Index 20010 Series Prestressed Florida-I Beams (Rev. 07/15)

Design Criteria

AASHTO LRFD Bridge Design Specifications; Structures Detailing Manual (SDM); Structures Design Guidelines (SDG)

Design Assumptions and Limitations

Index 20010 is the lead standard for the Prestressed Florida-I Beam standard series which includes Indexes 20010 through 20096. Use this standard with Indexes 20005, 20036, 20045, 20054, 20063, 20072, 20078, 20084, 20096, 20199, 20510, and 20511 or 20512.

These standards must be supplemented with project specific information including a Table of Beam Variables, Strand Pattern Details and a Strand Debonding Legend which must be completed and included in the Structures Plans. These standards and the supplemental project specific information that is included in the plans provide sufficient information to permit beam fabrication without the submittal of shop drawings.

Data tables for associated Indexes 20005, 20199, 20510, and 20511 or 20512 must also be completed and included in the plans.

The use of End Diaphragms is not preferred on simple span, pretensioned, Florida-I Beam structures. In lieu of End Diaphragms, the preferred detail is a Thickened Slab End at all locations of slab discontinuity. Where End Diaphragms are required by design or for widening projects, partial depth diaphragms are preferred. See SDM Chapter 15 for suggested details.

Except for widening projects where special details may be required, squared beam ends are preferred on all Florida-I Beam structures.

The prestressed beams in these Standard Drawings are generally assumed to act as simple spans under both Dead Load and Live Load even where the deck is detailed to be continuous across the intermediate supports or back-to-back diaphragms are present. For detailing purposes, Prestressed Florida-I Beams are assumed to be erected plumb.

When the total initial tensioning force of the fully bonded strands required by design exceeds the values shown below, shield additional strands at the end of the beam when possible. The end reinforcement may only be redesigned to accommodate an increased vertical splitting force when approved by the State Structures Design Office. If approval is granted, Index 20010 and the appropriate Standard Detail Drawings must then be modified for inclusion in the contract documents and signed and sealed by the EOR.

To limit vertical splitting forces in the webs of beams, the maximum prestress force at the beam ends from fully bonded strands must be limited to the following:
Index No. Beam Type Max. Bonded Prestress Force Last Revision Date
20036 Florida-I 36 1450 Kips 07/01/09
20045 Florida-I 45 1670 Kips 07/01/09
20054 Florida-I 54 1740 Kips 07/01/09
20063 Florida-I 63 1740 Kips 07/01/09
20072 Florida-I 72 1980 Kips 07/01/09
20078 Florida-I 78 2230 Kips 07/01/09
20084 Florida-I 84 2375 Kips 07/01/10
20096 Florida-I 96 2375 Kips 07/01/10

Do not apply losses when calculating the Bonded Prestress Force.

Embedded Bearing Plates are required for all beams. If the beam grade exceeds 2%, provide Beveled Bearing Plates at each end of the beam as shown in Index 20511 or Index 20512.

Prestressed Beam Suppliers typically utilize side forms for casting which are not easily or economically modified. If modifications to beam cross-sections are required for any reason other than haunched sections, maintain profile dimensions of the form. For example: To thicken the web, increase the spacing between side forms. To increase the beam height, increase the thickness of the top flange. In any case, do not reduce the standard thickness of either the top or bottom flange.

See additional instructions in the SDG.

Plan Content Requirements

In the Structures Plans:

Complete the following "FLORIDA-I BEAM - TABLE OF BEAM VARIABLES" and include it in the plans. Use additional sheets when the actual number of beams or strand patterns exceeds the capacity of a single plan sheet using the standard table. Supplemental details and modifications are permitted if special conditions require dimensions, details or notes. However, the "FLORIDA-I BEAM - TABLE OF BEAM VARIABLES" itself should not be modified. See Introduction I.3 for more information regarding use of Data Tables.

Report elastic and time dependent shortening effects (DIM R) at mid-height of the beam @ 120 days. The average of the calculated values for the top and bottom of the beam may be used.

Report DIM P for beams placed on grade if the calculated value is equal or greater than 1” using ½” increments. Also consider the effect of beam end rotations for Florida-I 84 and 96 beams, if significant. Different “P” dimensions at each end may be necessary for accommodating these effects, which will require modifying the "FLORIDA-I BEAM - TABLE OF BEAM VARIABLES" using suggested DIM P1 and DIM P2.

Show strands in the outermost positions of the two lowest rows to support Bars D.

Round Angle Φ up to the nearest degree.
Specify shear stirrup spacing V1 for Bars 5K to the nearest inch.

Prepare a Framing Plan for bridges meeting the criteria stated in the *SDM*.

When diaphragms are required by design, show them on the Framing Plan. Tabulate insert locations with respect to the beam ends and beam faces. Include length adjustments for beams placed on grade and for elastic and time dependent shortening effects. See *SDM* Chapter 15 for preferred diaphragm and reinforcing details.

For bridge widenings where beam ends are encased in full height diaphragms and the diaphragms are to be extended, modify Index 20010 and the appropriate Index associated with the specific beam height and include them in the plans as follows:

- Modify the Design Standards in accordance with Method 1, Method 2 or Method 3 as defined in the *Terms Of Use* for the Borderless DGNs provided in the Design Standards eBooklet.
- Remove all notes, call-outs and details regarding cutting the strands and coating the ends of the beams with epoxy.
- Insert all notes, call-outs and details to ensure proper placement of Bars 4L as shown in the 2010 Design Standards Interim Dated 01/01/10 (Effective Date: July 1, 2010). Detail the number of bars, bar locations and bar bending diagrams.
Florida-I Beam - Table of Beam Variables

<table>
<thead>
<tr>
<th>Location</th>
<th>Concrete Properties</th>
<th>28 Day</th>
<th>Prestressed Florida-I Beams</th>
<th>Reinforcing Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Span No.</td>
<td>Beam Type</td>
<td>Dimensions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Strand Bonding Legend
- **Symbol**: Indicates bonding status
- **Type**: Fully bonded strands
- **Legend**: Bonded length from end of beam

Dimension Notes
- Ensure all dimensions are measured accurately.
- Bonded lengths are measured from the end of the beam.

Bearing Plates
- Refer to the Bearing Plate Data Table for additional details.
Payment

<table>
<thead>
<tr>
<th>Item number</th>
<th>Item description</th>
<th>Unit Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>450-2-AAA</td>
<td>Prestressed Beams: Florida-I Beam</td>
<td>LF</td>
</tr>
</tbody>
</table>

Example Problem

The following example shows the data required for completion of a Florida-I Beam Table of Beam Variables. The example assumes a three span bridge with Florida-I 45 Beams designed for the following conditions:

Live Load: HL-93

No intermediate Diaphragms

Stay-in-Place Metal Forms:

Allowance of 20 PSF non-composite dead load over the projected plan area of the forms (this includes the unit weight of metal forms and the concrete required to fill the form flutes).

Environment (Superstructure): Moderately Aggressive

Bridge Characteristics:

Length: 276 ft.
Width: 51'-1" (out-to-out)
Clear Roadway: 48 ft.

Superstructure:

Three simple spans of prestressed concrete beams with 8-inch composite deck slab (plus \(\frac{1}{2} \)" sacrificial deck thickness)

Span: 87'-0", 102'-0", 87'-0"

Sidewalk: None

Horizontal Alignment: Straight

Vertical Alignment: 0.00% Grade

Skew Angle: 15 degrees (Right)

Beam Design:

Beam: Florida-I 45 Beam

Spacing:

11'-3", 87' Span (5 Beams)
9'-0", 102' Span (6 Beams)

Design Span Length:

84'-6" (Spans 1 & 3)
99'-8" (Span 2)
Sample Drawing

Florida-I Beam - Table of Beam Variables

<table>
<thead>
<tr>
<th>Location</th>
<th>Concrete Properties</th>
<th>Reinforcing Steel</th>
<th>Sp. Bar</th>
<th>No. of Spacing Bars</th>
<th>Span No.</th>
<th>Concrete Class</th>
<th>Steel Type</th>
<th>No. of Level</th>
<th>Beam Type</th>
<th>Plan View Case</th>
<th>Length of Beam & Bearing Dimensions</th>
<th>Beam Dimensions</th>
<th>Bearing Plates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1.0 45</td>
<td>V 4500 5000</td>
<td>E 1 2 3 4</td>
<td>A B</td>
<td>1 2 3 4</td>
</tr>
</tbody>
</table>

Diagram:

- **Type 1:** 35 Strands
- **Type 2:** 32 Strands

Strand Description: Use 0.8 Diameter, Grade 750, Low Relaxation Strands stressed at 64 kips each. Area per strand equals 0.217 sq. in.

Strand Patterns:

- Fully bonded strands
- Strands debonded 10'-0" from end of beam
- Strands debonded 20'-0" from end of beam
- Strands debonded 25'-0" from end of beam

Note: In beams with dented ends, the debonded length shall be measured along the sloping strands.

Design Notes:

- All longitudinal beam dimensions shown on this sheet with a single arrow (+) are measured along the centerline of beam. Dimension "W" is calculated at mid-height of the beam.

End Beam Bearing Dimensions (F1 and F4) are measured perpendicular to the bearing along the bottom of the beam.

BearinG Plates:

- See the Bearing Plate Data Table for details.

Revision History:

- Issue Date: 07/15
- Series: Florida-I Beams
- Index: 20010
- Date: 2016
AASHTO Type II and Florida-I Beam Estimated Maximum Span Lengths

*Extremely Aggressive Environment, FDOT Limits with 8.5 ksi Concrete

Chart Design Assumptions:
- Interior beam design
- Extremely aggressive corrosive conditions
- Beam concrete strength: 8.5 ksi @ final
- Deck concrete strength: 4.5 ksi @ final
- 6 beams in bridge section
- 2” x 32” F Shape barriers applied and distributed evenly over all beams
- 8 inch composite bridge deck with additional non-structural 1/2” sacrificial surface
- 20 psf S-1 P form weight applied
- 1 inch structural build up applied [min. required for 2% cross slope]
- 0.1 kip/ft applied per FIB or 0.025 kip/ft for Type II Beam for additional mis.
- Dead loads including build up
- HL-93 Live Load applied
- FDOT Standard splitting/bursting reinforcement used
- All revised FDOT 2009 SDG criteria regarding splitting, debonding, and stress limits are followed
- Spans shown are bearing to bearing
- 0.6’-270K Low Lax Strands used
AASHTO Type II and Florida-I Beam Estimated Maximum Span Lengths

*Moderately Aggressive Environment, FDOT Limits with 8.5 ksi Concrete

Chart Design Assumptions:
- Interior beam design;
- Moderately aggressive corrosive conditions;
- Beam concrete strength: 8.5 ksi @ final;
- Deck concrete strength: 6.0 ksi @ release;
- Deck weight applied per FIB or 0.025 kip/ft for Type II beam for additional min. dead loads including build-up;
- HL-93 Live Load applied;
- FDOT Standard splitting/bursting reinforcement used;
- All revised FDOT 2009 SDG criteria regarding splitting, debonding, and stress limits are followed;
- Spans shown are bearing to bearing;
- 0.6-270K Low Lax Strands used.

Beam Spacing (ft.)

Max Beam Span (ft.)

FIB 96" - 208
FIB 84" - 191
FIB 78" - 182
FIB 72" - 173
FIB 63" - 155
FIB 54" - 142
FIB 45" - 126
FIB 36" - 105

4 6 8 10 12

82 72 63 56 50

85 103 110 124 129

105 117 132 145 155

110 124 137 145 155

118 129 137 145 155

147 155 164 172 188

161 164 172 181 198

172 181 191 208 226

210 200 190 180 170

8

AASHTO Type II

Spans

AASHTO Type II and Florida-I Beam Estimated Maximum Span Lengths

*Moderately Aggressive Environment, FDOT Limits with 8.5 ksi Concrete

Chart Design Assumptions:
- Interior beam design;
- Moderately aggressive corrosive conditions;
- Beam concrete strength: 8.5 ksi @ final;
- Deck concrete strength: 6.0 ksi @ release;
- Deck weight applied per FIB or 0.025 kip/ft for Type II beam for additional min. dead loads including build-up;
- HL-93 Live Load applied;
- FDOT Standard splitting/bursting reinforcement used;
- All revised FDOT 2009 SDG criteria regarding splitting, debonding, and stress limits are followed;
- Spans shown are bearing to bearing;
- 0.6-270K Low Lax Strands used.

Beam Spacing (ft.)

Max Beam Span (ft.)

FIB 96" - 208
FIB 84" - 191
FIB 78" - 182
FIB 72" - 173
FIB 63" - 155
FIB 54" - 142
FIB 45" - 126
FIB 36" - 105

4 6 8 10 12

82 72 63 56 50

85 103 110 124 129

105 117 132 145 155

110 124 137 145 155

118 129 137 145 155

147 155 164 172 188

172 181 191 208 226

210 200 190 180 170

8

AASHTO Type II

Spans
FIB-36 SECTION PROPERTIES

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (in.²)</td>
<td>806.58</td>
</tr>
<tr>
<td>Perimeter (in.)</td>
<td>206.57</td>
</tr>
<tr>
<td>Ixx (in.⁴)</td>
<td>127,545</td>
</tr>
<tr>
<td>Iyy (in.⁴)</td>
<td>81,070</td>
</tr>
<tr>
<td>yt (in.)</td>
<td>19.51</td>
</tr>
<tr>
<td>yb (in.)</td>
<td>16.49</td>
</tr>
</tbody>
</table>

FIB-45 SECTION PROPERTIES

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (in.²)</td>
<td>869.58</td>
</tr>
<tr>
<td>Perimeter (in.)</td>
<td>224.57</td>
</tr>
<tr>
<td>Ixx (in.⁴)</td>
<td>226,581</td>
</tr>
<tr>
<td>Iyy (in.⁴)</td>
<td>81,327</td>
</tr>
<tr>
<td>yt (in.)</td>
<td>24.79</td>
</tr>
<tr>
<td>yb (in.)</td>
<td>20.21</td>
</tr>
</tbody>
</table>

FIB-54 SECTION PROPERTIES

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (in.²)</td>
<td>932.58</td>
</tr>
<tr>
<td>Perimeter (in.)</td>
<td>242.57</td>
</tr>
<tr>
<td>Ixx (in.⁴)</td>
<td>359,929</td>
</tr>
<tr>
<td>Iyy (in.⁴)</td>
<td>81,584</td>
</tr>
<tr>
<td>yt (in.)</td>
<td>29.96</td>
</tr>
<tr>
<td>yb (in.)</td>
<td>24.04</td>
</tr>
</tbody>
</table>
FIB-63 SECTION PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (in.²)</td>
<td>995.58</td>
</tr>
<tr>
<td>Perimeter (in.)</td>
<td>260.57</td>
</tr>
<tr>
<td>I_{xx} (in.⁴)</td>
<td>530,313</td>
</tr>
<tr>
<td>I_{yy} (in.⁴)</td>
<td>81,842</td>
</tr>
<tr>
<td>y_t (in.)</td>
<td>35.04</td>
</tr>
<tr>
<td>y_b (in.)</td>
<td>27.96</td>
</tr>
</tbody>
</table>

FIB-72 SECTION PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (in.²)</td>
<td>1,058.58</td>
</tr>
<tr>
<td>Perimeter (in.)</td>
<td>278.57</td>
</tr>
<tr>
<td>I_{xx} (in.⁴)</td>
<td>740,416</td>
</tr>
<tr>
<td>I_{yy} (in.⁴)</td>
<td>82,099</td>
</tr>
<tr>
<td>y_t (in.)</td>
<td>40.06</td>
</tr>
<tr>
<td>y_b (in.)</td>
<td>31.94</td>
</tr>
</tbody>
</table>

FIB-78 SECTION PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (in.²)</td>
<td>1,100.58</td>
</tr>
<tr>
<td>Perimeter (in.)</td>
<td>290.57</td>
</tr>
<tr>
<td>I_{xx} (in.⁴)</td>
<td>903,861</td>
</tr>
<tr>
<td>I_{yy} (in.⁴)</td>
<td>82,270</td>
</tr>
<tr>
<td>y_t (in.)</td>
<td>43.37</td>
</tr>
<tr>
<td>y_b (in.)</td>
<td>34.63</td>
</tr>
</tbody>
</table>
FIB-84 SECTION PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (in.²)</td>
<td>1,142.58</td>
</tr>
<tr>
<td>Perimeter (in.)</td>
<td>302.57</td>
</tr>
<tr>
<td>Ixx (in.⁴)</td>
<td>1.087 x 10⁶</td>
</tr>
<tr>
<td>Iyy (in.⁴)</td>
<td>82,442</td>
</tr>
<tr>
<td>yt (in.)</td>
<td>46.66</td>
</tr>
<tr>
<td>yb (in.)</td>
<td>37.34</td>
</tr>
</tbody>
</table>

FIB-96 SECTION PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (in.²)</td>
<td>1,226.58</td>
</tr>
<tr>
<td>Perimeter (in.)</td>
<td>326.57</td>
</tr>
<tr>
<td>Ixx (in.⁴)</td>
<td>1.515 x 10⁶</td>
</tr>
<tr>
<td>Iyy (in.⁴)</td>
<td>82,785</td>
</tr>
<tr>
<td>yt (in.)</td>
<td>53.18</td>
</tr>
<tr>
<td>yb (in.)</td>
<td>42.82</td>
</tr>
</tbody>
</table>