Index 20299 Build-Up and Deflection Data for Florida-U Beams (Rev. 07/15)

Design Criteria

AASHTO LRFD Bridge Design Specifications; Structures Detailing Manual (SDM); Structures Design Guidelines (SDG)

Design Assumptions and Limitations

Use this standard in conjunction with Indexes 20210, 20248, 20254, 20263 and 20272.

Unless otherwise required as a design parameter, beam camber for computing the theoretical build-up must be based on 120-day old beam concrete.

Consider the effects of horizontal curvature with bridge deck cross slope when determining the minimum theoretical build-up over the tip of the inside flange. Consider that the vertical curve geometry is along the effective alignment along a chord at the centerline of the beam, which may be different from the alignment parallel to the Profile Grade Line.

For a given size and type of beam, beam camber and associated Dim B and Dim D will vary due to span lengths and beam spacings. Dim B and Dim D will also vary from span to span along the length of a bridge due to deck geometry. To provide for better aesthetics and potentially easier detailing of the supporting pedestals, where possible adjust the values of Dim B and Dim D over equal height beams in adjacent spans so as to allow the beam bottom flanges to line up. Dim B and Dim D do not necessarily have to be the same value for a single beam. See the following sketch:
Plan Content Requirements

Complete the following "Build-Up and Deflection Data Table for Florida-U Beams" and include it on the superstructure detail sheets. See Introduction 1.3 for more information regarding use of Data Tables.

Plan Content Requirements

![Build-Up and Deflection Data Table for Florida-U Beams](image)

Payment

Include estimated build-up concrete quantities with the estimated deck concrete quantities. Do not break out estimated build-up concrete quantities.

In the absence of more refined calculations, the following method to calculate estimated concrete build-up quantities may be used:

For Case 1, 2 & 3

\[
V = \text{Left Flange + Right Flange: } \quad V = \frac{LW}{27} \left[C + \left(\frac{B + D - 2C}{6} \right) \right] + \frac{LW}{27} \left[C + \left(\frac{B + D - 2C}{6} \right) \right]
\]

For Case 4

\[
V = \text{Left Flange + Right Flange: } \quad V = \frac{LW}{27} \left[\left(\frac{B + D}{2} \right) + \left(\frac{2}{3} \left(C - \frac{B + D}{2} \right) \right) \right] + \frac{LW}{27} \left[\left(\frac{B + D}{2} \right) + \left(\frac{2}{3} \left(C - \frac{B + D}{2} \right) \right) \right]
\]

Where:

- \(V \) = Total Volume of build-up per beam (CY)
- \(L \) = Beam Length (ft)
- \(W \) = Width of beam top flange (ft)
- \(B; C; D \) = Build-up Thickness (ft)