Index 20210 Series Florida-U Beams (Rev. 07/15)

Design Criteria

AASHTO LRFD Bridge Design Specifications; Structures Detailing Manual (SDM); Structures Design Guidelines (SDG)

Design Assumptions and Limitations

Index 20210 is the lead standard for the Florida-U Beam standard series which includes Indexes 20210 through 20272. Use this standard with Indexes 20248, 20254, 20263, 20272, 20299 and 20502.

The standard Florida-U Beams are applicable for spans with skewed end conditions less than or equal to 15 degrees. For beams with skewed end conditions greater than 15 degrees the EOR shall develop a custom design and details using the standards as a basis.

These standards must be supplemented with project specific information including a Table of Beam Variables, Strand Pattern Details and a Strand Debonding Legend which must be completed and included in the Structures Plans. These standards and the supplemental project specific information that is included in the plans provide sufficient information to permit beam fabrication without the submittal of shop drawings.

Data tables for associated Indexes 20299 and 20502 must also be completed and included in the plans.

Florida-U Beams are typically placed parallel to the cross slope of the bridge deck.

The prestressed beams in these Standard Drawings are generally assumed to act as simple spans under both Dead Load and Live Load even where the deck is detailed to be continuous across the intermediate supports.

When the total initial tensioning force of the fully bonded strands required by design exceeds the values shown below, shield additional strands at the end of the beam when possible. The end reinforcement may only be redesigned to accommodate an increased vertical splitting force when approved by the State Structures Design Office. If approval is granted, Index 20210 and the appropriate Standard Detail Drawings must then be modified for inclusion in the contract documents and signed and sealed by the EOR.

To limit vertical splitting forces in the webs of beams, the maximum prestress force at the beam ends from fully bonded strands must be limited to the following:

<table>
<thead>
<tr>
<th>Index No.</th>
<th>Beam Type</th>
<th>Max. Bonded Prestress Force</th>
<th>Last Revision Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>20248</td>
<td>Florida-U 48</td>
<td>2790 Kips</td>
<td>07/01/05</td>
</tr>
<tr>
<td>20254</td>
<td>Florida-U 54</td>
<td>2790 Kips</td>
<td>07/01/05</td>
</tr>
<tr>
<td>20263</td>
<td>Florida-U 63</td>
<td>3070 Kips</td>
<td>07/01/05</td>
</tr>
<tr>
<td>20272</td>
<td>Florida-U 72</td>
<td>3070 Kips</td>
<td>07/01/05</td>
</tr>
</tbody>
</table>

Stay-In-Place Metal Forms are required to be used to form the deck within the individual Florida-U Beams.
Due to the absence of external end diaphragms between individual Florida-U Beams, a thickened deck edge beam at deck expansion joints is required to support wheel loads. Generally, the depth of the Edge Beam shall extend from the top of the deck to the bottom face of the top flanges of the Florida-U Beams.

Plan Content Requirements

In the Structures Plans:

Complete the following "FLORIDA-U BEAM - TABLE OF BEAM VARIABLES" and include it in the plans. Use additional sheets when the actual number of beams or strand patterns exceeds the capacity of a single plan sheet using the standard table. Supplemental details and modifications are permitted if special conditions require dimensions, details or notes. However, the "FLORIDA-U BEAM - TABLE OF BEAM VARIABLES" itself should not be modified. See Introduction I.3 for more information regarding use of Data Tables.

Place strands in configurations to distribute stress in the ends of beams and minimize potential for diaphragm cracking.

Report elastic and time dependent shortening effects (DIM R) at the top of the beam @ 120 days. The average of the calculated values for the top and bottom of the beam may be used.

Report DIM P for beams placed on grade if the calculated value is equal or greater than 1" using ¼" increments.

Round Angle Φ up to the nearest degree.

Specify shear stirrup spacings V1 and V2 for Bars 5K to the nearest inch.

Show fully bonded strands in the following locations to support Bars D:

Prepare a Framing Plan for bridges meeting the criteria stated in the SDM.

Show Stay-In-Place Metal Form details for the forms within the individual Florida-U Beams.

Design and detail a thickened deck edge beam at deck expansion joints between individual Florida-U Beams.
FLORIDA-U BEAM - TABLE OF BEAM VARIABLES

<table>
<thead>
<tr>
<th>TABLE 101-008</th>
<th>END OF BEAM AND BEARING DIMENSIONS **</th>
<th>BEAM DIMENSIONS *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>END 1</td>
<td>END 2</td>
</tr>
<tr>
<td></td>
<td>DIM F</td>
<td>DIM J</td>
</tr>
</tbody>
</table>

** NOTE: **
- Work this sheet with Design Standards Index Nos. 20210, 20212, 20214, 20215, and 20217.
- All longitudinal beam dimensions shown on this sheet with a single asterisk (*) are measured along the top of beam at the centerline of beam.
- End of beam bearing dimensions "F" and "K" are measured along the bottom of the beam.

BEARING PLATES
- Mark indicator beams, bearing plates and embedment bearing plate required. See Index No. 20212 for details.

STRAND DEBONDING LEGEND
- - fully bonded strands.
- - strands debonded "-" from end of beam.
- - strands debonded "-" from end of beam.
- - strands debonded "-" from end of beam.

DIMENSION NOTES
- On beams with skewed ends the debonded length shall be measured along the shortest strand.

STRAND DESCRIPTION
- Use __________________ Diameter, Grade ______________________ strands stressed at __________________ kips each. Area per strand equals __________ sq. in.

STRAND PATTERN
- 25 Spaces @ 7
Payment

<table>
<thead>
<tr>
<th>Item number</th>
<th>Item description</th>
<th>Unit Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>450-4-AAA</td>
<td>Prestressed Beam - FL U-Beam</td>
<td>LF</td>
</tr>
</tbody>
</table>

Example Problem

The following example shows the data required for completion of a Florida-U Beam Table of Beam Variables. The example assumes a two span bridge with Florida-U 72 Beams designed for the following conditions:

Live Load: HL-93

Future Wearing Surface: Design includes allowance for 15 PSF.

Stay-in-Place Metal Forms: Design includes allowance for 20 PSF non-composite dead load over the projected plan area of the forms for the unit weight of metal forms and concrete required to fill the form flutes.

Environment (Superstructure): Moderately Aggressive

Bridge Characteristics:

- Length: 249'-4"
- Width: 59'-1" (out-to-out)
- Clear Roadway: 56'-0"

Superstructure:

- Two simple spans of prestressed concrete beams with 8-inch composite deck slab
- Span: 124'-8", 124'-8"
- Sidewalk: None
- Horizontal Alignment: Straight
- Vertical Alignment: 0.00% Grade
- Skew Angle: 0 degrees

Beam Design:

- Beam: Florida-U 72 Beam
- Spacing: 21'-0"
- Design Span Length: 122'-4"

Composite Dead Load

(per girder): 603 PLF
Non-Composite Dead Load:
 124'-8" Span: 4163 PLF

Diaphragm Dead Load:
 End: 8.6 kips each
 Intermediate: 4.3 kips each

Bonded Strand Development Multiplier = 1.60

Tension Stress Limits at Release as per *SDG* Live Load Distribution Factors (interior beam):
 Shear: 1.50
 Moment: 1.50
Sample Drawing
Design Aids

Florida-U Beam Estimated Maximum Span Lengths

Moderately Aggressive Environment, FDOT Limits with 8.5 ksi Concrete

Chart Design Assumptions:
- interior beam design
- moderately aggressive corrosive conditions
- beam concrete strength: 8.5 ksi @ final
- 6.0 ksi @ release
- deck concrete strength: 4.5 ksi @ final
- 4 beams in bridge section
- 2’-32” F Shape barriers applied and distributed evenly over all beams
- 8 inch composite bridge deck with additional non-structural 1/2” sacrificial surface
- 20 psf S-I-P form weight applied
- 1 inch structural build-up applied (min. required for 2% cross slope)
- 0.1 kips/ft applied per beam for additional misc. dead loads including build-up
- HL-93 Live Load applied
- FDOT Standard splitting/bursting reinforcement used
- FDOT SDG criteria regarding splitting, degrading, and stress limits are followed
- Spans shown are bearing to bearing
- 0.8’-270K Low Lax Strands used

Beam Spacing (ft.)

Max Beam Span (ft.)

- Florida-U 72 Beam
- Florida-U 63 Beam
- Florida-U 54 Beam
- Florida-U 48 Beam

Diagram Details:

- Span lengths for different beam spacings and beam types
- Assumptions for FDOT criteria
- Concrete strength considerations
- Load distribution and applied weights
- Structural design considerations
- Bridge deck and barrier application
Florida-U Beam Estimated Maximum Span Lengths
*Extremely Aggressive Environment, FDOT Limits with 8.5 ksi Concrete

Chart Design Assumptions:
- Interior beam design
- Extremely aggressive corrosive conditions
- Beam concrete strength: 8.5 ksi @ final
- 6.0 ksi @ release
- Deck concrete strength: 4.5 ksi @ final
- 4 beams in bridge section
- 2'-32' F Shape barriers applied and distributed evenly over all beams
- 8 inch composite bridge deck with additional non-structural 1/2" sacrificial surface
- 20 psf S-I-P form weight applied
- 1 inch structural build-up applied
 (min. required for 2% cross slope)
- 0.1 kpsi applied per beam for additional miscellaneous dead loads including build-up
- HL-93 Live Load applied
- FDOT Standard splitting/bursting reinforcement used
- FDOT SDG criteria regarding splitting, debonding, and stress limits are followed
- Spans shown are bearing to bearing
- 0.8'170K Low Lex Strands used

<table>
<thead>
<tr>
<th>Span (ft.)</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUB 48"</td>
<td>120</td>
<td>116</td>
<td>111</td>
<td>106</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUB 54"</td>
<td>128</td>
<td>123</td>
<td>118</td>
<td>113</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUB 63"</td>
<td>143</td>
<td>138</td>
<td>133</td>
<td>128</td>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUB 72"</td>
<td>157</td>
<td>149</td>
<td>143</td>
<td>138</td>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Florida-U Beam 72 Beam
Florida-U Beam 63 Beam
Florida-U Beam 54 Beam
Florida-U Beam 48 Beam
FUB-48 Section Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (in.²)</td>
<td>1,206</td>
</tr>
<tr>
<td>Ixx (in.⁴)</td>
<td>321,222</td>
</tr>
<tr>
<td>Iyy (in.⁴)</td>
<td>905,815</td>
</tr>
<tr>
<td>yt (in.)</td>
<td>28.53</td>
</tr>
<tr>
<td>yb (in.)</td>
<td>19.47</td>
</tr>
</tbody>
</table>

![FLORIDA-U 48 Beam (INDEX 20248)](image)

FUB-54 Section Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (in.²)</td>
<td>1,275</td>
</tr>
<tr>
<td>Ixx (in.⁴)</td>
<td>439,370</td>
</tr>
<tr>
<td>Iyy (in.⁴)</td>
<td>1.026 x 10⁶</td>
</tr>
<tr>
<td>yt (in.)</td>
<td>31.99</td>
</tr>
<tr>
<td>yb (in.)</td>
<td>22.01</td>
</tr>
</tbody>
</table>

![FLORIDA-U 54 Beam (INDEX 20254)](image)

FUB-63 Section Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (in.²)</td>
<td>1,377</td>
</tr>
<tr>
<td>Ixx (in.⁴)</td>
<td>659,103</td>
</tr>
<tr>
<td>Iyy (in.⁴)</td>
<td>1.222 x 10⁶</td>
</tr>
<tr>
<td>yt (in.)</td>
<td>37.08</td>
</tr>
<tr>
<td>yb (in.)</td>
<td>25.92</td>
</tr>
</tbody>
</table>

![FLORIDA-U 63 Beam (INDEX 20263)](image)
FLORIDA-U 72 Beam
(INDEX 20272)

<table>
<thead>
<tr>
<th>FUB-72 SECTION PROPERTIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (in.²)</td>
</tr>
<tr>
<td>Ixx (in.⁴)</td>
</tr>
<tr>
<td>Iyy (in.⁴)</td>
</tr>
<tr>
<td>yt (in.)</td>
</tr>
<tr>
<td>yb (in.)</td>
</tr>
</tbody>
</table>