with very large drainage areas, use a scale for the map that clearly shows the project location rather than a scale that shows the entire drainage area).

Show the drainage area boundaries using a very heavy, broken line, with the area (in acres or square miles) shown within the boundary. The proposed structure location should be shown. Existing structures over the same water body and those structures that affect the hydraulics of the proposed structure should be located and numbered and corresponding existing structure information listed in the appropriate columns.

5.2.1.4 Existing Structures Data, Hydraulic Design Data, and Hydraulic Recommendations

The Bridge Hydraulics Handbook provides guidance for filling out this section.
Chapter 6

Typical Sections

6.1 General .. 6-1
6.2 Mandatory Information ... 6-2

Exhibits
Exhibit 6-1 Standard Notes for Typical Section Sheets 6-4
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 6

Typical Sections

6.1 General

Typical sections are detailed cross section depictions of the highway's principal elements that are standard between certain station or milepost limits. These sections are the basis for construction details and information shown on the various plan sheets throughout the plans package.

Typical sections should show typical conditions only. Non-standard conditions that prevail for short distances only should not be shown. Existing elements that are to be incorporated into the highway's final section are depicted in conjunction with the proposed elements.

When more than one typical section is necessary for a project, show the station limits of each section below the typical section title. Typical section stationing must cover the entire project. Include transitions from one typical to another in the stationing of one or the other typical section. Sheets that feature more than one typical section should read from the top down, with the sections in the order in which they occur within the project.

The hierarchy for typical sections is as follows:

1. Project mainline
2. Ramps and service roads (for projects which include an interchange)
3. Crossing side roads
4. Minor side streets

Half sections and details which supplement or support various typical sections should be placed on the same sheet as the typical section to which they apply. In the event that this is not possible, additional sheets for details should be placed behind the typical section sheet(s).

Half sections are necessary when changes occur that affect several typical section elements such as number of lanes, border width, ditch/drainage features, clearing and grubbing, R/W width, etc.
Details and partial sections are necessary for the clarification of construction techniques or sequence, and to show alternates, such as the placement of shoulder gutter in high fill areas, changes in sidewalk location, etc. Judgment will be necessary in making decisions about when and where details should be shown.

The FDOT CADD Software contains a number of typical sections that can be used and adjusted to suit the conditions of a particular project. Usually typical sections are not created to scale, but the horizontal dimensions should be proportionate.

For illustrations of various typical sections, see Exhibits TYP-1 thru TYP-21.

6.2 Mandatory Information

Include the following data on typical sections:

1. Design speed for each typical section
2. Traffic data (description, date and 2-way AADT)
 a. Current Year
 b. Estimated Opening Year
 c. Estimated Design Year
 d. K, D and T factors. Distinguish between T(peak hour) and T(24 hour)

For skid hazard projects, only the current year or estimated opening year for traffic data (AADT) is required to be noted.

All traffic data shown must be consistent with the data used for pavement design.

3. Cross Slopes
 a. Express cross slopes of roadway pavement, shoulder surfaces, sidewalks and bridge decks as a decimal part of a foot vertical per foot horizontal. These cross slopes should be rounded to two decimal places, i.e., 0.02, 0.06. Three decimal places may be used when required. (See Chapter 2 of Volume 1).

 b. Show median and outer slopes by ratio, vertical to horizontal, i.e., 1:4, 1:2. (See Chapter 2 of Volume 1).

 c. Include either feathering details or notes (or both) when resurfacing without milling in urban curb and gutter sections is specified or when milling depth is less than the overlay thickness.
d. When cross slope correction is necessary, include special milling and layering details showing the method of correction in the plans. (See Exhibits TYP-13 thru 13C).

4. Flag profile grade point when applicable.

5. Describe pavement construction in a clear, precise manner by indicating the LBR requirement and the thickness of the subgrade stabilization, subbase or base, as well as thickness for structural course, friction course and shoulder pavement. Use 4 inches for both base extension on rural sections and for stabilization extension on curbed sections.

Obtain pavement structure information from the approved pavement design and describe it in the order of construction, i.e., starting with bottom layer and ending with friction course. Show pavement thickness descriptions for leveling, overbuild, structural course and friction course in inches (and fractions of an inch). The thickness shown should be to the nearest ½” (except for FC-5 which is a standard ¾”).

7. Sidewalk location and width.

8. Curb and gutter location and type (show Type E or F, not the dimension).

On new construction curb and gutter projects which include Asphalt Base, Type B-12.5 only, indicate the asphalt curb pad on the typical section and provide a detail. (See Exhibit TYP–6A)

9. Limits of clearing and grubbing, where applicable.

10. R/W, where applicable.

11. Template dimensions:

 For widening projects, show the existing pavement width as a ± dimension, and show the base widening width with an asterisk. Show Note 3, of Standard Notes for Typical Section Sheets (Exhibit 6-1), as near to this noted asterisk as possible.

 NOTE: For typical sections with varying dimensions, clearly indicate the dimensions on the plan-profile sheets.

12. Standard notes for typical sections are shown on Exhibit 6-1.

13. Identify shoulder treatment where applicable on RRR projects (See Section 25.4.8 of Volume 1)
Exhibit 6-1 Standard Notes for Typical Section Sheets

Show the following standard notes on typical section sheets as applicable:

1. For details and limits of selective clearing and grubbing see _______.
2. (Under paved shoulders):
 At the contractor’s option, this area may be constructed of base material at no additional compensation.
3. (On widening projects):
 Actual width of base widening may vary due to actual existing pavement width. Contractor may elect to place uniform width base widening strip at no additional cost to the Department.
1:2 (WITH GUARDRAIL) FOR FILLS OVER 20'
1:6 TO EDGE OF CLEAR ZONE & 1:3 FOR FILLS 10' TO 20'
1:6 TO EDGE OF CLEAR ZONE & 1:4 FOR FILLS 5' TO 10'
1:6 FOR FILLS TO 5'

TO TOE OF FRONT SLOPE.

FROM THE EDGE OF THE OUTSIDE TRAVEL LANE
HEIGHT OF FILL IS THE VERTICAL DISTANCE

NOTE:

STA. 10+00.00 TO STA. 267+34.89
SR 10 (U.S. 90-A)
TYPICAL SECTION
NEW CONSTRUCTION
SHOULDER PAVEMENT
OPTIONAL BASE

FOR STANDARD TYPICAL SECTION NOTES REFER TO EXHIBIT 6-1, THIS CHAPTER.
CONSTRUCTION VARIES.

* Y THE AREA DISTURBED BY CONSTRUCTION, AS APPLICABLE.

DESIGN SPEED = 70 MPH

DESIGN HOUR T = 5%
K = 9%
D = 56%
T = 10%
(24 HOUR)

ESTIMATED DESIGN YEAR = 2020
AADT = 51500

ESTIMATED OPENING YEAR = 2000
AADT = 23300

CURRENT YEAR = 1998
AADT = 22300

TRAFFIC DATA

POSTED SPEED (MPH) IS OPTIONAL.

OPENING YEAR, AND DESIGN YEAR.

NOTED FOR CURRENT YEAR,

TRAFFIC DATA IS REQUIRED TO BE

FOR STANDARD TYPICAL SECTION NOTES
REFER TO EXHIBIT 6-1, THIS CHAPTER.

TYPICAL SECTION

SR 500

STA. 63+65.42 TO STA. 328+65.14

NEW CONSTRUCTION

OPTIONAL BASE GROUP 9 WITH

TYPE SP STRUCTURAL COURSE (TRAFFIC D) (2")

AND FRICTION COURSE FC-5 (1/2") (PG 76-22)

SHOULDER PAVEMENT

OPTIONAL BASE GROUP 1 WITH

TYPE SP STRUCTURAL COURSE (TRAFFIC D) (1 1/2") (PG 76-22)

AND FRICTION COURSE FC-5 (1/2") (PG 76-22)

NOTE:

HEIGHT OF FILL IS THE VERTICAL DISTANCE
FROM THE EDGE OF THE OUTSIDE TRAVEL LANE
TO TOE OF FRONT SLOPE.

4 LANE
ARTERIAL/COLLECTOR
NEW CONSTRUCTION
DIVIDED
RURAL
WITH BICYCLE LANES OR
PAVED SHOULDERS
WITH PROJECTED
20 YR. AADT OF 1500
OR GREATER
DESIGN SPEED GREATER
THAN 50 MPH

TYPICAL SECTION
SEE PPM TABLE 2.2.1.

5-LANE SECTIONS ARE TO INCLUDE SECTIONS OF RAISED OR RESTRICTIVE MEDIAN. SEE PPM TABLE 2.2.1.

SURVEY AND/OR CONSTRUCTION, AS APPLICABLE.

URBAN

ARTERIAL/COLLECTOR

NEW CONSTRUCTION

UNDIVIDED

WITH BICYCLE LANES

MINIMUM RIGHT OF WAY

DESIGN SPEED 40 MPH OR LESS

WITH PROJECTED 20 YR. AADT OF 1500 OR GREATER

W/22%

5-LANE SECTIONS ARE TO INCLUDE SECTIONS OF RAISED OR RESTRICTIVE MEDIAN. SEE PPM TABLE 2.2.1.

SURVEY AND/OR CONSTRUCTION, AS APPLICABLE.

URBAN

ARTERIAL/COLLECTOR

NEW CONSTRUCTION

UNDIVIDED

WITH BICYCLE LANES

MINIMUM RIGHT OF WAY

DESIGN SPEED 40 MPH OR LESS

WITH PROJECTED 20 YR. AADT OF 1500 OR GREATER

W/22%

TYPICAL SECTION

SR 00 (DUVAL STREET)

STA. 252+12.00 TO STA. 323+19.42

NEW CONSTRUCTION

OPTIONAL BASE GROUP 8 WITH TYPE SP STRUCTURAL COURSE (TRAFFIC B) (1 ½") AND FRICITION COURSE FC-12.5 (TRAFFIC B) (1 ½") (PG 76-22)

FOR STANDARD TYPICAL SECTION NOTES REFER TO EXHIBIT 6-1, THIS CHAPTER.

TRAFFIC DATA

CURRENT YEAR = 1998 AADT = 9900

ESTIMATED OPENING YEAR = 2000 AADT = 10600

ESTIMATED DESIGN YEAR = 2020 AADT = 14000

K = 6% D = 55% T = 2% (24 HOUR)

DESIGN HOUR T = 1%

DESIGN SPEED = 40 MPH

TRAFFIC DATA IS REQUIRED TO BE NOTED FOR CURRENT YEAR, OPENING YEAR AND DESIGN YEAR. POSTED SPEED (MPH) IS OPTIONAL.

STATE OF FLORIDA

DEPARTMENT OF TRANSPORTATION

COUNTY

FINANCIAL PROJECT NO.

TYPICAL SECTION

DATE: 1/1/16

EXHIBIT TYP-3

TYPICAL SECTION

SR 00 (DUVAL STREET)

STA. 252+12.00 TO STA. 323+19.42

NEW CONSTRUCTION

OPTIONAL BASE GROUP 8 WITH TYPE SP STRUCTURAL COURSE (TRAFFIC B) (1 ½") AND FRICITION COURSE FC-12.5 (TRAFFIC B) (1 ½") (PG 76-22)

FOR STANDARD TYPICAL SECTION NOTES REFER TO EXHIBIT 6-1, THIS CHAPTER.

TRAFFIC DATA

CURRENT YEAR = 1998 AADT = 9900

ESTIMATED OPENING YEAR = 2000 AADT = 10600

ESTIMATED DESIGN YEAR = 2020 AADT = 14000

K = 6% D = 55% T = 2% (24 HOUR)

DESIGN HOUR T = 1%

DESIGN SPEED = 40 MPH

TRAFFIC DATA IS REQUIRED TO BE NOTED FOR CURRENT YEAR, OPENING YEAR AND DESIGN YEAR. POSTED SPEED (MPH) IS OPTIONAL.

STATE OF FLORIDA

DEPARTMENT OF TRANSPORTATION

COUNTY

FINANCIAL PROJECT NO.

TYPICAL SECTION

DATE: 1/1/16

EXHIBIT TYP-3
TYPICAL SECTION
SR 00 (WILSON STREET)
STA. 98+40.00 TO STA. 202+33.00

NEW CONSTRUCTION
OPTIONAL BASE GROUP 9 WITH
TYPE SP STRUCTURAL COURSE (TRAFFIC B) (1 1/2")
AND FRICTION COURSE FC-12.5 (TRAFFIC B) (1 1/2") (PG 76-22)

TRAFFIC DATA
CURRENT YEAR = 1998 AADT = 22800
ESTIMATED OPENING YEAR = 2000 AADT = 25800
ESTIMATED DESIGN YEAR = 2020 AADT = 30600
K = 6%, D = 33%, T = 2% (24 HOUR)

DESIGN HOUR T = 1%
DESIGN SPEED = 45 MPH

TRAFFIC DATA IS REQUIRED TO BE NOTED FOR CURRENT YEAR, OPENING YEAR AND DESIGN YEAR.
POSTED SPEED (MPH) IS OPTIONAL.

EXHIBIT TYP-5
Date: 1/1/15
NEW CONSTRUCTION

STANDARD CLEARING AND GRUBBING

40'

R/W LINE

VARIES

0.02

12'

PROFILE GRADE POINT

LEVEL 2' SOD

12' OR TO SUIT PROPERTY OWNER, NOT FLATTER THAN 1:6

CONCRETE SIDEWALK

BIKE LANE

BUFFERED BIKE LANE

CURB AND GUTTER TYPE E

CURB AND GUTTER TYPE F

LBR 40

TYPE B STABILIZATION LBR 40

SOD

LEVEL 8'-9'

LEVEL 8'-9'

R/W VARIES (60' MIN.)

R/W LINE

VARIES

R/W VARIES (60' MIN.)

LIMITS OF CONSTRUCTION

LIMITS OF CONSTRUCTION

TYPICAL SECTION

SR 00 (JACKSON STREET)

STA. 101+21.00 TO STA. 221+44.00

NEW CONSTRUCTION

OPTIONAL BASE GROUP 9 WITH TYPE SP STRUCTURAL COURSE (TRAFFIC C) (2") AND FRICTION COURSE FC-12.5 (TRAFFIC C) (1 1/2") (PG 76-22)

TRAFFIC DATA

CURRENT YEAR = 1998 AADT = 22800
ESTIMATED OPENING YEAR = 2000 AADT = 25800
ESTIMATED DESIGN YEAR = 2020 AADT = 30600
K = 8% D = 55% T = 2% (24 HOUR)
DESIGN HOUR T = %
DESIGN SPEED = 45 MPH

TRAFFIC DATA IS REQUIRED TO BE NOTED FOR CURRENT YEAR, OPENING YEAR AND DESIGN YEAR.

FOR STANDARD TYPICAL SECTION NOTES REFER TO EXHIBIT 64, THIS CHAPTER.

EXHIBIT TYP-6

Date: 1/1/15

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION

MAGNETIC NO. COUNTY FINANCIAL PROJECT NO.

22 BAY 133456-S-20-1

TYPICAL SECTION

THE OFFICIAL RECORD OF THIS SHEET IS THE ELECTRONIC FILE DIGITALLY SIGNED AND SEALED UNDER RULE 61G15-23.004, F.A.C.

123456-5-20-1

BAY ROAD NO.

DATE

DESCRIPTION

REVISIONS

DATE

DESCRIPTION
ON THE TYPICAL SECTION SHEET.
WHEN REQUIRED THIS SHOULD BE IDENTIFIED
SOME PROJECTS MAY REQUIRE SHOULDER WORK.

AADT OF 1500 OR GREATER
WITH PROJECTED 20 YR.
(With Existing BIKE LANES)
RURAL
UNDIVIDED
ARTERIAL/COLLECTOR
2-LANE (2-WAY)
EXISTING

R/W VARIES (50' MIN.)
R/W LINE

RESURFACING
MILLING

12'
12'

Natural Ground
Natural Ground

TYPICAL SECTION
SR 300B
STA. 10+53.00 TO STA. 368+41.21

CURRENT YEAR = 1998 AADT = 9670
ESTIMATED OPENING YEAR = 2000 AADT = 11900
ESTIMATED DESIGN YEAR = 2010 AADT = 20200
K = 10% D = 60% T = 7% (24 HOUR)
DESIGN HOUR T = 3%
DESIGN SPEED = 55 MPH

TRAFFIC DATA

STA. 10+53.00 TO STA. 368+41.21

CONSTANT DEPTH MILLING AND RESURFACING

MILLING

Pavement for Depth (2")

RESURFACING

TYPE SP STRUCTURAL COURSE (TRAFFIC B) (2")
AND FRICTION COURSE FC-9.5
(TRAFFIC B) (1") (PG 76-22)

SHOULDER PAVEMENT RESURFACING

FRICTION COURSE FC-9.5
(TRAFFIC B) (1") (PG 76-22)

TRAFFIC DATA IS REQUIRED TO BE NOTED FOR
CURRENT YEAR, OPENING YEAR AND DESIGN YEAR.

NOTES:
1. CROSS SLOPE CORRECTION IS REQUIRED IF
EXISTING CONDITIONS ARE NOT WITHIN THE RANGES OF
VOLUME 1, CHAPTER 25 CRITERIA.
2. WHEN CROSS SLOPE CORRECTION IS NECESSARY,
SPECIAL MILLING, OVERBUILD, AND LAYERING DETAILS
MUST BE PROVIDED TO SUPPLEMENT TYPICAL SECTION.
THE NEED FOR AND LOCATION OF PROFILE GRADE
POINTS WILL DEPEND ON SITE SPECIFIC CONDITIONS.

EXISTING
2-LANE (2-WAY)
ARTERIAL/COLLECTOR
MILLING AND RESURFACING
UNDIVIDED
RURAL
(WITH EXISTING BIKE LANES
OR PAVED SHOULDERS)
WITH PROJECTED 20 YR.
AADT OF 1500 OR GREATER

EXHIBIT TYP-7
Date: 1/1/17

THE OFFICIAL RECORD OF THIS SHEET IS THE ELECTRONIC FILE ELECTRONICALLY SIGNED AND SEALED UNDER RULE 61G15-23.004, F.A.C.
AADT OF 1500 OR GREATER
WITH PROJECTED 20 YR.
OR PAVED SHOULDERS
(WITH EXISTING BIKE LANES
RURAL
UNDIVIDED
MILLING AND RESURFACING
ARTERIAL/COLLECTOR
2-LANE (2-WAY)
EXISTING
R/W VARIES (50’ MIN.)
12’
PAVT.
5’
Natural Ground
R/W LINE
R/W VARIES (50’ MIN.)

TYPICAL SECTION
SR 400B

CROSS SLOPE CORRECTION
STA. 130+77.00 TO STA. 157+00.00
VARIABLE MILLING
MILL EXISTING ASPHALT
PAVEMENT FOR SLOPE (2½” AVG. DEPTH)
RESURFACING
TYPE SP STRUCTURAL COURSE (TRAFFIC B) (2”)
AND FRICTION COURSE FC-9.5
(TRAFFIC B) (1”) (PG 76-22)

SHOULDER MILLING
MILL EXISTING ASPHALT
PAVEMENT (1” AVG. DEPTH)

SHOULDER PAVEMENT RESURFACING
FRICTION COURSE FC-9.5
(TRAFFIC B) (1”) (PG 76-22)

TRAFFIC DATA
STA. 130+77.00 TO STA. 206+82.28
CURRENT YEAR
1998 AADT = 9870
ESTIMATED OPENING YEAR
2000 AADT = 11900
K = 10% D = 60% T = 7½% (24 HOUR)
DESIGN HOUR T = 3%
DESIGN SPEED = 55 MPH

TRAFFIC DATA IS REQUIRED TO BE NOTED FOR
CURRENT YEAR, OPENING YEAR AND DESIGN YEAR.

EXHIBIT TYP-8
Date: 1/1/17
SHEET 1 OF 2

STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION
TYPICAL SECTION

BAY
133450-0-52-01
EXAMPLE OF CROSS SLOPE CORRECTION
BY VARIABLE DEPTH MILLING AND RESURFACING.

WHEN CROSS SLOPE CORRECTION IS NECESSARY,
SPECIAL MILLING, OVERBUILD AND LAYERING DETAILS
MUST BE PROVIDED TO SUPPLEMENT TYPICAL SECTION.
The need for and location of profile grades
points will depend on site specific conditions.

FOR STANDARD TYPICAL SECTION NOTES
REFER TO EXHIBIT 6-1, THIS CHAPTER.

SUGGESTED CONSTRUCTION SEQUENCES SHOWN.
OTHER SEQUENCES THAT MEET SPECIFICATIONS,
THICKNESS AND CROSS SLOPE REQUIREMENTS MAY
BE CONSIDERED BY THE ENGINEER.

STA. 130+77.00 TO STA. 157+00.00

*EXISTING PAVEMENT CROSS SLOPES

<table>
<thead>
<tr>
<th>STATION</th>
<th>ROADWAY</th>
<th>LT</th>
<th>RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>131+00</td>
<td>0.014</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>133+00</td>
<td>0.013</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>135+00</td>
<td>0.013</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>137+00</td>
<td>0.012</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>139+00</td>
<td>0.013</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>141+00</td>
<td>0.012</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>143+00</td>
<td>0.013</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>145+00</td>
<td>0.014</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>147+00</td>
<td>0.013</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>149+00</td>
<td>0.013</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>151+00</td>
<td>0.014</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>153+00</td>
<td>0.014</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>155+00</td>
<td>0.013</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>157+00</td>
<td>0.014</td>
<td>0.014</td>
<td></td>
</tr>
</tbody>
</table>

EXISTING PAVEMENT

RESURFACING DETAIL

EXHIBIT TYP-8A
Date: 1/1/17
Traffic Data

SR 500B

Typical Section

Sta. 10+53.00 to Sta. 130+77.00

Traffic Data

Current Year = 1998 AADT = 9970
Estimated Opening Year = 2000 AADT = 11900
Estimated Design Year = 2010 AADT = 20200
K = 106% D = 62% T = 7% (24 Hour) Design Hour T = 3%
Design Speed = 55 MPH

Cross Slope Correction

Sta. 10+53.00 to Sta. 130+77.00

Milling for Depth

Mill Existing Asphalt Pavement for Depth (2")

Overbuild for Slope

Type SP Overbuild (Traffic B) Thickness Varies (3/8" to 1")

Resurfacing

Type SP Structural Course (Traffic B) (2") and Friction Course FC-9.5 (Traffic B) (1") (PG 76-22)

Shoulder Milling

Mill Existing Asphalt Pavement (1" Avg. Depth)

Shoulder Pavement Resurfacing

Friction Course FC-9.5 (Traffic B) (1") (PG 76-22)

Notes:
1. No Cross Slope Correction required if existing conditions are within the ranges of PPM Volume 1, Chapter 25 Criteria.
2. When Cross Slope Correction is necessary, special milling, overbuild, and layering details must be provided to supplement Typical Section. The need for and location of profile grade points will depend on site specific conditions.

Existing 2-Lane (2-RW)
Arterial/Collector milling and overbuild for slope UNDIVIDED RURAL
(with existing bike lanes or paved shoulders) with projected 20 yr. AADT of 1500 or greater

* Survey and/or Construction, as applicable.

Milling and Resurfacing

2'-6" SOD Treatment I (INDEX 103)

Milled Pavement

Existing Pavement

Existing Roadway

Existing Base

Existing Stabilization

8' Shldr.

Milled Pavement

SHOULDER MILLING

Pavement (1" AVG. DEPTH)

SHOULDER PAVEMENT RESURFACING

Friction Course FC-9.5

(TRAFFIC B) (1") (PG 76-22)
POINTS WILL DEPEND ON SITE SPECIFIC CONDITIONS. THE NEED FOR AND LOCATION OF PROFILE GRADES MUST BE PROVIDED TO SUPPLEMENT TYPICAL SECTION. SPECIAL MILLING, OVERBUILD AND LAYERING DETAILS WHEN CROSS SLOPE CORRECTION IS NECESSARY REFER TO EXHIBIT 6-1, THIS CHAPTER.

FOR STANDARD TYPICAL SECTION NOTES BE CONSIDERED BY THE ENGINEER. THICKNESS AND CROSS SLOPE REQUIREMENTS MAY OTHER SEQUENCES THAT MEET SPECIFICATIONS, SUGGESTED CONSTRUCTION SEQUENCES SHOWN.

EXAMPLE OF CROSS SLOPE CORRECTION BY CONSTANT DEPTH MILLING AND OVERBUILD.

WHEN CROSS SLOPE CORRECTION IS NECESSARY, SPECIAL MILLING, OVERBUILD AND LAYERING DETAILS MUST BE PROVIDED TO SUPPLEMENT TYPICAL SECTION. THE NEED FOR AND LOCATION OF PROFILE GRADERS POINTS WILL DEPEND ON SITE SPECIFIC CONDITIONS.

SUGGESTED CONSTRUCTION SEQUENCES SHOWN. OTHER SEQUENCES THAT MEET SPECIFICATIONS, THICKNESS AND CROSS SLOPE REQUIREMENTS MAY BE CONSIDERED BY THE ENGINEER.

FOR STANDARD TYPICAL SECTION NOTES REFER TO EXHIBIT 6-1, THIS CHAPTER.
TYPICAL SECTION

SR 000

STA. 20+25.00 TO STA. 48+15.56

MILLING

RESURFACING

WIDENING

TRAFFIC DATA

STA. 20+25.00 TO STA. 48+15.56

CURRENT YEAR = 1998 AADT = 8700
ESTIMATED OPENING YEAR = 2000 AADT = 9200
ESTIMATED DESIGN YEAR = 2020 AADT = 23600
K = 10% D = 56% T = 3% (24 HOUR)
DESIGN HOUR T = 3% DESIGN SPEED = 55 MPH

STA. 57+82.78 TO STA. 93+41.21

CURRENT YEAR = 1998 AADT = 8700
ESTIMATED OPENING YEAR = 2000 AADT = 8600
ESTIMATED DESIGN YEAR = 2020 AADT = 17200
K = 10% D = 65% T = 7% (24 HOUR)
DESIGN HOUR T = 3% DESIGN SPEED = 55 MPH

Traffic data is required to be noted for current year, opening year and design year.

NOTE:

1. No cross slope correction required if existing conditions are within the ranges of PPM Volume 1, Chapter 25 criteria.
2. When cross slope correction is necessary, special milling, overbuild, and layering details must be provided to supplement typical section. The need for and location of profile grade points will depend on site specific conditions.

Traffic data is required to be noted for current year, opening year and design year.
MILLING AND RESURFACING

WIDENING &
SHOULDER PAVEMENT DETAIL

WIDENING

OPTIONAL BASE GROUP II WITH
TYPE SP STRUCTURAL COURSE (TRAFFIC C) (3")
FRICITION COURSE FC-12.5 (TRAFFIC C) (1 1/2") (PG 76-22)

SHOULDER PAVEMENT

OPTIONAL BASE GROUP I WITH
FRICITION COURSE FC-12.5 (TRAFFIC C) (1 1/2") (PG 76-22)

NOTE:
* ACTUAL WIDTH OF BASE WIDENING MAY VARY DUE TO ACTUAL PAVEMENT WIDTH.
CONTRACTOR MAY ELECT TO PLACE UNIFORM BASE WIDENING AT NO ADDITIONAL COST
TO THE DEPARTMENT.

MILLED PAVEMENT
(2" DEPTH)

MATCH
EXISTING

EXISTING ROADWAY
PAVEMENT

EXISTING BASE

OPTIONAL BASE GROUP II

OPTIONAL BASE GROUP I

WIDENING

2'

SHOULDER PAVEMENT

TREATMENT I
(INDEX 105)

2'-8" SOD

MILLING*

THE NEED FOR STABILIZATION IN THE SHOULDER AREA ON
RRR PROJECTS IS SITE SPECIFIC AND NOT ALWAYS REQUIRED.
THE USE OF STABILIZING IN NARROW TRENCH WIDENING
STRIPS IS NOT RECOMMENDED GENERALLY. SEE THE FLEXIBLE
PAVEMENT DESIGN MANUAL FOR FURTHER CRITERIA.

DATE: 1/1/17

EXHIBIT TYP-10A

STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION

STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION

EXHIBIT TYP-10A

TYPICAL SECTION

SHEET 2 OF 2

THE OFFICIAL RECORD OF THIS SHEET IS THE ELECTRONIC FILE DIGITALLY SIGNED AND SEALED UNDER RULE 61G15-23.004, F.A.C.
SR 300
TYPICAL SECTION

POSTED SPEED = 55 MPH
DESIGN SPEED = 60 MPH
DESIGN HOUR T = 11%
K = 11% D = 58% T = 22% (24 HOUR)
ESTIMATED DESIGN YEAR = 2012 AADT = 38900
ESTIMATED OPENING YEAR = 2000 AADT = 21000
CURRENT YEAR = 1998 AADT = 18100

TRAFFIC DATA

POSTED SPEED (MPH) IS OPTIONAL.
CURRENT YEAR, OPENING YEAR, AND DESIGN YEAR.
TRAFFIC DATA IS REQUIRED TO BE NOTED FOR
"Y" THE AREA DISTURBED BY CONSTRUCTION VARIES.
FOR STANDARD TYPICAL SECTION NOTES
REFER TO EXHIBIT 6-1, THIS CHAPTER.

TRAFFIC DATA

CURRENT YEAR = 1998 AADT = 18000
ESTIMATED OPENING YEAR = 2000 AADT = 20000
ESTIMATED DESIGN YEAR = 2022 AADT = 38000
K = 2% D = 58% T = 22% (24 HOUR)
DESIGN HOUR T = 11%
DESIGN SPEED = 55 MPH
POSTED SPEED = 55 MPH

TRAFFIC DATA IS REQUIRED TO BE NOTED FOR CURRENT YEAR, OPENING YEAR, AND DESIGN YEAR.
POSTED SPEED (MPH) IS OPTIONAL.

NOTE:
HEIGHT OF FILL IS THE VERTICAL DISTANCE FROM THE EDGE OF THE OUTSIDE TRAVEL LANE TO TOE OF FRONT SLOPE.
FOR MILLING AND RESURFACING DETAILS SEE TYPICAL SECTION DETAILS SHEET 2.

TYPICAL SECTION

CONSTANT DEPTH MILLING AND RESURFACING
STA. 190+00.00 TO STA. 204+34.58

MILLING
MILL EXISTING ASPHALT PAVEMENT FOR DEPTH (1 1/2"

RESURFACING
TYPE SP STRUCTURAL COURSE (TRAFFIC D) (1 1/2"
TYPE SP STRUCTURAL COURSE (TRAFFIC D) (1 1/2"
AND FRICTION COURSE FC-5 (1/2") (PG 76-22)
SHOULDER PAVEMENT
OPTIONAL BASE GROUP 1 WITH
TYPE SP STRUCTURAL COURSE (TRAFFIC D) (1 1/2"
AND FRICTION COURSE FC-5 (1/2") (PG 76-22)

TYPICAL SECTION DETAILS SHEET 2-5
FOR MILLING AND RESURFACING DETAILS SEE EXHIBIT TYP-11

THE OFFICIAL RECORD OF THIS SHEET IS THE ELECTRONIC FILE DIGITALLY SIGNED AND SEALED UNDER RULE 61G15-23.004, F.A.C.
TYPICAL SECTION

SR 400

CROSS SLOPE CORRECTION

STA. 204+34.58 TO STA. 225+00.00

VARIABLE DEPTH MILLING

MILL EXISTING ASPHALT PAVEMENT FOR SLOPE (1/3 AVG. DEPTH)

RESURFACING

TYPE SP STRUCTURAL COURSE (TRAFFIC D) (1 1/2")

AND FRICTION COURSE FC-5 (1 1/2"") (PG 76-22)

SHOULDER PAVEMENT

OPTIONAL BASE GROUP I WITH

TYPE SP STRUCTURAL COURSE (TRAFFIC D) (1 1/2") (PG 76-22)

AND FRICTION COURSE FC-5 (1 1/2"") (PG 76-22)

TRAFFIC DATA

CURRENT YEAR = 1998 AADT = 18500

ESTIMATED OPENING YEAR = 2000 AADT = 21000

ESTIMATED DESIGN YEAR = 2022 AADT = 36000

K = 10% D = 58% T = 32% (24 HOUR)

DESIGN HOUR T = 11%

POSTED SPEED = 55 MPH

TRAFFIC DATA IS REQUIRED TO BE NOTED FOR CURRENT YEAR, OPENING YEAR, AND DESIGN YEAR.

NOTE:

HEIGHT OF FILL IS THE VERTICAL DISTANCE FROM THE EDGE OF THE OUTSIDE TRAVEL LANE TO TOP OF FRONT SLOPE.

FOR STANDARD TYPICAL SECTION NOTES REFER TO EXHIBIT 61 THIS CHAPTER.

EXHIBIT TYP-12

Date: 1/1/14

SHEET 1 OF 2

STATE OF FLORIDA

DEPARTMENT OF TRANSPORTATION

MOUND NO.

COUNTY

FINANCIAL PROJECT ID

22

BAY

133450-1-52-01

FILE NO.

92013616

Sheet 1 of 2
EXAMPLE OF CROSS SLOPE CORRECTION BY MILLING AND PAVING WITH CONSTANT DEPTH.

WHEN CROSS SLOPE CORRECTION IS NECESSARY, SPECIAL MILLING AND LAYERING DETAILS MUST BE PROVIDED TO SUPPLEMENT TYPICAL SECTION. THE NEED FOR AND LOCATION OF PROFILE GRADE POINTS WILL DEPEND ON SITE SPECIFIC CONDITIONS.

FOR STANDARD TYPICAL SECTION NOTES REFER TO EXHIBIT 6-1, THIS CHAPTER.
VARIABLE DEPTH MILLING DETAIL

- Milled Surface
- Milling Control Point
- Existing Asphal Pavement
- Existing Base

VARIABLE DEPTH OVERBUILD AND RESURFACING DETAIL

- Profile Grade Point
- FC 5 (1") (PG 76-22)
- Type SP (5") (PG 76-22)
- Type SP (8")
- Type SP Overbuild

EXISTING PAVEMENT CROSS SLOPES

<table>
<thead>
<tr>
<th>Station</th>
<th>Eastbound Lanes</th>
<th>Inside</th>
<th>Outside</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA. 316+53.67 - STA. 347+00.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXISTING PAVEMENT CROSS SLOPES

<table>
<thead>
<tr>
<th>Station</th>
<th>Eastbound Lanes</th>
<th>Inside</th>
<th>Outside</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA. 316+53.67 - STA. 347+00.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUGGESTED CONSTRUCTION SEQUENCES SHOWN. OTHER SEQUENCES THAT MEET SPECIFICATIONS, THICKNESSES AND CROSS SLOPE REQUIREMENTS MAY BE CONSIDERED BY THE ENGINEER.

FOR STANDARD TYPICAL SECTION NOTES REFER TO EXHIBIT 6.1 THIS CHAPTER.

<table>
<thead>
<tr>
<th>Date: 1/1/17</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHEET 2 OF 4</td>
</tr>
</tbody>
</table>

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION

<table>
<thead>
<tr>
<th>TYPICAL SECTION DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPICAL SECTION DETAILS</td>
</tr>
</tbody>
</table>

EXHIBIT TYP-13A

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION

<table>
<thead>
<tr>
<th>DATE: 1/1/17</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHEET 2 OF 4</td>
</tr>
</tbody>
</table>

TYPICAL SECTION DETAILS

<table>
<thead>
<tr>
<th>Date: 1/1/17</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHEET 2 OF 4</td>
</tr>
</tbody>
</table>
Overbuild and Resurfacing Detail

- **Type SP Overbuild Thicknesses**
 - Per Foot Specification 334

Existing Pavement Cross Slopes

<table>
<thead>
<tr>
<th>Station</th>
<th>Eastbound Lanes</th>
<th>Inside</th>
<th>Outside</th>
<th>Eastbound Lanes</th>
<th>Inside</th>
<th>Outside</th>
</tr>
</thead>
<tbody>
<tr>
<td>600+00</td>
<td>0.015</td>
<td>0.015</td>
<td></td>
<td>0.015</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>601+00</td>
<td>0.016</td>
<td>0.016</td>
<td></td>
<td>0.016</td>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>602+00</td>
<td>0.013</td>
<td>0.013</td>
<td></td>
<td>0.013</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>603+00</td>
<td>0.012</td>
<td>0.012</td>
<td></td>
<td>0.012</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>604+00</td>
<td>0.013</td>
<td>0.013</td>
<td></td>
<td>0.013</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>605+00</td>
<td>0.013</td>
<td>0.013</td>
<td></td>
<td>0.013</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>606+00</td>
<td>0.013</td>
<td>0.013</td>
<td></td>
<td>0.013</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>607+00</td>
<td>0.012</td>
<td>0.012</td>
<td></td>
<td>0.012</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>608+00</td>
<td>0.013</td>
<td>0.013</td>
<td></td>
<td>0.013</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>609+00</td>
<td>0.012</td>
<td>0.012</td>
<td></td>
<td>0.012</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>610+00</td>
<td>0.013</td>
<td>0.013</td>
<td></td>
<td>0.013</td>
<td>0.013</td>
<td></td>
</tr>
</tbody>
</table>

Exhibit TYP-139

Date: 1/1/14

Typical Section Details

Points Will Depend on Site Specific Conditions.

The need for and location of profile grades must be provided to supplement typical section. Special milling, overbuild and layering details when cross slope correction is necessary.

Refer to Exhibit 6-1, this chapter.

For standard typical section notes refer to Exhibit 6-1, this chapter.

Suggested construction sequences shown. Other sequences that meet specifications, thickness and cross slope requirements may be considered by the engineer.

Example of cross slope correction by constant depth milling and overbuild.

When cross slope correction is necessary, special milling, overbuild and layering details must be provided to supplement typical section. The need for and location of profile grades will depend on site specific conditions.
Existing Pavement SuperElevation

<table>
<thead>
<tr>
<th>Station</th>
<th>Westbound Lanes</th>
<th>Eastbound Lanes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inside</td>
<td>Outside</td>
</tr>
<tr>
<td>400+10</td>
<td>0.018</td>
<td>0.020</td>
</tr>
<tr>
<td>P.C. STA 400+60</td>
<td>0.023</td>
<td>0.024</td>
</tr>
<tr>
<td>401+10</td>
<td>0.036</td>
<td>0.038</td>
</tr>
<tr>
<td>404+00</td>
<td>0.035</td>
<td>0.036</td>
</tr>
<tr>
<td>407+00</td>
<td>0.036</td>
<td>0.034</td>
</tr>
<tr>
<td>409+50</td>
<td>0.033</td>
<td>0.034</td>
</tr>
<tr>
<td>P.T. STA. 412+00</td>
<td>0.024</td>
<td>0.023</td>
</tr>
<tr>
<td>STA 412+50</td>
<td>0.021</td>
<td>0.020</td>
</tr>
</tbody>
</table>

This table can be used to tabulate existing pavement super-elevation in the plans for areas needing super-elevation correction.

Existing Pavement SuperElevation

<table>
<thead>
<tr>
<th>Station</th>
<th>Westbound Lanes</th>
<th>Eastbound Lanes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inside</td>
<td>Outside</td>
</tr>
<tr>
<td>699+50</td>
<td>0.015</td>
<td>0.018</td>
</tr>
<tr>
<td>PC STA 700+00</td>
<td>0.018</td>
<td>0.021</td>
</tr>
<tr>
<td>704+50</td>
<td>0.031</td>
<td>0.032</td>
</tr>
<tr>
<td>704+00</td>
<td>0.032</td>
<td>0.034</td>
</tr>
<tr>
<td>707+00</td>
<td>0.033</td>
<td>0.036</td>
</tr>
<tr>
<td>709+50</td>
<td>0.030</td>
<td>0.031</td>
</tr>
<tr>
<td>PT STA 710+00</td>
<td>0.020</td>
<td>0.021</td>
</tr>
<tr>
<td>STA 710+50</td>
<td>0.017</td>
<td>0.018</td>
</tr>
</tbody>
</table>

When cross slope correction is necessary special milling and layering details must be provided to supplement typical section. The need for and location of profile grade points will depend on site specific conditions.

For other standard typical section notes refer to Exhibit 61, This Chapter.
TYPICAL SECTION SR 00 (JACKSON STREET)

TRAFFIC DATA
- **Current Year** = 1998 AADT = 22800
- **Estimated Opening Year** = 2000 AADT = 25800
- **Estimated Design Year** = 2020 AADT = 30600
- **K = 6%**, **D = 55%**, **T = 2%** (24 Hour)
- **Design Hour T = 2%**
- **Design Speed = 45 MPH**

MILLING
- Mill existing asphalt pavement (1 ½" avg. depth)

RESURFACING
- Friction Course FC-12.5 (Traffic C) (1 ⅝") (PG 76-22)

For standard typical section notes refer to exhibit 64, this chapter.

EXHIBIT TYP-14
- Date: 1/1/15

* Survey and/or construction, as applicable.

STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION

<table>
<thead>
<tr>
<th>SHEET NO.</th>
<th>COUNTY</th>
<th>FINANCIAL PROJECT ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>BAY</td>
<td>133456-5-20-1</td>
</tr>
</tbody>
</table>

The official record of this sheet is the electronic file details stored and sealed under rule 61G15-23, F.A.C.

THE OFFICIAL RECORD OF THIS SHEET IS THE ELECTRONIC FILE DETAILS STORED AND SEALED UNDER RULE 61G15-23, F.A.C.
TYPICAL SECTION

RAMP "B"

STA. 415+67.28 TO STA. 421+23.68

(SINGLE LANE RAMP)

NEW CONSTRUCTION

OPTIONAL BASE GROUP 9 WITH

TYPE SP STRUCTURAL COURSE (TRAFFIC D) (2 1/2") (PG 76-22) AND

FRICTION COURSE FC-5 (1/2") (PG 76-22)

SHOULDER PAVEMENT

OPTIONAL BASE GROUP 1 WITH

TYPE SP STRUCTURAL COURSE (TRAFFIC D) (2 1/2") (PG 76-22) AND

FRICTION COURSE FC-5 (1/2") (PG 76-22)

FOR STANDARD TYPICAL SECTION NOTES REFER TO EXHIBIT 6-L THIS CHAPTER.

LIMITS OF CONSTRUCTION

STANDARD CLEARING AND GRUBBING

SELECTIVE CLEARING

AND GRUBBING

10'

STD.

C & G

2' SHLD.

PVT.

2' SHLD.

PVT.

2' SHLD.

PVT.

2' MIN.

1:6

1:6

1:6

TURF

SOD

SOD

SOD

1:6 FOR FILLS TO 5'
1:6 TO EDGE OF CLEAR ZONE & 1:4 FOR FILLS 5' TO 10'
1:6 TO EDGE OF CLEAR ZONE & 1:3 FOR FILLS 10' TO 20'
1:2 (WITH GUARDRAIL) FILLS OVER 20'

LIMITS OF CONSTRUCTION

LA R/W LINE

1:6

1:6

1:4

2' MIN.

1:6

1:6

1:6

TURF

SOD

SOD

SOD

1:6 FOR FILLS TO 5'
1:6 TO EDGE OF CLEAR ZONE & 1:4 FOR FILLS 5' TO 10'
1:6 TO EDGE OF CLEAR ZONE & 1:3 FOR FILLS 10' TO 20'
1:2 (WITH GUARDRAIL) FILLS OVER 20'

DEPTH AND WIDTH VARY SEE CROSS SECTIONS

*" THE AREA DISTURBED BY CONSTRUCTION VARIES.

NOTE:
HEIGHT OF FILL IS THE VERTICAL DISTANCE FROM THE EDGE OF THE OUTSIDE TRAVEL LANE TO TOE OF FRONT SLOPE.

STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION

RAMP TYPICAL SECTION

DATE: 1/1/15

REVISIONS

DATE

DESCRIPTION

STATE NO.

123456-1-52-01

COUNTY

BAY

FINANCIAL PROJECT NO.

133456-1-52-01

EXHIBIT TYP-16

THE OFFICIAL RECORD OF THIS SHEET IS THE ELECTRONIC FILE DIGITALLY SIGNED AND SEALED UNDER RULE 61G15-23 .004, F.A.C.
TYPICAL SECTION
RAMP "C"
STA. 623+28.64 TO STA. 629+13.78
(TWO LANE RAMP)

NEW CONSTRUCTION

OPTIONAL BASE GROUP 9 WITH
TYPE SP STRUCTURAL COURSE (TRAFFIC D) (2") (PG 76-22) AND
FRICITION COURSE FC-5 (3/4") (PG 76-22)

LEFT SHOULDER PAVEMENT

OPTIONAL BASE GROUP 1 WITH
TYPE SP STRUCTURAL COURSE (TRAFFIC D) (2") (PG 76-22) AND
FRICITION COURSE FC-5 (3/4") (PG 76-22)

RIGHT SHOULDER PAVEMENT

OPTIONAL BASE GROUP 1 WITH
TYPE SP STRUCTURAL COURSE (TRAFFIC D) (2") AND
FRICITION COURSE FC-5 (3/4") (PG 76-22)

NOTE:
HEIGHT OF FILLED IS THE VERTICAL DISTANCE FROM THE EDGE OF THE OUTSIDE TRAVEL LANE TO TOE OF FRONT SLOPE.

TYPE A FENCE

LIMITS OF CONSTRUCTION

STANDARD CLEARING AND GRUBBING

SELECTIVE CLEARING AND GRUBBING

LA R/W LINE

PROFILE GRADE POINT

TYPE B STABILIZATION LBR 40

FRICTION COURSE FOR SHOULDERS MUST BE PLACED
ACROSS THE ENTIRE PAVED SHOULDER.
AS AN OPTION THE DESIGNER MAY CALL FOR FC
A MINIMUM OF 8" BEYOND EDGE OF TRAVEL LANE.
IN EITHER CASE THE LIMITS FOR FC SHALL BE
CLEARLY INDICATED IN THE PLANS.

LEFT SHOULDER PAVEMENT

EXHIBIT TYP-17
Date: 1/1/17

THE OFFICIAL RECORD OF THIS SHEET IS THE ELECTRONIC FILE DIGITALY SIGNED AND SEALED UNDER RULE 61G15-23.004, F.A.C.
TRAFFIC DATA

** NEW CONSTRUCTION

** TRAFFIC DATA IS REQUIRED TO BE

NOTED FOR CURRENT YEAR, OPENING

YEAR AND DESIGN YEAR.

POSTED SPEED (MPH) IS OPTIONAL.

FOR STANDARD TYPICAL SECTION NOTES

REFER TO EXHIBIT 6.1, THIS CHAPTER.

TYPICAL SECTION

SR 00 (SARA AVE.)

STA. 50+40.00 TO STA. 125+50.00

OPTIONAL BASE GROUP 9 WITH

TYPE SP STRUCTURAL COURSE (TRAFFIC C) (3 1/2"

AND FRICTION COURSE FC-5 (1/4") (PG 76-22)

EXHIBIT TYP-18

Date: 1/1/17

THE OFFICIAL RECORD OF THIS SHEET IS THE ELECTRONIC FILE SPECIFIED ABOVE AND SHARED UNDER RULE 61G15-23.001, F.A.C.
TRAFFIC DATA

CURRENT YEAR = 1999 AADT = 22800
ESTIMATED OPENING YEAR = 2002 AADT = 25800
ESTIMATED DESIGN YEAR = 2022 AADT = 30600
R = 6% D = 55% T = 2% (24 HOUR)
DESIGN HOUR T = 5% D = 55%

DESIGN SPEED = 55 MPH

TRAFFIC DATA IS REQUIRED TO BE
NOTED FOR CURRENT YEAR, OPENING
YEAR AND DESIGN YEAR.
POSTED SPEED (MPH) IS OPTIONAL.

FOR STANDARD TYPICAL SECTION NOTES
REFER TO EXHIBIT 8-1, THIS CHAPTER.

TYPICAL SECTION

SR 00 (CODY ROAD)

STA. 100+40.00 TO STA. 225+50.00

NEW CONSTRUCTION

OPTIONAL BASE GROUP 9 WITH
TYPE SP STRUCTURAL COURSE (TRAFFIC C) (3 ¼")
AND FRICTION COURSE FC-5 (¼") (PG 76-22)

SHOULDER PAVEMENT

OPTIONAL BASE GROUP 1 WITH
TYPE SP STRUCTURAL COURSE (TRAFFIC C) (1 ½")
AND FRICTION COURSE FC-5 (¼") (PG 76-22)

TURF SLOPES 1:3 OR FLATTER
* SOD SLOPES STEEPER THAN 1:3

12 OR TO SUIT
PROPERTY OWNER
NOT FLATTER THAN 16

THE OFFICIAL RECORD OF THIS SHEET IS THE ELECTRONIC FILE DIGITALLY SIGNED AND SEALED UNDER RULE 61G15-23.004, F.A.C.
** TYPICAL SECTION

** SHARED USE PATH

SR 00 (WILLOW WAY)

STA. 122+00.000 TO STA. 210+65.000

PATH DESIGN SPEED = 18 MPH

** FOR ROADWAYS WITH CURBS, A MINIMUM SEPARATION OF 4 FEET MEASURED FROM THE BACK OF CURB SHOULD BE PROVIDED.

** FOR ROADWAYS WITH FLUSH SHOULDERS, A MINIMUM SEPARATION OF 5 FEET MEASURED FROM THE OUTSIDE EDGE OF SHOULDER TO THE INSIDE EDGE OF THE SHARED USE PATH SHOULD BE PROVIDED.

** OPTION BASE GROUP 1 WITH

TYPE SP STRUCTURAL COURSE (TRAFFIC A) (11')

** TYPICAL SECTION

** SHARED USE PATH

SR 00 (DEXTON HEIGHTS)

STA. 22+00.000 TO STA. 51+65.000

PATH DESIGN SPEED = 18 MPH

** FOR ROADWAYS WITH CURBS, A MINIMUM SEPARATION OF 4 FEET MEASURED FROM THE BACK OF CURB SHOULD BE PROVIDED.

** FOR ROADWAYS WITH FLUSH SHOULDERS, A MINIMUM SEPARATION OF 5 FEET MEASURED FROM THE OUTSIDE EDGE OF SHOULDER TO THE INSIDE EDGE OF THE SHARED USE PATH SHOULD BE PROVIDED.

** OPTION BASE GROUP 1 WITH

TYPE SP STRUCTURAL COURSE (TRAFFIC A) (11')

** TURF OR SOD

** Width Varies

** Slope Varies: Not Steeper Than 1:2

** SOD

2'

** PROFILE GRADE POINT

** SLOPE VARIES

Natural Ground

** STANDARD CLEARING AND GRUBBING

** SURVEY

** VARIES

R/W LINE

TYPICAL SECTION
SR 00 (SOUTH INDEPENDENCE STREET)
STA. 401+30.00 TO STA. 788+66.00

TRAFFIC DATA
CURRENT YEAR = 1998 AADT = 22800
ESTIMATED OPENING YEAR = 2000 AADT = 25800
ESTIMATED DESIGN YEAR = 2020 AADT = 30600
K = 6% D = 55% T = 2% 24 HOUR
DESIGN HOUR T = 1%
DESIGN SPEED = 50 MPH

NEW CONSTRUCTION
OPTIONAL BASE GROUP 9 WITH TYPE SP STRUCTURAL COURSE (TRAFFIC C) (3")
AND FRICTION COURSE FC-5 (5") (PG 76-22)

** THE 3D MEDIAN AREA PROVIDES SUFFICIENT WIDTH FOR:
- 24 CLEAR ZONE
- DUAL LEFT TURN LANES (11 lanes, 4' separator in median shoulder)
- DIRECTIONAL MEDIAN OPENING (4 separators in median shoulder)

*** SURVEY AND/OR CONSTRUCTION, AS APPLICABLE.

**** LIMITS OF CONSTRUCTION EXCEED RIGHT OF WAY, A PROPERTY AGREEMENT IS REQUIRED.

*** IF LIMITS OF CONSTRUCTION VARY, GROUND AND NATURAL SURVEY ARE REQUIRED.

**** CONSTRUCTION, AS APPLICABLE.

THE OFFICIAL RECORD OF THIS SHEET IS THE ELECTRONIC FILE DIGITALLY SIGNED AND SEALED UNDER RULE 61 G 15 - 23.004, F.A.C.

EXHIBIT TYP-21
Date: 1/1/17

DESIGN SPEED 50-55 MPH WITH BIKE LANES
URBAN AND SUBURBAN
DIVIDED
ARTERIAL
6-LANE
NEW CONSTRUCTION
DIVIDED
URBAN AND SUBURBAN
WITH BIKE LANES
DESIGN SPEED 50-55 MPH
Chapter 7

Summary of Quantities

7.1 General ... 7-1

7.2 Plan Summary Boxes and Format .. 7-2

7.2.1 Standard Notes .. 7-2

7.2.2 Pay Item Notes ... 7-3

7.3 Box Culvert .. 7-4

7.4 Litter Removal and Mowing .. 7-4
Chapter 7

Summary of Quantities

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete PPM Chapter 7.</td>
</tr>
</tbody>
</table>

7.1 General

The Summary of Quantities sheets contain plan summary boxes for all work to be performed on the project with the exception of work provided for on the Summary of Drainage Structure sheet(s). Document the quantities by location in the plan summary boxes.

The Summary of Quantities sheets are to be numbered SQ-1, SQ-2, SQ-3, etc.

Consider providing an index for the summary boxes as shown in *Exhibit SQ-1* when there are more than 10 Summary of Quantities sheets.

The Summary of Quantities sheets is the only location where quantities are to be documented. Do not place plan summary boxes in any other location in the plan set.

Include the electronic shape file (QTDSRD.dgn) and other documentation (i.e. calculations, sketches, or spreadsheets) that supports the quantities shown in the summary boxes with phase submittals, beginning with Phase III.

For an example of a Summary of Quantities sheet see *Exhibit SQ-1*.
7.2 Plan Summary Boxes and Format

The plan summary boxes are provided in the FDOT CADD Software. The “boxes” should be placed on the sheets in order of pay item numbers. A continuation of a “box” onto subsequent plan sheets may be necessary. Refer to Chapter 8 of the "Basis of Estimates Manual" for further guidance.

On contracts with multiple Financial Project IDs or federal aid and non-federal aid quantities, make provisions to tabulate and summarize their respective quantities. Refer to Chapter 8 of the "Basis of Estimates Manual" for further guidance.

7.2.1 Standard Notes

Place the following standard note below the Summary of Earthwork box:

Earthwork has been calculated using the ______ base option(s).

Place the following standard note below the Summary of Monitor Existing Structures box:

This list includes existing structures (as determined by the Department) located outside the limits specified in Article 108-2 of the FDOT Specifications that are required to be monitored. This list should not be considered all-inclusive and does not contain existing structures to be monitored that are located within the distances specified in Article 108-2.
7.2.2 Pay Item Notes

Place the following applicable pay item notes on the first Summary of Quantities sheet;

1. 110- 86- All salvageable material designated to be delivered by the contractor shall be delivered to:

 (Provide address of nearest FDOT Maintenance Yard.)

 (On applicable Utility Work by Highway Contractor (UWHC) Agreement plans, also include the following note):

 All utility infrastructure designated in the utility plans to be salvaged and delivered by the contractor shall be delivered to:

 (Provide applicable Utility/Agency Owner address.)

2. (For new construction projects with Asphalt Base):

 520-1-7 or 520-1-10

 Cost of asphalt curb pad and additional curb thickness required to be included in the cost of curb and gutter.

3. 536- 73- (To be used for the removal of existing guardrail when FDOT Maintenance wants materials).

 Existing guardrail is to be dismantled and stockpiled within the right of way in areas designated by the Engineer for removal by FDOT maintenance forces.

4. Temporary Turf: When required by the project design, these items shall be included in the cost of the Performance Turf items. A pay item note should show the approximate quantities. For example:

 570- 1- 1 Includes approximately _____ SY Turf for temporary erosion control.

 570- 1- 2 Includes approximately _____ SY Sod for temporary erosion control.
7.3 Box Culvert

The structural design of box culverts may be done by computer program as described in Chapter 33 of Volume 1.

The LRFD Box Culvert Program designs the culvert based on the details shown on Index 289 of the Design Standards. When this program is used, complete the Box Culvert Data Table (cell is included in the Structures workspace of the FDOT CADD Software) and the Reinforcing Bar List, then place them on standard plan sheets. These sheets should be placed behind the drainage structure sheets in the contract plans.

Place the quantity totals from the LRFD Box Culvert Program on the Box Culvert section of the Summary of Structure Quantities or in the Summary of Box Culverts in the Roadway plans.

7.4 Litter Removal and Mowing

Provide the estimated litter removal and mowing areas in the Summary of Litter Removal and Mowing. For each construction phase, provide the phase duration, frequency, number of cycles, area per cycle, and total area (see Exhibit SQ-1).

The construction office estimates the duration for each construction phase (based on the Temporary Traffic Control Plans) during the Phase III Plans Review. The litter removal and mowing cycle frequency should be estimated at 30 days for the duration of the project (with a minimum of one cycle per phase). If the area does not vary by phase, note “all phases” for the tabulation column. It is not necessary to adjust the estimated number of cycles for growing season, special events, or project location.

The litter removal and mowing areas for each construction phase are based on areas from the edge of travel to the right of way. Mowing and litter removal for new landscape areas is included in Section 580 of the Standard Specifications; payment is incidental to the landscape pay items. Existing landscape areas will be included in the litter removal areas. It is not necessary to adjust for inlets, drains, slopes, ditch pavement, turnouts, driveways, sidewalks, small variations in tree lines, or other similar areas.

The litter removal and mowing areas are multiplied by the number of cycles in each phase to determine the estimated total area per construction phase.
SUMMARY OF LUMP SUM ITEMS

<table>
<thead>
<tr>
<th>PAY ITEM NO.</th>
<th>PAY ITEM DESCRIPTION</th>
<th>QUANTITY</th>
<th>DESIGN NOTES</th>
<th>CONSTRUCTION REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0107 1</td>
<td>MOBILIZATION</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUMMARY OF MONITOR EXISTING STRUCTURES

<table>
<thead>
<tr>
<th>SITE NO.</th>
<th>LOCATION</th>
<th>STRUCTURE USAGE</th>
<th>INSPECTION & SETTLEMENT MONITORING</th>
<th>VIBRATION MONITORING</th>
<th>GROUNDWATER MONITORING</th>
<th>DESIGN NOTES</th>
<th>CONSTRUCTION REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>230 WALNUT ST</td>
<td>MUSEUM</td>
<td>0107 1</td>
<td>0107 2</td>
<td>0107 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>244 PINE CIRCLE</td>
<td>HISTORIC CEMETERY BALL</td>
<td>0107 1</td>
<td>0107 2</td>
<td>0107 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>624 OAK DRIVE</td>
<td>ANTIQUE SHOP</td>
<td>0107 1</td>
<td>0107 2</td>
<td>0107 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>888 OAK DRIVE</td>
<td>LASIK EYE SURGERY</td>
<td>0107 1</td>
<td>0107 2</td>
<td>0107 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>648 OAK DRIVE</td>
<td>BED & BREAKFAST</td>
<td>0107 1</td>
<td>0107 2</td>
<td>0107 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL: 1 1 1

This list includes existing structures (as determined by the department) located outside the limits specified in Article 108-2 of the FDOT specifications that are required to be monitored. This list should not be considered all inclusive and does not contain existing structures to be monitored that are located within the distances specified in Article 108-2.

SUMMARY OF LITTER REMOVAL AND MOWING

<table>
<thead>
<tr>
<th>CONSTRUCTION PHASE</th>
<th>LOCATION</th>
<th>SIDE</th>
<th>DURATION (DAYS)</th>
<th>FREQUENCY (DAYS)</th>
<th>AREA ID</th>
<th>LITTER REMOVAL</th>
<th>AREA</th>
<th>MOwing</th>
<th>AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STA. TO STA.</td>
<td>1</td>
<td>1594-44 TO 305+20</td>
<td>42</td>
<td>30</td>
<td>35005</td>
<td>1</td>
<td>8.700</td>
<td>8.700</td>
</tr>
<tr>
<td></td>
<td>STA. TO STA.</td>
<td>2</td>
<td>1594-44 TO 305+20</td>
<td>98</td>
<td>30</td>
<td>35120</td>
<td>1</td>
<td>23.200</td>
<td>23.200</td>
</tr>
<tr>
<td></td>
<td>STA. TO STA.</td>
<td>3</td>
<td>1594-44 TO 305+20</td>
<td>114</td>
<td>30</td>
<td>35120</td>
<td>1</td>
<td>8.700</td>
<td>8.700</td>
</tr>
<tr>
<td></td>
<td>STA. TO STA.</td>
<td>4</td>
<td>1594-44 TO 305+20</td>
<td>68</td>
<td>30</td>
<td>35120</td>
<td>1</td>
<td>23.200</td>
<td>23.200</td>
</tr>
</tbody>
</table>

SUB-TOTAL: 65.400

TOTAL: 65.400

INDEX OF SUMMARY OF QUANTITIES

<table>
<thead>
<tr>
<th>SHEET NO.</th>
<th>SHEET DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-1</td>
<td>Summary of lump sum items, summary of monitor existing structures, summary of monitor erosion control.</td>
</tr>
<tr>
<td>50-2</td>
<td>Summary of temporary traffic control plan items.</td>
</tr>
<tr>
<td>50-7</td>
<td>Summary of temporary signalization & detection.</td>
</tr>
<tr>
<td>50-8</td>
<td>Summary of erosion and sediment control devices.</td>
</tr>
<tr>
<td>50-9</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-10</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-11</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-12</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-13</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-14</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-15</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-16</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-17</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-18</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-19</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-20</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-21</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-22</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-23</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-24</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-25</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-26</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-27</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-28</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-29</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-30</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-31</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-32</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-33</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-34</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-35</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-36</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-37</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-38</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-39</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-40</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-41</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-42</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-43</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-44</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-45</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-46</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-47</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-48</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-49</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-50</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-51</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-52</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-53</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-54</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-55</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-56</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-57</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-58</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-59</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-60</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-61</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-62</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-63</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-64</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-65</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-66</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-67</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-68</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-69</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-70</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-71</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-72</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-73</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-74</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-75</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-76</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-77</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-78</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-79</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-80</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-81</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-82</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-83</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-84</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-85</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-86</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-87</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-88</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-89</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-90</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-91</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-92</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-93</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-94</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-95</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-96</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-97</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-98</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-99</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
<tr>
<td>50-100</td>
<td>Summary of miscellaneous asphalt pavement.</td>
</tr>
</tbody>
</table>

AN INDEX IS OPTIONAL.
Chapter 8

Summary of Drainage Structures and Optional Materials Tabulation

8.1 Summary of Drainage Structures ...8-1
 8.1.1 Sheet Setup and Data ...8-1

8.2 Optional Materials Tabulation ...8-3
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 8

Summary of Drainage Structures and Optional Materials Tabulation

8.1 Summary of Drainage Structures

The summary of drainage structures sheet shows the location, size, length, number and type of drainage structures used in a project. The sheet format is available in the FDOT CADD Software. Specific levels and fonts are in the FDOT CADD Manual.

For an illustration of the summary of drainage structures sheet, see Exhibit SDS-1a.

8.1.1 Sheet Setup and Data

Prepare and include a summary of drainage structures in the plans. List the structures in numerical order of structure number. Identify the location of each structure by station along the centerline of construction (Exhibit SDS-1a).

Tabulate storm and cross drains in the summary of drainage structures by structure number, providing the station, size, length and incidental quantities appropriate for the material detailed in the plans. When the number of columns exceeds one page, the additional sheet is to be numbered using a suffix (i.e. 3 and 3A, 4 and 4a, etc.).

Prepare and include a tabulation form for optional culvert material (see Section 8.2).

Modification for Non-Conventional Projects:

Delete the last sentence of the above paragraph and replace with the following:

See Chapter 6 of the Drainage Manual for Optional Material requirements. Designate installed material on the Optional Materials Sheet, Summary of Drainage Structures or on the as-built plan view.
Information for the drainage elements in the columns is obtained from drainage structure sheets and plan-profile sheets. The order in which the elements are listed should be as follows:

1. Pipe Sizes for
 a. Storm and Cross Drains
 b. Gutter Drain

2. Curb Inlets

3. Manholes

4. Junction Boxes

5. Ditch Bottom Inlets

6. Gutter Inlets

7. Flared End Sections

8. Mitered End Sections

9. Performance Turf, Sod

10. Class of Concrete

11. Reinforcing Steel

12. Riprap

Use the "Description" column to specify the type of structure, the outgoing pipe and the end treatment of that pipe, if applicable.

The remarks column contains special notes pertaining to the structure. The "Final Quantity" line is for construction to use and must be left blank.

On smaller projects the summary of quantities and the summary of drainage structures may be combined on one sheet.

It is recommended that structure numbers be established using the convention shown in the exhibits and described as follows:

1. For simple cross drains, one structure number is appropriate for the inlet and outlet treatments and the pipe.
 Example #1 (cross drain w/o median inlet)

 ![Diagram of cross drain w/o median inlet]

 Summary of Drainage Structures and Optional Materials Tabulation 8-2
2. For complex cross drains, it is suggested that the first and all intermediate structure numbers identify the hydraulically upper end treatment and pipe. The last structure number should identify the hydraulically upper end treatment, pipe and hydraulically lower end treatment.

Example #2 (Double pipe cross drain and median inlet)

S-19A pipe only (barrel #2)

S-19 endwall and pipe

S-19B inlet, pipe and endwall

8.2 Optional Materials Tabulation

All culverts, with the exception of pipe extensions and end section replacements, require an Optional Pipe Materials Analysis. Prepare and include an optional materials tabulation in the plans (see Exhibits SDS-2a and SDS-3a). The sheet format is available in the FDOT CADD Software.

The optional pipe material tabulation should include size, thickness or class, corrugation requirements, if necessary, and protective coating, if any. Additional information such as structure number, design service life (DSL), length, and flow line information may be included.

Modification for Non-Conventional Projects:

Delete PPM 8.2 and see Chapter 6 of the Drainage Manual for Optional Material requirements. Designate installed material on the Optional Materials Sheet, Summary of Drainage Structures, or on the as-built plan view.
THIS PAGE LEFT BLANK INTENTIONALLY
<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>NO.</th>
<th>DESCRIPTION</th>
<th>STATION</th>
<th>SIDE</th>
<th>圓</th>
<th>直徑</th>
<th>其他</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>146+50</td>
<td>ME</td>
<td>管</td>
<td>3"</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>146+50</td>
<td>LT</td>
<td>管</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>147+32.08</td>
<td>ME</td>
<td>短管</td>
<td>48"</td>
<td>60"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>147+32.08</td>
<td>LT</td>
<td>短管</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>147+32.08</td>
<td>LT</td>
<td>短管</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>147+32.08</td>
<td>ME</td>
<td>短管</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>147+32.08</td>
<td>LT</td>
<td>短管</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>147+32.08</td>
<td>ME</td>
<td>短管</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>147+32.08</td>
<td>LT</td>
<td>短管</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>147+32.08</td>
<td>LT</td>
<td>短管</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>147+32.08</td>
<td>LT</td>
<td>短管</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>147+32.08</td>
<td>LT</td>
<td>短管</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>147+32.08</td>
<td>LT</td>
<td>短管</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>147+32.08</td>
<td>LT</td>
<td>短管</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>147+32.08</td>
<td>LT</td>
<td>短管</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>147+32.08</td>
<td>LT</td>
<td>短管</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>147+32.08</td>
<td>LT</td>
<td>短管</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>147+32.08</td>
<td>LT</td>
<td>短管</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>147+32.08</td>
<td>LT</td>
<td>短管</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>147+32.08</td>
<td>LT</td>
<td>短管</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>147+32.08</td>
<td>LT</td>
<td>短管</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>147+32.08</td>
<td>LT</td>
<td>短管</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>147+32.08</td>
<td>LT</td>
<td>短管</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRAND TOTALS

PLAN QUANTITY

FINAL QUANTITY

<table>
<thead>
<tr>
<th>STATE OF FLORIDA</th>
<th>DEPARTMENT OF TRANSPORTATION</th>
<th>SUMMARY OF DRAINAGE STRUCTURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROAD NO.</td>
<td>COUNTY</td>
<td>FINANCIAL PROJECT ID</td>
</tr>
<tr>
<td>10</td>
<td>LEON</td>
<td>123456-1-52-01</td>
</tr>
</tbody>
</table>

REMARKS

<table>
<thead>
<tr>
<th>CONC.</th>
<th>CLASS</th>
<th>REIN</th>
<th>SAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOD. COLLAR</td>
<td>PIPE ADJ.</td>
<td>CONC.</td>
<td>CONC.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DRAINAGE STRUCTURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCP CLASS</td>
</tr>
<tr>
<td>CONC.</td>
</tr>
<tr>
<td>CLASS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXHIBIT SDS 1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 1/1/13</td>
</tr>
<tr>
<td>STA NO.</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
</tbody>
</table>

Remarks:

- This example should be used when pipe flow lines, and/or sizes for individual options are not the same (see structure no. 14) or when numerous exceptions occur.

Note:

- The official record of this sheet is the electronic file digitally signed and sealed under Rule 61G15-23.004, F.A.C.
Limited exceptions are noted. Are the same for the different pipe sizes and when this example should be used when material options exhibit SDS-3a.

<table>
<thead>
<tr>
<th>STRUCTURE</th>
<th>SIZE (inches)</th>
<th>MATERIAL</th>
<th>PLOTTED</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>RCP CLASS 2</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-13</td>
<td>SRASP 16 GA.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-13 A</td>
<td>SRSP 16 GA.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-13 B</td>
<td>SRAP 16 GA.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXCEPTION</td>
<td>20 RCP CLASS 2</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-14</td>
<td>SRASP 16 GA.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-14 A</td>
<td>SRSP 16 GA.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-14 B</td>
<td>SRAP 16 GA.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXCEPTION</td>
<td>30 RCP CLASS 2</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-14 C</td>
<td>SRASP 16 GA.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-14 D</td>
<td>SRSP 16 GA.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-14 E</td>
<td>SRAP 16 GA.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXCEPTION</td>
<td>36 RCP CLASS 2</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-15</td>
<td>SRASP 16 GA.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-15 A</td>
<td>SRSP 16 GA.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-15 B</td>
<td>SRAP 16 GA.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXCEPTION</td>
<td>44 RCP CLASS 2</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-15 C</td>
<td>SRASP 16 GA.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-15 D</td>
<td>SRSP 16 GA.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-15 E</td>
<td>SRAP 16 GA.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This example should be used when material options are the same for the different pipe sizes and when limited exceptions are noted.
Chapter 9

Project Layout

9.1 General ... 9-1
9.2 Alignment Sheet Sequence................................. 9-2
Chapter 9
Project Layout

9.1 General

The project layout sheet is an optional sheet that the district may choose to include in the plans set. This sheet shows the horizontal alignment and plan or plan-profile sheet sequence and numbering for the project. The project layout sheet provides clarity and detailed information on complex projects involving interchanges with many connecting routes.

Modification for Non-Conventional Projects:

Delete the above paragraph and replace with the following:

The project layout sheet shows the horizontal alignment and survey reference points for the project.

Use the standard plan format sheet provided in the FDOT CADD Software to prepare the project layout sheet. Use a scale that provides clarity and legibility. Place a north arrow and scale in a conspicuous location, typically in the upper right portion of the sheet. For large or complicated projects, more than one sheet may be required to clearly depict all required information. Use match lines when multiple project layout sheets are needed.
9.2 Alignment Sheet Sequence

Show complete project alignment with baseline of survey and/or centerline of construction. Show edge of pavements if scale permits. Superimpose on the alignment the outlines of the plan, or plan-profile sheets to depict the sheet sequence with relation to the alignment stationing. Include the appropriate plan sheet number on each sheet outline. Plan or plan-profile sheet numbering must be in the following order:

1. Mainline (for widely separated roadways, the right roadway in the direction of stationing takes precedence)
2. Crossroads
3. Ramps
4. Frontage roads
5. Access roads

Flag and label beginning and ending stations for project, construction and ramps, including equations and/or exceptions.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete PPM 9.2 and replace with:</td>
</tr>
</tbody>
</table>

9.2 Alignment Sheet Sequence

Show complete project alignment with baseline of survey and/or centerline of construction. Flag and label beginning and ending stations for project, construction and ramps, including equations.
Chapter 10

Roadway Plan-Profile and General Notes

10.1 General ... 10-3

10.2 Roadway Plan Portion .. 10-4
 10.2.1 Centerline ... 10-4
 10.2.2 Horizontal Curves ... 10-6
 10.2.3 Existing Topography ... 10-7
 10.2.4 Construction and Project Limits 10-7
 10.2.5 Drainage Structures and Bridges 10-8
 10.2.6 Plan Layout .. 10-8

10.3 Roadway Profile Portion .. 10-10
 10.3.1 General Data .. 10-10
 10.3.2 Vertical Alignment .. 10-11
 10.3.3 Grades .. 10-11
 10.3.4 Superelevation and Special Profiles 10-11
 10.3.5 Other Profile Features 10-12

10.4 General Notes ... 10-13
 10.4.1 Writing General Notes 10-13
 10.4.2 Required General Notes 10-13
 10.4.2.1 Bridge Clearance 10-14

Figures

Figure 10.1 Centerline Station Numbering and Tick Marks 10-5
Chapter 10

Roadway Plan-Profile and General Notes

10.1 General

The roadway plan-profile sheet provides the complete horizontal and vertical alignments for the project. Various roadway elements such as pavement width, medians, paved shoulders, curbs, drainage elements, tapers, turn provisions, and intersecting roadways, are shown on this sheet.

Prepare the roadway plan-profile sheet according to the standard formatted sheets that are contained in the FDOT CADD Software. For urban jobs, the plotting scale is typically 1" = 40' or 1" = 50' horizontally. For rural jobs, the scale is typically 1" = 100' or 1" = 200' horizontally.

When appropriate, the plan-profile sheet may be divided into separate plan sheets and profile sheets.

The General Notes sheet is an optional sheet that provides project specific information as described in Section 10.4.
10.2 Roadway Plan Portion

10.2.1 Centerline

Place the baseline of survey and/or centerline of construction in the center of the plan portion of the sheet, with stationing increasing from left to right. For resurfacing projects, simple projects, or sections of a project without a profile view, “stacking” multiple plans on one sheet is optional if clarity and legibility are maintained. When multiple plan views are shown on a plan sheet, they must be stacked from top to bottom. When the alignment includes horizontal curves, lay the centerline on the sheet in such a manner to avoid breaks or match lines (except at the beginning or end of the sheet).

Place "tick" marks on the upper side of the centerline at every station as shown in Figure 10.1. Place intermediate ticks between the station ticks. Intermediate ticks should be approximately half the length of station ticks.

Place station numbers close to station ticks for scales up to and including 1" = 50' and outside the R/W lines for smaller scales.

Show bearings for tangent sections (in the direction of stationing) below the baseline and centerline. Where appropriate, tie intersecting roads or streets by station and angle/bearings to the baseline or centerline. Section lines or city limits must be tied by station and angle/bearings to the baseline or centerline.

In cases where the construction centerline does not coincide with the survey baseline, the construction centerline must be identified with complete alignment data and ties to the survey baseline. However, the construction centerline need not be shown when it is uniformly offset from the survey baseline for the entire length of the project and is shown on the typical section. Show all station equations occurring on the survey baseline and those equating the survey baseline and construction centerline.

Place a north arrow and scale at a point of maximum visibility, typically in the upper right portion of the plan view.
Figure 10.1 Centerline Station Numbering and Tick Marks

<table>
<thead>
<tr>
<th>Station</th>
<th>Scale</th>
<th>Length Per Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10'</td>
<td>560'</td>
</tr>
<tr>
<td>11</td>
<td>50'</td>
<td>700'</td>
</tr>
<tr>
<td>12</td>
<td>100'</td>
<td>1,400'</td>
</tr>
<tr>
<td>30</td>
<td>200'</td>
<td>2,800'</td>
</tr>
<tr>
<td>31</td>
<td>500'</td>
<td>7,000'</td>
</tr>
<tr>
<td>90</td>
<td>1,000'</td>
<td>14,000'</td>
</tr>
<tr>
<td>120</td>
<td>2,000'</td>
<td>28,000'</td>
</tr>
</tbody>
</table>
10.2.2 **Horizontal Curves**

Designate PC and PT points of horizontal curves by small circles with short radial lines from these points. Designate PI points by a small triangle with a short section of tangent on either side.

Exercise care in the clipping of plan sheets to properly orient the horizontal curves within the plan view. Repeat the curve data on each sheet when a curve extends over more than one sheet. Show horizontal curve data using the following format:

CURVE DATA

- PI (Station)
- Δ (Delta Angle with Direction)
- D (Degree of Curve)
- T (Tangent Length)
- L (Length of Curve)
- R (Radius Length)
- PC (Station)
- PT (Station)
- e (Superelevation Rate)
10.2.3 Existing Topography

Show and label all existing topography, including roads, streets, drives, buildings, underground and overhead utilities, walls, curbs, pavements, fences, railroads, bridges, drainage structures and similar items. Also show streams, ponds, lakes, wooded areas, ditches and other physical features. Existing gasoline storage tanks within limits of topographical survey must be shown.

Show and label all existing utilities. If the type of utility is unknown it should be labeled as such. Indicate the line voltage for all overhead electrical power lines. Use standard symbols contained in Design Standards, Index 002 and the FDOT CADD Software.

10.2.4 Construction and Project Limits

Flag and station the following limits:

1. Begin project and end project. Project limits should be at the beginning and the end of the full typical sections. Begin construction and end construction where construction limits are other than project limits. Transitions for maintenance of traffic and other construction work such as feathering, friction course, guardrail, drainage work, signing and marking work, and sidewalk may fall outside of the project limits but must be included within the construction limits. If plans include more than one project, identify the limits for each by Financial Project ID. The Engineer of Record (EOR) is responsible for determining project and construction limits.

Modification for Non-Conventional Projects:

Delete the last sentence of the above paragraph and replace with the following:
The Department will set the project and construction limits.

2. The limits of project breakdown necessary for separation of length and quantities for federal aid and non-federal aid projects.
3. The limits of each type of construction classification where more than one type is involved, such as, new construction, resurfacing, bridge work, widening, and milling.
4. The begin and end limits of Project exceptions (excluded areas).
5. Station Equations.
10.2.5 Drainage Structures and Bridges

Show proposed cross drain pipes, box culverts and three-sided culverts by using a symbol and a drainage structure number. Label cross drain pipe sizes and lengths on plan-profile sheet. Show box and three-sided culvert lengths on drainage structure sheet.

Box and three-sided culverts (single or multiple) are classified as bridge culverts when the total span (measured along the center of the roadway) is 20 feet or greater. Flag and station the begin station and end station for the bridge culvert (outside wall to outside wall). Provide a bridge number and a drainage structure number for all bridge culverts.

Show proposed bridges and approach slabs by simple outline. Flag and station the begin station and end station for the bridge and for the approach slabs. Also provide a bridge number. Show the existing vertical clearance for any construction affecting existing bridges.

When appropriate, show a short section of lateral ditch/outfall centerline on the roadway plan-profile sheet, and include a note referring to lateral ditch/outfall sheets for details.

Show the proposed drainage system by depicting storm drain pipes with a single line, and the outline of inlets, manholes and junction boxes. The outline of structure bottoms may be shown. Label the pipe size and length between structures. Provide structure numbers for inlets, manholes, junction boxes and special structures.

10.2.6 Plan Layout

Provide the following dimensions or labeling:

1. Show right of way lines. Dimension the right of way line only if the applicable typical section shows a varying dimension from the baseline or centerline. Dimensions of the right of way line must be from the centerline or baseline, if survey and construction lines are parallel; otherwise dimension the right of way line from the construction centerline.

2. Avoid showing detailed information regarding median openings or intersections when specific details can be grouped on a separate sheet. When this is the case, identify median openings and intersections by station location.

3. Label locations along the alignment where traveled way dimensions change, or
begin to change, including the station and dimensions of the traveled way.

4. Show curb, curb and gutter, traffic separators, sidewalks, curb ramps, retaining walls, and driveways.

5. Show stations of return points in tabular form or include on the plan, unless shown on an intersection detail sheet. Also, show offsets, if not governed by a typical.

6. Show station of radius points of traffic separator or median curb at median openings on the plan. Elevation of these points must also be shown if not shown in the intersection details sheet.

7. Indicate control radii for traffic turns when setting median nose locations, unless shown on the intersection detail sheet.

8. Include the station of end of curb and gutter at side street intersections (when end is not at a return point) with proposed gutter grade elevation.

9. Indicate the limits of pavement and grading at side street intersections.

10. When incidental construction extends beyond the right of way lines, construction easements or license agreements may be required and should be shown on the plan sheets.

11. Show the limits of wetlands based on permit or regulatory requirements.

12. Show all utilities. Label field verified utilities (see Quality Level "A" locates, Chapter 5 of Volume 1,) in accordance with the following symbol:

 \[V_{vh} = \text{Verified Vertical Elevation and Horizontal Location} \]

Projects with minor utility work or impacts may include these features on the roadway plan-profile sheet.

13. Identify all traffic monitoring sites in or within one-half mile of the project limits with the following notation:

 Traffic Monitoring Site Number (XXXX)

 Roadway Identifying Number (Roadway Characteristics Inventory (RCI) Section #) Milepost (XX.XXX)

 Site includes vehicle detectors in roadway and pedestal, pole or base mounted cabinet, buried cable, and solar power unit on right of way.

Inquiries about monitoring sites should be addressed to the Traffic Data Section Manager of the Transportation Statistics Section, Office of Planning.
10.3 Roadway Profile Portion

10.3.1 General Data

Preformatted plan-profile sheets are located in the FDOT CADD Software. The grid portion of each sheet is used for plotting the project profile. The standard grid pattern for the profile portion of the sheet is five lines per inch, both in the horizontal and vertical. This will accommodate most scales. An optional grid with four lines per inch is available. This sheet may be used if approved by the district.

The horizontal scale for the profile portion of the sheet must be the same as that used for the plan portion. Station limits of the profile must correspond to those of the plan portion of each sheet. Station numbers must be placed across the bottom of the sheet just above the title block. Intervals for profile stations must be the same as those in the plan view.

Select the vertical elevation datum such that the profile will not crowd either the upper or lower limits of the profile format. As a general guideline the vertical scale should be 10% of the horizontal grid. Show the elevation datum on both the left and right sides of the sheet in the space provided adjacent to the grid.

Label the existing ground line profile and show the existing ground line elevations vertically, just above the station numbers at each end of the sheet only.

Show and label all high water elevations affecting base clearance or roadway grades. Refer to Exhibit PP-2 for correct format.

Show station equations and exceptions. Begin and end stations of project, construction, bridge and bridge culverts must also be shown.
10.3.2 Vertical Alignment

Show and label the proposed profile grade. Vertical curve PC's and PT's must be indicated by small circles and PI's by a small triangle with short sections of tangent shown on each side. Show percent grade to 3 significant decimal places on the tangent line (trailing zeros need not be shown). Extend vertical lines from the PC and PT points and place a dimension line indicating the length of the vertical curve. The PC and PT stations and elevations must be labeled on the vertical lines.

For vertical curves, show the profile grade elevations on even stations and at appropriate intervals. Place the elevations between the dimension line and the grade line. Also, place the curve length, dimension lines and the profile grade elevations above the grade line for sag vertical curves and below the grade line for crest vertical curves. The dimensions and elevations must be placed reasonably near the grade line whenever possible. The PI station and elevation must be noted, lettered vertically above the PI symbol for crest curves and below for sag curves.

Show the profile grade elevation of the beginning and ending station of each sheet vertically just above the grade line, except when the beginning or ending station is on a vertical curve.

10.3.3 Grades

Label percent grade to 3 decimal places for each tangent section on every sheet (trailing zeros need not be shown). When two tangent grades intersect and no vertical curve is required, label the PI station and elevation vertically, using the same criteria as for vertical curves.

10.3.4 Superelevation and Special Profiles

For non-standard superelevated sections of the project, the beginning and ending superelevation stations should be indicated on the profile with a note:

"For Superelevation details see Special Profiles Sheet"

Other special profiles that cannot be clearly shown on the plan-profile sheets must be referenced in a similar manner to non-standard superelevated sections. For additional information regarding special profiles see Chapter 11 of this volume.
10.3.5 Other Profile Features

For rural construction projects, show and label special ditches in the profile. Show percent ditch grade and a beginning or ending ditch PI with elevation and station plus. For multi-lane divided projects, three special ditch grades (right and left roadway ditches and median ditch) sometimes occur at the same location. In such cases, it may be advantageous to show the median ditch at a convenient location on the sheet with a separate elevation datum.

Depict uniform ditches of non-standard depth by a dimension line in the lower portion of the grid and label as a special ditch with location and depth, or show them by flagging the DPI’s at each end with station elevation and side. Standard depth ditches are not labeled.

Show special gutter grades in profile for cases where the gutter grades are not controlled by the typical section and no "special profiles" are included in the plans set.

Prolongations of gutter profile grades across street intersections must be included on plan-profile sheets if an inlet is not provided before the intersection.

Show storm drain pipes, inlets and manholes along the main line. Pipes must be noted by size. Proposed structures may be shown by structure number only. Show flow line elevations for all pipes entering and leaving the structure.

Plot proposed cross drain pipes and culverts at the correct location and elevation of the proposed structure crossing the centerline of construction. Identify cross drains by structure number only.

Where the project overpasses a road or railroad, the cross section template of the road/railroad under the bridge must be shown at the appropriate location in profile.

Except for transverse utilities, do not show underground utilities in profile.
10.4 General Notes

General notes provide information and direction to the contractor by clarifying design details or construction practices. General notes are project-specific and must not restate, broaden or curtail requirements in the *Standard Specifications* or *Design Standards*.

Place general notes on the left portion of the first plan-profile sheet or on a separate General Notes sheet. Place the General Notes sheet before the first roadway plan-profile sheet in the plans set.

10.4.1 Writing General Notes

Choose your words carefully when writing general notes; i.e. be precise and concise. Use terminology and abbreviations commonly use in the *Standard Specifications* and *Design Standards*.

When a general note requires an action by the contractor, the note is written as a command. Do not include “Contractor must”, “by the Contractor”, or similar phrases in general notes. The following are examples of general notes written as a command:

1. Sawcut existing pavement a 1" depth at the limits of milling operations.
2. Erect new overhead signs and sign supports before removing existing sign structures.
3. Remove memorial markers that are in conflict with construction. Provide an inventory that includes the name on the marker and the location (station and offset) from where it was removed. Deliver the markers and inventory to the FDOT Maintenance Engineer at 888 Poppy Seed Lane, Ft. Lauderdale.
4. Do not stage equipment or stock pile materials adjacent to Lake Worth Drainage District canals.

10.4.2 Required General Notes

See *Exhibit GN-1* for required standard general notes.
10.4.2.1 Bridge Clearance

For projects that propose a minimum design vertical clearance between 16'-0" and 16'-2", place the following general note in the plans:

When construction is complete, submit a certified survey confirming the as-built minimum vertical clearance is equal to or greater than the minimum design vertical clearance called for in the plans.
GENERAL NOTES

1. BENCHMARK ELEVATIONS SHOWN ON THE PLANS ARE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88).

2. THE LOCATION(S) OF THE UTILITIES SHOWN IN THE PLANS (INCLUDING THOSE DESIGNATED Vv, Vh, AND Vvh) ARE BASED ON LIMITED INVESTIGATION TECHNIQUES AND SHOULD BE CONSIDERED APPROXIMATE ONLY. THE VERIFIED LOCATIONS/ELEVATIONS APPLY ONLY AT THE POINTS SHOWN. INTERPOLATIONS BETWEEN THESE POINTS HAVE NOT BEEN VERIFIED.

3. UTILITY/AGENCY OWNERS: COMPANY CONTACT TELEPHONE NUMBERS
 SPRINT (FLORIDA, INC.) CHERYL FLORES (850) 555-1234
 QWEST JIM WEST (850) 555-2345
 MCI WESTCOM ANDY WARDY (407) 555-3456
 SPRINT COMMUNICATIONS ROB SPRINTER (404) 555-4567
 CITY OF TALLAHASSEE UTILITIES CHESTER DIGGER (850) 555-5678

4. SPECIAL EVENT DAYS FOR THIS PROJECT INCLUDE:
 JACKSONVILLE JAZZ FESTIVAL
 JACKSONVILLE JACKS FOOTBALL GAMES
 FLORIDA VS. GEORGIA FOOTBALL GAME
 THE GATOR BOWL PARADE
 THE MONSTER TRUCK SHOW
 THE GATE RIVER RUN
Chapter 11

Special Profiles & Back-of-Sidewalk Profiles

11.1 General .. 11-1

11.2 Special Profiles .. 11-1
 11.2.1 Intersections .. 11-1
 11.2.2 Curb Returns ... 11-2
 11.2.3 Ramps ... 11-2
 11.2.4 Spline Grade .. 11-3
 11.2.5 Superelevation .. 11-3
 11.2.6 At-Grade Railroad Crossings 11-4

11.3 Back-of-Sidewalk Profiles.. 11-4
 11.3.1 Required Information .. 11-4
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 11

Special Profiles & Back-of-Sidewalk Profiles

11.1 General

Special Profile sheets show profiles of pavement edges or gutter flow lines at street intersections, ramp termini, curb returns, railroad crossings and roadway or bridge sections requiring special superelevation details. Vertical transitions between roadways and bridges may also require special profiling.

Back-of-Sidewalk Profile sheets are used to establish profile grades for sidewalks that are independent from the roadway profile. Back—of-sidewalk profiles help ensure the constructability of the project within the right of way without excessive disturbance or rework of adjoining properties. Projects with back of sidewalk profiles that are independent of the mainline profile help to determine tie down points especially when the sidewalk is near the R/W or adjacent to a proposed ditch. Back-of-sidewalk profiles are also used for checking of stormwater trapped behind the sidewalks and as a major input for establishing centerline grade profiles.

11.2 Special Profiles

11.2.1 Intersections

In addition to normal profile grade lines, supplemental profiles and sections at intersections may be necessary to define edge of pavement profiles. Include sections showing pavement surface elevations for nose points and other critical locations. It is important to develop accurate profiles and sections at locations of curbed channelization to ensure proper drainage.

When plan-profile format is used for intersection details, the profile's horizontal scale must be the same as that for the plan portion. A vertical scale of 1" = 2' for the profile portion is recommended as it enables intermediate elevations to be determined from the profile with reasonable accuracy. The existing ground line and/or curb line must be as called for in the FDOT CADD Manual.

For intersections detailed on a plan only format, show the profile and sections on a
separate grid sheet. The standard cross section sheet, available in the FDOT CADD Software, should be used. This sheet features a standard grid of five lines per inch, both in the vertical and horizontal. The vertical scale can be altered to ten lines per inch by utilizing a toggle feature in the CADD software.

For street intersections of municipal projects, a scale of 1" = 20' horizontally and 1" = 2' vertically, or 1" = 50' horizontally and 1" = 5' vertically is recommended.

11.2.2 Curb Returns

Curb return profiles show the profiles of the gutter flow line from the PC to the PT point of the return at an intersection.

Show curb return profiles on a grid format. They must be included in the plans set if the required information cannot clearly be shown on the plan-profile sheet or intersection detail sheet, or if extreme grades are involved, rendering the standard curb return profiles (Design Standards, Index 303) inadequate.

Standard scale used should be 1" = 20' horizontally and 1" = 2' vertically. Other scales may be used provided all construction details are clearly and legibly shown. Identify each return profile and its PC and PT stations shown. Elevations should be shown at appropriate intervals and low and high spots must be identified by location and elevation.

11.2.3 Ramps

Develop ramp profile grades along the baseline of each ramp. A profile of the edge of the pavement opposite the baseline must also be shown. Show these profiles on a grid format. Data required to be shown is similar to that required for roadway profile (Chapter 10 of this Volume).

Recommended scales for ramp profiles are: 1" = 20' horizontally and 1" = 2' vertically, or 1" = 40' or 50' horizontally and 1" = 4' or 5' vertically.

Sections at nose points are required. They may be shown using a scale of 1" = 20' horizontally and 1" = 2' vertically.
11.2.4 Spline Grade

Intersections of ramp pavement with mainline pavement and other sections of pavement within special superelevated zones need special attention, not only during the design phase of the project, but also during construction. Hence, all construction details pertaining to these areas should be clearly and accurately shown in the plans.

Spline grades are often used to show the interconnection and interrelation of the edges of pavement with the mainline edge of pavement. This profile proves to be especially helpful if the mainline pavement is superelevated or within the superelevation transition zone.

A spline grade must show the elevations at intervals of 20 to 100 feet, depending on the scale. Show elevations for the outer edge of mainline pavement and inner and outer edges of the ramp pavement at the nose areas.

Show grades of the three pavement edges on a grid format. Recommended scales are: 1"=20' horizontally, 1"=2' vertically, or 1"= 40' or 50' horizontally and 1"= 4' or 5' vertically.

Join the grades of each pavement edge by smooth splines or simple curves. The three grade profiles must be clearly labeled and all equality stations indicated. Flag and label nose stations. Place the scale in close proximity of the profile and ensure that it is clearly visible.

11.2.5 Superelevation

The standard superelevation details ([Design Standards, Indexes 510 and 511](#)) may be used for projects which include simple curves. For projects which include reverse curves, or compound curves, or any other situation requiring special superelevation not covered in the standards, show the superelevation diagram in the plans. Special profile details may be used to design superelevation on multiline facilities, when a simple diagram will not be sufficient.

Show complete profile grade line and right and left edges of pavement within the superelevation zone on the grid format. A scale of 1"= 20' horizontally and 1"= 2' vertically is recommended for clarity. Label the begin and end superelevation stations with a solid vertical line at the appropriate station. Use a horizontal dimension line to indicate a section in full superelevation.
11.2.6 At-Grade Railroad Crossings

In addition to normal profile grade lines, supplemental profiles for at-grade railroad crossings may be necessary to define lane lines, edges of pavement, and/or gutter flow lines. It is important to develop accurate profiles to ensure proper drainage.

For at-grade railroad crossings that cannot be adequately detailed on the plan-profile sheets, show the profiles on a separate grid format. A horizontal scale of 1" = 20' and a vertical scale of 1" = 2' are recommended.

11.3 Back-of-Sidewalk Profiles

Grades shown on this sheet are at the back of the proposed sidewalk, and grades shown on roadway plan-profile sheets are at the profile grade line (PGL) denoted on the typical section. Prepare back-of-sidewalk profiles using standard cross section format. For simple projects which do not involve many cross streets or driveways, the sheet may be divided horizontally to maximize usage. Stationing must progress from left to right and multiple profile views must be stacked from top to bottom. Match lines must be stationed. Care should be taken to preserve clarity and legibility.

Work sheets may be required with phase reviews. The inclusion of the back-of-sidewalk profiles in the plans set is optional (at the discretion of the district).

11.3.1 Required Information

Profiles for use in establishing back-of-sidewalk grades consist of existing profiles along the back edge of each proposed sidewalk. Show the existing profiles to distinguish between the profiles for the right and left sidewalk, and in accordance with the FDOT CADD Manual.

The standard scales are 1" = 100' horizontally and 1" = 5' vertically. This combination works well for projects having few locations where back-of-sidewalk grades would be critical. It may be advantageous to use a vertical scale of 1" = 2' and a horizontal scale of 1" = 50' for projects located in business and commercial areas, or where greater clarity is required. Show elevation datum on both sides of the sheet, with station numbers below the profile.
Limits of existing pavement (e.g., parking areas and driveways) which should be matched as closely as possible, must be identified on all sidewalk profiles. Indicate the centerline for each intersecting street and driveway with a vertical line at the proper station and the street name and station noted. Intersecting streets and driveways on the right must be shown below the profile and those on the left above the profile.

At each station, as well as locations of significant drainage, draw arrows to indicate the slope of ground at the outer edges of the sidewalk.

Place drainage arrows below the profile line for the right profile and above the profile line for the left profile. Arrows pointing outwards from the profile indicate drainage away from the project, while arrows pointing inwards indicate drainage to the project.

Indicate floor elevations for buildings with a horizontal line drawn at the floor elevation between the building limits. Show the numeric elevation, as well as the offset (distance and side) from centerline of project to the face of the building. Entrances to buildings, elevations of top of existing major utilities (as defined in Chapter 5 of Volume 1), and water table elevation may be shown when appropriate.

Once the proposed back-of-sidewalk profile has been developed, show percents of grade, PI stations, and elevations. Vertical curves, if any, must be dimensioned. Elevations along vertical curves are not required. Flag and label stations for begin and end project, exceptions, back-of-sidewalk special profiles, and mainline station equations within the limits of the sidewalk profile.

Note the difference in elevation between the profile grade and back-of-sidewalk profile grade on the sheet. Superelevation notes, if applicable, must also be included on the sheet.
Chapter 12

Project Control

12.1 General .. 12-1
12.2 Sheet Setup ... 12-1
12.3 Reference Points .. 12-1
12.4 Benchmarks ... 12-2
12.5 Control Points (Horizontal and Vertical Datum) 12-2
Chapter 12

Project Control

12.1 General

The Project Control sheet provides a summary of horizontal and vertical datum (i.e., reference points, benchmarks and control points). The datum shown on this sheet must provide clear and sufficient information to establish horizontal and vertical control during the construction of the project. The data shown can be extracted from the project network control survey and historical control data, or reflect assumed datum.

These sheets are to be placed in the component plans in accordance with Section 3.2.5 of this Volume.

See Exhibits CTL-1, CTL-2 and CTL-3 for examples of a Project Control sheet.

12.2 Sheet Setup

Use the standard plan format sheet provided in the FDOT CADD Software to prepare the sheet. Use standard symbols contained in Design Standards, Index 002 and the FDOT CADD Manual.

Provide a note on the Project Control sheet that identifies horizontal and vertical datum that the survey is based on.

12.3 Reference Points

Reference points are prominent, easily located points in the terrain used to define a location of another point that is located on the baseline of survey. The purpose of reference points is to provide horizontal locations to re-establish primary control points along the baseline of survey. Reference points should not be located on the baseline. Detailed descriptions of each reference point are illustrated with a sketch.

Place survey reference points on the Project Control sheet along the top of the sheet or where other space allows. Clearly indicate the baseline of survey and reference points,
including all ties. Complete length of survey baseline between two consecutive reference points need not be shown. Clearly label each reference point, beginning at the first reference point within the limits of the project, and progressing in the direction of stationing. Reference points need not be drawn to any particular scale, but distances and angles shown must be proportionate.

12.4 Benchmarks

Benchmarks provide a known elevation that is used as the basis for measuring the elevation of other topographical points. When benchmarks are not used to provide horizontal control, they may be placed on the Project Control sheet along the bottom of the sheet or where other space allows. At a minimum, benchmarks are to include:

- Identifying name (e.g., BM No. 9)
- Description (e.g., nail in tree, concrete monument)
- Station and offset
- Elevation (in feet to two decimal places)

12.5 Control Points (Horizontal and Vertical Datum)

Control points provide information for the location and elevation of established monuments. Control points that provide vertical datum are also known as benchmarks.

Place the following information for the control points in a table titled Horizontal and Vertical Control:

- Point Name – this is often identified on the stamped disk placed on the established monument.
- Northing and Easting – Show to three decimal places. If control point serves only as a Benchmark show Northing and Easting to the nearest foot, more or less.
- Scale Factor – Show to nine decimal places.
- Latitude and Longitude – Show seconds to five decimal places. If control point serves only as a Benchmark show Latitude and Longitude to the nearest second.
- Baseline Station and Offset – Show to two decimal places.
- Elevation – if control point only serves as horizontal control show elevation as “N/A”.
- Description – indicate the size, type, if the monument is “found” or “set” and include the monument ID number.
When this table is the sole means to convey horizontal and vertical datum, include a project sketch on the Project Control sheet that provides a visual reference for the location of the control points. The sketch does not need to be any particular scale but must provide clarity and legibility. Include the following information on the sketch:

- Show the baseline of survey with stationing.
- Flag and label beginning and ending stations for project.
- Show bearings for all tangent sections, in the direction of stationing.
- Label PC and PT points and show horizontal curve data.
- Indicate graphically the location of intersecting roadways and railroads.
- Indicate Township, Range and Sections that the survey traverses. Show the location where section lines cross the baseline of survey.
- Place a north arrow and scale in a conspicuous location, typically in the upper right portion of the sheet.
BENCHMARKS

BM 2953
SET 4" X 4" CONC. MON.
W/ STD. FDOT BRASS DISK
STAMPED "BM 2953"
STA. 2953+50.8, 64.9' RT
EL. = 99.09'

BM 2963
FOUND 4" X 4" CONC. MON.
W/ STD. FDOT BRASS DISK
STAMPED "BM 2963"
STA. 2963+17.9, 82.5' RT
EL. = 105.22

BM 3
FOUND 4" X 4" CONC. MON.
W/ STD. FDOT BRASS DISK
STAMPED "BM 3"
STA. 2973+01.2, 59.2' RT
EL. = 99.58'

PROJECT CONTROL NOTES

1. PROJECT IS BASED ON THE FLORIDA STATE PLANE COORDINATE SYSTEM, NORTH ZONE,
2. ELEVATIONS ARE BASED ON NORTH AMERICAN VERTICAL DATUM 1988 (NAVD88)
PROJECT CONTROL POINTS
SURVEY S.R. 22
(NOT TO SCALE)

BEGIN SURVEY @ S.R. 22
N 651,013.502 E 935,147.876
FND. BRASS DISC IN CONCRETE "ID ILLEGIBLE"

SECTION 3
TOWNSHIP 50 SOUTH, RANGE 42 EAST

C-05 650,960.352 935,255.028 1.00003049 26°07'19.35577" 80°08'53.93227" 202+34.91 40.41' RT. 4.23" FOUND FDOT BRASS DISK IN CONCRETE STAMPED "842 86 11 C05"

N 651,073.805 935,787.919 1.00003088 26°07'20.08530" 80°08'53.14792" 208+55.15 15.52' LT. 5.17" FOUND FDOT ALUMINUM DISK IN CONCRETE STAMPED "842 86 13 C2"

PNC-C1 651,073.805 935,787.919 1.00003148 26°07'19.38918" 80°08'41.06680" 217+72.21 81.03' RT. 3.42" FOUND FDOT ALUMINUM DISK IN CONCRETE STAMPED "842 86-13 C1"

B-04 651,133.755 937,647.541 1.00003203 26°07'20.91756" 80°08'31.67213" 226+32.04 48.76' LT. 2.62" SET FDOT BRASS DISK IN CONCRETE STAMPED "842 86 14 B04"

PNC-C1 651,133.755 937,647.541 1.00003260 26°07'20.91756" 80°08'31.67213" 234+09.72 42.19' LT. 2.72" SET FDOT ALUMINUM DISK IN CONCRETE STAMPED "842 86 14 C04"

C-05 651,038.058 930,960.352 1.00003088 26°07'20.10433" 80°08'30.95224" 241+52.56 72.86' RT. 3.76" SET FDOT BRASS DISK IN CONCRETE STAMPED "842 86 14 B05"

N 651,188.102 E 938,424.971 1.00003253 26°07'21.07243" 80°08'23.14164" FOUND FDOT ALUMINUM DISK IN CONCRETE STAMPED "842 86 11 C05"

N 650,960.352 E 935,255.028 1.00003049 26°07'19.35577" 80°08'53.93227" FOUND FDOT BRASS DISK IN CONCRETE STAMPED "842 86 11 C05"

SECTION 2
TOWNSHIP 50 SOUTH, RANGE 42 EAST

PI STA. 242+20.13 NE CORNER, NE 1/4 SECTION 10
N 651,140.880 E 939,236.365 NOT FOUND

END SURVEY @ S.R. 22
POT STA. 268+63.02
N 651,233.900 E 941,878.250
FND. 1/4" IRON PIPE IN SQUARE CUT "NO ID"

HORIZONTAL AND VERTICAL CONTROL

CONTROL POINTS

<table>
<thead>
<tr>
<th>CONTROL POINT</th>
<th>(Y) NORTHING</th>
<th>(X) EASTING</th>
<th>SCALE FACTOR</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>$\text{$ SURVEY STATION}$</th>
<th>OFFSET</th>
<th>ZI</th>
<th>ELEVATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-05</td>
<td>650,960.352</td>
<td>935,255.028</td>
<td>1.00003049</td>
<td>26°07'19.35577"</td>
<td>80°08'53.93227"</td>
<td>202+34.91</td>
<td>40.41'</td>
<td>4.23"</td>
<td>FOUND FDOT BRASS DISK IN CONCRETE STAMPED "842 86 11 C05"</td>
<td></td>
</tr>
<tr>
<td>PNC-C1</td>
<td>651,073.805</td>
<td>935,787.919</td>
<td>1.00003088</td>
<td>26°07'20.08530"</td>
<td>80°08'53.14792"</td>
<td>208+55.15</td>
<td>15.52'</td>
<td>5.17"</td>
<td>FOUND FDOT ALUMINUM DISK IN CONCRETE STAMPED "842 86 13 C2"</td>
<td></td>
</tr>
<tr>
<td>B-04</td>
<td>651,133.755</td>
<td>937,647.541</td>
<td>1.00003203</td>
<td>26°07'20.91756"</td>
<td>80°08'31.67213"</td>
<td>226+32.04</td>
<td>48.76'</td>
<td>2.62"</td>
<td>SET FDOT BRASS DISK IN CONCRETE STAMPED "842 86 14 B04"</td>
<td></td>
</tr>
<tr>
<td>C-06</td>
<td>651,038.058</td>
<td>930,960.352</td>
<td>1.00003088</td>
<td>26°07'20.10433"</td>
<td>80°08'23.14164"</td>
<td>234+09.72</td>
<td>42.19'</td>
<td>2.72"</td>
<td>SET FDOT ALUMINUM DISK IN CONCRETE STAMPED "842 86 14 C04"</td>
<td></td>
</tr>
<tr>
<td>B-05</td>
<td>651,065.674</td>
<td>939,171.400</td>
<td>1.00003301</td>
<td>26°07'20.14333"</td>
<td>80°08'14.95924"</td>
<td>241+52.56</td>
<td>72.86'</td>
<td>3.76"</td>
<td>SET FDOT BRASS DISK IN CONCRETE STAMPED "842 86 14 B05"</td>
<td></td>
</tr>
</tbody>
</table>

PROJECT CONTROL NOTES:
1. Bearings and coordinates are relative to the state plane coordinates, Florida North Zone, North American Datum (NAID) of 1965 (adjustment of 1990).
3. Project Units: US Feet.
4. Field Book References: MGV 851 Series.
5. Electronic Database: CACE: "428724.2ZP"

LEGEND
- E: B ASIL ELINE
- F: E AS T
- N: FOUN D
- L: LEFT
- O: OFFSET
- N: NORTH
- P: POINT OF INTERSECTION
- P: POINT ON TANGENT
- R: RIGHT
- S: STATE ROAD
- STA: STATION
- Ctrl: CONTROL POINT

This document has been digitally signed and sealed under Rule 5J-17.062, F.A.C.

ANNA KING
LICENSE No 9999

Date: 2015.10.14
17:42:01 - 04'10'
Chapter 13

Intersection and Interchange Details/Layouts

13.1 General ... 13-1
13.2 Intersections.. 13-1
13.3 Interchanges .. 13-2
 13.3.1 Geometric Layout ... 13-2
 13.3.2 Ramp Terminal Details ... 13-4
 13.3.3 Cross Section Pattern Sheet .. 13-5

Figures
Figure 13.1 Interchange Layout .. 13-3
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 13

Intersection and Interchange Details/Layouts

13.1 General

These sheets provide layouts and details for intersections and interchanges, with consideration for turning and weaving movements of vehicular traffic. For a safe and efficient roadway system (including provisions for bicycles and pedestrians), these areas must be designed with special attention to channelization, turning movements, signalization, drainage and vertical alignment. Explicitly show the various design details for accurate construction.

Intersection and interchange layout sheets must show all necessary details and geometric controls/access management features, including channelization, tapers, turn lanes, special drainage, and grading. Prepare the sheets on a standard plan format using a scale large enough to show details clearly and legibly.

13.2 Intersections

Show intersection details on separate plan sheet format if they cannot be shown clearly on the plan-profile sheet format.

In cases of simple, nonsignalized intersections covering relatively small areas, regular plan-profile format may be used. Place the intersection layout, using an appropriate scale, in the plan portion, and the necessary profile grades in the profile portion.

For larger, more complicated intersections involving channelization, signalization or tapered connections, place the layout on a standard plan format. Match lines should be used when more than one sheet is required.

Present the profiles separately on a grid format. (See Chapter 11 of this Volume).

Existing topography need not be shown on these details if it is shown elsewhere in the plans. Information given is generally the same as in the plan portion. Include pavement edges, R/W lines, curb and gutter, channelizing and median curbs, driveways, drainage structures, pavement dimensions, radii, and appropriate notes.
All intersection layouts must be dimensioned, stationed adequately, and must include all pertinent construction notes and alignment data. Provide design speed data when appropriate. Check widths of turning lanes and turning paths for possible encroachments or conflicts.

Include a north arrow and scale at a point of maximum visibility on the plan. Use a scale that is sufficient to cover all necessary details, preferably 1" = 40'. Do not use a scale smaller than 1" = 50'.

13.3 Interchanges

13.3.1 Geometric Layout

Prepare interchange layouts on a standard plan format. Place the entire interchange on one sheet when possible, using a scale not smaller than 1" = 400'. In cases of large cloverleaf or directional interchanges, more than one sheet may be required. Appropriate match lines must be shown.

Dimension and station layouts with all alignment data and construction notes included. Assign all curves a number and curve data presented in a tabular form. It is preferred that the tabular curve and coordinate data be placed on the same sheet as the interchange layout.

Identify interchange ramps by the use of letters or a combination of letters and numbers. The recommended practice for assigning ramp names is as follows:

1. Ramps in the first left quadrant along mainline stationing should be assigned first. Name assignments progress in a counterclockwise direction around the interchange (see Figure 13.1). For projects with two or more interchanges, continue name assignments with the next letter and in same counterclockwise direction noted above.

2. Ramp baselines are usually located on the right edge of the pavement with relation to the direction of traffic, and must be clearly indicated. Stationing of ramps should be in the same direction as the project.
A topographic worksheet for all interchanges is required and will be considered as the preliminary layout of the interchange. Prepare this worksheet on a standard plan format on a scale not smaller than 1" = 400'. Include the following information on the worksheet:

1. All topography, such as existing roads, property lines, utilities, buildings, driveways, etc.
2. Preliminary interchange geometrics and proposed right of way limits.
3. Drainage right of way and easements.
4. Proposed reconstruction of the crossroad, and all access roads and frontage roads within the interchange.
5. Frontage roads should be assigned a unique alpha or numeric designation to avoid confusion with ramp nomenclature.
6. Contours, unless the terrain is relatively flat.
7. Traffic diagram with AADT, DHV, K, D and T values.
8. The length of speed change lanes.
11. Pavement transitions.
12. Limits of construction along the crossroad.

Include the following interchange sheets in the contract plans set:
1. Interchange geometric layout.
2. Interchange drainage map.
3. Interchange topographic map.
4. Interchange cross section pattern sheet.
5. Ramp terminal details.
6. Ramp cross sections.

13.3.2 Ramp Terminal Details

Show details of ramp terminals with mainline and crossroads on separate plan sheets. Do not use a scale smaller than 1" = 50'. Standard scale 1" = 40' is preferred. Show the following details of the terminal:
1. Curve data.
2. Station equality and horizontal tie to mainline or crossroad at critical ramp locations.
3. Turning radii, taper/transition lengths, curb/curb and gutter (if any).
4. Channelization (if any).
5. Ramp and crossroad intersection station and angle.
7. Limits of construction.
8. R/W.
10. Drainage structures.
11. Spot elevations (as needed).
12. Roadway dimensions.
13. Station pluses and offsets.
13.3.3 Cross Section Pattern Sheet

The cross section pattern sheet shows the entire interchange layout including frontage and access roads, if any, with location and extent of proposed cross sections. This information is of special importance for projects involving new interchanges located in rural, undeveloped areas. Include the following information on the cross section pattern sheet:

1. North arrow and scale.
2. Interchange layout.
3. Access and frontage roads (if any).
4. Centerline construction and baseline survey.
5. Ramp base lines.
6. Stationing along mainline, crossroads, ramps, access and frontage roads.
7. PC and PT points by symbol.
8. Bridge outline.
9. Cross section pattern.

Prepare this sheet on a standard plan format. Use a scale such that the complete interchange is shown on one plan sheet, with care taken to ensure clarity and legibility. Normal scale is 1" = 400'. Place the north arrow and scale at a point of maximum visibility.
Chapter 14

Drainage Structures

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>General</td>
<td>14-1</td>
</tr>
<tr>
<td>14.2</td>
<td>Required Information</td>
<td>14-1</td>
</tr>
<tr>
<td>14.3</td>
<td>Utility Conflicts</td>
<td>14-3</td>
</tr>
<tr>
<td>14.4</td>
<td>Sheet Setup</td>
<td>14-3</td>
</tr>
</tbody>
</table>
Chapter 14

Drainage Structures

14.1 General

Drainage structure sheets show the drainage structures, their location, cross section, flow line elevations of all weirs or slots, top of grates, culverts and top of manhole elevations, and similar data. Drainage structure sheets also show the vertical relationships of the entire drainage system. Identify and resolve drainage structure conflicts with existing or proposed utilities as early in the design process as possible.

All projects require the plotting of drainage structures. When only cross drains are to be constructed or modified, drainage structures may be plotted on the cross section sheets. Otherwise drainage structures should be plotted on separate drainage structure sheets, utilizing the cross section sheet cell available in the FDOT CADD Software (see Exhibit DS-2). See Chapter 22 of this Volume for additional requirements for box and three-sided culverts utilized as drainage structures.

14.2 Required Information

For rural projects, show the existing ground line at the location of the structure, with the existing elevation placed immediately below the ground line at the survey baseline. Do not show existing structures, except those to be incorporated into the proposed drainage system or otherwise modified. Note the flow line elevations of the drainage structures shown in the plans. Where storm drains run laterally or diagonally across the project, the drawing should show the pipe cover.

Show the roadway template and proposed structures, with the proposed profile grade elevation, placed above the grade point. Locate the structure by station and offset to the centerline of construction. Provide flow line information at each structure and at each culvert end. Structures are to be plotted in detail according to the applicable index of the Design Standards, with walls, grates, tops, pipes, etc. shown.

Include the size and length of each proposed structure on the cross drain sections. Show box and three-sided culvert lengths on the drainage structure sheet.
Depict sections for skewed cross drains along the centerline of the structure. Clear zone distances are to be measured at right angles to the traffic lane for all structures.

Determine where the construction of a drainage structure may have potential impact on existing right of way.

For each drainage structure, note all necessary information, including, as appropriate: size, end treatment and flow lines, as well as structure, index and station number. Place the note as close to the structure as possible. Provide elevations for manhole tops, and ditch bottom inlet grates and slots. Show grate elevations for gutter inlets and edge of pavement elevations for curb and gutter inlets.

Include special grate treatment requirements in the inlet note. Include additional details; e.g., special bedding, 36" manhole rings. Show flow direction arrows.

Show material options on the Optional Materials Tabulation Sheet (see *Exhibits SDS-2a* and *SDS-3a* in *Chapter 8* of this Volume).

Modification for Non-Conventional Projects:

Delete paragraph above. See Chapter 6 of the *Drainage Manual* for Optional Material documentation requirements.

If existing structures are to be filled and/or plugged and are to remain in place, show them in the plans with an appropriate note.

Include the following notes on the first drainage structure sheet as applicable:

1. Special attention is directed to the fact that portions of some drainage structures extend into the stabilized portion of the roadbed and extreme caution will be necessary in stabilization operations at these locations.

2. All drainage pipes have optional materials. The Optional Materials Tabulation Sheet(s) shows all materials allowed and indicates which material is plotted in the plans and used as the basis for pay quantities.
14.3 Utility Conflicts

Plot all major underground utilities, as defined in Chapter 5 of Volume 1, in conjunction with the structures so that conflicts may be detected during design, and to alert construction forces of potential conflicts.

In the case of longitudinal pipes, a section should be plotted for each location of a crossing of any major underground line.

Note and plot (to scale) the utilities that have been verified (Quality Level "A" locate) in the appropriate locations on the Drainage Structure Sheets, Cross Section Sheets and bridge foundation plans. These utilities should be labeled with the following symbol:

\[V_{vh} = \text{Verified Vertical Elevation and Horizontal Location} \]

14.4 Sheet Setup

Plot structures as sections along the centerline of the structure and show on a standard cross section format. Space the sections sufficiently to avoid overlapping of structures or notes. Reference the station and offsets from the appropriate baseline or centerline, which may vary by Index, as indicated in the Design Standards. Beginning at the bottom of the sheet, show the sections successively by stations and number them sequentially, from the beginning to the end of the project. Show the structure number and location station near the right border of the sheet.

If a structure must be shown out of order, place a note in the correct sequence, referring to the sheet where the structure is shown. Use the same scale that is used for roadway cross sections, with the centerline of construction placed near the center of the sheet.
Chapter 15

Lateral Ditch/Outfalls, Retention/Detention and Mitigation Areas

15.1 General .. 15-1

15.2 Lateral Ditch/Outfall.. 15-2
 15.2.1 Plan Portion... 15-2
 15.2.2 Profile Portion... 15-2
 15.2.3 Typical Section... 15-3
 15.2.4 Ditch Cross Sections.. 15-3

15.3 Retention or Detention Areas ... 15-4
 15.3.1 Pond Detail Sheet .. 15-4
 15.3.2 Typical Section... 15-5
 15.3.3 Pond Cross Sections... 15-5

15.4 Mitigation Areas ... 15-6
Chapter 15

Lateral Ditch/Outfalls, Retention/Detention and Mitigation Areas

15.1 General

Drainage systems that convey stormwater from the roadway may be made up of many components such as inlets, manholes, pipes, ditches, and retention/detention areas. Usually, these systems require additional right of way and/or easements.

Mitigation areas, although not usually a component of the highway drainage system, may have drainage components in them.

If space permits, drainage components adjacent to the roadway may be shown on the roadway plan-profile sheets. Drainage components not adjacent to the roadway may require separate plan view sheets. In either case, profile views and/or cross sections may also be needed to provide enough detail to construct the components.

Plans for drainage components can generally be grouped into three categories:
1. Lateral ditch/outfalls
2. Retention/detention areas
3. Mitigation areas
15.2 **Lateral Ditch/Outfall**

Prepare lateral ditch plans and profiles on a standard plan-profile format using a horizontal scale of 1" = 100'. However, if storm drain construction is proposed for a portion of the ditch, a scale of 1" = 40' or 1" = 50' may be used.

15.2.1 **Plan Portion**

Orient data in the plan portion so that the lateral ditch/outfall centerline is parallel to the long side of the sheet. Show information in a manner similar to that described in *Chapter 10* of this Volume.

Show right of way (or easement) alignment data and topography in the plan portion. An alignment tie between the lateral ditch/outfall and the project must also be shown. Place the north arrow and scale at the proper location on the sheet (refer to *Chapter 10* of this Volume).

15.2.2 **Profile Portion**

Prepare the profile portion in the same manner as the profile portion of the roadway plan-profile sheets (*Chapter 10*). Show existing ground line profiles, high water elevations, underground utilities, benchmark information, and elevation datum as described for roadway plan-profiles.

Where the lateral ditch/outfall survey baseline does not follow the flow line of the existing ditch or channel, the existing ditch or channel profile must be shown with a broken line and identified.

If storm drain construction is proposed along a lateral ditch/outfall, plot the proposed structures on the drainage structures sheets, or in the lateral ditch/outfall profile. Structures shown in the profile will include flow line, structure numbers, pipe or culvert sizes, and utilities (if applicable).

Indicate and label the normal water elevation of the receiving system.
15.2.3 Typical Section

Include a typical section showing the width of proposed clearing and grubbing, right of way, ditch bottom width and side slopes on the lateral ditch plan and profile sheet. This section does not need to be to scale, but must be dimensionally proportionate. If the width of clearing and grubbing is variable for a lateral ditch/outfall, note the various widths and their respective station limits below the typical section.

15.2.4 Ditch Cross Sections

Lateral ditch cross section sheets are included in the plans. These sheets show the right of way required, the extent of clearing and grubbing required and the amount of earthwork.

Prepare lateral ditch cross sections in a manner similar to that of roadway cross sections (Chapter 18 of this Volume). The scale, generally, should be 1" = 10', vertical and horizontal. Regardless of the horizontal scale used, the vertical scale must always be 1" = 10'.

Often it is possible to place two or more columns of ditch cross sections on one sheet. They must be plotted with the stationing progressing from the bottom of the sheet to the top, and the columns placed from left to right.

Usually, soil surveys are made along the lateral ditch only when a large amount of material is expected to be excavated.

Guidance given in Chapter 18 of this Volume must be applicable equally to lateral ditch cross sections.
15.3 Retention or Detention Areas

15.3.1 Pond Detail Sheet

The retention or detention pond, including the outlet structure, is usually the end point of the drainage system for a particular project. The retention/detention pond detail sheet must show the pond in plan view, with station and offset ties to the project centerline of construction. The plan view must also include the following:

1. Locations of pond sections.
2. Side slopes and base dimensions.
3. Bottom and top elevations.
4. Location of maintenance berm.
5. Fence and gate locations.
6. Right of way.
7. Pond drainage structures with structure numbers.
8. Soil boring locations, and
9. Any other necessary data pertaining to the pond.

The pond sections must show the bottom width and elevation, side slopes, normal water depth, if applicable, as well as soil borings. A minimum of two (2) sections, taken in directions perpendicular to each other, must be shown.
15.3.2 Typical Section

A typical section is required when the pond sections do not represent the typical design features of the pond. Following is a list of appropriate information to be shown on the typical section:

1. Limits of clearing and grubbing
2. Typical side slopes
3. Bottom and top elevations
4. Details of maintenance berm
5. Fence location
6. Right of way
7. Water level information
8. Vegetation requirements

The typical section does not need to be to scale, but must be dimensionally proportionate. It should be shown on the pond detail sheet, if room allows, or on a separate sheet when necessary.

15.3.3 Pond Cross Sections

Prepare pond cross sections in a manner similar to that for roadway cross sections (Chapter 18 of this Volume). As with lateral ditches, the standard scale is 1" = 10' vertical. The standard horizontal scale is also 1" = 10', although another scale may be used if necessary.

If material is to be excavated from the pond the data from the soil survey sheet must be shown on the cross sections.

Guidance given in Chapter 18 of this Volume must be applicable to pond cross sections.
15.4 Mitigation Areas

If construction details for mitigation areas are included in the plans, follow the requirements for retention/detention areas.
Chapter 16

Special Details

16.1 General ... 16-1
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 16
Special Details

16.1 General

Special details sheets are usually included in the plans set if the project contains areas that require special attention to some construction elements. Construction details that are not covered in the Design Standards booklet or elsewhere in the plans set must be shown on the special details sheet.

Prepare the special details sheet on a standard plan format. Any convenient scale may be used, provided the information shown is clear and legible. Details shown must be clear, legible, labeled, completed in all respects and should be adequately cross-referenced in the plans set.
Chapter 17

Soil Survey

17.1 General .. 17-1
17.2 Roadway Soil Survey ... 17-1
 17.2.1 Method of Compilation and Presentation 17-1
17.3 Other Soil Surveys ... 17-2
Chapter 17

Soil Survey

17.1 General

The soil survey sheet, essentially a soil test analysis sheet, depicts the various types of soils encountered within the limits of the project. This sheet also shows the classification, mechanical properties and recommended usage of those soils. A preformatted CADD sheet can be found in the FDOT Engineering/CADD Systems Software.

Assign soils having identical characteristics to the same stratum and group for identification and recommendation purposes. The test analysis sheet must be signed by the responsible Engineer.

17.2 Roadway Soil Survey

17.2.1 Method of Compilation and Presentation

Upon completion of the proposed typical section, and after placing alignment, proposed grades and existing utilities on the plan-profile sheets and preliminary sections, prints of these sheets must be utilized for determining the location and depth of borings for the sampling of soils for testing and classifications. These classification and test results, including pH, resistivity, sulfides, and chlorides must be shown on the test analysis sheet. Show date and weather conditions at the time of sampling. Refer to Exhibit RSS-1 for an example of soil survey sheet.

After completion of soils testing, show the boring data on cross sections by columns approximately 1/4 inch wide below the ground line at test sample locations. Show stratum limits and numbers inside the column. Transmit this information to the appropriate responsible materials engineer for verification. Retain one hard copy of the soils information, including cross sections with soils information, in the Soils Engineer's Record.
17.3 Other Soil Surveys

Soil surveys other than those for roadway plans are required for various plans components. Included in these are soil surveys/borings for retention/detention ponds, overhead sign structures, high mast poles and traffic signal mast arms.

Soil survey sheets generated for such components are generally located in the plans set with the other details and information for each component. Requirements for the soil survey sheets are similar to those prepared for the roadway soil survey, showing such things as the location of test holes, various strata encountered, soil properties, classification and recommended usage.
The material from Stratum Number 1 is Rock Base under Asphaltic Concrete. The material from Stratum Number 2 appears satisfactory for use in the embankment when utilized in accordance with Index 505. However, this material is likely to retain excess moisture and may be difficult to dry and compact. It should be used in the embankment above the water level existing at the time of construction.

The material from Stratum Number 3 appears satisfactory for use in the embankment when utilized in accordance with Index 505. However, this material is likely to retain excess moisture and may be difficult to dry and compact. It should be used in the embankment above the water level existing at the time of construction.

The material from Stratum Number 4 and 5 are plastic materials and shall be removed in accordance with Index 500. They may be placed above the existing water level at the time of construction.

The material from Stratum Numbers 6 and 8 is ORGANIC/A-8 material and shall be removed in accordance with Index 500, except where noted in the cross sections.

The material from Stratum Number 7 is Highly Plastic material and shall be removed in accordance with Index 500. It may be used within the project limits as indicated in Index 505 only when excavated within the project limits and is not to be used when obtained from outside the project limits.

The material from Stratum Number 8 is ORGANIC/A-8 material and shall be removed in accordance with Index 500, except where noted in the cross sections.

The material from Stratum Number 9 is the Natural Limestone Formation. Special tools and equipment may be required to excavate and/or dewater this material.
Chapter 18

Roadway Cross Sections

18.1 General .. 18-1
18.2 Required Information.. 18-1
18.3 Sheet Set Up.. 18-2
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 18

Roadway Cross Sections

18.1 General

Cross sections depict the existing ground conditions, including all manmade features, as sections perpendicular to the respective stations along a survey baseline or construction centerline. The proposed cross-sectional outline of the new facility with all its functional elements is also shown on cross sections. Use standard cross section sheets for showing roadway cross sections. The preformatted sheet cell is located in the FDOT CADD Software.

The recommended vertical scale is 1” = 10’. The horizontal scale should be such that the entire roadway R/W is shown on the sheet (generally 1” = 10’ or 1” = 20’), but not smaller than 1” = 40’ horizontal. If the entire R/W cannot be shown on one sheet, more sheets may be utilized and appropriate match lines shown with referenced sheet numbers. Show the scale at the bottom right corner of the sheet above the title box.

18.2 Required Information

Show existing ground lines and note the existing elevation at the centerline just below the ground line at the centerline. Indicate the station number of the section below the ground line on the right side of the sheet. Label the baseline of survey along the top and bottom of the sheet. Lines parallel to the baseline of survey should show station equivalencies to the baseline of survey.

Show the surface, as well as the below ground portions of existing features such as pavements, curbs and sidewalks.

Existing parallel underground utilities which lie within the horizontal limits of the project must be shown along with verification notation for those locations which have been verified. Utilities that have been verified should be labeled as shown in Section 14.3 of this Volume. Small distribution or service lines need not be drafted.

Show the soil data and the groundwater table elevation from soil borings on cross sections as described in Section 17.2.1 of this Volume. If it is determined that an organic or plastic material must be removed below the finished grade template, show the lower limits
(undercut line) of the removal on the cross section to determine the area and volume of subsoil excavation. Refer to **Design Standards, Index 500** for the requirements of subsoil excavation; i.e. removal of unsuitable organic or plastic soils.

Show the proposed roadway template. The proposed profile grade elevation must be placed vertically or at an angle to the horizontal, just above the profile grade line. Special ditch elevations must also be shown.

Show station equations, even though a cross section may not be plotted at that point. Show equivalent mainline stations for ramp cross sections. The right of way limits must be symbolically shown for each cross section.

The begin and end stations for project, construction, exceptions, bridge/bridge culvert, and the toe of slope under the bridge must be shown on the right edge of the sheets near the earthwork columns. Show the beginning and ending earthwork stations.

Indicate earthwork quantities in the appropriate columns on the right side of the cross section sheet. Show earthwork summaries in the Summary of Earthwork on the Summary of Quantities Sheet.

The order of assembling the cross sections in the plans set must be:

1. Mainline
2. Side streets
3. Ramps

18.3 Sheet Set Up

Show cross sections on a standard preformatted cross section sheet (available in the FDOT CADD Software) with stations increasing from the bottom to the top of the sheet. Typically, only one column of sections is placed on a sheet.

The interval selected for showing sections on the cross section sheet will vary according to project specific factors. For new construction and reconstruction, the normal interval for cross sections is 100 feet for rural projects and 50 feet for urban projects. These intervals may also be appropriate on RRR projects, depending on the variability of earthwork along the project. Other factors that may influence the frequency of cross sections include the presence of intersections, extent of driveway and turnout construction or reconstruction, ADA related work, and drainage improvements.
Center sections on the sheet with the survey baseline or the construction centerline placed vertically in the center. In cases where additional lanes are to be constructed adjacent to existing lanes, centering the sections will depend upon the location of the survey line and the side on which the new construction is to be placed. Orient sections such that the complete ultimate section will be approximately centered on the sheet. When the centerlines of construction and survey are not parallel, the distance between the two at each cross section must be shown.

Place as many sections as possible on a sheet with sections being spaced to avoid overlapping. The soil profile should be checked for possible unsuitable material below existing ground which may cause overlapping of sections.

When right of way is narrow enough and a horizontal scale of 1" = 20' is used, two columns of cross sections may be placed on a sheet. Cross section stationing must progress from the bottom to the top of the sheet and multiple columns must be placed from the left to the right. Set up the sheet to provide earthwork columns for each column of sections.

For additional information on cross sections see Chapter 3 of Volume 1.
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 19

Temporary Traffic Control Plan

19.1 General .. 19-1
19.2 Required Information.. 19-1
19.3 Levels of Complexity to be Anticipated for Temporary Traffic Control Plans ... 19-2
 19.3.1 Level I .. 19-2
 19.3.2 Level II .. 19-2
 19.3.3 Level III .. 19-3
19.4 Format ... 19-3
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 19

Temporary Traffic Control Plan

19.1 General

A Temporary Traffic Control (TTC) plan will accompany all plans for a construction project. The TTC plan is the final document that summarizes the considerations and investigations made in the development of a comprehensive plan for maintaining traffic through a work zone.

The TTC plan is used to describe the actions to be taken by the contractor to minimize traffic impacts while conveying traffic safely through a work zone. The TTC plans may include, but are not limited to, general notes, phase notes, phase typical sections, phase plan-profile sheets, signalization plans, special details, and temporary cross sections.

19.2 Required Information

Specific temporary traffic control plans are required on all projects. The information provided on the TTC plans may consist of nothing more than notes and references to the Design Standards, Series 600 or may be as elaborate as detailed individual phase layouts using profile sheets and interchange and intersection layout sheets. Information must be provided to inform the contractor of the following:

1. location of the centerline, pavement edge, curb line, shoulder;
2. placement of temporary pavement markings;
3. lane configurations;
4. locations of work zone signs and any other temporary work zone traffic control devices (including changeable message signs, advanced warning arrow panels, barriers, crash cushions, temporary signals, etc.);
5. layouts and placement of channelizing devices;
6. work to be accomplished during the individual phases of construction;
7. lane closures and other restrictions that apply;
8. regulatory speed limits for each phase;
9. project specific requirements such as school zones, railroads, waterborne vessels, etc.
When a project requires more than one phase of construction, the temporary traffic control plans should address each individual phase. TTC quantities should be tabulated by phase and shown in the Summary of Quantities sheet.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete the last sentence of the above paragraph.</td>
</tr>
</tbody>
</table>

19.3 Levels of Complexity to be Anticipated for Temporary Traffic Control Plans

The following guidelines have been developed to assist in determining the level of detail and complexity that may be required for a project.

19.3.1 Level I

Application - Simple projects where method of construction is straightforward.
(Examples: RRR, Enhancements, Resurfacing, Minor Widening).

Components of the TTC Plan

1. General Notes (including references to the applicable indexes in the *Design Standards*)
2. Phase Typical Section(s)
3. Special Details - MINIMAL - where unique situations for the project exist

19.3.2 Level II

Application - Moderately complex Construction projects, such as reconstruction of roadways. (Examples: Urban or rural widening projects, Projects with Diversions or Detours)

Components of the TTC Plan

1. General Notes
2. Phase Notes (including references to the applicable indexes in the *Design Standards*)
3. Phase Typical Section(s)
4. Detailed plan sheets (when an index in the *Design Standards* does not apply)
5. Cross Sections as determined necessary (Example: diversions, temporary drainage, temporary bridge structure)

6. Temporary signalization plans (if required)

7. Special Details - As necessary for constructability (Example: temporary drainage, slope requirements due to diversions, temporary signalization, railroad work, etc.)

19.3.3 Level III

Application - Complex projects.

Components of the TTC Plan

1. General Notes
2. Phase Notes (including any references to the applicable standard indexes)
3. Phase Typical Section(s)
4. Detailed Plan Sheets
5. Cross Sections
6. Temporary signalization plans (if required)
7. Special Details may include - Temporary Drainage; Temporary Signalization; Intersection Details; etc.

19.4 Format

Prepare TTC plans on a standard plan sheet format. A scaled drawing is not always required; however, clarity and legibility are critical. When scaled drawings are required, the scale must not be less than 1” = 100’ for plan sheets and 1” = 40’ for special details. Use levels, fonts and line weights in accordance with the FDOT CADD Manual.

Tools are available in FDOT Engineering/CADD Systems Software to assist in the development of Temporary Traffic Control Plans.
Chapter 20

Utility Adjustments

20.1 General .. 20-1

20.2 Required Information...20-1

20.3 Sheet Format ...20-3
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 20

Utility Adjustments

20.1 General

The purpose of utility adjustment sheets is to provide coordination between the contractor and the affected utility companies. These sheets show the contractor the approximate locations of existing, proposed and relocated utilities, and thus aid the contractor in avoiding possible conflicts or damage to the utilities involved. Projects with minor utility work or impacts may include these features on the roadway plan or plan-profile sheets or appropriate component plan sheets.

20.2 Required Information

Show locations of existing and proposed utilities within the project limits.

Clearly show and label all proposed and relocated utilities on the plans using lines and standard utility symbols (see Design Standards, Index No. 002 and the FDOT CADD Manual). Clearly indicate the disposition of existing utilities that are not to remain in place and in service (for example "To Be Removed", "To Be Adjusted", "To Be Relocated", etc.). The disposition of existing utilities that are to remain in place and in service need not be labeled. Label all proposed utilities appropriately. Show the line voltage for all overhead electrical power lines.

Place the following notes on the first Utility Adjustment Sheet. Include these notes in the General Notes (see Exhibit GN-1 in Chapter 10 of this Volume) if there are no utility adjustment sheets in the plans.

1. The location(s) of the utilities shown in the plans (including those designated Vv, Vh and Vvh) are based on limited investigation techniques and should be considered approximate only. The verified locations/elevations apply only at the points shown. Interpolations between these points have not been verified.
2. Utility/Agency Owners:

<table>
<thead>
<tr>
<th>Company</th>
<th>Contact</th>
<th>Telephone Number</th>
</tr>
</thead>
</table>

The provided company names and phone numbers are for emergency utility contacts. Also include the contact information for persons responsible for the maintenance of FDOT utility infrastructure such as traffic counters, lighting, signal components, and ITS.

Include the Transportation Statistics Office in Tallahassee in the list of Utility/Agency Owners if there is a traffic-monitoring site on the project or within one-half mile of the construction. The contact person is the Traffic Data Section Manager. Refer to Section 10.2.6, Item No. 13 of this Volume for plan requirements involving traffic-monitoring sites.
20.3 Sheet Format

Prepare the utility adjustment sheets from CADD files generated for the plan or plan-profile sheets, and only the plan portion should be shown. Use levels, fonts and line weights in accordance with the *FDOT CADD Manual*.

Information and graphic data that is not necessary for utility adjustment sheets may be removed by turning off the appropriate level(s) on which the data is stored. This will help ensure that information pertinent to utility adjustments is more easily seen. Show the following information on the utility adjustment sheets as a minimum:

1. Baseline and/or centerline of survey.
2. Curb and gutter or edge of pavement.
3. Drainage structures (existing and proposed).
4. Right of way lines.
5. Station numbers.
6. Street names.
7. Location of existing utilities. Label all major utilities that have been field verified (see *Quality Level "A" locates, Chapter 5 of Volume 1*) in accordance with the following symbol:

\[
V_{vh} = \text{Verified Vertical Elevation and Horizontal Location}
\]

At the District’s option, a table of field verified utilities containing the following information can replace the profile view on each sheet:

<table>
<thead>
<tr>
<th>V_{vh} No.</th>
<th>Utility Description (Owner, Type)</th>
<th>Size</th>
<th>Material</th>
<th>B/L and/or C/L</th>
<th>Existing Ground Elevation</th>
<th>Top Elevation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Station Offset Lt./Rt.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Disposition of existing utilities that are not to remain in place and in service.
9. Location of new or relocated utilities.
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 21

Selective Clearing and Grubbing

21.1 General ... 21-1
21.2 Plan Sheet ... 21-1
21.3 Detail Sheet .. 21-2
 21.3.1 Work Table ... 21-2
 21.3.2 Legend and Work Table Notes 21-3
Chapter 21

Selective Clearing and Grubbing

21.1 General

Selective Clearing and Grubbing plan sheets show the extent and type of clearing operation required within the project right of way limits. These sheets may also show plant preservation areas and tree protection barriers.

Plant preservation areas are areas in which no clearing and grubbing activities are to occur. Vegetation, including grasses, wildflowers or trees are to be protected from and undisturbed by construction activities. For an illustration of a Selective Clearing and Grubbing sheet, see Exhibit SCG-1.

The amount and type of notes required for selective clearing and grubbing will vary depending on the project. It may be desirable to provide a separate Selective Clearing and Grubbing Detail sheet to display the notes, symbols and details that are applicable to the project. For an illustration of a Selective Clearing and Grubbing Detail sheet, see Exhibit SCG-2.

Place Selective Clearing and Grubbing sheets in the component plans in accordance with Section 3.2.7 of this Volume.

21.2 Plan Sheet

Use the standard plan format sheet provided in the FDOT CADD Software to prepare Selective Clearing and Grubbing sheets. Refer to the FDOT CADD Manual for CADD standards associated with selective clearing and grubbing.

Show complete existing topography and the centerline of construction with stationing, proposed edge of roadway pavement lines, R/W lines, canopy of existing trees to remain, tree protection barrier and limits of construction. Show a legend on each sheet depicting the type of selective clearing and grubbing operation to be performed.
Place a north arrow and scale in a conspicuous location, typically in the upper right portion of the sheet. Use a scale that provides clarity and legibility. Use appropriate match lines when necessary.

When two or more tree canopies overlap, the entire outline of the tree canopies can be shown as one mass. Show tree protection barrier and root pruning locations. When existing trees to remain are to be root pruned, the trees will be assigned a label which is to be shown adjacent to the tree trunk. Trees that are to be branch pruned may also be labeled in the plans. Each tree does not need to be labeled when a group of trees are to be branch pruned. Label areas of root or branch pruning on the plans or in the Work Table. The disposition of labeled trees is to be shown on Tree Disposition sheets.

Where clarification is needed, trees to be removed may be noted on the plan.

Delineate areas of tree protection and plant preservation areas with tree protection barriers. Tree protection barrier may be used to delineate areas of selective clearing and grubbing. When a plant preservation area is adjacent to a R/W fence to remain, or similar permanent barrier, tree protection barrier parallel to the permanent barrier may be omitted.

21.3 Detail Sheet

21.3.1 Work Table

For an illustration of a Selective Clearing and Grubbing Work Table, see *Exhibit SCG-2*.

Selective clearing and grubbing areas are defined and labeled by location. Location numbers can be based on roadway stationing numbers, quadrants or sheet numbers.

Provide a Selective Clearing and Grubbing Work Table when the project includes selective removal of vegetation. As a minimum, the table includes:

- Abbreviated name of primary species to remain
- Abbreviated name of primary species targeted for removal
- Work Description
Other information that may be included in the table:

- Florida Exotic Plant Council Category #1 species to be removed
- Estimated percent of Category #1 vegetative cover for each area
- Additional species to target for removal, and/or additional species to preserve
- Root and branch pruning
- Notes

21.3.2 Legend and Work Table Notes

Include a legend with the Selective Clearing and Grubbing Work Table. The legend is to show all plant species noted in the table. Plant species are typically abbreviated by the first letter of the genus and the first letter of the species of the botanical name; e.g. show Live Oak, *Quercus virginiana* as QV.

Except where called out in the Work Table Notes or Selective Clearing and Grubbing Work Table, list undesirable exotic pest plants, as listed as Category I by the Florida Exotic Pest Plant Council to be totally removed.

Provide the following note on the Selective Clearing and Grubbing Detail sheet:

“Primary” species to target (remove) or preserve are those that were determined to be most prevalent in that area, and are not intended to be the only species that occur.
THIS PAGE LEFT BLANK INTENTIONALLY
LEGEND

- TREE PROTECTION BARRIER
- ROOT PRUNING LINE
- CANOPY OF EXISTING TREE TO REMAIN (DASHED LINE DENOTES DRIPLINE OF TREE)
- TREES TO BE REMOVED
- SELECTIVE CLEARING AND GRUBBING
- PLANT PRESERVATION AREAS

NOTES

1. TREE DESIGNATION (ID) NUMBERS TO BE DETAILED ON THE TREE DISPOSITION SHEETS.
WORK TABLE NOTES

1. "PRIMARY" SPECIES TO TARGET (REMOVE) OR PRESERVE ARE THOSE MOST PREVALENT IN THAT AREA.

 THE FOLLOWING ADDITIONAL UNDESIRABLE SPECIES WILL BE TARGETED FOR REMOVAL IN ALL AREAS LISTED IN THE WORK TABLE.

 BOTANICAL NAME (COMMON NAME)
 - MYRICA CERIFERA (SOUTHERN WAX MYRTLE)
 - TYPHA SPP. (CATTAILS)

2. ESTIMATED PERCENTAGES OF INVASIVE EXOTIC VEGETATION ARE BASED ON FIELD OBSERVATIONS AND ARE SUBJECT TO CHANGE.

3. THE FOLLOWING CATEGORY #1 INVASIVE SPECIES WILL NOT BE TARGETED FOR REMOVAL.

 BOTANICAL NAME (COMMON NAME)
 - SOLANUM TAMPICENSE (WETLAND NIGHTSHADE)
 - PANICUM REPENS (TORPEDO GRASS)

SPECIES LEGEND

<table>
<thead>
<tr>
<th>SYM</th>
<th>BOTANICAL NAME (COMMON NAME)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AA)</td>
<td>ACACIA AURICULIFORMIS (EARLEAF ACACIA)</td>
</tr>
<tr>
<td>(BP)</td>
<td>SCHINUS TEREBINTHIFOLIUS (BRAZILIAN PEPPER)</td>
</tr>
<tr>
<td>(CT)</td>
<td>TYPHA SPP. (CATTAILS)</td>
</tr>
<tr>
<td>(JP)</td>
<td>SYZYGIUM CUMINI (JAVA PLUM)</td>
</tr>
<tr>
<td>(LF)</td>
<td>LYGODIUM SPP. (JAPANESE/OLD WORLD CLIMBING FERN)</td>
</tr>
<tr>
<td>(MC)</td>
<td>MYRICA CERIFERA (SOUTHERN WAX MYRTLE)</td>
</tr>
<tr>
<td>(PE)</td>
<td>PINUS ELLIOTTII (SLASH PINE)</td>
</tr>
<tr>
<td>(SF)</td>
<td>SABAL PALMETTO (SABAL PALM)</td>
</tr>
<tr>
<td>(QV)</td>
<td>QUERCUS VIRGINIANA (LIVE OAK)</td>
</tr>
<tr>
<td>(WW)</td>
<td>SALIX CAROLINIANA (COASTAL PLAIN WILLOW)</td>
</tr>
</tbody>
</table>

SELECTIVE CLEARING & GRUBBING WORK TABLE

<table>
<thead>
<tr>
<th>AREA NO.</th>
<th>WORK DESCRIPTION</th>
<th>EST. % OF PRIMARY SPECIES TO TARGET</th>
<th>PRIMARY SPECIES TO TARGET</th>
<th>SPECIES TO PRESERVE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>424</td>
<td>DESIGNATES AREAS WHERE CATEGORY #1 INVASIVE, EXOTIC VEGETATION AND NATIVE UNDERSTORY WILL BE SELECTIVELY REMOVED FROM DESIREABLE TREES TO REMAIN. ALL TREES UNDER 4" DBH TO BE REMOVED.</td>
<td>75%</td>
<td>JP, BP, 1Y, AA</td>
<td>PF, QV, SP</td>
<td>RAISE CANOPY OF QV BY PRUNING. REMOVE LARGE TREE DEBRIS OR GRIND ON SITE AND SPREAD IN UPLAND (NON-GRASSED) AREAS.</td>
</tr>
<tr>
<td>426</td>
<td>DESIGNATES AREAS WHERE ALL NATIVE VEGETATION WILL BE MOWED FLUSH WITH THE GROUND AND ALL CATEGORY #1 INVASIVE, EXOTIC VEGETATION WILL BE TREATED WITH HERBICIDES AND ALLOWED TO DIE IN PLACE.</td>
<td>100%</td>
<td>CT, BP, WW</td>
<td>NONE</td>
<td>INCLUDES REMOVAL OR MOWING OF WILLOWS AND WAX MYRTLE.</td>
</tr>
<tr>
<td>436</td>
<td>DESIGNATES AREAS WHERE CATEGORY #1 INVASIVE, EXOTIC VEGETATION WILL BE SELECTIVELY REMOVED FROM DESIREABLE VEGETATION TO REMAIN.</td>
<td>50%</td>
<td>JP, BP, 1Y</td>
<td>PF, QV, SP</td>
<td></td>
</tr>
</tbody>
</table>

ONLY USE WITH SELECTIVE CLEARING AND GRUBBING PAY ITEMS
Chapter 22

Miscellaneous Structures Plans

22.1 General .. 22-1
22.2 Approach Slabs .. 22-1
22.3 Retaining Walls .. 22-2
22.4 Concrete Box Culverts ... 22-3
22.5 Three-Sided Concrete Culverts .. 22-5
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 22

Miscellaneous Structures Plans

22.1 General

Miscellaneous structures not included in the bridge plans must be included in the appropriate component plans. This includes box or three-sided culvert details, high mast lighting supports, traffic mast arm supports, signal strain poles, overhead sign supports, rest area structures or buildings, barrier walls (traffic or sound), retaining walls and toll facilities. Box and three-sided culvert details should generally be placed immediately following the Drainage Structures sheets.

For guidelines on structural detailing, refer to the Structures Detailing Manual.

22.2 Approach Slabs

Custom approach slab sheets for non-standard designs and supplemental approach slab detail sheets called for by Design Standards 20900 and 20910 are included in the structures plans. However, some roadway elements may need to be carried onto the approach slab. In these cases, clarify in the plans which elements are to be included as part of the roadway.

The stabilization required under the approach slabs is paid for using the standard roadway pay item and the quantity included in the roadway plans. In addition, roadway elements such as guardrail, earthwork, sidewalks, approach slab surfacing, etc., which are part of the roadway approaches to the bridge and which interface with the approach slabs areas, will also be included and paid for in the roadway quantities.

Modification for Non-Conventional Projects:

Delete the last paragraph.
22.3 Retaining Walls

For non-proprietary retaining walls, complete design and construction details, including pay items and quantities are required in the contract plans.

Modification for Non-Conventional Projects:

Delete the sentence above and replace with:

For non-proprietary retaining walls, complete design and construction details are required in the contract plans.

For proprietary walls, develop a set of control plan details and include them in the contract plans.

See Chapter 30, Volume 1 for retaining wall plans submittal procedures. See also the Structures Manual for plan content requirements.

On projects with bridges, include the control plan details in the bridge plans. When there are no bridge plans, include the control plan details in the appropriate component plans. Examples of control plan details are included in the Structures Detailing Manual.

Vendor Drawings for proprietary wall systems listed on the APL are provided on the Program Management Office website.
22.4 Concrete Box Culverts

Complete design and construction details, including pay items and quantities are required in the contract plans for concrete box culverts. Include the following minimum design details:

Modification for Non-Conventional Projects:

Delete the above paragraph and replace with the following:

Complete design and construction details are required in the contract plans for concrete box culverts. Include the following minimum design details:

1. Plan view (usually shown on the Plan-Profile sheet – see Chapter 10, Exhibit PP-2) showing: Grid north arrow; scale bar; existing highway boundaries including existing ROW monuments; new right of way line(s) including proposed ROW monuments; culvert or bridge identification number; culvert and highway alignment; survey baseline; profile grade line; direction of stationing; stream channel alignment; stream flow direction; skew angle of the culvert relative to the centerline of roadway; stationing along the profile grade line including begin and end station of culvert (outside face of sidewalls); length of culvert; subsurface exploration locations (e.g., boring locations); culvert end treatment (headwall and wing wall orientation); scour protection; slope protection; limit of stream work; utilities; traffic railing and pedestrian/bicycle railing type.

2. Elevation view (usually shown on the Plan-Profile sheet – see Chapter 10, Exhibit PP-2) showing: Elevation vertical scale; profile grade line and vertical data; existing stream bottom and ground line (along PGL); utilities.

3. A longitudinal section along the culvert centerline (usually shown on the Drainage Structures sheet – see Chapter 14, Exhibit DS-2) showing: Culvert or bridge identification number; invert elevations; existing stream bottom or original ground; culvert stationing at centerline; typical highway section (including rail treatment); design earth cover height (measured from the top of the top slab to the top of pavement); limits of scour protection (including any keyways or geotextile fabric lining); channel work; culvert end treatments; utility (either attached to the fascia, or in the embankment, traffic railing or sidewalk); wing walls; headwalls; cutoff walls; reference to the appropriate Design Standard Indexes.

4. Data Sheets (see Chapter 7.3):
 Box Culvert Data Table and Reinforcing Bar List.
5. Miscellaneous details showing (usually shown on Box Culvert Detail sheets, located after the Drainage Structure sheets): Construction phasing information (affects lengths of precast segments and potential need for skewed segments) including appropriate excavation support and protection systems (e.g., critical temporary walls); traffic railing details including connection details; slope and/or stream bank protection; channel section detail; culvert-end safety grate, guardrail or fencing details when applicable; removal of existing culvert(s); cofferdams or water diversion.

6. Notes (usually on the Box Culvert Data Sheets) indicating: Live loading requirements (HL-93 or HS-25); hydraulic data (show 100-year design flow or the design flow used and the minimum hydraulic area perpendicular to flow below the Design High Water); environmental classification for durability; minimum concrete class and reinforcing steel grade; assumed soil weight, angle of internal friction and nominal bearing capacity; differential soil settlement height and effective length (when significant); precast culvert limitations; any special joint waterproofing requirements; erosion and sediment control and stormwater pollution prevention plan requirements; restrictions for work in streams; estimated quantities.
22.5 Three-Sided Concrete Culverts

Complete footing, wingwall and channel lining designs and construction details are required for three-sided culverts. However only conceptual culvert barrel and headwall design details need to be provided. Include the following minimum design details in the roadway plans and place directly after the Drainage Structure sheets:

1. Plan view showing the orientation of the ends of the structure. The two most typical options for culverts on a skew are ends parallel to the centerline of the roadway (skewed ends) or ends perpendicular to the centerline of the structure (square ends). The end treatment depends upon the skew, whether it is in a fill section or at grade, the location within the right of way, conflicts with utilities, phased construction details, the alignment of the feature crossed, and other site limitations.

2. Elevation view showing the configuration of the most appropriate type unit (e.g., frame or arch). Show any limitations on using a larger span (some manufacturers only fabricate units at fixed increments of span length, therefore showing the limitations will allow the manufacturers to bid using special units or the next larger span length of their standard units). Show other acceptable structure types in separate partial elevation views. Show limiting spans and heights for all alternatives.

3. No precast manufacturer should be eliminated from consideration for a given project. However, specific project requirements that may exclude some manufacturers must be identified (such as fabrication on a skew or a desired arched appearance).

4. Complete details for a cast-in-place footing design, including design loads and assumptions for the spread footings.

5. Complete details for cast-in-place wingwalls, including geometry and reinforcement details.

6. Estimated quantities for concrete and reinforcing steel for cast-in-place elements, but do not include separate pay items.

7. Identify payment limits as the length of the total structure along a longitudinal centerline of the structure.

8. Include the applicable details in Section 22.4.

9. Place the following notes adjacent to the plan or elevation views, as applicable:

 a) The assumed foundation vertical reaction is _____ kips/ft. The assumed foundation horizontal reaction is _____ kips/ft. The Contractor must submit a revised foundation design to the Engineer if the actual loads of the supplied structure exceed these assumed values. Any revised foundation design must
be included in the shop drawings and submitted for approval at the same time as the design calculations for the three-sided structure.

b) In cases where squaring of the unit ends would create a geometric conflict with right of way, utilities, phase construction or site geometry, include the following note:
 Due to site restrictions, only skewed end units are acceptable.

c) If site constraints do not eliminate the squaring of the ends, include the following note:
 Squared end units may be substituted for skewed end units with no change in the payment limits and no additional cost to the Department.

d) When traffic railings are attached to skewed headwalls and site constraints do not eliminate the squaring of the ends, include the following note:
 If the Contractor proposes to substitute square ends, details of the traffic railing attachment must be provided in the shop drawings and approved by the Engineer.

Modification for Non-Conventional Projects:
Delete Item 6 above.
Chapter 23

Signing and Pavement Marking Plans

23.1 General ... 23-3
23.2 Key Sheet ... 23-4
23.3 Signature Sheet .. 23-4
23.4 Tabulation of Quantities and Pay Item Notes 23-4
 23.4.1 Standard Notes .. 23-5
23.5 General Notes .. 23-5
23.6 Plan Sheets ... 23-6
 23.6.1 Format and Scale ... 23-6
 23.6.2 Required Information 23-6
23.7 Guide Sign Worksheet .. 23-7
23.8 Sign Supports .. 23-7
 23.8.1 Multi-Post Signs ... 23-7
 23.8.2 Overhead Sign Cross Section and Support Structure ... 23-8
23.9 Typical Pavement Marking Sheet 23-8
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 23

Signing and Pavement Marking Plans

23.1 General

Signing and pavement marking plans are usually a component set of plans. Projects with minor signing and pavement markings may include these features on sheets in the roadway plan set or detailed on roadway sheets. When prepared as component plans, they must be assembled as a separate plans set complete with a key sheet, tabulation of quantities and all other signing and pavement marking sheets. When prepared as component plans, number the sheets consecutively with the sheet numbers prefixed by the letter “S”.

Assemble the Signing and Pavement Marking Plans as follows:
1. Key Sheet
2. Tabulation of Quantities
3. General Notes (if required)
4. Plan Sheets
5. Guide Sign worksheet (if required)
6. Overhead Sign Cross Section Sheet (if required)
7. Overhead Sign Support Design (if required)
8. Foundation Details (if required)
9. Boring Data Sheets (if required)

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete item number 2 above.</td>
</tr>
</tbody>
</table>

In addition, the signing and pavement marking plans may contain sheets which were prepared separately (perhaps by a sub-consultant) and incorporated into the signing and pavement marking plans early in the design process (prior to the establishment of sheet numbering). As an option, these may be identified with the following prefixes and placed at the end of the numbered sequence of the signing and pavement marking plans:

GS-# Soil Survey and Report of Core Borings normally associated with the signing and pavement marking plans set (including miscellaneous structures but excluding bridges and walls)
The requirements in Chapter 7 of Volume 1 will be followed in the selection of the permanent pavement marking materials to be used on projects.

23.2 Key Sheet

The key sheet is the first sheet in the set and is prepared on a standard key sheet format as described in Chapter 3 of this Volume. Contract plans set information, location map and length of project box are not required on this sheet when shown on the lead key sheet. Show the index of signing and pavement marking plans on the left side of the sheet.

Other data, including name, consultant contract number, vendor number, and certificate of authorization number of the firm (when plans are prepared by a consultant) must be shown as described in Chapter 3 of this Volume.

23.3 Signature Sheet

See Chapter 3 of this Volume for Signature Sheet requirements.

23.4 Tabulation of Quantities and Pay Item Notes

Prepare the tabulation of quantities sheet using the standard plan format showing quantities, standard sign numbers, pay item numbers (except for pavement markings pay items) and size of sign for all pay items. The sign size and standard sign number is not required if shown in the plans sheets. List pay items in numerical order and tabulate quantities per sheet or by station. When the number of pay item numbers to be used exceeds one page, the additional sheet is to be numbered using a suffix (i.e. 3 and 3A, 4 and 4a, etc.). Provisions must be made to show the original and final quantities.

On contracts with multiple Financial Project ID's or federal aid and nonfederal aid quantities, provisions must be made to tabulate and summarize their respective quantities.

Show pay item notes on the tabulation of quantities sheet.

For pay item 710-90 (Painted Pavement Markings (Final Surface) Lump Sum), the Signing and Pavement Marking tabulation of quantities sheet should show the detailed
description of the pay item and the quantities for each pay item EXCEPT in lieu of the pay item number substitute an “*” in the Bid Item Number Column (see Section 23.4.1).

23.4.1 Standard Notes

Add the following note at the bottom of the Tabulation of Quantities sheet:

* These quantities are paid for under Painted Pavement Markings (Final Surface), Lump Sum - Item No. 710-90. The quantities shown are for one application; see Specification 710 for the number of applications required.

Modification for Non-Conventional Projects:

Delete PPM 23.4

23.5 General Notes

General notes pertaining to signing and pavement markings may be shown on a separate plan format sheet. Place this sheet behind the tabulation of quantities sheet(s) in the plans assembly. On minor projects, general notes may be placed on the tabulation of quantities sheet.

Modification for Non-Conventional Projects:

Delete PPM 23.5 replace with the following:

23.5 General Notes

Signing and pavement marking general notes may be placed on a separate general notes sheet, or if space permits, placed on the first plan sheet. If used, place the general notes sheet behind the key sheet.
23.6 Plan Sheets

23.6.1 Format and Scale

The plan sheets are to be prepared on a standard plan format. The scale should be such that all details are clear and legible. See the requirements of Section 10.1 of this Volume as a guide. For simple projects, or sections of a project, “stacking” multiple plans on one sheet is generally permitted if clarity and legibility are maintained. Stationing is to progress from left to right and multiple plan views stacked from top to bottom.

Place a north arrow and scale at a point of maximum visibility on the sheet. If two plans are "stacked" on one sheet, then show a north arrow and scale on each plan portion.

Typical drawings may be used on rural projects with long sections of roadway that show only edge and lane delineation lines. Detail sheets should be used to depict markings at intersections. Signs may be tabulated to indicate location and disposition.

23.6.2 Required Information

The basic information pertaining to roadway geometrics and project limits required on the signing and pavement marking plan sheets is the same as that required on the plan portion of the plan-profile sheets (Chapter 10 of this Volume). Topography and construction details need not be shown. Show sign placement when there are utilities, drainage, lighting, sidewalks, driveways, and landscape feature conflicts.

Clearly show and label permanent pavement markings specifying width, color and spacing. Indicate begin and end pavement marking stations including offsets, or begin pavement marking station including offset and the total length of roadway pavement marking. The location of raised pavement markers and delineators must be clearly shown and indicated by specifying the type, color, spacing, and limits of application by stations.

All regulatory, warning and directional signs must be shown at the proper locations. Show each sign face in close proximity to its respective sign with a leader line connecting the sign location and sign face. Orient each sign face on the plan sheet to be read as viewed from the direction of travel along the roadway. Indicate the location of all signs by station or milepost.
Indicate for each sign the pay item number, sign size, standard designation, or assigned number if nonstandard.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete the last sentence and replace with the following:</td>
</tr>
<tr>
<td>Indicate for each sign the sign size, standard designation, or assigned number if nonstandard.</td>
</tr>
</tbody>
</table>

Any signs to be mounted on signal span wires should be shown and listed on the signalization plan for illustration and placement purposes. Sign details should be included on the signing plans.

23.7 Guide Sign Worksheet

Show the sign face, with the complete message layout with legend spacing (vertical and horizontal), margins, border widths, and corner radii on the guide sign worksheet.

For multi-support roadside signs, cross sections are not required in the plans set, but the support data (size and average length) for each sign must be tabulated on the guide sign worksheet.

This sheet should be prepared on the standard plan sheet format to any convenient scale that will preserve clarity and legibility. The number of signs that may be shown on a single sheet depends on the sign size and complexity. The format of the sheet is flexible as long as the information listed above is shown. Output from the Transoft GuidSign Program, or a similar format may be used.

23.8 Sign Supports

23.8.1 Multi-Post Signs

Standard foundations for multi-post signs are provided in the Design Standards. These foundations are based on the sign support size. However, the post size and length are not included in the Design Standards and must be included as a part of the design and shown in the plans.
23.8.2 Overhead Sign Cross Section and Support Structure

The sign cross section sheet shows the location of overhead sign(s) in cross section. A standard profile format should be utilized. Show and fully dimension the cross section of the roadway at the sign location. The recommended scale for the cross section is 1" = 10' horizontally and vertically.

For overhead signs, the design of the support truss, columns and foundations, along with the boring data information, must be included in the signing and marking plans. The "Cantilever Sign Structures Data Table" and the "Span Sign Structures Data Table" work in conjunction with Index Nos. 11310 and 11320 of the Design Standards. These tables include the information noted above and should be completed by the Structures Design Engineer of Record and inserted as a sheet in the plans.

A computer program for the design of overhead cantilever sign structures and a program for the design of overhead span sign structures are available. The programs were developed by the Structures Design Office and may be downloaded from the Structures Design web site.

The design of the attachment system for signs mounted on bridge structures is the responsibility of the Structures Design Engineer of Record. Include the design of the attachment system in the structures plans if bridge work is included in the project. If bridge work is not in the project, place the design details in the signing and pavement marking plans.

23.9 Typical Pavement Marking Sheet

For simple projects, or sections of a project, it may be possible to show signing and pavement marking plan details schematically using straight-line format with station limits and typical markings. Show and identify all signs at their graphic location on the straight-line diagram. Show and label pavement markings on a typical marking plan. Include all necessary details for special areas (median crossovers, turn lanes, etc.).
Chapter 24

Signalization Plans

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1</td>
<td>General .. 24-1</td>
</tr>
<tr>
<td>24.2</td>
<td>Key Sheet .. 24-2</td>
</tr>
<tr>
<td>24.3</td>
<td>Signature Sheet ... 24-2</td>
</tr>
<tr>
<td>24.4</td>
<td>Tabulation of Quantities and Standard Notes24-2</td>
</tr>
<tr>
<td>24.5</td>
<td>General Notes ... 24-3</td>
</tr>
<tr>
<td>24.6</td>
<td>Plan Sheets .. 24-4</td>
</tr>
<tr>
<td>24.6.1</td>
<td>Format and Scale .. 24-4</td>
</tr>
<tr>
<td>24.6.2</td>
<td>Required Information .. 24-4</td>
</tr>
<tr>
<td>24.7</td>
<td>Interconnect/Communication Plan ... 24-6</td>
</tr>
<tr>
<td>24.8</td>
<td>Mast Arm Sheets .. 24-6</td>
</tr>
</tbody>
</table>
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 24

Signalization Plans

24.1 General

Signalization Plans are usually a component set of plans. Projects with minor signalization may include these features on sheets in the roadway plans set or on the roadway sheets (or in another component plans set or on that component’s sheets when appropriate). When prepared as component plans they must be assembled as a separate plans set complete with a key sheet, tabulation of quantities and all other signal sheets. When prepared as component plans, number the sheets consecutively with the sheet numbers prefixed by the letter “T”.

The signalization plans show the construction details, electrical circuits, signal phasing and other relevant data.

Assemble the Signalization Plans as follows:

1. Key Sheet
2. Tabulation of Quantities
3. General Notes
4. Plan Sheets
5. Mast Arm Details
6. Foundation Details - Mast Arms
7. Boring Data Sheets - Mast Arms

Modification for Non-Conventional Projects:

Delete Item 2 from the above paragraph.

In addition, the signalization plans may contain sheets which were prepared separately (perhaps by a sub-consultant) and incorporated into the signalization plans early in the design process (prior to the establishment of sheet numbering). As an option, these
may be identified with the following prefixes and placed at the end of the numbered sequence of the signalization plans:

GT-# Soil Survey and Report of Core Borings normally associated with the signalization plans set

PTM-# Portable Traffic Monitoring Site Sheets

24.2 Key Sheet

The key sheet is the first sheet in the component plans set and must be prepared as described in Chapter 3 of this Volume. The location map and contract plans set information are not required on this sheet when shown on the lead key sheet. Show the index of signalization plans on the left of the sheet. Other data, including name, consultant contract number, vendor number, and certificate of authorization number of the firm (when plans are prepared by a consultant), must be shown as described in Chapter 3 of this Volume.

24.3 Signature Sheet

See Chapter 3 of this Volume for Signature Sheet requirements.

24.4 Tabulation of Quantities and Standard Notes

The tabulation of quantities sheet lists the item numbers, description and quantity of materials. Place this sheet behind the key sheet in plans assembly.

List pay item numbers in numerical order. Provisions must be made to show the original and final quantities per sheet or by station. Pay item notes and general notes that refer to item numbers, description of work to be performed and quantity estimates must also be shown on this sheet. If space is limited, notes may be shown on a General Notes Sheet.

On contracts with multiple Financial Project ID's, or Federal Aid and non-Federal Aid quantities, provisions must be made to tabulate and summarize their respective quantities.
Modification for Non-Conventional Projects:

Delete *PPM* 24.4

24.5 General Notes

The general notes sheet lists special signal design information such as controller operations, loop installations, signal heads, interconnect cable, and computer interface that is generally not covered in the FDOT Standard Specifications, Supplement or Special Provisions. Place this sheet behind the tabulation of quantities in the plans assembly. On minor projects, general notes may be combined with the tabulation of quantities sheet.

Modification for Non-Conventional Projects:

Delete the above paragraph and replace with the following:

24.5 General Notes

The general notes sheet lists special signal design information such as controller operations, loop installations, signal heads, interconnect cable, and computer interface that is generally not covered in the FDOT Standard Specifications, Supplemental or Special Provisions. Place this sheet behind the key sheet.
24.6 Plan Sheets

24.6.1 Format and Scale

Prepare Signalization Plans on standard plan format at a scale large enough to show all details clearly and legibly. The recommended scale is 1" = 40' or 1" = 50'. Usually, the complete intersection is shown on one plan sheet. However, for large intersections more sheets may be used with appropriate match lines. Place a north arrow and scale at a point of maximum visibility on the sheet.

24.6.2 Required Information

The basic information requirements include roadway geometrics, street names, construction stationing or milepost, curb and gutter, drainage inlets, sidewalks and right of way lines as similarly required on the plan portion of the roadway plan-profile sheets. Show underground and overhead utilities, signing structures, and lighting structures that may cause construction conflicts with signal components. All locations, including existing trees, should be checked for potential conflicts. A review of the signing and pavement marking plans is necessary to ensure the signal installation does not conflict.

The plan sheet must also show:

1. Signal head locations with orientation arrows and movements (movements 2 and 6 must be the major streets).
2. Details of signal heads in tabular form with pay item numbers.

Modification for Non-Conventional Projects:

Delete Item 2 and replace with the following:

2. Details of signal heads in tabular form.

3. Phasing diagram/signal operating plan (NOTE: If the SOP conforms to the Design Standards, Index No. 17870, then a reference to the index is all that is required. For all other operating plans, the plan must be shown).
4. Signal controller timing chart.
5. Loop detectors.
6. Electrical service location.
7. Location of signal poles and span wires (ground elevation and elevation of roadway crown).
8. Signal wire signs.
10. Turning radii.
11. Median nose locations.
12. Location of "stop bars" and pedestrian crosswalks.
13. Coordination unit-timing chart.
14. Lane lines with orientation arrows.
15. Location of conduits.

Clearly label all equipment shown on the plan with their respective pay item numbers and quantity indicated.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete the above sentence and replace with the following:</td>
</tr>
<tr>
<td>Clearly label all equipment shown on the plan.</td>
</tr>
</tbody>
</table>

Prepare a separate signalization plan for each signalized intersection included in the construction project.

Coordinate span wire or mast arm mounted signs with the appropriate signing and pavement marking plans to avoid duplication.

The sign details for traffic signal signs must be included on the signalization plans, if signing and pavement markings are not included in the plans package.
24.7 Interconnect/Communication Plan

The interconnect/communication plan is required when signal equipment is being coordinated with other signal installations or with a computerized system. The interconnect/communication plan shows pictorially the placement of interconnect/communication cable, either underground or aerial, pull boxes or aerial junction boxes, and tabulates all related interconnect quantities. The interconnect/communication plan sheet must indicate all signal poles, service poles, and/or joint-use poles to which interconnect/communication cable will be attached.

Modification for Non-Conventional Projects:

Delete the above sentence and replace with the following:

The interconnect/communication plan shows pictorially the placement of interconnect/communication cable, either underground or aerial, and, pull boxes or aerial junction boxes.

Prepare the interconnect/communication plan on standard plan format. Unless otherwise approved, the preferred scale of the interconnect/communication plan is 1" = 100' for underground cable, and 1" = 200' for aerial cable. For simple projects, or sections of a project, "stacking" two plans on one sheet is generally permitted if clarity and legibility are maintained. Stationing must progress from left to right and multiple plan views be stacked from top to bottom.

Place a north arrow and scale at a point of maximum visibility on the sheet. If two plans are "stacked" on one sheet, include a north arrow and scale in each plan portion.

The basic plan information requirements include roadway schematic, showing cross streets and driveways, cable information, pole location, pole number, utility pole identification number, pay item number and quantity.

24.8 Mast Arm Sheets

See Design Standards, Index 17743 (Standard Mast Arm Assemblies) or 17745 (Special Mast Arm Assemblies) and the associated IDS.
Chapter 25

Lighting Plans

25.1 General ... 25-1
25.2 Key Sheet .. 25-2
25.3 Signature Sheet .. 25-2
25.4 Tabulation of Quantities and Standard Notes 25-2
25.5 Pole Data and Legend Sheet 25-3
25.6 Plan Sheets .. 25-4
 25.6.1 Format and Scale .. 25-4
 25.6.2 Required Information 25-4
25.7 Foundations and Boring Detail Sheets 25-5
Chapter 25

Lighting Plans

25.1 General

Lighting Plans are usually a component set of plans. Projects with minor lighting may include these features on sheets in the roadway plan set or detailed on the roadway plans. When prepared as component plans they must be assembled as a separate plans set complete with a key sheet, tabulation of quantities and all other lighting sheets. When prepared as component plans, number the sheets consecutively with the sheet numbers prefixed by the letter “L”.

Modification for Non-Conventional Projects:

Delete the third sentence from the above paragraph and replace with the following:

When prepared as component plans they must be assembled as a separate plans set complete with a key sheet and all other lighting sheets identified herein.

The lighting plans must show the construction details, electrical circuits, pole data, conduits, service points, luminaires, foundations, boring details and other relevant data.

Assemble the Lighting Plans as follows:
1. Key Sheet
2. Tabulation of Quantities
3. General Notes (if required)
4. Pole Data and Legend Sheet
5. Plan Sheets or Layout Sheets
6. Foundation Details - High Mast (if required)
7. Boring Data Sheets - High Mast (if required)

Modification for Non-Conventional Projects:

Delete Item 2 from the above list.
In addition, the lighting plans may contain sheets which were prepared separately (perhaps by a sub-consultant) and incorporated into the lighting plans early in the design process (prior to the establishment of sheet numbering). As an option, these may be identified with the following prefixes and placed at the end of the numbered sequence of the lighting plans:

GL-# Soil Survey and Report of Core Borings normally associated with the lighting plans set

25.2 Key Sheet

The key sheet is the first sheet in the component plans set and must be prepared as described in *Chapter 3* of this Volume. The location map and contract plans set information are not required on this sheet when shown on the lead key sheet. Show the index of lighting plans on the left of the sheet. Other data, including name, consultant contract number, vendor number, and certificate of authorization number of the firm (when plans are prepared by a consultant), must be shown as described in *Chapter 3* of this Volume.

25.3 Signature Sheet

See *Chapter 3* of this Volume for Signature Sheet requirements.

25.4 Tabulation of Quantities and Standard Notes

The tabulation of quantities sheet lists the item numbers, description and quantity of materials. Place this sheet behind the key sheet in plans assembly.

List pay item numbers in numerical order. Provisions must be made to show the original and final quantities per sheet or by station. When the number of pay item numbers to be used exceeds one page, the additional sheet is to be number using a suffix (i.e. 3 and 3A, 4 and 4a, etc.).

On contracts with multiple Financial Project ID's, or Federal Aid and non-Federal Aid quantities, provisions must be made to tabulate and summarize their respective quantities.

Show pay item notes and standard notes that refer to item numbers on this sheet. Show general notes on a separate plan format sheet. Place this sheet behind the tabulation of
quantities in the plans assembly. On minor projects, general notes may be combined with the tabulation of quantities sheet.

| Modification for Non-Conventional Projects: |
| Delete *PPM* 25.4. |

25.5 Pole Data and Legend Sheet

Prepare the pole data sheet on a standard plan format and include details and notes pertaining to pole placement and construction.

Provide a listing of each pole by pole number on this sheet. The following information must also be given for each pole:

1. Circuit Number
2. Roadway Station and Offset
3. Arm Length
4. Luminaire Wattage
5. Mounting Height
6. Pay Item Number

| Modification for Non-Conventional Projects: |
| Delete Item 6 from the above list. |

The pay item number will indicate if the pole is a standard pole or a special design. Two pay item numbers are utilized: one for standard poles and one for non-standard poles.

| Modification for Non-Conventional Projects: |
| Delete the above paragraph. |

Show the design values for light intensities and uniformity ratios together with a legend and description of the symbols used on the plan sheets.
25.6 Plan Sheets

25.6.1 Format and Scale

Prepare the plan sheets on a standard plan format. The scale must be such that all details are clear and legible. However, the scale must not be smaller than 1" = 100'. For simple projects, or for narrow sections of a project, it may be possible to "stack" two plans on one sheet, one below the other. Stationing must progress from left to right and be stacked from top to bottom. Clarity and legibility must be preserved in all cases.

Place a north arrow and scale at a point of maximum visibility on the sheet. If two plans are "stacked" on one sheet, include a north arrow and scale in each plan portion.

25.6.2 Required Information

The basic information pertaining to roadway geometrics and project limits required on the lighting plan sheets is the same as that required on the plan portion of the roadway plan-profile sheets. Topography and construction details need not be shown. Check utilities, drainage, signal structures, sign structures, landscape features, sidewalks, driveways, etc. for conflicts. Those that may cause conflicts must be shown.

Show the lighting layout on the plan format. This must be accomplished by symbols which represent poles, conduits and service points. Use symbols in accordance with the requirements of the FDOT Engineering/CADD Systems Software throughout the plans. A flag or note must be used to identify conduit size, number and conductor sizes.

Show the beginning and ending of the lighting limits on the appropriate plan sheet(s). Show the symbols for poles at the correct baseline or centerline station and note the approximate offset from the roadway.

The poles must be flagged, and specific information for each pole must be shown. The pole number, baseline or centerline station, circuit number, and offset from baseline or centerline (for high mast) must be shown.

Show the service point locations on the plan sheets as determined through utility negotiations. Design Standards, Index No. 17504 provides details for the service point. The service point must be shown at the location where it is to be installed. The following information is not covered on the index and must be shown on the plan sheet:
Description—voltages, phases, etc. Ex: 240/480 Volt, 3 phase, Overhead Breaker sizes—The main breaker size and the number of branch circuits and the breaker size of each.

25.7 Foundations and Boring Detail Sheets

The foundation design for standard conventional poles is shown in the *Design Standards, Index 17515*. The foundation design for standard high mast light poles is shown in the *Design Standards, Index 17502*. These foundations do not need to be shown in the plans. Foundations for non-standard high mast poles and foundations in soil conditions weaker than those shown in the *Design Standards* must be designed by the responsible structures design engineer of record.

Plan sheets showing the boring data for high mast poles and non-standard foundation details must be included in the lighting plans.
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 26

Landscape Plans

26.1 General ... 26-1
26.2 Key Sheet .. 26-2
26.3 Signature Sheet ... 26-2
26.4 Tabulation of Quantities and Schedule 26-2
26.4.1 Tabulation of Quantities and Plant Schedule 26-2
26.4.2 Tabulation of Quantities and Schedule
for Irrigation and Site Amenities ... 26-2
26.5 General Notes ... 26-3
26.6 Plan Sheets .. 26-4
26.6.1 Format and Scale ... 26-4
26.6.2 Requirements for Plan Sheets 26-4
26.7 Details Sheet... 26-6

Tables

Table 26.1 Example Tabulation of Quantities and Schedule
for Irrigation and Site Amenities 26-3
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 26

Landscape Plans

26.1 General

“Landscape” or “landscaping” means any vegetation, mulches, irrigation systems, and any site amenities, such as street furniture, decorative paving, fences, and lighting (excluding public utility street and area lighting). The Legislature has requested that the Department commit program dollars to landscaping. In order for the Department to capture that information, it is critical that all landscape pay items be placed in AASHTOWare Project Preconstruction™ (formerly TRNS*PORT) Category 0600 whether the landscape plans are a component set of plans, or prepared independently. Projects with minor landscaping may include these features on separate sheets in the roadway plans set or features may be detailed on roadway plans sheets. When prepared as component plans they must be assembled as a separate plans set complete with a key sheet, tabulation of quantities, schedule, and all other landscape sheets. When prepared as component plans, number the sheets consecutively with the sheet numbers prefixed by the letters “LD”.

Assemble the Landscape Plans as follows:

1. Key Sheet
2. Tabulation of Quantities and Plant Schedule
3. Tabulation of Quantities and Schedule for Irrigation and Site Amenities
4. General Notes
5. Plan Sheets
6. Details Sheet

Modification for Non-Conventional Projects:

Delete Items 2 and 3 from the above list.
26.2 Key Sheet

The key sheet is the first sheet in the component plans set and must be prepared as described in Chapter 3 of this Volume. The location map, length of project box and contract plans set information are not required if shown on the lead key sheet. Show the index of landscape plans on the left of the sheet. Other data, including name, consultant contract number, vendor number, and certificate of authorization number of the firm (when plans are prepared by a consultant) must be shown as described in Chapter 3 of this Volume.

26.3 Signature Sheet

See Chapter 3 of this Volume for Signature Sheet requirements.

26.4 Tabulation of Quantities and Schedule

26.4.1 Tabulation of Quantities and Plant Schedule

The tabulation of quantities and plant schedule sheet or a similar sheet should be utilized to tabulate the materials required for the construction of the landscaping and provide the description, size and quantity of materials in a tabular format. The tabulation of quantities and plant schedule sheet is required to conform to the format of Exhibit LD-1 and must be prepared separately from the tabulation of quantities for irrigation and site amenities.

26.4.2 Tabulation of Quantities and Schedule for Irrigation and Site Amenities

The tabulation of quantities and schedule for irrigation and site amenities must utilize the standard tabulation of quantities sheet and provide the additional information given in the example in Table 26.1.
Table 26.1 Example Tabulation of Quantities and Schedule for Irrigation and Site Amenities

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Quantity</th>
<th>Unit</th>
<th>Description / Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>1</td>
<td>LS</td>
<td>Irrigation pipe, heads, emitters, etc.</td>
</tr>
<tr>
<td>PR</td>
<td>1</td>
<td>LS</td>
<td>Irrigation pumping system.</td>
</tr>
<tr>
<td>CM</td>
<td>1</td>
<td>EA</td>
<td>Control module, latching solenoid, run shut-off device & appropriate fittings</td>
</tr>
<tr>
<td>ABB</td>
<td>5</td>
<td>EA</td>
<td>Arcata, backless bench, PolySite recycled plastic, Powdercoat ‘Frost’</td>
</tr>
<tr>
<td>WCB</td>
<td>10</td>
<td>EA</td>
<td>Wausau Conical Bollard TF6071, B1 finish</td>
</tr>
</tbody>
</table>

On contracts with multiple Financial Project IDs or Federal Aid and non-Federal Aid quantities, provisions must be made to tabulate and summarize their respective quantities.

Modification for Non-Conventional Projects:

Delete *PPM* 26.4.

26.5 General Notes

General notes pertaining to landscape plans may be shown on a separate plan format sheet. Place this sheet behind the tabulation of quantities in the plans assembly.

Modification for Non-Conventional Projects:

Delete *PPM* 26.5 and replace with the following:

26.5 General Notes

General notes pertaining to landscape plans may be shown on a separate plan format sheet. Place this sheet behind the key sheet in the plans assembly. Where space permits, general notes may be placed on the first plan sheet.
26.6 Plan Sheets

Prepare plan sheets in a manner that is consistent with a set of construction documents rather than an illustrative plan. Therefore plan sheets must utilize simplified symbols depicting the location of materials in a legible manner. Plan sets must employ a level of detail and clarity that allows the reviewer to assess the relationship between the proposed landscape design, the roadway plans, utilities, outdoor advertising signs, and adjoining land use.

26.6.1 Format and Scale

Prepare the plan sheets on a standard plan sheet format. The scale must be such that all details are clear and legible. However, the scale must not be smaller than 1" = 100'. For simple projects, or narrow sections of a project, it may be possible to "stack" two plans on one sheet, one below the other. Stationing must progress from left to right and be stacked from top to bottom. Irrigation plan sheets may be prepared at a larger scale than the planting plan sheets. Clarity and legibility must be preserved in all cases.

Place a north arrow and scale, as applicable, at a point of maximum visibility on the sheet. If two plans are "stacked" on one sheet, include a north arrow and scale in each plan portion.

26.6.2 Requirements for Plan Sheets

The base information required is as follows:

1. Project centerline
2. Edge of pavement (edge of traffic lanes)
3. Curbs or curb and gutter
4. Drainage systems
5. Guardrails
6. Right of way and/or limited access fence line
7. Sidewalks or other planned or existing structures
8. Lighting, signs and signal poles
9. Intersections and driveways which are noted in the plans
10. Existing and proposed overhead and underground utility locations
11. Clear Zone/Lateral offset (should be plotted or safety setback distances noted frequently on each plan sheet)
12. View zones for permitted outdoor advertising signs
13. Canopy limits
14. Existing vegetation (to remain or be removed)
15. Existing off site features and conditions that affect or are affected by the project
16. Fence and gate locations
17. Setbacks from structural elements or drainage system
18. Limits of clear sight (*Design Standards, Index No. 546*)
19. Transit Facilities

Where necessary, required sheet elements may be “screened” to provide legibility for the landscape plans, so long as the required elements remain apparent.

Planting plan sheets must also provide at a minimum the plant symbols and the plant quantities. Additional information such as the common name and botanical name of each plant may be provided.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete the above paragraph and replace with the following:</td>
</tr>
<tr>
<td>Planting plan sheets must also provide at a minimum the plant symbols, common name and botanical name of each plant.</td>
</tr>
</tbody>
</table>

Include site amenities, such as street furniture, decorative paving, fences, and lighting (excluding public utility street and area lighting) on the planting plan sheets with appropriate annotation.

Prepare irrigation plan sheets using the planting plan sheets (devoid of unnecessary text and labeling) and include information pertaining to the irrigation system. Information on the sheet must include the approximate location of spray heads and rotors, valves, mainlines, lateral lines, sleeves, controllers, water sources / point of connection, backflow preventers, and isolation valves.
26.7 Details Sheet

This sheet must show all landscape details, hardscape details and irrigation details, which are applicable to the project and not addressed in the *Design Standards*.

The details sheet must include a legend clearly depicting the symbology used in the irrigation plan sheets and an associative description for each entry. Additional information such as the nozzle schedule and irrigation zone / lateral schedule can be included on these sheets.
TABULATION OF QUANTITIES/PLANT SCHEDULE

<table>
<thead>
<tr>
<th>PAY ITEM NO.</th>
<th>PAY SIZE/UNIT</th>
<th>BOTANICAL NAME</th>
<th>COMMON NAME</th>
<th>MAX. MAINTAINED SIZE</th>
<th>SPACING</th>
<th>REMARKS</th>
<th>UNIT</th>
<th>LESS</th>
<th>FINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>579-12</td>
<td>5790</td>
<td>STENOTAPHRUM SECUNDATUM</td>
<td>ST. AUGUSTINE GRASS</td>
<td>SY</td>
<td>320.78</td>
<td>146.89</td>
<td>201.54</td>
<td>89.34</td>
<td>46.44</td>
<td>34.61</td>
<td>16.20</td>
<td>6.92</td>
<td>4.65</td>
<td>2.97</td>
<td>1.98</td>
<td>1.19</td>
<td>0.78</td>
<td>0.52</td>
<td>0.34</td>
<td>0.22</td>
<td>0.14</td>
<td>0.09</td>
<td>0.06</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S90-22</td>
<td>SMALL 334</td>
<td>ARACHIS GLABRATA</td>
<td>PERENNIAL PEANUT</td>
<td>5 GALLON</td>
<td>14.00</td>
<td>13.50</td>
<td>13.00</td>
<td>12.50</td>
<td>12.00</td>
<td>11.50</td>
<td>11.00</td>
<td>0.50</td>
</tr>
<tr>
<td>S90-22</td>
<td>LARGE</td>
<td>TRACHELOSPERMUM ASIATICUM</td>
<td>ARISTIDA STRICTA</td>
<td>10 GALLON</td>
<td>10.00</td>
</tr>
<tr>
<td>L92-2</td>
<td>SMALL 453</td>
<td>ILEX VOMITORIA</td>
<td>"SHELLINGS"</td>
<td>1 GALLON</td>
<td>1.00</td>
</tr>
<tr>
<td>L92-2</td>
<td>LARGE 424</td>
<td>ILEX VOMITORIA</td>
<td>"SHELLINGS"</td>
<td>2 GALLON</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Pay Size in accordance with the Basis of Estimates Manual:

Small plants include:
1. All ground covers
2. Shrubs to less than 7 gallon
3. Trees to less than 7 gallon
4. Palms clustering type less than 6 foot overall height
5. Cycads to less than 7 gallon
6. All sabal palms (a.k.a. sabal palmetto, cabbage palm, state tree)

Large plants include:
1. Shrubs 7 gallon or greater
2. Trees 7 gallon and greater
3. All palms single trunk
4. Palms clustering type 6 foot overall height and greater
5. Cycads 7 gallon or greater
6. All sabal palms (a.k.a. sabal palmetto, cabbage palm, state tree)
Chapter 27

Utility Work by Highway Contractor Agreement Plans

- **27.1** General ..27-1
- **27.2** Key Sheet ..27-2
- **27.3** Tabulation of Quantities ..27-2
- **27.4** Plan Sheets ..27-3
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 27

Utility Work by Highway Contractor Agreement Plans

27.1 General

Most utility adjustment work is performed by the utility owners or their contractor. In some cases it is advantageous to the FDOT and Utility to include the utility work as part of the roadway contract. In such cases the FDOT will enter into an agreement with a Utility for this purpose. These agreements are called Utility Work by Highway Contractor (UWHC) Agreements. The highway contractor is required to construct or relocate the specified utilities in accordance with the plans and special provisions developed by the Utility and incorporated as part of the bid package. More than one utility plans set may be included. For example, the contract plans may include separate plans for a gas utility and a water utility. It is also possible for the utilities to combine their individual facilities into one plans set and supply them to the FDOT. It is essential that the Engineer of Record (EOR) be aware which method is to be used. This is necessary because reimbursable costs and quantities must be separated and identified in each utility project.

Occasionally utility work may extend outside the normal construction limits of the project. When this is the case the limits of the utility work must be shown or noted on the plans.

For UWHC Agreements, prepare the utility plans in the same basic format as FDOT plans and as a separate plans set. Assemble the plans as follows:

1. Key Sheet
2. Tabulation of Quantities
3. Plan-Profile Sheets
4. Cross Sections (as required)
5. Detail Sheets (as required)

Modification for Non-Conventional Projects:

Delete Item 2 from the above list.

Reflect any special technical or relocation agreement provisions in the plans. In some cases it may not be practical or reasonable to develop separate plans sets for incidental
construction under a UWHC Agreement. The EOR should consult with the District Utility Engineer to determine the requirements in these cases. For further financial guidance, contact the FDOT Office of Comptroller, General Accounting Office.

27.2 Key Sheet

The key sheet is the first sheet in the component plan set and must be prepared as described in Chapter 3 of this Volume. The location map, length of project box and contract plans set information are not required if shown on the lead key sheet. Show the index of plan on the left side of the sheet. Other data, including name, consultant contract number, vendor number, and certificate of authorization number of the firm (when plans are prepared by a consultant), must be shown as described in Chapter 3 of this Volume.

Refer to the Work Program Instructions (Section 42) for guidance on the Financial Project ID phase number identification. All other data must be as described in Chapter 3 of this Volume.

27.3 Tabulation of Quantities

Prepare the tabulation of quantities sheet in standard FDOT format and show any quantities tabulated for location, size, quantity, etc. Standard notes referring to item numbers must also be shown on this sheet or on plan sheets.

Summary of pay item sheets will be prepared as noted in Chapter 4 of this Volume.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete PPM 27.3.</td>
</tr>
</tbody>
</table>
27.4 Plan Sheets

Utility plans must show full construction details for all utilities to be relocated or constructed by the contractor as covered by the UWHC Agreement. A plan-profile sheet format should be utilized where appropriate. Show all underground utilities in the plan portion, and those which equal or exceed 4" must also be shown in the profile portion. Show all above ground Utilities in the plan portion (inclusive of underground connections).

When the construction limits are restricted such as when a power line is above and near a sanitary or water facility, either the facility (overhead lines) must be identified and shown in profile, or the minimum available vertical clearances, along with the type facility, stated on the plans. Show applicable project information similar to that described in Chapter 10 of this Volume. Show utilities to be relocated or constructed in plan and profile and in accordance with the FDOT Engineering/CADD Systems Software. The scale used should be the same as that used for the roadway plan-profile sheets.

The disposition and final ownership of any utility infrastructure that is to be removed by the contractor and salvaged must be identified in the plans. Include the address of the Utility/Agency Owner receiving the salvaged utility infrastructure in the pay item notes on the Summary of Quantity Sheet (see Section 7.2.2 and Exhibit SQ-1 of this Volume).
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 28

Stormwater Pollution Prevention Plan

28.1 General ... 28-1
28.2 Narrative Description .. 28-2
28.3 Site Map ... 28-3
28.4 Controls .. 28-4
28.5 Maintenance, Inspection and Non-Stormwater Discharges 28-4
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 28

Stormwater Pollution Prevention Plan

Modification for Non-Conventional Projects:
Delete *PPM* Chapter 28.

28.1 General

The Stormwater Pollution Prevention Plan (SWPPP) sheets document the designer’s site evaluation and selection of control measures and other items to comply with the terms and conditions of the State of Florida Department of Environmental Protection Generic Permit for Stormwater Discharges from Large and Small Construction Activities (DEP Generic Permit) discussed in Chapter 11 of Volume 1. The SWPPP includes several items: a narrative description, the documents referenced in the narrative, a site map, the contractor’s approved Erosion and Sediment Control Plan required by Specification Section 104, and reports of inspections made during construction.

For examples of SWPPP sheets, see *Exhibits SWP-1 thru SWP-3*. Additional guidance for developing a SWPPP may be found in the DEP SWPPP template, found on the DEP web page at:

http://www.dep.state.fl.us/water/stormwater/npdes/swppp.htm
28.2 Narrative Description

The SWPPP sheets include a narrative that refers to other documents such as the *Standard Specifications* or the *Design Standards* as necessary. Use the following outline to prepare the narrative:

1. Site Description
 a. A Description of the Construction Activity
 b. Sequence of Major Soil Disturbing Activities
 c. Area Estimates (The total project area and the area expected to be disturbed.)
 d. Runoff Data consisting of:
 1) Rational runoff coefficient before, during, and after construction,
 2) The size of the drainage area for each outfall,
 3) The location of each outfall, in terms of latitude and longitude (to the nearest 15 seconds),
 4) Existing data describing the soil or the quality of discharge from the site
 e. Site Map (Include a narrative of the site map as described in Section 28.3)
 f. Receiving Waters (The name of the receiving waters for each outfall and the wetland area on the site.)

2. Controls
 a. Erosion and Sediment Controls
 1) Stabilization Practices
 2) Structural Practices
 b. Stormwater Management
 c. Other Controls
 1) Waste Disposal
 2) Off-Site Vehicle Tracking & Generation of Dust
 3) State or Local Regulations
 4) Application of Fertilizers and Pesticides
 5) Toxic Substances
 d. State and Local Plans
3. Maintenance
4. Inspection
5. Non-Stormwater Discharges

The sheets may also include supplemental design details and plan views of the location of the controls. Additional information for preparing the SWPPP sheets can be found in the *Erosion and Sediment Control Designer and Reviewer Manual*.

28.3 Site Map

Show the following information on a site map:

1. Drainage patterns
2. Approximate slopes
3. Areas of soil disturbance
4. Areas that are not to be disturbed
5. Locations of controls identified in the plan
6. Areas that are to be stabilized against erosion
7. Surface waters (including wetlands)
8. Locations where stormwater is discharged to a surface water

The above information is shown in a typical set of construction plans. Prepare a narrative description of the site map which identifies the construction plan sheets where the site map information required by the DEP Generic Permit can be found.

The locations of the temporary controls may be shown on SWPPP sheets, Erosion Control sheets, Plan-Profile sheets, or Temporary Traffic Control (TTC) Plan sheets. For projects where plan view sheets are not available, summarize the locations of the controls in a tabular format.

If an optional Drainage Map is included in the construction plans, then the drainage patterns will be shown on it. If the Drainage Map is not included, prepare a topographic map (for example, a USGS quadrangle map) showing contour lines. This map will supplement the construction plan sheets that show the other site map requirements. The supplemental site map may use photography (aerial or other). Include this supplemental map in the SWPPP sheets.
28.4 Controls

The SWPPP must include a description of the controls that will be implemented at the construction site. For each of the major activities identified in Part 1.b of the Narrative, describe the timing of the implementation of control measures during the construction process. Also describe the stormwater management measures that will be installed during construction to control pollutants in the stormwater discharges that will occur after construction.

Details should be prepared for all controls that are not detailed in the Erosion and Sediment Control Designer and Reviewer Manual. The details should show the work intended, where and how the control is to be placed, and any other special design details. Any Technical Special Provisions required by the erosion control items of work should be prepared for the specification package.

The narrative for some of the other controls will be supplied by the contractor at the preconstruction conference. A plan for off-site vehicle tracking is an exception and must be included in the SWPPP prepared during design.

Any Water Management District or Local Water Management District permits obtained in connection with the project should be noted.

28.5 Maintenance, Inspection and Non-Stormwater Discharges

Include a description of any maintenance requirements that are not stated in the standard specifications. Include the inspection requirements, which will be either requirements of the DEP or the applicable requirements of another regulatory agency, whichever is more stringent. If special procedures have been developed to minimize turbidity associated with normal construction dewatering, include a description of those procedures.

Special monitoring requirements described in the DEP Generic Permit may apply where the project discharges to waters listed in Section 303(d) of the Clean Water Act. Consult with the district environmental permitting staff to determine if the monitoring requirements apply. If applicable, describe the special monitoring requirements in the inspection section of the narrative.

10. SITE DESCRIPTION:

1A. NATURE OF CONSTRUCTION ACTIVITY:

THE PROJECT IS THE RECONSTRUCTION OF SR 607 (JAMES BOND BOULEVARD) TO A MAJOR URBAN ROADWAY. THIS INVOLVES CONSTRUCTING ROADWAY SURFACE, CURB AND GUTTER, SIDEWALK, UNDERGROUND STORM DRAIN SYSTEMS, AND STORMWATER MANAGEMENT FACILITIES. THE PROJECT EXTENDS FROM NORTH OF PAUL RUSSELL ROAD TO PERKINS STREET, A DISTANCE OF APPROXIMATELY 11 MILES.

1B. SEQUENCE OF MAJOR SOIL DISTURBING ACTIVITIES:

IN THE SEDIMENT AND EROSION CONTROL PLAN, THE CONTRACTOR SHALL PROVIDE A FULL SCALE SEQUENCE OF CONSTRUCTION FOR ALL CONSTRUCTION ACTIVITIES. THE CONTRACTOR SHALL FOLLOW THE SEQUENCE OF MAJOR ACTIVITIES DESCRIBED BELOW. UNLESS THE CONTRACTOR PROPOSES A DIFFERENT SEQUENCE THAT IS EQUAL OR BETTER AT CONTROLLING EROSION AND TRAPPING SEDIMENT AND IS APPROVED BY THE ENGINEER.

FOR EACH CONSTRUCTION PHASE, INSTALL PERIMETER CONTROLS AFTER CLEARING AND GRUBBING NECESSARY FOR INSTALLATION OF CONTROLS BUT BEFORE BEGINNING OTHER WORK FOR THE CONSTRUCTION PHASE. REMOVE PERIMETER CONTROLS ONLY AFTER ALL UPSTREAM AREAS ARE STABILIZED.

1. CLEARING AND GRUBBING, EARTHWORK, AND STORM DRAIN CONSTRUCTION FOR THE OUTFALL FROM THE PONDS.

2. CLEARING AND GRUBBING, EARTHWORK FOR POND CONSTRUCTION.

3. STORM DRAIN AND ROADWAY UNDERGROUND CONSTRUCTION.

4. EARTHWORK ASSOCIATED WITH THE CONSTRUCTION OF ROADWAY, GRAVITY WALL, CURB, SUBGRADE, BASE, PAVEMENT, AND SIDEWALK.

5. CONSTRUCT UNDERDRAIN IN POND BOTTOM.

1C. AREA ESTIMATES:

TOTAL SITE AREA: 19.6 ACRES.

TOTAL AREA TO BE DISTURBED: 19.6 ACRES.

1D. RUNOFF DATA:

RUNOFF CORRECTION:

BEFORE: 0.62
DURING: VARIES FROM 0.62 TO 0.76
AFTER: 0.76

OUTFALL INFORMATION:

THERE ARE 4 OUTFALLS.

#1 DESCRIPTION: EXISTING POND AT LAURA LEE.

LOCATION: LATITUDE 30° 24’ 45" N, LONGITUDE 84° 17’ 00" W.

EST. DRAINAGE AREA SIZE: 15.4 ACRES.

RECEIVING WATER NAME: NOT APPLICABLE.

#2 DESCRIPTION: POND 1. THIS DISCHARGES TO THE STORM DRAIN SYSTEM THAT RUNS UNDER ORANGE AVENUE. THIS SYSTEM IN TURN DISCHARGES TO THE BOX CULVERT AT STA. 531+00.

LOCATION: LATITUDE 30° 24’ 45" N, LONGITUDE 84° 17’ 00" W.

EST. DRAINAGE AREA SIZE: 7.3 ACRES.

RECEIVING WATER NAME: EAST DITCH.

#3 DESCRIPTION: BOX CULVERT AT STA. 531+00.

LOCATION: LATITUDE 30° 24’ 45" N, LONGITUDE 84° 17’ 00" W.

EST. DRAINAGE AREA SIZE: 4.2 SQUARE MILES.

RECEIVING WATER NAME: EAST DITCH.

#4 DESCRIPTION: POND 2. THIS DISCHARGES TO THE SR 607 STORM DRAIN SYSTEM THAT RUNS TO THE BOX CULVERT AT STA. 531+00.

LOCATION: LATITUDE 30° 24’ 00" N, LONGITUDE 84° 17’ 00" W.

EST. DRAINAGE AREA SIZE: 15.4 ACRES.

RECEIVING WATER NAME: EAST DITCH.

1E. SITE MAP:

THE CONSTRUCTION PLANS ARE BEING USED AS THE SITE MAPS. THE LOCATION OF THE REQUIRED INFORMATION IS DESCRIBED BELOW. THE SHEET NUMBERS FOR THE PLAN SHEETS REFERENCED ARE IDENTIFIED ON THE KEY SHEET OF THESE CONSTRUCTION PLANS.

1. Runoff Patterns: The Drainage Basin Divides and Flow Directions are Shown on the Drainage Maps. The Back of Sidewalk Profile Sheets Show Overland Flow Direction at the Right of Way Line. The Arrows Above and Below the Profile Represent the Flow Direction at the Left and Right Property Line, Respectively. Arrows Pointing to the Profile Indicate Runoff Coming to the Site. Pointing Away from the Site Indicate Runoff Leaving the Site.
2.0 CONTROLS:

2.1 EROSION AND SEDIMENT CONTROLS:

IN THE SEDIMENT AND EROSION CONTROL PLAN, THE CONTRACTOR SHALL DESCRIBE THE PROPOSED STABILIZATION AND STRUCTURAL PRACTICES BASED ON THE CONTRACTOR’S PROPOSED TEMPORARY TRAFFIC CONTROL PLAN. THE FOLLOWING RECOMMENDED GUIDELINES ARE BASED ON THE TEMPORARY TRAFFIC CONTROL PLAN OUTLINED IN THE CONSTRUCTION PLANS.

PHASE I OF TEMPORARY TRAFFIC CONTROL PLANS:

ROADWAY, STATION 501+10 TO 520+40 RIGHT: IMMEDIATELY AFTER CONSTRUCTING THE TEMPORARY PAVEMENT, STABILIZE THE ENTIRE AREA BETWEEN THE TEMPORARY PAVEMENT AND THE RIGHT OF WAY LINE USING TEMPORARY SOD.

OUTFALL OF POND 1:

CONSTRUCT THE OUTFALL PIPE FROM S-106 TOWARDS THE POND. THE OUTFALL OF POND 1 CONSTRUCTION:

FROM ENTERING THE PIPE. CONSTRUCT PIPE TO THE POND AND CONSTRUCT THE OUTFALL PIPE FROM S-106 TOWARDS THE POND. FOR CONVEYANCE TO POND 1. STAGE CONSTRUCT AND PROTECT THE INLET IN A MANNER SIMILAR TO S-20 IN PHASE I OF THE TTC PLAN.

POND 1 CONSTRUCTION:

AFTER ENTIRE BASIN IS PERMANENTLY STABILIZED, CONSTRUCT UNDERDRAIN IN THE POND BOTTOM.

2.A.1 STABILIZATION PRACTICES:

IN THE SEDIMENT AND EROSION CONTROL PLAN, THE CONTRACTOR SHALL DESCRIBE THE STABILIZATION PRACTICES PROPOSED TO CONTROL EROSION. THE CONTRACTOR SHALL INITIATE ALL STABILIZATION MEASURES AS SOON AS PRACTICAL, BUT IN NO CASE MORE THAN 7 DAYS, IN PORTIONS OF THE SITE WHERE CONSTRUCTION ACTIVITIES HAVE TEMPORARILY OR PERMANENTLY CEASED. THE STABILIZATION PRACTICES SHALL INCLUDE AT LEAST THE FOLLOWING, UNLESS OTHERWISE APPROVED BY THE ENGINEER.

TEMPORARY:

* SEDIMENT BARRIERS IN ACCORDANCE WITH DESIGN STANDARD 102 AND SPECIFICATION SECTION 104.

* INLET PROTECTION IN ACCORDANCE WITH DESIGN STANDARD 102 AND SPECIAL DETAILS SHOWN IN THE TTC PLAN.

PERMANENT:

* STORMWATERponds.

* SOD.

2.B STORMWATER MANAGEMENT:

SEVERAL STORM DRAIN SYSTEMS WILL BE CONSTRUCTED TO CONVEY RUNOFF TO THREE (3) STORMWATER RETENTION / DETENTION PONDS. THE FACILITIES HAVE BEEN PERMITTED BY THE FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION (FDEP) AND THE CITY OF NARCOOSSEE AND COMPLY WITH APPLICABLE DESIGN STANDARDS.

2.A.2 STRUCTURAL PRACTICES:

IN THE SEDIMENT AND EROSION CONTROL PLAN, THE CONTRACTOR SHALL DESCRIBE THE PROPOSED STRUCTURAL PRACTICES TO CONTROL OR TRAP SEDIMENT AND OTHERWISE PREVENT THE DISCHARGE OF POLLUTANTS FROM EXPOSED AREAS OF THE SITE. SEDIMENT CONTROLS SHALL BE IN PLACE BEFORE DISTURBING SOIL UPSTREAM OF THE CONTROL. THE STRUCTURAL PRACTICES SHALL INCLUDE AT LEAST THE FOLLOWING, UNLESS OTHERWISE APPROVED BY THE ENGINEER.

TEMPORARY:

* SEDIMENT BARRIERS IN ACCORDANCE WITH DESIGN STANDARD 102 AND SPECIFICATION SECTION 104.

* INLET PROTECTION IN ACCORDANCE WITH DESIGN STANDARD 102 AND SPECIAL DETAILS SHOWN IN THE TTC PLAN.

* SEGMENT CONTAINMENT SYSTEM: THE PERMANENT STORMWATER PONDS WILL BE TEMPORARILY MODIFIED ACCORDING TO THE DETAILS IN THE TTC PLAN.

PERMANENT:

* STORMWATER ponds.

* SOD.

THE PARAGRAPH ABOVE REFERS TO A 7 DAY LIMIT BEFORE INITIATING STABILIZATION. THE DEP GENERIC PERMIT SPECIFIES 5 DAYS, BUT STRICTER REQUIREMENTS FROM OTHER PERMITTING AGENCIES WILL OFTEN APPLY AND SHOULD BE NOTED. FOR EXAMPLE, ST. JOHNS RIVER WATER MANAGEMENT DISTRICT HAS A 7 DAY LIMIT IN 40C-42 F.A.C. UNLESS OTHERWISE APPROVED BY THE ENGINEER.

THE STRUCTURAL PRACTICES SHALL INCLUDE AT LEAST THE FOLLOWING, UNLESS OTHERWISE APPROVED BY THE ENGINEER.

TEMPORARY:

* ARTIFICIAL COVERINGS IN ACCORDANCE WITH SPECIFICATION SECTION 104.

* TURF AND SOD IN ACCORDANCE WITH SPECIFICATION SECTION 104.

PERMANENT:

* ASPHALT OR CONCRETE SURFACE.

* SOD IN ACCORDANCE WITH SPECIFICATION SECTION 157.
2.C OTHER CONTROLS:

2.C.1 WASTE DISPOSAL:

In the sediment and erosion control plan, the contractor shall describe the proposed methods to prevent the discharge of solid materials, including building materials, to waters of the United States. The proposed methods shall include at least the following, unless otherwise approved by the engineer:

* Providing litter control and collection within the area during construction activities.
* Disposing of all fertilizer or other chemical containers according to EPA’s standard practices as detailed by the manufacturer.
* Disposing of solid materials including building and construction materials off the project site but not in surface waters, or wetlands.

2.C.2 OFF-SITE VEHICLE TRACKING & DUST CONTROL:

In the sediment and erosion control plan, the contractor shall describe the proposed methods for minimizing offsite vehicle tracking of sediments and generating dust. The proposed methods shall include at least the following, unless otherwise approved by the engineer:

* Covering loaded haul trucks with tarps.
* Removing excess dirt from roads daily.
* Stabilizing construction entrances according to design standard 104.
* Using roadway sweepers during dust generating activities such as excavation and milling operations.

2.C.3 STATE AND LOCAL REGULATIONS FOR WASTE DISPOSAL, SANITARY SEWER, OR SEPTIC TANK REGULATIONS:

In the section 104 erosion control plan, the contractor shall describe the proposed procedures to comply with applicable state and local regulations for waste disposal, sanitary sewer or septic tank systems.

2.C.4 FERTILIZERS AND PESTICIDES:

In the sediment and erosion control plan, the contractor shall describe the procedures for applying fertilizers and pesticides. The proposed procedures shall comply with applicable subsections of section 570 of the specifications.

2.C.5 TOXIC SUBSTANCES:

In the sediment and erosion control plan, the contractor shall provide a list of toxic substances that are likely to be used on the job and provide a plan addressing the generation, application, migration, storage, and disposal of these substances.

2.D APPROVED STATE AND LOCAL PLANS AND PERMITS:

* FDEP Rule Chapter 62-25 F.A.C.
* City of Narcoossee Environmental Management Ordinance Number 90-0-044 AA.
* City of Orlando Environmental Management Ordinance Number 90-0-0044 AA.
* FDEP Rule Chapter 62-25 F.A.C.

3.0 MAINTENANCE:

In the sediment and erosion control plan, the contractor shall provide a plan for maintaining all erosion and sediment controls throughout construction. The maintenance plan shall at a minimum, comply with the following:

* Silt fence: Maintain per section 104. The contractor should anticipate replacing silt fence on 12 month intervals.
* Sediment barriers: Remove sediment as per manufacturer’s recommendations or when water ponds in unacceptable amounts or areas.
* Ponds one and two: The ponds are temporary sediment basins until the areas that drain to them are stabilized. So until then, remove sediment from the pond when it becomes 1.5’ deep at any point.

4.0 INSPECTIONS:

Qualified personnel shall inspect the following items at least once every seven calendar days and within 24 hours of the end of a storm that is 0.50 inches or greater, to comply. The contractor shall install and maintain rain gauges and record the daily rainfall. Where sites have been permanently stabilized, inspections shall be conducted at least once every month. The contractor shall also inspect that controls installed in the field agree with the latest stormwater pollution prevention plan:

* Points of discharge to waters of the United States.
* Points of discharge to municipal separate storm drain systems.
* Disturbed areas of the site that have not been finally stabilized.
* Areas used for storage of materials that are exposed to precipitation.
* Structural controls.
* Stormwater management systems.
* Locations where vehicles enter or exit the site.
* The contractor shall initiate repairs within 24 hours of inspections that indicate items are not in good working order.
* If inspections indicate that the installed stabilization and structural practices are not sufficient to minimize erosion, retain sediment, and prevent discharging pollutants, the contractor shall provide additional measures, as approved by the engineer.

5.0 NON-STORMWATER DISCHARGES:

In the section 104 erosion control plan, the contractor shall identify all anticipated non-stormwater discharges (except flows from fine fighting activities). The contractor shall describe the proposed measures to prevent pollution of these non-stormwater discharges. If the contractor encounters contaminated soil or groundwater, contact Dave Letterman, District Hazardous Materials Coordinator at (505) 63B-R549.
Chapter 29

Intelligent Transportation Systems Plans

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.1</td>
<td>General</td>
<td>29-1</td>
</tr>
<tr>
<td>29.2</td>
<td>Key Sheet</td>
<td>29-3</td>
</tr>
<tr>
<td>29.3</td>
<td>Signature Sheet</td>
<td>29-3</td>
</tr>
<tr>
<td>29.4</td>
<td>Tabulation of Quantities and Standard Notes</td>
<td>29-3</td>
</tr>
<tr>
<td>29.5</td>
<td>General Notes</td>
<td>29-4</td>
</tr>
<tr>
<td>29.6</td>
<td>Plan Sheets</td>
<td>29-4</td>
</tr>
<tr>
<td>29.6.1</td>
<td>Format and Scale</td>
<td>29-4</td>
</tr>
<tr>
<td>29.6.2</td>
<td>Required Information</td>
<td>29-4</td>
</tr>
<tr>
<td>29.6.2.1</td>
<td>Dynamic Message Sign</td>
<td>29-5</td>
</tr>
<tr>
<td>29.6.2.2</td>
<td>Highway Advisory Radio</td>
<td>29-6</td>
</tr>
<tr>
<td>29.6.2.3</td>
<td>Video Display Equipment</td>
<td>29-6</td>
</tr>
<tr>
<td>29.6.2.4</td>
<td>Network Devices</td>
<td>29-7</td>
</tr>
<tr>
<td>29.6.2.5</td>
<td>Fiber Optic Cable and Interconnect</td>
<td>29-7</td>
</tr>
<tr>
<td>29.6.2.6</td>
<td>Vehicle Detection and Data Collection</td>
<td>29-7</td>
</tr>
</tbody>
</table>
THIS PAGE LEFT BLANK INTENTIONALLY
Chapter 29

Intelligent Transportation Systems Plans

29.1 General

The incorporation of Intelligent Transportation Systems (ITS) Plans is required for projects so identified by the Department. This chapter was developed to introduce standards for ITS Plans. ITS Plans are usually a component set of plans. Projects with minor ITS involvement may include these features on sheets in the roadway plans set or on the roadway sheets (or on sheets in the signalization plans set or on the signalization sheets if feasible). When prepared as component plans they must be assembled as a separate plans set complete with a key sheet, plan sheets, detail sheet(s), tabulation of quantities and all other ITS sheets. When prepared as component plans, number the sheets consecutively with the sheet numbers prefixed by the letters “IT”.

Modification for Non-Conventional Projects:

Delete the fifth sentence from the above paragraph and replace with the following:

When prepared as component plans they must be assembled as a separate plans set complete with a key sheet, plan sheets, details sheet(s) and all other ITS sheets.

Assemble the ITS Plans as follows:

1. Key Sheet
2. Tabulation of Quantities
3. General Notes (if required)
4. Plan Sheets or “letter type” plan sets
5. Detail Sheets (as required)

Modification for Non-Conventional Projects:

Delete Item 2 from the above list.
The ITS Plans show the construction details, electrical circuits, and other data relevant to an ITS project. Some of the different systems that may be produced under the ITS component set of plans include, but are not limited to, the following:

1. Freeway Management System
2. Incident Management System
3. Arterial Management System
4. Emergency Management Systems
5. Transit Management Systems
6. Electronic Toll Collection
7. Electronic Fare Payment
8. Highway Rail Intersections (under electronic surveillance)
9. Regional Multimodal Traveler Information

In addition, the ITS plans may contain sheets which were prepared separately (perhaps by a subconsultant) and incorporated into the ITS plans early in the design process (prior to the establishment of sheet numbering). As an option, these may be identified with the following prefixes and placed at the end of the numbered sequence of the ITS plans:

GI-# Soil Survey and Report of Core Borings normally associated with the ITS plans set.

The Districts have been gravitating toward utilizing a modified plans format for ITS projects. The modified plans format would allow for “letter type” plans and include a table to locate the devices by milepost to three decimal places, plus an offset dimension given for each aboveground structure. Global positioning system (GPS) coordinates can be utilized as supplemental information in the table.

For construction purposes the plans should include the following:

1. Table (spreadsheet) to locate devices by milepost to three decimal places.
2. For aboveground installations, give an offset dimension from the edge of the traveled way to the ITS device.
3. For devices such as DMS that require overhead structures, include a cross section.
4. For conduit, include number and sizes.
5. For fiber optic cable, include number of fibers.
6. For twisted pair copper cables, include the size and numbers of pairs.
Regarding as-built records, aerial photographs may be furnished with the table above to provide supplementary information. The aerials will not include the extra features of the ROW, baseline, or roadway edges being drawn in. The aerials are to be used as a base for the as-built plans with the mile post and offset dimensions provided by the Contractor.

29.2 Key Sheet

The key sheet is the first sheet in the component plans set and must be prepared as described in Chapter 3 of this Volume. The location map, length of project box and contract plans set information are not required on this sheet when shown on the lead key sheet. Show the index of ITS plans on the left of the sheet. Other data, including name, consultant contract number, vendor number, and certificate of authorization number of the firm (when plans are prepared by a consultant), must be shown as described in Chapter 3 of this Volume.

If shop drawings are anticipated, the name(s) and address(es) of the Delegated Engineer(s) for shop drawing review(s) must be shown on the right side of the sheet.

29.3 Signature Sheet

See Chapter 3 of this Volume for Signature Sheet requirements.

29.4 Tabulation of Quantities and Standard Notes

The tabulation of quantities sheet lists the item numbers, description and quantity of materials. Place this sheet behind the key sheet in plans assembly.

List pay item numbers in numerical order. Provisions must be made to show the original and final quantities per sheet. Pay item notes and general notes that refer to item numbers, description of work to be performed and quantity estimates must also be shown on this sheet. If space is limited, notes may be shown on a General Notes Sheet.

On contracts with multiple Financial Project ID's, or federal aid and non-Federal Aid quantities, provisions must be made to tabulate and summarize their respective quantities.

Modification for Non-Conventional Projects:

Delete PPM 29.4.
29.5 General Notes

General notes pertaining to ITS may be shown on a separate plan format sheet. The general notes sheet lists special ITS design information that is generally not covered in the FDOT Standard Specifications, Supplemental or Special Provisions. Place this sheet behind the tabulation of quantities in the plans assembly. On minor projects, general notes may be combined with the tabulation of quantities sheet.

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete the last two sentences in the above paragraph and replace with the following:</td>
</tr>
<tr>
<td>Place this sheet behind the key sheet in the plans assembly. On minor projects where space permits, general notes may be shown on the first plan sheet.</td>
</tr>
</tbody>
</table>

29.6 Plan Sheets

29.6.1 Format and Scale

Prepare ITS Plans on standard plan format. The scale must be such that all details are clear and legible. See the requirements of Section 10.1 of this Volume as a guide. Place a north arrow and scale at a point of maximum visibility on the sheet.

29.6.2 Required Information

The basic information requirements include roadway geometrics, project limits, street names, construction stationing or milepost, curb and gutter, drainage inlets, sidewalks and right of way lines as similarly required on the plan portion of the roadway plan-profile sheets. Show underground and overhead utilities, signing structures, and lighting structures that may cause construction conflicts with ITS components. All locations, including existing trees, should be checked for potential conflicts. Where details normally shown on roadway plans would obscure ITS features, the details may be screened so long as the details remain plainly legible.

If letter type plans are utilized, the table should include at a minimum the device ID, description, milepost, offset, and a comment field. Add an extra column to the table if GPS coordinates are provided for the devices.
Clearly label all equipment shown on the plan with their respective pay item numbers and quantity indicated. In addition, the following plan elements should be shown:

<table>
<thead>
<tr>
<th>Modification for Non-Conventional Projects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete the above paragraph and replace with the following:</td>
</tr>
<tr>
<td>Clearly label all equipment shown on the plan. In addition, the following plan elements should be shown:</td>
</tr>
</tbody>
</table>

1. Cabling, fiber optic splicing, and interconnects.
2. System communication devices.
3. Electrical power service equipment and interconnects.
5. Structure-mounted or ground-mounted field cabinets for system electronics, maintenance service points, and interconnect.

29.6.2.1 Dynamic Message Sign

Plans for a DMS installation should illustrate the location, placement, and typical details of the following components:

1. DMS Housing, including details and notes that identify type of display (monochrome, full-color, or tri-color), size of display matrix (height, width, number of lines, and number of characters per line), and type of mechanical construction (walk-in, front access, or embedded).
2. DMS controller.
3. DMS Uninterruptible Power Supply (UPS) system (if required).
4. DMS support structures (including external walkways, safety railings, ladders, etc.).
5. DMS mounting brackets and hardware.
6. A ground-level cabinet for a DMS controller and associated electronic equipment.
7. Telemetry equipment details for remote sensing and control
29.6.2.2 Highway Advisory Radio

The design for an HAR installation should illustrate the location, placement, and typical details of the following components:

1. HAR operator workstation and central recording facility.
2. HAR antennas.
3. HAR transmitter and electronics.
4. HAR support structures, signage, and beacons.
5. HAR mounting brackets and hardware.

29.6.2.3 Video Display Equipment

Provide mounting and installation plan sheets for each color video monitor, flat panel display, and rear projection video unit in the video display system. Depict in the mounting plans detailed structural mounting information, including support structures, wall attachment methods, and the weights of the display units. Provide cable routing plan sheets and diagrams for the devices, along with maintenance/service points and structural certification.

The plans should illustrate the location, placement, and typical details of the following video display system components:

1. Video display controller.
2. Operator workstations.
3. Encoders, decoders, multiplexers, and routing equipment.

Develop sheets that detail cross-sections and elevations for all modifications to existing wall systems in the TMC facility and submit them to the Engineer.

For the rear projection video unit mounting and installation plans, include details that illustrate stacking configuration and support design, along with a ventilation and climate control plan. Provide cable routing plans that include detailed connection diagrams for individual and stacked configurations.
29.6.2.4 Network Devices

Plans including network devices should illustrate the following system attributes:

1. System diagrams illustrating network and device interconnect.
2. General network topology.
3. Notes regarding any special configurations or options for specific devices that are required to achieve a specific system function.

29.6.2.5 Fiber Optic Cable and Interconnect

The plans for fiber optic cable systems should illustrate the location, placement, and typical details of the following components:

1. Fiber optic conduits.
2. Fiber optic cables.
3. Fiber optic splices and terminations.
4. Fiber optic cable designating system.
5. Fiber optic cable access points.

29.6.2.6 Vehicle Detection and Data Collection

The plans for vehicle detection systems should illustrate the location, placement, and typical details of the following components:

1. Diagrams illustrating detection system interconnect.
2. General network topology.
3. Notes regarding any special configurations or options for specific devices that are required to achieve a specific system function.
THIS PAGE LEFT BLANK INTENTIONALLY
APPENDIX A

Metric Practice
THIS PAGE LEFT BLANK INTENTIONALLY
METRIC PRACTICE

GENERAL

This Appendix was originally included in the Metric PPM and was used as guidelines for the development of Metric plans. This was a useful tool especially for the English to Metric conversion of design information. This Appendix has now been included in the English PPM as a tool for use in cases where the designer may need to obtain information from Metric plans. This may provide the designer some insight as to how those Metric plans were developed.

SUMMARY OF RULES

1. Convert values related to surveys, right of way and other geometric alignment using the U. S. Survey Foot taken to a minimum of 8 decimal places:

\[
1 \text{ foot} = \frac{12 \text{ inches/foot}}{39.37 \text{ inches/meter}} = 0.30480061 \text{ meters}
\]

For other direct mathematical conversions use the SI definition:

\[
1 \text{ foot} = 0.3048 \text{ meters}
\]

2. Display direct mathematical (soft) converted values to the nearest 0.001 m or 1 mm.

3. Do not use commas to separate digits if a number has more than 4 digits. For numbers with more than 4 digits either right or left of the decimal, leave a space when practical. (Where the displayed number must be used in a mathematical operation on a computer the space may not be recognized properly and should not be used).

Example: 10 000 or 0.609 35 or 13 471.359

4. To the extent practical, use the following rules for dimensioning roadway plans:

a. For dimensions in meters, display values to at least one decimal place.

b. For dimensions in millimeters, display values as whole numbers with no decimal place.
c. Do not use the centimeter.

d. Using the above rules, do not show the unit symbols "m" and "mm" unless needed for clarification. Show even dimensions in meters with a decimal and following zero digit, e.g. 300.0 to avoid confusion with 300 mm.

5. If a dimensioned item has a numerical quantity that is part of a group of numbers in a different range, select the unit that most adequately covers the range without unduly large or small numbers. For example, if 300 mm is part of a group of numbers shown in meters, show it as 0.3 m.

6. Show long dimensions, including all horizontal and vertical geometry, wall lengths, bridge span lengths and box or three sided culvert lengths, spans and heights in meters.

7. In general, show cross section dimensions of structural members in millimeters. This will normally include most drainage structures (except box culverts), drainage pipe, and special drainage structure details. (Note: The actual size of drainage pipe and standard drainage structure boxes will remain the same. However, label these items in nominal size based on 1" = 25 mm. Example: Label 24" pipe as 600 mm pipe; Label a 4' diameter structure as a 1200 mm structure.)

8. Show pavement thickness descriptions in millimeters.

9. Use 0.1 m for both base extension on rural sections (formerly 3") and for stabilization extension on curbed sections (formerly 6").

10. On typical sections, show type of curb, "E" or "F", not the dimension.

11. As a general rule, display metric dimensions to one more decimal place than the corresponding dimension in English units:

a. Typical Section Elements, including lane widths and shoulder widths - in meters, generally to 1 decimal place.

b. Horizontal control points on plans, including survey centerline, baseline, intersections and alignment - in meters to 3 decimal places. The normal station interval for centerlines and baselines is 100 meters. (1+00.000 = 100 m)

c. Vertical alignment control points, (PVC, PVI, PVT) and profile grade elevations - in meters to 3 decimal places.
d. Profile Grade - in percent to 4 decimal places.

e. Proposed flow lines - in meters to 2 decimal places.

f. Manhole tops and grate elevations - in meters to 2 decimal places.

g. Ditch elevations - in meters to 2 decimal places.

h. Box Culvert or Three-sided Spans and Heights - in meters to 1 decimal for new construction; in meters to 2 decimal places for extensions of existing box culverts originally constructed to English dimensions.

12. Where practical, round short radius curves (<150.0 m), including curb returns and control radii, to the nearest meter. Round longer radius curves to the nearest 5 meters. (See attached tables.)

13. Display alignment bearings and delta angles in curve data in degrees, minutes and seconds, rounded to the nearest second.

14. Omit "degree of curvature" from curve data. It has no definition in the metric system. Instead, use the radius definition. Equations:

\[
\text{Tangent } T = R \tan \left(\frac{\Delta}{2} \right)
\]

\[
\text{Length } T = R (\Delta \text{ in Radians})
\]

\[
\text{LongChord LC} = 2 R \sin \left(\frac{\Delta}{2} \right)
\]

15. On resurfacing projects, hard convert typical section dimensions (lane widths, shoulder widths, etc.) where existing conditions permit. Exception: Use direct mathematical (soft) conversion (Rule Number 2) for existing pavement widths in curbed sections, existing right of way widths, and existing median widths.
16. Continue to post sign messages for speed limits and distances in English units. Note: The posted speed for curb and gutter sections with design speed of 80 km/h (corresponds to 50 mph), should not exceed 45 mph.

17. A "hard" metric project is defined as one where metric standard index drawings and metric specifications are used, and the design complies with adopted metric criteria.

18. Beginning with metric projects express slope ratios in vertical to horizontal (V:H) format. For example, show roadside slopes as 1:6, 1:4, rather than past convention as 6:1 or 4:1.

19. As a general guideline for new construction and reconstruction, show cross sections in 20 meter intervals for urban projects and 50 meter intervals for rural projects. Project specific factors may dictate greater or lesser intervals.

20. When project limits are identified by kilometer point location on the Key Sheet, show the equivalent milepost using direct mathematical conversion.

 (example: kp 1.609 = MP 1.000)

21. Label existing and proposed utilities in metric. Use the FDOT *Basis of Estimates Manual* utility pay item list of metric sizes as a guide.

PLAN SCALES

<table>
<thead>
<tr>
<th>ENGLISH SCALE</th>
<th>METRIC SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1" = 2'</td>
<td>1: 25</td>
</tr>
<tr>
<td>1" = 5'</td>
<td>1: 50</td>
</tr>
<tr>
<td>1" = 10'</td>
<td>1: 100</td>
</tr>
<tr>
<td>1" = 20'</td>
<td>1: 200</td>
</tr>
<tr>
<td>1" = 40'</td>
<td>1: 400 or 1: 500</td>
</tr>
<tr>
<td>1" = 50'</td>
<td>1: 500</td>
</tr>
<tr>
<td>1" = 100'</td>
<td>1: 1000</td>
</tr>
<tr>
<td>1" = 200'</td>
<td>1: 2000</td>
</tr>
<tr>
<td>1" = 400'</td>
<td>1: 5000</td>
</tr>
</tbody>
</table>

Plan sheet size will remain the same. The viewing area of a plan sheet will be 800 mm long on "D" size sheets and 400 mm on "B" size sheets. Allowing for open space at each side, this provides a coverage of 140 m at 1:400 scale, 350 m at 1:1000 and 700 m at 1:2000 on "B" size sheets.
Plan/ Profiles:

<table>
<thead>
<tr>
<th>Sheet Size</th>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1:1000</td>
<td>1:50 or 1:100</td>
</tr>
<tr>
<td>B</td>
<td>1:2000</td>
<td>1:100 or 1:200</td>
</tr>
<tr>
<td>Urban -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1:200</td>
<td>1:50</td>
</tr>
<tr>
<td>B</td>
<td>1:400 or 1:500</td>
<td>1:50 or 1:100</td>
</tr>
</tbody>
</table>

Show centerline major tick marks at each station. Show centerline minor tick marks at 20 meter intervals when using 1:200 and 1:400 scale, and at 25 meter intervals when using 1:500 scale.

Cross Sections:

<table>
<thead>
<tr>
<th>Sheet Size</th>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1:50</td>
<td>1:25</td>
</tr>
<tr>
<td>B</td>
<td>1:100</td>
<td>1:50</td>
</tr>
<tr>
<td>Wide Sections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1:100</td>
<td>1:25 or 1:50</td>
</tr>
<tr>
<td>B</td>
<td>1:200</td>
<td>1:50 or 1:100</td>
</tr>
<tr>
<td>Narrow Sections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1:25</td>
<td>1:25</td>
</tr>
<tr>
<td>B</td>
<td>1:50</td>
<td>1:50</td>
</tr>
</tbody>
</table>

As a guideline, the normal interval for cross sections is 20 meters for urban projects and 50 meters for rural projects.
COMPARISON OF ENGLISH AND METRIC VALUES

LANE WIDTHS

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>SOFT</th>
<th>HARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 ft</td>
<td>2.438 m</td>
<td>2.4 m</td>
</tr>
<tr>
<td>9 ft</td>
<td>2.743 m</td>
<td>2.7 m</td>
</tr>
<tr>
<td>10 ft</td>
<td>3.048 m</td>
<td>3.0 m</td>
</tr>
<tr>
<td>11 ft</td>
<td>3.353 m</td>
<td>3.3 m</td>
</tr>
<tr>
<td>12 ft</td>
<td>3.658 m</td>
<td>3.6 m</td>
</tr>
<tr>
<td>14 ft</td>
<td>4.267 m</td>
<td>4.2 m</td>
</tr>
<tr>
<td>15 ft</td>
<td>4.572 m</td>
<td>4.5 m</td>
</tr>
</tbody>
</table>

BIKE LANE WIDTHS

<table>
<thead>
<tr>
<th></th>
<th>SOFT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 ft</td>
<td>1.219 m</td>
<td>1.2 m</td>
</tr>
<tr>
<td>5 ft</td>
<td>1.524 m</td>
<td>1.5 m</td>
</tr>
</tbody>
</table>

SIDEWALK AND UTILITY STRIP WIDTHS

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>SOFT</th>
<th>HARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 ft</td>
<td>0.610 m</td>
<td>0.6 m</td>
</tr>
<tr>
<td>3 ft</td>
<td>0.914 m</td>
<td>0.9 m</td>
</tr>
<tr>
<td>4 ft</td>
<td>1.219 m</td>
<td>1.2 m</td>
</tr>
<tr>
<td>5 ft</td>
<td>1.524 m</td>
<td>1.5 m</td>
</tr>
<tr>
<td>6 ft</td>
<td>1.829 m</td>
<td>1.8 m</td>
</tr>
<tr>
<td>7 ft</td>
<td>2.134 m</td>
<td>2.1 m</td>
</tr>
<tr>
<td>8 ft</td>
<td>2.438 m</td>
<td>2.4 m</td>
</tr>
<tr>
<td>9 ft</td>
<td>2.743 m</td>
<td>2.7 m</td>
</tr>
<tr>
<td>10 ft</td>
<td>3.048 m</td>
<td>3.0 m</td>
</tr>
</tbody>
</table>

CURB AND GUTTER WIDTHS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CURRENT</th>
<th>SOFT</th>
<th>HARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>2.25 ft</td>
<td>686 mm</td>
<td>675 mm</td>
</tr>
<tr>
<td>F</td>
<td>2.00 ft</td>
<td>610 mm</td>
<td>600 mm</td>
</tr>
<tr>
<td>Shoulder</td>
<td>3.50</td>
<td>1067 mm</td>
<td>1050 mm</td>
</tr>
</tbody>
</table>

SHOULDER WIDTHS

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>SOFT</th>
<th>HARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 ft</td>
<td>0.610 m</td>
<td>0.6 m</td>
</tr>
<tr>
<td>4 ft</td>
<td>1.219 m</td>
<td>1.2 m</td>
</tr>
<tr>
<td>5 ft</td>
<td>1.524 m</td>
<td>1.5 m</td>
</tr>
<tr>
<td>6 ft</td>
<td>1.829 m</td>
<td>1.8 m</td>
</tr>
<tr>
<td>8 ft</td>
<td>2.438 m</td>
<td>2.4 m</td>
</tr>
<tr>
<td>10 ft</td>
<td>3.048 m</td>
<td>3.0 m</td>
</tr>
<tr>
<td>12 ft</td>
<td>3.658 m</td>
<td>3.6 m</td>
</tr>
</tbody>
</table>
COMPARISON OF ENGLISH AND METRIC VALUES

TRAFFIC SEPARATOR WIDTHS

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>SOFT</th>
<th>HARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 ft</td>
<td>1.219 m</td>
<td>1.2 m</td>
</tr>
<tr>
<td>6 ft</td>
<td>1.829 m</td>
<td>1.8 m</td>
</tr>
<tr>
<td>8.5 ft</td>
<td>2.591 m</td>
<td>2.6 m</td>
</tr>
</tbody>
</table>

MEDIAN WIDTHS

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>SOFT</th>
<th>HARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.5 ft</td>
<td>4.724 m</td>
<td>5.0 m</td>
</tr>
<tr>
<td>17.5 ft</td>
<td>5.334 m</td>
<td>N/A</td>
</tr>
<tr>
<td>19.5 ft</td>
<td>5.944 m</td>
<td>6.0 m</td>
</tr>
<tr>
<td>22 ft</td>
<td>6.706 m</td>
<td>6.6 m</td>
</tr>
<tr>
<td>26 ft</td>
<td>7.925 m</td>
<td>7.8 m</td>
</tr>
<tr>
<td>30 ft</td>
<td>9.144 m</td>
<td>9.0 m</td>
</tr>
<tr>
<td>40 ft</td>
<td>12.192 m</td>
<td>12.0 m</td>
</tr>
<tr>
<td>50 ft</td>
<td>15.240 m</td>
<td>15.0 m</td>
</tr>
<tr>
<td>60 ft</td>
<td>18.288 m</td>
<td>18.0 m</td>
</tr>
<tr>
<td>64 ft</td>
<td>19.507 m</td>
<td>19.2 m</td>
</tr>
<tr>
<td>88 ft</td>
<td>26.822 m</td>
<td>26.4 m</td>
</tr>
</tbody>
</table>

DITCH WIDTHS

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>SOFT</th>
<th>HARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 ft</td>
<td>0.914 m</td>
<td>0.9 m</td>
</tr>
<tr>
<td>3.5 ft</td>
<td>1.067 m</td>
<td>1.0 m</td>
</tr>
<tr>
<td>4 ft</td>
<td>1.219 m</td>
<td>1.2 m</td>
</tr>
<tr>
<td>5 ft</td>
<td>1.524 m</td>
<td>1.5 m</td>
</tr>
</tbody>
</table>

DESIGN SPEED

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>METRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>35</td>
<td>60</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>45</td>
<td>70</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>55</td>
<td>90</td>
</tr>
<tr>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>65</td>
<td>110</td>
</tr>
<tr>
<td>70</td>
<td>110</td>
</tr>
</tbody>
</table>

- Low speed
- High speed
METRIC CONVERSIONS

RETURN RADI

CONTROL RADI

SHORT RADIUS CURVE RADI

<table>
<thead>
<tr>
<th>TURNING SPEED mph</th>
<th>RADIUS (feet)</th>
<th>SOFT (meters)</th>
<th>HARD (meters)</th>
<th>TURNING SPEED km/h</th>
<th>RADIUS (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>15</td>
<td>4.572</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6.096</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>7.620</td>
<td>8.0</td>
<td>15</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>9.144</td>
<td>9.0</td>
<td>20</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>10.668</td>
<td>11.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>12.192</td>
<td>12.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>13.716</td>
<td>14.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>50</td>
<td>15.240</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>18.288</td>
<td>18.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>22.860</td>
<td>23.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>90</td>
<td>27.432</td>
<td>27.0</td>
<td>30</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>30.480</td>
<td>30.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>150</td>
<td>45.720</td>
<td>46.0</td>
<td>40</td>
<td>50.0</td>
</tr>
<tr>
<td>30</td>
<td>230</td>
<td>70.104</td>
<td>70.0</td>
<td>50</td>
<td>80.0</td>
</tr>
<tr>
<td>35</td>
<td>310</td>
<td>94.488</td>
<td>94.0</td>
<td>60</td>
<td>115.0</td>
</tr>
<tr>
<td>40</td>
<td>430</td>
<td>131.064</td>
<td>131.0</td>
<td>60</td>
<td>115.0</td>
</tr>
</tbody>
</table>

Note: Selection of appropriate radii should also consider design vehicle.

Conversions on this sheet and the next are accomplished as follows:

1. Radius in feet \(\times (12 \div 39.37) \) = radius in meters (soft)

2. Values for metric turning speeds based on proposed AASHTO metric criteria.
COMPARISON OF ENGLISH AND METRIC VALUES

<table>
<thead>
<tr>
<th>DEGREE</th>
<th>RADIUS</th>
<th>RADIUS-Soft (meters)</th>
<th>RADIUS-Hard (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°-15'</td>
<td>22918.31</td>
<td>6985.515</td>
<td>6985.0</td>
</tr>
<tr>
<td>0°-30'</td>
<td>11459.16</td>
<td>3492.758</td>
<td>3495.0</td>
</tr>
<tr>
<td>0°-45'</td>
<td>7639.44</td>
<td>2328.505</td>
<td>2330.0</td>
</tr>
<tr>
<td>1°-00'</td>
<td>5729.58</td>
<td>1746.379</td>
<td>1745.0</td>
</tr>
<tr>
<td>1°-15'</td>
<td>4583.66</td>
<td>1397.103</td>
<td>1395.0</td>
</tr>
<tr>
<td>1°-30'</td>
<td>3819.72</td>
<td>1164.253</td>
<td>1165.0</td>
</tr>
<tr>
<td>1°-45'</td>
<td>3274.04</td>
<td>997.931</td>
<td>1000.0</td>
</tr>
<tr>
<td>2°-00'</td>
<td>2864.79</td>
<td>873.189</td>
<td>875.0</td>
</tr>
<tr>
<td>2°-15'</td>
<td>2546.48</td>
<td>776.168</td>
<td>775.0</td>
</tr>
<tr>
<td>2°-30'</td>
<td>2291.83</td>
<td>698.552</td>
<td>700.0</td>
</tr>
<tr>
<td>2°-45'</td>
<td>2083.48</td>
<td>635.047</td>
<td>635.0</td>
</tr>
<tr>
<td>3°-00'</td>
<td>1909.86</td>
<td>582.126</td>
<td>580.0</td>
</tr>
<tr>
<td>3°-15'</td>
<td>1762.95</td>
<td>537.347</td>
<td>535.0</td>
</tr>
<tr>
<td>3°-30'</td>
<td>1637.02</td>
<td>498.965</td>
<td>500.0</td>
</tr>
<tr>
<td>3°-45'</td>
<td>1527.89</td>
<td>465.701</td>
<td>465.0</td>
</tr>
<tr>
<td>4°-00'</td>
<td>1432.39</td>
<td>436.595</td>
<td>435.0</td>
</tr>
<tr>
<td>4°-15'</td>
<td>1348.14</td>
<td>410.913</td>
<td>410.0</td>
</tr>
<tr>
<td>4°-30'</td>
<td>1273.24</td>
<td>388.084</td>
<td>390.0</td>
</tr>
<tr>
<td>4°-45'</td>
<td>1206.23</td>
<td>367.659</td>
<td>370.0</td>
</tr>
<tr>
<td>5°-00'</td>
<td>1145.92</td>
<td>349.276</td>
<td>350.0</td>
</tr>
<tr>
<td>5°-30'</td>
<td>1041.74</td>
<td>317.523</td>
<td>320.0</td>
</tr>
<tr>
<td>6°-00'</td>
<td>954.93</td>
<td>291.063</td>
<td>290.0</td>
</tr>
<tr>
<td>7°-00'</td>
<td>818.51</td>
<td>249.483</td>
<td>250.0</td>
</tr>
<tr>
<td>8°-00'</td>
<td>716.20</td>
<td>218.297</td>
<td>220.0</td>
</tr>
<tr>
<td>9°-00'</td>
<td>636.62</td>
<td>194.042</td>
<td>195.0</td>
</tr>
<tr>
<td>10°-00'</td>
<td>572.96</td>
<td>174.638</td>
<td>175.0</td>
</tr>
</tbody>
</table>

Note: Degree of Curvature is not used in the Metric System.
GENERAL METRIC INFORMATION

SI PREFIXES

M mega $10^6 = 1\ 000\ 000$

k kilo $10^3 = 1\ 000$

m milli $10^{-3} = 0.001$

<table>
<thead>
<tr>
<th>Base SI Units</th>
<th>Related Units</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
<td>Unit</td>
<td>Symbol</td>
</tr>
<tr>
<td>length</td>
<td>meter</td>
<td>m</td>
</tr>
<tr>
<td>mass</td>
<td>kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>time</td>
<td>second</td>
<td>s</td>
</tr>
</tbody>
</table>
GENERAL METRIC INFORMATION

<table>
<thead>
<tr>
<th>Common Derived Units of SI</th>
<th>Related Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
<td>Unit</td>
</tr>
<tr>
<td>acceleration</td>
<td>square meter</td>
</tr>
<tr>
<td>area</td>
<td></td>
</tr>
<tr>
<td>density, mass</td>
<td>kilogram/cubic</td>
</tr>
<tr>
<td>velocity</td>
<td>meter/second</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cubic meter</td>
</tr>
</tbody>
</table>
GENERAL METRIC INFORMATION

SOFT CONVERSION FACTORS

<table>
<thead>
<tr>
<th>CLASS</th>
<th>MULTIPLY</th>
<th>BY</th>
<th>TO GET</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td>inches</td>
<td>25.400 000</td>
<td>mm</td>
</tr>
<tr>
<td>LENGTH</td>
<td>inches</td>
<td>0.025 400</td>
<td>m</td>
</tr>
<tr>
<td>LENGTH</td>
<td>feet</td>
<td>0.304 800 **</td>
<td>m</td>
</tr>
<tr>
<td>LENGTH</td>
<td>yards</td>
<td>0.914 400</td>
<td>m</td>
</tr>
<tr>
<td>LENGTH</td>
<td>miles</td>
<td>1609.344 000</td>
<td>m</td>
</tr>
<tr>
<td>LENGTH</td>
<td>miles</td>
<td>1.609 344</td>
<td>km</td>
</tr>
<tr>
<td>AREA</td>
<td>sq inches</td>
<td>645.160 000</td>
<td>mm²</td>
</tr>
<tr>
<td>AREA</td>
<td>sq feet</td>
<td>0.092 903</td>
<td>m²</td>
</tr>
<tr>
<td>AREA</td>
<td>sq yard</td>
<td>0.836 127</td>
<td>m²</td>
</tr>
<tr>
<td>AREA</td>
<td>acres</td>
<td>4046.873 000</td>
<td>m²</td>
</tr>
<tr>
<td>AREA</td>
<td>sq miles</td>
<td>2.589 988</td>
<td>km²</td>
</tr>
<tr>
<td>VOLUME</td>
<td>board feet</td>
<td>0.002 360</td>
<td>m³</td>
</tr>
<tr>
<td>VOLUME</td>
<td>cubic feet</td>
<td>0.028 317</td>
<td>m³</td>
</tr>
<tr>
<td>VOLUME</td>
<td>cubic yard</td>
<td>0.764 555</td>
<td>m³</td>
</tr>
<tr>
<td>VOLUME</td>
<td>gallon (fluid)</td>
<td>3.785 412</td>
<td>L</td>
</tr>
<tr>
<td>VOLUME</td>
<td>ounce (fluid)</td>
<td>29.573 530</td>
<td>ML</td>
</tr>
<tr>
<td>VOLUME</td>
<td>bushels</td>
<td>0.035 239</td>
<td>m³</td>
</tr>
<tr>
<td>MASS</td>
<td>ounce</td>
<td>0.028 350</td>
<td>kg</td>
</tr>
<tr>
<td>MASS</td>
<td>pound</td>
<td>0.453 592</td>
<td>kg</td>
</tr>
<tr>
<td>MASS</td>
<td>ton</td>
<td>907.184 700</td>
<td>kg</td>
</tr>
<tr>
<td>FORCE</td>
<td>lb/ft</td>
<td>1.488 164</td>
<td>kg/m</td>
</tr>
<tr>
<td>FORCE</td>
<td>lb/ft²</td>
<td>4.882 425</td>
<td>kg/m²</td>
</tr>
<tr>
<td>FORCE</td>
<td>lb/ft³</td>
<td>16.018 460</td>
<td>kg/m³</td>
</tr>
<tr>
<td>FORCE</td>
<td>ounces/ft²</td>
<td>0.305 152</td>
<td>kg/m²</td>
</tr>
<tr>
<td>STRESS</td>
<td>psi</td>
<td>6894.757 000</td>
<td>Pa</td>
</tr>
<tr>
<td>STRESS</td>
<td>kips/in²</td>
<td>6.894 757</td>
<td>N/mm²</td>
</tr>
<tr>
<td>VELOCITY</td>
<td>fps</td>
<td>0.304 800</td>
<td>m/s</td>
</tr>
<tr>
<td>VELOCITY</td>
<td>mph</td>
<td>0.447 040</td>
<td>m/s</td>
</tr>
<tr>
<td>VELOCITY</td>
<td>mph</td>
<td>1.609 344</td>
<td>km/h</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>*(°F-32) / 1.8 = °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANGLES</td>
<td>(no change)</td>
<td>deg, min, sec</td>
<td></td>
</tr>
</tbody>
</table>

** For conversion from U.S. Geodetic Survey, the U.S. survey foot equals 0.304 800 610 m