Chapter 25

Florida’s Design Criteria for Resurfacing, Restoration and Rehabilitation (RRR) of Streets and Highways

25.1 Introduction .. 25-1
25.1.1 General ... 25-1
25.1.2 Application ... 25-1

25.2 Planning and Programming RRR Projects 25-3
25.2.1 Projects Requiring Right of Way .. 25-3
25.2.2 Projects With Bridges Within Project Limits 25-3
25.2.3 Project Features Requiring Design Exceptions and Design Variations .. 25-4
25.2.4 Ride Rehabilitation Projects ... 25-4
25.2.5 Railroad-Highway Grade Crossing Near or Within Project Limits .. 25-4

25.3 RRR Project Design Process ... 25-5
25.3.1 Review of Project Purpose ... 25-5
25.3.1.1 Principal Reason(s) for the RRR Project 25-5
25.3.1.2 General Nature of Proposed Improvements (Type of Work) .. 25-6
25.3.1.3 Review Project Budget and Priority 25-7
25.3.2 Assessment of Conditions ... 25-7
25.3.2.1 Office Reviews ... 25-8
25.3.2.2 Field Reviews ... 25-9
25.3.3 Project Scopes .. 25-10
25.3.4 Minimum Survey Guidelines for RRR Projects 25-11
25.3.4.1 Types of Work for RRR Projects 25-11
25.3.4.2 Definition of Levels of Survey Effort 25-12
25.3.5 Review Project Plans ... 25-13
25.3.6 Document the Design Process 25-13

25.4 RRR Design Criteria .. 25-14
25.4.1 Design Period ... 25-14
25.4.2 Project Traffic Volume ... 25-14
25.4.3 Pavement Design .. 25-15
25.4.4 Design Speed ... 25-15
25.4.5 Lane and Shoulder Widths 25-17
25.4.6 Roadway Cross Slopes ... 25-19
25.4.7 Superelevation ... 25-21
25.4.8 Shoulder Treatment ... 25-21
25.4.9 Roadside Slopes .. 25-22
25.4.10 Vertical Alignment .. 25-22
25.4.10.1 Vertical Curvature ... 25-23
25.4.10.2 Grades ... 25-25
25.4.11 Horizontal Alignment .. 25-25
25.4.11.1 Horizontal Curves .. 25-26
25.4.12 Stopping Sight Distance 25-27
25.4.13 Vertical Clearance .. 25-28
25.4.14 Lateral Offset ... 25-28
25.4.15 Use of Curb on RRR Projects 25-28
25.4.16 Border ... 25-28
25.4.17 Intersections ... 25-29
25.4.18 Drainage ... 25-30
25.4.19 Pedestrian, Bicyclist and Transit Needs 25-31
25.4.19.1 Pedestrian Needs ... 25-31
25.4.19.2 Bicyclist Needs ... 25-32
25.4.19.3 Transit Needs ... 25-33
25.4.20 At-grade Railroad Crossings 25-33
25.4.21 Aesthetics and Landscaping................................. 25-33
25.4.22 Highway Lighting... 25-34
25.4.23 Highway Traffic Control Devices 25-34
25.4.24 Bridges.. 25-35
 25.4.24.1 Bridge Loading ... 25-36
 25.4.24.2 Bridge Width .. 25-36
 25.4.24.3 Bridge Railing.. 25-36
 25.4.24.4 Vertical Clearance ... 25-36
 25.4.24.5 Considerations ... 25-37
 25.4.24.6 Pier Protection.. 25-37
25.4.25 Roadside Safety Hardware... 25-37
25.4.26 Ancillary Structures (Sign, Signal, Lighting
 and ITS).. 25-37
 25.4.26.1 Analytical Evaluation Without
 Proposed Additional Loading... 25-39
 25.4.26.2 Analytical Evaluation With
 Proposed Additional Loading
 or Relocated Structures ... 25-39
25.5 Design Exceptions and Design Variations......................... 25-40
Tables
Table 25.4.4.1 RRR Design Speed vs. Posted Speed 25-16
Table 25.4.5.1 Lane and Shoulder Widths - Rural Multilane 25-17
Table 25.4.5.2 Lane and Shoulder Widths Two-Lane Rural and Urban, Without Curb and Gutter 25-17
Table 25.4.5.3 Lane Widths Urban Multilane or Two-Lane With Curb and Gutter ... 25-18
Table 25.4.5.4 Lane and Shoulder Widths Urban Multilane Without Curb and Gutter .. 25-18
Table 25.4.6 Roadway Cross Slopes .. 25-20
Table 25.4.7 Freeway Cross Slopes 25-20
Table 25.4.10.1 K Values for Vertical Curvature 25-24
Table 25.4.11.1 Safe Criteria for State Highway System With Maximum Superelevation 25-27
Table 25.4.12 Stopping Sight Distance 25-27
Table 25.4.24.1 Clear Width Criteria for Bridges 25-36
Chapter 25

Florida’s Design Criteria for Resurfacing, Restoration and Rehabilitation (RRR) of Streets and Highways

Modification for Non-Conventional Projects:
See the RFP for requirements.

25.1 Introduction

25.1.1 General

Resurfacing, restoration and rehabilitation (RRR) work is defined as work undertaken to extend the service life of an existing highway and/or enhance highway safety. This includes the placement of additional surface materials and/or other work necessary to return an existing roadway to a condition of structural and functional adequacy. Many of the RRR Standards used by the Department are derived from the National Academy of Sciences "Special Report 214". This publication contains many of the methods necessary to make the safety and cost effective evaluations required by this chapter.

RRR projects must be designed and constructed in a manner that will comply with the accessibility standards and requirements set forth in the Americans with Disabilities Act of 1990 (ADA).

25.1.2 Application

The criteria included in this chapter are for all RRR projects except for Interstate highways, freeways, and Limited Access Strategic Intermodal System (SIS) Corridors and Connectors, and are not intended to apply to new construction or major modifications of existing facilities.

The RRR design criteria applicable for Interstate Highways and Freeways are new construction criteria, with the following exceptions:
1. The standards used for horizontal alignment, vertical alignment, and widths of median, traveled way and shoulders may be the AASHTO interstate standards that were in effect at the time of original construction or inclusion into the interstate system.

2. Mainline bridges may remain in place if they have minimum cross sections consisting of 12 ft. lanes, 10 ft. shoulder on the right and 3 ft. shoulder on the left. For mainline bridges (over 200 ft.), the offset to the face of parapet or bridge railing on both the left and right is 3 ft. (minimum) measured from the edge of the nearest traveled lane. Bridge railing must meet or be upgraded in accordance with the requirements of Chapter 4 of this Volume.

3. Roadside Safety Hardware must meet the requirements of Chapter 4 of this Volume.

4. Pier protection and design must comply with the requirements provided in Structures Design Guidelines, Section 2.6. Additional information is available in Chapter 4 of this Volume.

5. The existing roadway and shoulder cross slope may be retained when it meets the criteria in Section 25.4.6.

Existing median crossovers on Interstate highways and freeways must be evaluated for conformance to the criteria in Section 2.14.4, Crossovers on Limited Access Facilities. Crossovers that do not meet those criteria must be removed as a part of the project unless approved by the State Roadway Design Engineer and FHWA (FHWA approval on Interstate only).

Projects on controlled access SIS Corridor and Connector facilities should be designed using new construction criteria. RRR criteria may be applied on a project to the extent permitted by the Action Plan for that corridor, consistent with the schedule for phased improvements to bring the facility up to new construction criteria. For controlled SIS Corridors and Connectors with no Action Plan, RRR criteria may be applied if minimum design speed criteria shown in Section 25.4.4 are met or a Design Exception for design speed is approved.

The RRR criteria may be used for establishing the minimum requirements for intersection improvement projects with the understanding that when right of way is adequate, new construction criteria will be used to the maximum extent feasible.

This chapter does not apply to projects programmed as Maintenance Resurfacing projects other than meeting ADA curb ramp requirements. If compliance with ADA curb ramp requirements is determined to be technically infeasible, documentation as a Design Variation is required. Refer to Part III, Chapter 28, Resurfacing, of the Work Program Instructions for these projects.
25.2 Planning and Programming RRR Projects

RRR projects must balance a number of competing objectives, the principal ones being the preservation of highways, improved service levels and enhancement of safety. The success in meeting these objectives depends on the quality of individual project designs and project programming decisions.

The majority of RRR projects are identified and programmed as a result of deficient pavement condition. These projects are funded under the Department's Pavement Resurfacing program. Districts are provided specific lane mile targets that must be met annually. Program funds are allocated to each District based on a fixed amount per lane mile to be resurfaced. The amount allocated includes funds necessary to resurface/rehabilitate the pavement plus a limited amount which can be used for other improvements and upgrades. Improvements and upgrades which cost more than the allocated amount result in reduced funds for such improvements on other roadways being resurfaced and/or must come from other Department funding programs. For additional information on the Department's Pavement Resurfacing program requirements and restrictions, see the Department's Work Program Instructions.

25.2.1 Projects Requiring Right of Way

RRR projects do not typically involve Right of Way acquisition. However, in all cases, facilities programmed for RRR projects should be given a review of the existing right of way, roadway, transit stops, access management, drainage design elements and other improvements to identify locations that require additional right of way. For such locations, the design should be expedited to determine actual right of way requirements. The designer must coordinate the requirements with the Right of Way Office so that necessary areas will be cleared before the project is ready for letting.

25.2.2 Projects With Bridges Within Project Limits

Bridges must be reviewed in sufficient detail to clearly establish the cost effective and appropriate changes to be included in the project design effort. Pavement resurfacing funds can only be used for minor bridge improvements such as rail retrofits and ADA improvements. Bridges that require major improvement or replacement must be programmed with the appropriate bridge program funds.
25.2.3 Project Features Requiring Design Exceptions and Design Variations

Projects may have features below criteria values which have not been programmed and/or which are determined not to be appropriate to accomplish under the design project. These usually require Design Exception or Design Variation approval, as appropriate. See Sections 25.3.6 and 25.5.

25.2.4 Ride Rehabilitation Projects

Projects that are deficient only due to Ride Rating (<5.5) as rated by the Pavement Condition Survey, and have a posted speed limit less than 50 mph, can be programmed as Ride Rehabilitation Projects.

If the pavement is in good structural condition, the scope of the work can be limited to meeting ADA requirements and doing what is necessary and practical to improve the smoothness of the pavement to meet standards. This can often just be adjustments to manholes and valves or the correcting of utility cut patches through short milling and paver-laid friction course.

These projects meeting the specific criteria above do not have to comply with Sections 25.3.6 and 25.5. They can be funded with Resurfacing Funds and will receive lane mile target resurfacing credit.

25.2.5 Railroad-Highway Grade Crossing Near or Within Project Limits

Federal-aid projects must be reviewed to determine if a railroad-highway grade crossing is in or near the limits of the project. If such railroad-highway grade crossing exists, the project must be upgraded in accordance with Section 6.2.3 of this Volume.

See Section 25.4.20 for additional railroad-highway grade crossing criteria.
25.3 **RRR Project Design Process**

Significant improvements in overall safety can be brought about by a systematic safety conscious design process. The design process is a team effort that requires the expertise of persons familiar with design, safety, maintenance, traffic operations and others. To assure that safety issues are fully addressed on RRR projects, in addition to the usual design process, the following are also required:

1. A review of the purpose for which the RRR project was programmed.
2. An assessment of current safety conditions.
3. A final scope of work with recommendations for specific safety improvements.
4. Documentation of the safety design decisions.
5. Reviews of the design for safety issues.
6. Identify and implement needed public involvement activities.

25.3.1 **Review of Project Purpose**

A RRR project is generated by specific needs or conditions. The designer must become familiar with these needs or conditions at the very beginning of involvement with the project in order to assure that the final scope of work and final design actually accomplish the original purpose of the project. This may involve research of background data or other information that provides the reason, the proposed improvements, estimated project cost and project priority.

25.3.1.1 **Principal Reason(s) for the RRR Project**

As indicated in Section 25.2, the majority of RRR projects are identified and programmed as a result of deficient pavement condition. The following list indicates some, but not all, of the principal reasons that can generate a RRR project:

1. To preserve or extend the life of the existing pavement.
2. Improve capacity (without adding continuous through lanes).
3. Improve operating characteristics.
4. Site specific crash reduction.
5. Section wide crash reduction.
25.3.1.2 General Nature of Proposed Improvements
(Type of Work)

Department policy requires that the following items be included in each RRR project unless written authorization to deviate from this policy is obtained at a Director level position in the District:

1. Safety improvements needed to address crash problems.
2. Pavement Resurfacing/Rehabilitation.
3. Modifications necessary to Comply with the American’s with Disability Act (ADA).
4. Paved Shoulders.
5. Improvements to roadside barriers and guardrail necessary to meet minimum standards. Design Exceptions require Central Office approval.
6. Improvements to bridge rails necessary to meet minimum standards. Design Variations require Central Office approval.
7. Traffic Signal Mast Arms within the mast arm policy area (see Section 7.4.11 of this Volume) where existing strain poles require replacement/relocation.

In addition to the above, a project may include one or more of the following types of work as a general improvement. The list is not all-inclusive.

1. Widen roadway and bridge lanes.*
2. Widen or add roadway and bridge shoulders.*
3. Provide clear zone.
4. Upgrade pavement markings.
5. Add, update or remove traffic signals.
6. Correct skid hazards.
7. Replace bridges rated "insufficient".*
8. Upgrade to current Access Management requirements.
9. Provide non-vehicular transportation needs.
10. Add or extend auxiliary lanes to a roadway.
11. Add turn lanes at an intersection or on a roadway.
12. Realign an intersection or roadway.
13. Replacement of bridges which cannot be widened economically.*
14. Upgrade at-grade railroad crossings.
15. Intersection improvements.
17. Add or upgrade transit stops.
18. Driveway modifications.
19. Other safety improvements.

*Major bridge improvements and replacements must be programmed using the appropriate bridge program funds.

While the general nature and type of improvements that can be made is extensive, due to the limited availability of funds, the cost of improvements other than those needed for safety and to meet minimum criteria must be carefully considered before including these improvements in the project.

25.3.1.3 Review Project Budget and Priority

The design and construction of a RRR project must be accomplished with expediency and at reasonable cost. Nevertheless, the project design must address all issues of safety, plus preservation of investment, and service to the user. Conditions that are discovered but cannot be resolved within the programmed budget and schedule must be addressed and the decisions documented.

25.3.2 Assessment of Conditions

Before beginning actual design of the project, the designer must assess current conditions on the project. This assessment must include both physical conditions and operating conditions plus a safety assessment. Perform office reviews and field reviews as part of the assessment.
25.3.2.1 Office Reviews

Conduct office reviews to assimilate and analyze data that may be pertinent to the improvements that can be made on the project.

1. Assess Physical Conditions
 This assessment should include:
 a. Geometrics.
 b. Radius, length, and superelevation of curves.
 c. Typical shoulder treatments.
 d. Cross drain and structure locations.
 e. Location and design of intersections, etc.
 f. Existing cross slope and superelevation data.
 A review of old plans, as built drawings, Straight Line Diagrams, and other historical records will determine many of the existing conditions.

2. Assess Operating Conditions
 This assessment should include:
 a. A summary of legal posted speeds on the project.
 b. Drainage and Maintenance section’s verbal or written concerns of past, present and/or anticipated future problems.
 c. Conditions attributable to current control of access.

3. Assess Safety
 A review of historical crash and travel statistics must be performed by a qualified safety specialist. This assessment, with written recommendations, should include:
 a. Identification of significant crash locations, with:
 1) possible causes
 2) suggested corrective measures
 b. Review of correspondence files for letters of public concern.

 The designer must review the safety assessment, evaluate the cost effectiveness of suggested corrective measures and include these measures in the project when appropriate.
25.3.2.2 Field Reviews

A field review must be performed by a multi discipline team. This review should assess physical, operational and safety conditions.

1. Assess Geometric and Physical Conditions
 a. Verify office review findings.
 b. Check roadway features such as:
 1) alignment
 2) cross slope
 3) Superelevation
 4) lane width
 5) existing traffic control markings and signs
 6) side slopes
 7) clear zones
 8) shoulder type and width
 9) intersection elements
 10) sight distances
 11) drainage (including erosion problems)
 12) pavement condition
 13) highway appurtenances
 14) transit stops
 15) other features

2. Assess Operating Conditions.
 a. Verification of posted regulatory speeds.
 b. Verification of posted advisory speeds.
 c. Verification of reported problems.
 d. Observation of operating conditions.
 e. Evaluation of access features.

 a. Observation of known crash locations.
 b. Indications of unsafe operations, such as run-off-the-road indications or previous repairs.
25.3.3 Project Scopes

Utilizing the office and field review findings, prepare a final scope of work by incorporating, where appropriate, other work including engineering and surveying services not identified in the original scope. Improvements other than resurfacing, restoration or rehabilitation to be considered are listed below. The list is not all-inclusive.

1. Remove, relocate or make crashworthy roadside obstacles.
2. Remove unwarranted guardrail.
3. Upgrade or replace nonstandard guardrail.
4. Upgrade or replace nonstandard crash cushions.
5. Replace or retrofit obsolete bridge rails.
6. Improve side slopes; slope flattening/stabilizing.
7. Correct shoulder drop-off.
8. Pave shoulders.
9. Improve pavement cross slope and superelevation.
11. Increase sight distance at intersections.
12. Improve pavement markings.
13. Improve pavement drainage.
14. Provide or upgrade sidewalks, transit stops and bikeways.
15. Upgrade railroad crossings (see USC Title 23, Chapter 1, Section 109e and CFR 646.214(b)).
16. Provide or upgrade signalization.
17. Provide or upgrade lighting.
18. Upgrade signing and other traffic control devices.
19. Provide or upgrade curb cuts, ramps and other disability access features.
20. Reconstruct or close driveways to comply with Access Management standards.
25.3.4 Minimum Survey Guidelines for RRR Projects

25.3.4.1 Types of Work for RRR Projects

1. Mill and resurface only, EOP to EOP, no other improvements [Level 1].
2. Resurface with trench widening (Roadway only) [Level 1 if lump sum excavation].
3. Resurface adding turn lanes (spot improvements) [Level 2].
4. Resurface adding shoulder pavement [Level 2].
5. Combination of numbers 2-4 [Level 2].
6. Resurface with access management improvements [Level 2].
7. Resurface with cross slope and/or superelevation correction [Level 2].
8. Add shoulder pavement only [Level 2 or 3].
9. (E) Extend drainage structures [Level 3].
10. (E) Guardrail, end treatments, etc. (safety) [Level 2].
11. (E) Side drain closure; mitered ends [Level 3].
12. Intersection improvements [Minor = Level 2; Major = Level 3].
13. (E) Correct horizontal and/or vertical alignment [Level 3].
14. (E) ADA compliance [Level 2].
15. Approaches to structures [Level 4].
16. RRR with Right of Way acquisition [Level 3].

(E) = Element of an item

(See also Section 25.3.1.2)
25.3.4.2 Definition of Levels of Survey Effort

1. **LEVEL 1**

Review by District Surveyor to check for Public Land Corners. Check sections for cross slope at 1000 feet in tangents. For curves, check 50 feet before PC, at PC, 50 and 100 feet after PC and at middle of curve or 300 foot intervals. (Reverse at PT). May use assumed datum if approved by the District Location Surveyor and the Project Manager/Designer. The cross sections will have a common bench mark elevation throughout the curve. In other words, do not assume an elevation at the centerline of the highway for each cross section. A minimum of two (2) bench marks should be set off of the highway near the Right of Way (R/W) Line and may be on assumed elevations or NAVD 88 datum. If the surveyor elects to use temporary assumed bench marks, they must last throughout the life of construction and cannot be set in trees, power poles or concrete monuments. Establish begin and end points of project and reference.

2. **LEVEL 2**

Minor spot improvements such as turn lane at existing crossover, turn lane on 2-lane, etc. No additional Right of Way required. Where Right of Way is adequate, establish horizontal and vertical control in the improvement area. May use assumed vertical datum if approved by the District Location Surveyor and the Project Manager/Designer. The cross sections will have a common bench mark elevation throughout the curve. In other words, do not assume an elevation at the centerline of the highway for each cross section. A minimum of two (2) bench marks should be set off of the highway near the Right of Way Line and may be based on assumed elevations or NAVD 88 datum. If the surveyor elects to use temporary assumed bench marks, they must last throughout the life of construction and cannot be set in trees, power poles or concrete monuments. If Right of Way is constrained, re-establish existing R/W line. Level 1 required throughout other portions of project. Cross section level to be determined by Project Manager/Designer with input from the District Location Surveyor and Resident Engineer. TOPO with supplemental cross sections and/or elevations in area(s) of deficient criteria and/or proposed improvement(s). Reference control points outside R/W. Subsurface utility locates if required.

3. **LEVEL 3**

Continuous improvements through length of project such as widening and/or paved shoulder; or major spot improvements (structure replacement; major intersection improvement). May require Right of Way purchase. Horizontal
Control baseline, centerline or network. Vertical Control on NAVD 88. TOPO with supplemental elevations (limits to be determined). Digital Terrain Model (DTM) at specified locations. Right of Way Control Survey and Maps (if Right of Way purchased). Subsurface utility locates.

4. **LEVEL 4**

 Full Digital Terrain Model (DTM) and TOPO for entire project.

25.3.5 Review Project Plans

RRR design plans are reviewed by other disciplines including a safety specialist. These reviews are detailed in *Chapter 16* of this volume.

25.3.6 Document the Design Process

The designer must include in the design file all documentation that substantiates the design process and decisions made, including the following information:

1. A short paragraph which states the overall project purpose. Factors such as principal reason for the project, anticipated project cost, principal work type, general right of way needs or provisions, and any special project priorities are appropriately addressed here.

2. Documents that detail the existing conditions on the project. Findings of office reviews, field reviews and surveys are assembled here, to document existing geometric and roadside features, operating conditions, traffic volumes, posted speeds, existing pavement markings, signing, safety, etc. A brief overall summary of findings is recommended.

3. Document the selected standards based on project intent and conditions. When RRR criteria cannot be met, a Design Exception/Design Variation is required.

4. A summary of safety issues that have been identified for the project and the recommended solution of those issues.

5. Reviews of the project design for safety improvements, documenting what was finally accomplished or ruled out of the project subsequent to the scope of work having been completed.

6. Those items in the original scope of work for the project which cannot be reasonably accomplished and must be deleted or delayed.
25.4 RRR Design Criteria

Design values and decisions for roadway features should reflect the anticipated service life of the project. The designer has the responsibility to choose the specific design value to be used, taking into consideration its cost-effectiveness, which can range from the minimum RRR Criteria presented herein, to new construction criteria. Design values in the following sub-sections apply to RRR projects only. When specific values are not provided, the standards used in the original construction or subsequent enhancements may be retained except when an upgrade is identified in the project scope.

Designers are encouraged to make a deliberate selection of design values by explicitly addressing issues of safety cost-effectiveness, overall highway consistency in geometric design, design of adjoining segments and expected trends in traffic growth and truck use before specifying design values. The design values indicated in this chapter usually reflect a cost-effective basis for evaluating existing roadway characteristics to determine which features require upgrading.

The design values presented herein are the minimum to be used for a RRR project on the State Highway System without obtaining a Design Exception or Design Variation. See Section 25.5 of this Volume. Existing project features which were constructed to meet minimum metric design criteria, but are mathematically slightly less than equivalent minimum English design criteria, do not require Design Exceptions or Design Variations to remain.

25.4.1 Design Period

Improvements should be evaluated using a design period which is consistent with the design period selected for the pavement rehabilitation. The design period (service life) for RRR projects should be from 8 - 20 years for projects without milling and 12 - 20 years for projects with milling. See the Flexible Pavement Design Manual, Topic No. 625-010-002 for specific design periods. For skid hazard projects, where other improvements are not made, the design year is the expected year of construction.

25.4.2 Project Traffic Volume

The design year for traffic volume is the same design year as the year established for service life. Traffic data to be used for design:
AADT and DHV for mainline (current, post construction and design year),
1. K, D and T factors,
2. Peak turning movements at signalized and problem intersections and major traffic generators,
3. Movements for future traffic generators that are scheduled during the service life should be considered.

25.4.3 Pavement Design

The pavement design procedures are found in the Flexible Pavement Design Manual (Topic No. 625-010-002), the Rigid Pavement Design Manual (Topic No. 625-010-006), and the Pavement Type Selection Manual (Topic No. 625-010-005).

Alternative paving treatments such as patterned pavement may be used to accent the roadway in accordance with the Standard Specifications. Architectural pavers, however, must not be used on the traveled way of the State Highway System. See Section 2.1.6.1 of this Volume for additional requirements.

25.4.4 Design Speed

Most highway features are based on design speed. Design speed is a principal design control that regulates the selection of many of the project standards and criteria used to design a roadway project. Selection of the design speed must be logical for the type, location and operational conditions of the highway, and the design speed used should be consistent with comparable adjacent projects. Design speed must not be dictated by an isolated geometric feature.

Design speed should generally not be less than the legal posted speed. The design speed used in the original design of the highway should be used for RRR projects. However, there may be situations where the existing posted speed on the highway is different than that used in the original design of the highway. The decision to modify the posted speed limit after the construction of the original project was completed would have been made under the authority of the District Traffic Operations Engineer (DTOE). In this case, the selected design speed must be jointly approved by the District Design Engineer and the DTOE. This is to be documented on the Typical Section Package as described in Section 16.2.3 of this Volume. New project features and the correction of features having a significant crash history must be designed using a design speed equal to or greater than the posted speed and process Design Exceptions or Design Variations for those new design elements that do not meet the criteria for the higher speed. See Table 25.4.4.1 for further guidance.
Table 25.4.4.1 RRR Design Speed vs. Posted Speed

<table>
<thead>
<tr>
<th>Condition</th>
<th>Establishing the Proposed Project Design Speed (DS_p)</th>
</tr>
</thead>
</table>
| CASE 1 | Use the design speed used in the original design of the highway.
$DS_p = DS_o$ |
| CASE 2 | Use the design speed used in the original design of the highway unless a reduced design speed (not less than posted speed) is approved by the DDE and the DTOE.
$DS_p = DS_o$ |
| CASE 3 | Use the design speed used in the original design of the highway unless there is a significant crash history associated with a specific highway feature. If so, then the design speed used in correcting the feature must be equal to or greater than the posted speed. The posted speed must also be used as the design speed for any other new highway features (not replacements).
Special attention should be given to curb and gutter sections.
$DS_p = DS_o$ and
$DS_p = PS$ (for design of features that are new or have a significant crash history) |

CASE 1: The existing posted speed falls within an acceptable range of the original design speed. (i.e., $PS \leq DS_o \leq (PS + 10 \text{ mph})$) Example: $DS_o = 65\text{ mph}$ and $PS = 55\text{ mph}$.

CASE 2: The existing posted speed falls below an acceptable range of the original design speed. In a case like this, the posted speed was reduced, and the operational conditions have changed. (i.e., $DS_o > (PS + 10 \text{ mph})$) Example: $DS_o = 65\text{ mph}$ and $PS = 35\text{ mph}$.

CASE 3: The existing posted speed falls above an acceptable range of the original design speed. In a case like this, the posted speed was increased, and the operational conditions have changed. (i.e., $PS > DS_o$) Example: $DS_o = 50\text{ mph}$ and $PS = 60\text{ mph}$.

LEGEND
$DS_o =$ Design speed used in the original project
$DS_p =$ Proposed design speed for project
$PS =$ Existing (or proposed if different) posted speed

Regardless of the original design speed or posted speed, the following are the minimum design speeds:

1. Rural Facilities: 55 mph
2. Urban Facilities: 30 mph
3. Urban Facilities on SIS: 50 mph*

* For curb and gutter facilities where existing posted speed is 45 mph or less, a design speed of 45 mph may be used.

Note: Values for design speeds less than these minimums have been provided in the tables in this chapter in the event that lower design speeds can be justified. If reconstruction is indicated, the criteria used for design should be selected from Chapter 2 of this volume.
25.4.5 Lane and Shoulder Widths

The minimum lane and shoulder widths allowed are provided in Tables 25.4.5.1, 25.4.5.2, 25.4.5.3, and 25.4.5.4. The minimum widths shown in these tables are to allow existing lanes and shoulders to remain, not to be reduced to these widths unless the purpose is to provide a bicycle lane or increase the width of the outside lane for cyclists. See Section 25.4.19 for further information.

On resurfacing projects, when the original construction was in metric units, hard convert typical section dimensions where existing conditions permit. Exception: Use direct mathematical (soft) conversion for existing pavement widths in curbed sections, existing right of way widths, and existing median widths.

For interchange ramps, where accommodation of future resurfacing is a factor, consideration should be given to increasing the minimum combined width (traveled way + outside paved shoulder) to 24 ft. where practical.

Table 25.4.5.1 Lane and Shoulder Widths - Rural Multilane

<table>
<thead>
<tr>
<th>Design Year AADT</th>
<th>Design Speed (mph)</th>
<th>Minimum Lane Width (ft.)</th>
<th>Minimum Shoulder Width (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>12 – 12</td>
<td>6</td>
</tr>
</tbody>
</table>
1. 11 ft. for divided roadways with a Design Speed of 45 mph or less and in or within one mile of an urban area.

Table 25.4.5.2 Lane and Shoulder Widths

Two-Lane Rural and Urban, Without Curb and Gutter

<table>
<thead>
<tr>
<th>Design Year AADT</th>
<th>Design Speed (mph)</th>
<th>Minimum Lane Width (ft.)</th>
<th>Minimum Shoulder Width (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 750</td>
<td>ALL</td>
<td>10 – 10</td>
<td>6</td>
</tr>
<tr>
<td>751 – 2000</td>
<td>< 50</td>
<td>11 – 11</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>≥ 50</td>
<td>12 – 12</td>
<td>6</td>
</tr>
<tr>
<td>> 2000</td>
<td>ALL</td>
<td>12 – 12</td>
<td>6</td>
</tr>
</tbody>
</table>
1. For rural and urban projects without curb and gutter (regardless of traffic volume), when widening is required, a minimum lane width of 11 ft. is required.
2. May be reduced by 1 ft. if trucks ≤ 10% of design year traffic.
Table 25.4.5.3 Lane Widths
Urban Multilane or Two-Lane With Curb and Gutter

<table>
<thead>
<tr>
<th>Design Year AADT</th>
<th>Design Speed (mph)</th>
<th>Minimum Thru Lane (ft.)</th>
<th>Minimum Turn Lane (ft.)</th>
<th>Minimum Parking Lane (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>10</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>

1. 11 ft. where either of the following conditions exist:
 a. Trucks are >10% of Design Year Traffic.
 b. Design Speed is 40 mph or greater.

2. 10 ft. for 2-Way Left Turn Lanes.

3. A minimum width of 7 ft. measured from face of curb may be left in place. Otherwise provide 8 ft. minimum, measured from face of curb.

Table 25.4.5.4 Lane and Shoulder Widths
Urban Multilane Without Curb and Gutter

<table>
<thead>
<tr>
<th>Design Year AADT</th>
<th>Design Speed (mph)</th>
<th>Minimum Thru Lane (ft.)</th>
<th>Minimum Turn Lane (ft.)</th>
<th>Minimum Shoulder Width (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>10</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>

1. 11 ft. where either of the following conditions exist:
 a. Trucks are >10% of Design Year Traffic.
 b. Design Speed is 40 mph or greater

2. 10 ft. for 2-Way Left Turn Lanes.
25.4.6 Roadway Cross Slopes

Review the existing pavement and shoulder cross slopes for compliance with criteria. Field verify existing pavement and shoulder cross slopes by one of the following:

1. Full Digital Terrain Model for the roadway width – evaluate cross slope on tangent sections at 100’ intervals.

2. Vehicle Mounted Scanner – prior to design, using the results of the scan, determine roadway limits where cross slope is potentially out of tolerance and request Digital Terrain Model of the roadway width for these limits. Evaluate cross slope on tangent sections at 100’ intervals.

If cross slopes are out of tolerance, additional cross sections may be required by the designer to develop cross slope correction details and estimate material quantities. Whenever practical, pavement and shoulder cross slopes must be constructed to new construction criteria. When meeting new construction cross slope criteria is not practical, documentation in the design file is required and the normal non-superelevated cross slope used must be consistent with the values in Table 25.4.6 or Table 25.4.7. If existing conditions are within the allowable ranges, the term “Match Existing” must be used when the existing cross slope is to remain. Superelevation requirements are covered in Section 25.4.7 of this volume.

When cross slope correction is necessary, the designer must work closely with the Pavement Design Engineer and the District Bituminous Engineer to determine the appropriate method of correction and ensure constructability. Existing cross slopes for the limits where cross slope correction is required must be tabulated in the plans at 100’ intervals. Include special milling and layering details showing the method of correction in the plans (see examples in Chapter 6 of Volume 2). Cross sections depicting cross slope correction must not be shown in the plans. Base cross slope correction material quantities on the method of correction shown in milling and resurfacing details.
Table 25.4.6 Roadway Cross Slopes

<table>
<thead>
<tr>
<th>Facility or Feature</th>
<th>Standard</th>
<th>Allowable Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-Lane Roads</td>
<td>0.02</td>
<td>0.015-0.030</td>
</tr>
<tr>
<td>Multilane Roads</td>
<td>0.02</td>
<td>0.015-0.040</td>
</tr>
<tr>
<td>Shoulders</td>
<td>0.06</td>
<td>Adjacent Lane Cross Slope-0.080</td>
</tr>
<tr>
<td>Parking Lanes</td>
<td>0.05</td>
<td>0.015-0.050</td>
</tr>
</tbody>
</table>

The multilane standard cross slope value shown is applicable for up to two lanes in one direction. See Section 2.1.5 for additional guidance.

Existing multilane curb and gutter sections may have outside lanes with a maximum cross slope of 0.05.

Existing curb and gutter sections originally constructed with a parabolic crown section may be resurfaced using a series of tangents with a cross slope range from 0.015 to 0.05.

The maximum algebraic difference between adjacent through lanes must not exceed 0.06.

When existing shoulders are to remain, the algebraic difference between the shoulder slope and adjoining roadway pavement slope must be ≤ 0.07.

Parking spaces and access aisles dedicated to serving persons with disabilities must have cross slopes no steeper than 0.02 (1:50) in any direction.

Table 25.4.7 Freeway Cross Slopes

<table>
<thead>
<tr>
<th>Facility or Feature</th>
<th>Standard</th>
<th>Allowable Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel Lanes</td>
<td>0.02*</td>
<td>0.015-0.025</td>
</tr>
<tr>
<td>Travel Lanes</td>
<td>0.03*</td>
<td>0.025-0.035</td>
</tr>
</tbody>
</table>

* Applies to lanes as designated in Figure 2.1.1.

The algebraic difference in cross slope between adjacent travel lanes must not exceed 0.04. The maximum algebraic difference in cross slope between a through lane and an auxiliary lane at a turning roadway terminal must meet Table 2.1.4.

Paved shoulder cross slopes do not need to be corrected if they meet the values in Table 25.4.6 and the algebraic difference in cross slope between the shoulder and adjacent travel lane is 0.07 or less.
25.4.7 Superelevation

Roadway and shoulder superelevation should be provided in accordance with the Design Standards, Index 510 for rural curves and Index 511 for urban curves, consistent with Section 25.4.11.1, Number 2, Superelevation. When the existing superelevation does not meet the Design Standard requirements, conduct a safety study to determine if superelevation may be linked as the primary contributing factor to crashes in the curve. If superelevation can be linked to more than one crash in a five year period, superelevation correction is required.

For high speed facilities, including Interstate and toll facilities, superelevation correction is required except when both of the following conditions are met:

- Superelevation cannot be linked as a contributing factor to crashes in the curve.
- The existing superelevation rate (for the design speed and radius of the curve in question) is within the range of values for $e_{\text{max}} = 6\%$ and $e_{\text{max}} = 12\%$, provided in AASHTO’s figures for Minimum Radii for Design Superelevation Rates, Design Speeds.

When superelevation correction is required, detail how the transition from normal cross slope to superelevation is to be achieved. Since this type of work will often involve variable depth milling and/or asphalt layers, special care in estimating quantities for milling, overbuild, and structural courses will be necessary. Show cross sections depicting superelevation correction in the plans for the following locations:

1. At the PC and at the PT.
2. Fifty feet before and after the PC and PT.
3. At 300’ intervals within the curve.

25.4.8 Shoulder Treatment

On projects with rural type (without curb) construction, shoulder treatment, erosion control, turf and sod must be provided consistent with the criteria for new construction. Paved shoulders must be provided in accordance with new construction criteria with the following exceptions:

1. The widening of existing 4 ft. paved shoulders is optional.
2. When a bicycle lane is provided between the through lane and the right turn lane in accordance with Section 25.4.19, a paved shoulder should be provided for the...
right turn lane, but is optional. When a paved shoulder is provided for the right turn lane, it should be 5 feet wide (2 feet minimum) to address off-tracking vehicles and to provide drainage benefits.

For RRR projects using *Index 105* of the *Design Standards*, the shoulder treatment option must be identified in the plans. Treatment I can only be used if the shoulder is established with good soil and turf, and there is no significant shoulder erosion. If a project meets the overlay thickness requirements for Treatment I, but there is significant shoulder erosion, Treatment II must be used in the plans.

For new construction paved shoulder criteria, refer to *Chapter 2* of this Volume. Shoulder cross slope is addressed in *Section 25.4.6*.

25.4.9 Roadside Slopes

For roadside slope criteria see *Chapter 4* of this Volume.

25.4.10 Vertical Alignment

Vertical alignment must be reviewed together with the horizontal alignment to assure that the necessary balance of standards is realized and that the combination is both safe and pleasing.

The alignment should be reviewed to see if the following principles are generally satisfied by the existing vertical alignment:

1. The stopping sight distance provided meets or exceeds the values in *Table 25.4.12*.
2. Grades do not significantly affect truck operations.
3. There are no hidden dips which could obscure traffic or hazards.
4. Steep grades and sharp vertical curves do not exist at or near an intersection.
5. Sufficient grades and, when necessary, special gutter grades exist to adequately drain urban projects.
6. Adequate sight distance exists for traffic signals (e.g., beyond overpasses, etc.).

When any of the above conditions do not exist, the designer should evaluate for hazardous conditions and determine if corrective measures are warranted.
25.4.10.1 Vertical Curvature

Use the K Values provided in Table 25.4.10.1 to check the sufficiency of crest vertical curves. When crash data indicates that an evaluation is required, consider the following:

1. The nature of potential hazards hidden by a hill crest.
2. The location of the hazard in relation to the portion of the highway where sight distance falls below new construction criteria.
3. Effectiveness of other options such as relocating or correcting the hazard.
4. Providing warning signs.

Sag vertical curves do not normally pose sight distance problems, therefore only existing sag vertical curves where crash history (related to the curve) indicates a problem must be evaluated against new construction criteria. An evaluated sag vertical curve that does not meet the minimum K value in Table 2.8.6 requires a Design Exception to remain. Sag vertical curves that are to be reconstructed must meet new construction criteria. Sag vertical curves without crash problems that fall below new construction criteria do not require Design Exceptions or Design Variations to remain.
Table 25.4.10.1 K Values for Vertical Curvature

<table>
<thead>
<tr>
<th>DESIGN SPEED (mph)</th>
<th>K Values for Crest Curves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interstate</td>
</tr>
<tr>
<td>15</td>
<td>----</td>
</tr>
<tr>
<td>20</td>
<td>----</td>
</tr>
<tr>
<td>25</td>
<td>----</td>
</tr>
<tr>
<td>30</td>
<td>----</td>
</tr>
<tr>
<td>35</td>
<td>----</td>
</tr>
<tr>
<td>40</td>
<td>----</td>
</tr>
<tr>
<td>45</td>
<td>----</td>
</tr>
<tr>
<td>50</td>
<td>----</td>
</tr>
<tr>
<td>55</td>
<td>151</td>
</tr>
<tr>
<td>60</td>
<td>193</td>
</tr>
<tr>
<td>65</td>
<td>247</td>
</tr>
<tr>
<td>70</td>
<td>312</td>
</tr>
</tbody>
</table>

Length, \(L = KA \)

Where: \(K \) = Rate of vertical curvature
\(L \) = Length of vertical curve, (feet)
\(A \) = Algebraic difference in grades, (percent)

K values are based on an eye height of 3.5 feet and an object height of 2.0 feet.
25.4.10.2 Grades

Grades which satisfied the standards in effect at the time of construction may be used provided the result is consistent with the design principles in Section 25.4.10. Grades which are not consistent with these design principles must be evaluated.

25.4.11 Horizontal Alignment

Vertical and horizontal alignment must be reviewed together to assure that the necessary balance of standards is realized and the combination is both safe and pleasing.

The designer should review the alignment to identify that the existing alignment generally adheres to the following guidelines:

1. Consistent with no sudden changes from easy to sharp curvature.
2. Sufficient tangent length between reverse curves.
3. Superelevation transitions provided.
4. Maximum curvature is not used:
 a. On high fills or elevated structures.
 b. At or near crest in grade.
 c. At or near low points in grade.
 d. At the end of long tangents.
 e. At or near intersections or points of access or egress.
 f. At or near decision points.

At all locations where the existing alignment does not adhere to these conditions, the designer should evaluate for hazardous conditions and determine if corrective measures are warranted.
25.4.11.1 Horizontal Curves

Horizontal curves must be reviewed for horizontal curvature and superelevation. Review existing curves against the values in Table 25.4.11.1. Every practical attempt must be made to upgrade curves which are below State Highway System (SHS) minimum values for new construction. The review should also include an on-site review for evidence of near crashes or operational problems.

1. Horizontal Curvature

 Condition #1 - Horizontal curves that meet or exceed the SHS minimum radius values are satisfactory unless there is a significant crash history (3 or more crashes within the most recent 5-year) or other evidence of safety or operational problems. If problems are identified, include corrective measures in the project.

 Condition #2 - Curves which are below the SHS minimum radius values but meet or exceed the RRR minimum radius values must be reviewed for specific safety problems at the curve. If the review indicated significant operational or safety problems exist, the curve must be reconstructed. If problems are identified but reconstruction is not warranted, include corrective measures in the project.

 Condition #3 - Those curves which do not meet the RRR minimum radius values must be reconstructed or a Design Exception must be obtained. Reconstructed curves must meet the criteria for new construction contained in Chapter 2 of this Volume. Sufficient time and budget must be programmed into the RRR project to obtain any right of way necessary for reconstruction of the curve.

2. Superelevation

 Rural Curves - Existing rural curves not having the indicated superelevation rate on the Design Standards, Index 510 should be corrected to that rate. Provide other measures appropriate to correct or improve identified safety or operational problems.

 Urban Curves - Existing urban (C&G) curves not having the indicated superelevation rate on the Design Standards, Index 511 should be corrected to that rate by reconstruction of the curve or, if practical, curb adjustment to accommodate overbuild. Provide other measures appropriate to correct or improve identified safety or operational problems.

3. PIs Without Curves

Where alignments have PIs without curves that exceed the new construction values in Table 2.8.1 of this Volume, consideration should be given to reconstructing the roadway with suitable curvature.
Table 25.4.11.1 Safe Criteria for State Highway System
With Maximum Superelevation

<table>
<thead>
<tr>
<th>DESIGN SPEED (mph)</th>
<th>(e_{\text{max}} = 0.10)</th>
<th>(e_{\text{max}} = 0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SHS</td>
<td>RRR</td>
</tr>
<tr>
<td></td>
<td>(D_{\text{max}})</td>
<td>(R_{\text{min.}})</td>
</tr>
<tr>
<td>30</td>
<td>24° 45’</td>
<td>231</td>
</tr>
<tr>
<td>35</td>
<td>17° 45’</td>
<td>323</td>
</tr>
<tr>
<td>40</td>
<td>13° 15’</td>
<td>432</td>
</tr>
<tr>
<td>45</td>
<td>10° 15’</td>
<td>559</td>
</tr>
<tr>
<td>50</td>
<td>8° 15’</td>
<td>694</td>
</tr>
<tr>
<td>55</td>
<td>6° 30’</td>
<td>881</td>
</tr>
<tr>
<td>60</td>
<td>5° 15’</td>
<td>1091</td>
</tr>
<tr>
<td>65</td>
<td>4° 15’</td>
<td>1348</td>
</tr>
<tr>
<td>70</td>
<td>3° 30’</td>
<td>1637</td>
</tr>
</tbody>
</table>

25.4.12 Stopping Sight Distance

Stopping sight distance requirements are provided in Table 25.4.12.

Table 25.4.12 Stopping Sight Distance

<table>
<thead>
<tr>
<th>DESIGN SPEED (mph)</th>
<th>STOPPING SIGHT DISTANCE (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>80</td>
</tr>
<tr>
<td>20</td>
<td>115</td>
</tr>
<tr>
<td>25</td>
<td>155</td>
</tr>
<tr>
<td>30</td>
<td>200</td>
</tr>
<tr>
<td>35</td>
<td>250</td>
</tr>
<tr>
<td>40</td>
<td>305</td>
</tr>
<tr>
<td>45</td>
<td>360</td>
</tr>
<tr>
<td>50</td>
<td>425</td>
</tr>
<tr>
<td>55</td>
<td>495</td>
</tr>
<tr>
<td>60</td>
<td>570</td>
</tr>
<tr>
<td>65</td>
<td>645</td>
</tr>
<tr>
<td>70</td>
<td>730</td>
</tr>
</tbody>
</table>
25.4.13 Vertical Clearance

In addition to the requirements of Section 2.10, the following provisions apply:

Bridge Underpass Clearance - Maintain a minimum vertical clearance of 14 feet 6 inches through milling and resurfacing. In accordance with the *Traffic Engineering Manual, Section 2.6*, provide signing and warning features whenever bridge vertical clearance is less than 14 feet 6 inches.

Bridge Low Member Clearance – Contact the District Structures Design Engineer for further guidance if any sway bracing members over the bridge deck have a clearance of less than 14 feet.

25.4.14 Lateral Offset

For lateral offset criteria see Chapter 4 of this Volume.

25.4.15 Use of Curb on RRR Projects

See Section 4.2.7 of this Volume, for information regarding curbs and their placement. Additionally, refer to Section 2.16 of this Volume, concerning High Speed Urban and Suburban roadways.

25.4.16 Border

The minimum border width must be the greatest of the following:

1. The border width used in the original project.
2. The border width required to satisfy ADA accessibility standards.
3. 8 feet.

When right of way is being acquired for other reasons, the minimum border width must be that used for new construction projects; however, the minimum length of wider border width must be a segment of sufficient length to provide reasonable continuity.
25.4.17 Intersections

Evaluate intersections to determine those that need a traffic engineering study. The following items should be considered:

1. Traffic Signal Mast Arms or single point attachment span wires within the mast arm policy area (see Section 7.4.11 of this Volume) where existing strain poles require replacement/relocation.
2. Addition of right and left turning lanes.
3. Realignment of intersection.
4. Adequate turning radii for left and right turning lanes.
5. Use of channelization to reduce excessive areas of conflict at large intersections.
6. Placement of crosswalks as related to sidewalks and stop bars.
7. Locations of pedestrian, bicycle, and transit facilities.
8. Locations of utilities, signal poles, controller cabinets, lighting poles and drainage structures as related to sidewalks and curb ramps.
9. Warrants for traffic control systems.
10. Addition of signal backplates where it would not require structural modifications to mast arms or span wire systems.
11. Addition of auxiliary heads where it would not require structural modifications to mast arms or span wire systems.
12. Installation of buried conduit for future traffic control systems.
13. Lighting for intersection illumination.
15. ADA needs.

Include corrective measures in projects having T-intersections with significant crash histories (3 or more crashes of a specific type within the most recent 5-years) or other evidence of safety or operational problems.

When there are proposed changes in intersection control, a roundabout alternative must be considered. See Section 2.13.1 in this Volume for additional information.

Intersection improvements other than those necessary to address a safety need or to meet minimum design criteria must be carefully considered before inclusion in the project (see Section 25.2). The additional cost associated with improvements
requested by local governments that exceed FDOT criteria (e.g., installation of mast arm signal supports in areas beyond the mast arm policy area) should be paid for by the local government making the request.

25.4.18 Drainage

The designer or drainage specialist must evaluate the hydraulic, safety, and physical adequacies of the existing drainage system. This requires examination of the existing drainage in the field and by consulting with maintenance personnel and records. If there are apparent problems with the existing drainage system, additional evaluation is required to determine the extent and most cost effective improvements necessary to upgrade the system. The *FDOT Drainage Manual (Topic No. 625-040-002)* contains design criteria and methods which provide guidance in formulating suitable drainage features, either through modification or replacement.

For roadside safety requirements of drainage features, refer to *Chapter 4* of this Volume.

Prior to selecting any plan of highway improvement, the designer should consult with drainage and environmental permitting specialists since almost all roadway modifications reduce storage and infiltration and increase discharge rates and volumes. Stormwater retention and detention for quality, rate and volume may be required. Theoretical evaluation of proposed changes to existing and new drainage features necessary to correct operational deficiencies should be referred to a drainage specialist. The drainage specialist will provide the necessary drainage design, flood data information, drainage related information for the Stormwater Pollution Prevention Plan (SWPPP) and any stormwater permit computations.

If siltation is noted by the designer during field review they are to coordinate with Maintenance and indicate the severity of the siltation. If Maintenance is unable to perform desilting prior to construction consider adding desiltation of existing pipes to project.

Due to funding limitations, improvements other than those needed for safety and minimum criteria must be carefully considered before inclusion in the project (see *Section 25.2)*.
25.4.19 Pedestrian, Bicyclist and Transit Needs

Whenever a RRR project is undertaken, pedestrian and bicyclist needs must be addressed, and transit needs should be considered. Recommendations by the District Pedestrian/Bicycle Coordinator and the District Modal Development Office must be obtained; local government and transit agency contact in developing these recommendations is essential. This should be part of the project scoping and programming effort.

25.4.19.1 Pedestrian Needs

1. Sidewalks and Shared use Paths

On RRR projects, new or reconstructed sidewalks and shared use paths must meet the criteria provided in Chapter 8 of this Volume.

For existing sidewalks and shared use paths, detectable warnings and curb ramps must be brought into compliance with ADA requirements. This includes installing new detectable warnings for both flush shoulder and curbed roadway connections and signalized driveways where none exist or do not meet current requirements. Provide new curb ramps on curbed roadways where none exist; replace existing substandard curb ramps. Existing ramps not meeting detectable warning requirements which otherwise comply with ADA, must be retrofitted with detectable warnings. (See Design Standards, Indexes 304 & 310.) NOTE: If ADA complaints have been received concerning sidewalks or driveway turnouts within the project limits, the Project design must include upgrades to nonconforming elements of these facilities to meet the criteria in Design Standards, Indexes 304, 310, and 515.

Pull boxes, manholes, and other types of existing surface features in the location of a proposed curb ramp or detectable warning should be relocated when feasible. When relocation is not feasible, the feature must be adjusted to the new ramp to meet the ADA requirements for surfaces (including the provision of a non-slip top surface, and adjustment to be flush with and at the same slope as the curb ramp).

When compliance with ADA curb ramp requirements is determined to be technically infeasible documentation as a Design Variation is required. This may occur where existing right of way is inadequate and where conflicts occur with existing features that cannot be feasibly relocated or adjusted, e.g., drainage inlets, signal poles, pull boxes, etc.
Other than meeting detectable warning and curb ramp requirements, existing sidewalks and flared driveway turnouts are not required to be upgraded for the sole purpose of meeting ADA requirements, unless included in the project scope by the District. Design all new sidewalk and driveway construction or reconstruction on RRR projects in accordance with ADA requirements.

2. Medians

Evaluate medians to determine if modifications such as pedestrian refuge sections are necessary. 5-lane and 7-lane sections are restricted or eliminated under current policy, usually by the introduction of a raised or restrictive median, which enhances the opportunity to accommodate pedestrian needs. Traffic separators with a width sufficient to provide refuge should be used at intersections where possible. When adequate pedestrian refuge cannot be provided at the intersection, midblock islands should be provided.

Design details for disability access features including sidewalk, curb ramps and driveway turnouts are found in the Design Standards. Additional standards for ADA are found in the regulations and design guidelines issued by the Secretary of the U.S. Department of Transportation.

25.4.19.2 Bicyclist Needs

1. Buffered Bicycle Lanes, Bicycle Lanes, Paved Shoulders, Wide Outside Lanes and Shared Lanes

The available roadway width will be distributed, when practical, to provide for bicycle facilities. Bicycle facilities must meet the criteria provided in Chapter 8 of this Volume. The type of bicycle facility considered for implementation must be in the following order: buffered bicycle lanes, bicycle lanes, wide outside lanes, and shared lanes. Travel lane widths on urban multilane roadways and two-lane curb and gutter roadways must not be reduced to less than 11 feet for design speeds ≥ 40 mph, and to no less than 10 feet for design speeds ≤ 35 mph. See Section 25.4.5 for additional information on lane widths. Coordinate with the District Public Transportation (Modal Development) Office and local transit agency when considering the reduction of lane widths on roadways where public transit routes are present. Existing bicycle facilities not in accordance with Chapter 8 of this Volume, require a Design Variation to remain.
2. **Right Turn Lanes**

 Bicycle lanes at right turn lanes must meet the criteria provided in *Section 8.4.2* of this Volume.

3. **Drainage Inlets, Grates, Utility Covers**

 Evaluate existing drainage inlets, grates and utility covers to determine whether they present an obstruction to bicyclists, and should be relocated out of the cyclist’s path of travel. Drainage inlets, grates and utility covers to remain should be adjusted to be flush with the adjacent pavement surface, utilize a grate recommended for bicycle travel, and be marked as an obstruction. See the [MUTCD](http://example.com) and [Design Standards](http://example.com) for further information. Existing inlets, grates or covers which present gaps sufficient to trap the wheel of a bicycle should be referred to the Maintenance Office for remediation until the project is constructed.

25.4.19.3 Transit Needs

 A 5-foot wide (minimum) sidewalk that connects a transit stop or facility with an existing sidewalk or shared use path must be included to comply with ADA accessibility standards.

25.4.20 At-grade Railroad Crossings

 When highway improvements are undertaken that include at-grade railroad crossings, the physical and operational characteristics must be reviewed and upgraded to meet minimum standards. Recommendations must be made by the District Railroad Coordinator for incorporation into the project.

 See [Design Standards, Index 560](http://example.com) for minimum vertical alignment criteria.

 See Chapter 6 of this Volume and the [Design Standards](http://example.com) for additional information.

25.4.21 Aesthetics and Landscaping

 Landscaping, including median and intersection treatment, must be consistent with the criteria in this manual and the [Design Standards, Index 546](http://example.com). Landscape improvements are normally done in response to local government requests and may involve intergovernmental agreements to cover the cost of installation as well as maintenance.
Due to funding limitations, improvements other than those needed for safety and minimum criteria must be carefully considered before inclusion in the project (see Section 25.2).

See Chapter 9 of this Volume for additional information and requirements on landscaping.

25.4.22 Highway Lighting

Lighting may be installed at specific locations to improve safety. For example:

1. Reducing the effects of ambient light conditions.
2. Busy or high crash intersections.
3. Transit stops.
5. Car pool parking lots.
6. Pedestrian and bicycle crossings.
7. Ramp terminals.

Any lighting, existing or proposed, must be reviewed by the District Lighting Engineer to determine specific needs. Lighting must meet new lighting criteria, found in Chapter 7 of this Volume.

25.4.23 Highway Traffic Control Devices

Update traffic control devices such as signals, signing, and pavement markings as required to comply with the Manual on Uniform Traffic Control Devices, the Manual on Uniform Traffic Studies, the Department's Design Standards (excluding the structures of such traffic control devices per Section 25.4.26 of this Volume), and the ADA design guidelines issued by the Secretary of the U.S. Department of Transportation. The District Traffic Operations Engineer (or staff) must determine any new or additional devices required.
25.4.24 Bridges

On each project, a determination must be made as to whether an existing bridge should remain as is, be rehabilitated or be replaced. This determination should be made as early as practical due to the potential impact to the work program. Pavement resurfacing funds can only be used for minor bridge improvements such as rail retrofits and ADA improvements. Bridges that require major improvement or replacement must be programmed with the appropriate bridge program funds.

The determination of bridge improvement needs must be supported by an engineering analysis/report and be based on an assessment of the bridge’s structural and functional adequacy. The engineering report must include the project description, an operational impact evaluation, safety impacts, and a benefit/cost analysis. The safety impacts must include a detailed review of crash history, severity, contributing factors, etc. If the engineering analysis determines it is not feasible to bring the bridge in full compliance with minimum criteria, a Design Exception or Design Variation addressing the feature(s) not meeting criteria must be processed in accordance with Chapter 23 of this volume. The engineering analysis/report should be used to support the Design Exception or Design Variation.

If a bridge is found to be functionally obsolete but structurally sound, complete replacement is usually not warranted. For these type structures a full range of possible improvements must be considered, including improvements that enhance safety but do not necessarily bring the bridge into full compliance with minimum criteria. Improvements such as upgrading of connecting guardrail systems, approach roadway or shoulder widening, "Narrow Bridge Ahead" signing, or other appropriate feature modifications should be considered as appropriate. Widening of the structure itself, or rail retrofit, are also options that should be addressed. The designer should always review the Department’s work program to see if a structure is scheduled for replacement in the near future, before determining short term improvements.

If the structure is on the Strategic Intermodal System (SIS), the designer should also consider any improvements based on future alignment and possible lane additions required for an SIS corridor. For example: if a bridge is to be replaced, the corridor is on the SIS, and the project will be multi-laned in the future, the new bridge should be aligned to fit future typical sections.
25.4.24.1 Bridge Loading

See Section 26.17 of this Volume for load rating requirements.

25.4.24.2 Bridge Width

Bridges must meet or exceed the following clear width criteria. If lane widening is planned as part of the RRR project, the minimum useable bridge width must be determined using the width of approach lanes after widening.

<table>
<thead>
<tr>
<th>Design Year ADT</th>
<th>Minimum Usable Bridge Width (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNDIVIDED</td>
<td></td>
</tr>
<tr>
<td>0 - 750</td>
<td>Total width of approach lanes + 4</td>
</tr>
<tr>
<td>751 +</td>
<td>Total width of approach lanes + 8</td>
</tr>
<tr>
<td>DIVIDED</td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td>Total width of approach lanes + 5.5 (median separator) *</td>
</tr>
<tr>
<td></td>
<td>Total width of approach lanes + 6.5 (median barrier wall)**</td>
</tr>
<tr>
<td>ONE WAY BRIDGES</td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td>Total width of approach lanes + 6.5 (2.5 Lt. and 4.0 Rt.)</td>
</tr>
</tbody>
</table>

* 1.5 ft. median and 4 ft. outside shoulder
** 2.5 ft. median and 4 ft. outside shoulder

If widening is required, it must be in accordance with the Structures Design Guidelines and meet the geometric requirements for new construction.

25.4.24.3 Bridge Railing

For RRR requirements of bridge traffic railings, refer to Chapter 4 of this Volume.

25.4.24.4 Vertical Clearance

For vertical clearance requirements for bridges, refer to Section 25.4.13.
25.4.24.5 Considerations

When evaluating bridge replacement or widening, the following should be considered:

1. Cost of replacing the existing bridge with a wider bridge designed to new bridge criteria.
2. Cost of widening the existing bridge (if widening is practical), including life cycle costs of maintaining a widened bridge.
3. The number of crashes that would be eliminated by replacement or widening.
4. The hydraulic sufficiency and the risk of failure due to scour and/or ship impact as well as the consequences of failure.

25.4.24.6 Pier Protection

To assess the need for pier protection, refer to Chapter 4 of this Volume.

25.4.25 Roadside Safety Hardware

For RRR requirements of Roadside Safety Hardware, refer to Chapter 4 of this Volume.

25.4.26 Ancillary Structures (Sign, Signal, Lighting and ITS)

For the purposes of this section, existing sign, signal, lighting and ITS support structures (ancillary structures) on a project are classified into one of the following categories:

1. Existing Ancillary Structures Without Proposed Additional Loading: existing support structures left in place or existing support structures modified with equivalent (or smaller) components.

2. Existing Ancillary Structures With Proposed Additional Loading or Relocated Ancillary Structures: existing support structures modified with additional components, existing support structures modified with larger components, existing support structures whose proposed attachments produce loads on any component greater than the design loading and/or existing support structures relocated to another location.
Additionally, evaluations of ancillary structures are categorized as follows:

1. Condition Evaluation:
 A physical and functional assessment based on inspection data that includes damage, deterioration, or other potential defects that may cause a reduction in service life or design capacity.

2. Analytical Evaluation:
 A structural capacity analysis ranging from the review of structural plans, design calculations and shop drawings (if available) to a detailed structural analysis. Contact the District Structures Design Office (DSDO) for guidance on the extent of analysis required and for guidance on analyzing existing ancillary structures without plans, shop drawings, foundation depths, or design calculations.

Submit an Ancillary Structures Report to the District Structures Maintenance Engineer (DSME) and the District Structures Design Office (DSDO) containing the following information:

1. Listing of all ancillary structures within the project including the proposed disposition (remain in place, relocated, replaced, etc.)
2. Condition Evaluation for all ancillary structures within the project
3. Analytical Evaluation of all ancillary structures within the project that are proposed with additional loading and/or relocated
4. If required by the DSME, Analytical Evaluation of 50 year design life ancillary structures (overhead sign structures, high mast light poles, traffic mast arms and steel strain poles) that are proposed to remain in place without proposed additional loading.

Obtain written concurrence from the DSME on the EOR’s recommendations in the Ancillary Structures Report.
25.4.26.1 Analytical Evaluation Without Proposed Additional Loading

If a detailed Analytical Evaluation is required, evaluate the as-built capacity (no allowances for future loads) in accordance with the Structures Manual, Volume 3 including Appendix C. Report the Demand/Capacity (D/C) ratios and Combined Stress Ratios (CSRs). If all D/C ratios and CSRs are less than one, the structure meets FDOT structural requirements. If any D/C ratios or CSRs are greater than one, strengthening or replacement is required unless a Design Variation is approved.

Ancillary structures without proposed additional loading typically do not require analysis for fatigue (welds) or foundations; however, welding details and foundations should be checked in the Analytical Evaluation in situations where there is evidence of distress, instability, or the Structures EOR or DSME has reason to believe the capacity is in doubt.

25.4.26.2 Analytical Evaluation With Proposed Additional Loading or Relocated Structures

Provide a detailed Analytical Evaluation of the proposed structure with new structure criteria in accordance with the Structures Manual Volume 3 (without Appendix C). Report the D/C ratios and CSRs. If any D/C ratios or CSRs are greater than one, strengthening or replacement is required unless a Design Variation or Design Exception is approved as described below.

An approved Design Variation is required if the proposed structure fails to meet the new structure requirements in the Structures Manual Volume 3 (without Appendix C) but does meet the criteria in Structures Manual Volume 3 with Appendix C. An approved Design Exception is required if the proposed structure fails to meet the requirements in the Structures Manual Volume 3 including Appendix C.
25.5 Design Exceptions and Design Variations

Every effort should be made to adhere to the desirable criteria stated herein. However, under unusual conditions, it may be necessary and appropriate to use values that are less than the minimum values shown. If lesser values are proposed for use, these must be identified and the necessary approval and concurrence obtained at the earliest possible time, but not later than Phase II, so that the denial of any such request will not alter the project letting date. Refer to Chapter 23 of this Volume for the necessary procedure.