1. The 'PRESTRESSED BEAM TEMPORARY BRACING PLAN' is to be used in
conjunction with the 'TABLE OF TEMPORARY BRACING VARIABLES' in the Structures Plans. The brace locations and quantities shown in the plan view are schematic only, and the actual brace locations and quantities should be determined from the 'TABLE OF TEMPORARY BRACING VARIABLES' in the Structures Plans.
2. The bracing members shown in the sections are schematic only, and are meant to show geometry in which bracing should be placed. The bracing members and connections shall be designed and detailed by the Contractor. Any of the geometric configurations shown in the bracing sections are acceptable. necessary. The bracing shall be positively and securely connected to each beam and shall not be designed to exert any vertical force on the outer edge of the
top flange. All bolt holes in beams are to be preformed and filled after use. All top flange. All bolt holes in beams are to be preformed and filled after use. Al
bracing is to be placed perpendicular to beams.
3. The anchor beam is a beam which has anchor bracing at its support locations. It braced against the Anchor Beam sequentially. The Anchor brace may be located at an exterior girder provided that all required bolt clear distances are met and overhang bracing is not impacted. Anchor bracing may be inclined, as shown in the plan view, or may be installed vertically.
4. Overhang bracing requirements are neither specified here nor in the 'TABLE OF TEMPORARY BRACING VARIABLES.' It is the Contractor's responsibility to design overhang bracing which does not Cause excessite to exceed stress limits per the exterior girder, or caual.
FDOT Structures Manual.
5. The Contractor shall submit documentation required by the Specifications for Road and Bridge Construction, Section 5 for 'Beam and Girder Temporary Bracing. If the Contractor elects to use the bracing requirements shown in the signed and sealed certification that the construction loads do not exceed those shown in the 'TABLE OF ASSUMED CONSTRUCTION LOADS' and signed and sealed design of bracing members and connections. If the Contractor elects to use a bracing scheme different from those shown in the 'TABLE OF TEMPORARY BRACING VARIABLES,' the documentation shall include signed and sealed calculation of the bracing requirements and design of bracing members and connections.

EXAMPLE ANCHOR BRACING TYPICAL SECTIONS
(Beam Ends Only)

EXAMPLE END SPAN BRACING

EGEND:
$\begin{aligned} & \\ &=\text { Tension Member }\end{aligned}$
T\&C = Tension \& Compression Member

Example end span or intermediate span bracing

LAST REVISION 07/01/13		DESIGN STANDARDS	PRESTRESSED I-BEAM TEMPORARY BRACING	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 20005 \end{gathered}$	NO. 1 of 1

(Standard Orientation for New Construction)

CASE 2
(Special Orientation for Widenings)

(Special Orientation for Widenings)
schematic plan views at beam ends

CONDITION 3

SCHEMATIC END ELEVATIONS OF BEAMS
Showing Vertical Bevel of Beam End

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 14 \end{array}$	DESCRIPTION:	FDŌT) $\begin{gathered}2015 \\ \text { DESIGN STANDARDS }\end{gathered}$	TYPICAL FLORIDA-II BEAM DETAILS AND NOTES	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 20010 \end{gathered}$	SHEET NO. 1 of 2

pLAN SECTION THRU BEAM WEB AT INSERT FOR DIAPHRAGM REINFORCING

INSERT NOTES

Provide $1^{\prime \prime} \varnothing$, zinc-electroplated, ferrule wing nut or coil inserts, UNC hreads, $1 / 0$ minimum gage wire, not more than $4^{\prime \prime}$ in depth with a minimum ult timate tensile strength of $11,400 \mathrm{lbs}$. in 4,000 psi concrete.
If inserts are needed on both sides faces) of beam webs, an assembly as inserts attached by two (2) or more struts may be utilized (2) ferrule or coil struts shall have a minimum ultimate tensile strength of $11,400 \mathrm{lbs}$.
Inserts for diaphragm reinforcing are required at each end of each required at the end of the beams when end diaphragms are shown. See uperstructure and Beam Framing Plans for longitudinal location of inserts for each face of beam.
$\overline{\bar{Z}}$ INSERT DETAIL $\overline{ }$
PARTIAL PLAN VIEW (SHOWING TOP FLANGE)
End 1 Shown, End 2 Similar)
when applicable, Pieces $M-3 \& S-1$, see

Bars sk spaced perpendicular Bars 5Z, 3D1 or 3D2, 3C1 or Bars 52,301 or $302,3 C 1$
$3 C 2$ placed with Bars 5 K *
ars 5 K spaced along 4 Beam @
3.' Bars $3 D 1$ or $3 D 2,3 C 1$ or $3 C$
placed with alternate Bars 5 K *

LAST REVISION 07/01/14	気DESCRIPTION:	$\begin{array}{cc} \text { FDOT } & 2015 \\ \text { DESIGN STANDARDS } \end{array}$	TYPICAL FLORIDA-I $\mathbb{B E A M}$ DETAILS AND NOTES	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 20010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & \text { No. } \\ & 2 \text { of } 2 \end{aligned}$

BEAM NOTES

2. Place one (1) Bar $4 K$, or $5 Z$ at each location as detalled alternating the direction of the ends for each bar (see "ELEVATION AT END OF BEAM", Sheet 3).
3. Strands N shall be ASTM A416, Grade 270, seven-wire strands $3 /{ }^{\prime \prime} \varnothing$ or larger, stressed to $10,000 \mathrm{lbs}$. each recess Prestressing Strands at the end of the beam without damaging the surrounding concrete. See "STRAN CUTTING AND PROTECTING DETALL" on Sheet 2
4. For beams with accordance with Specification Section 450 .
5. At the Contractor's option, welded deformed wire reinforcement may be used in lieu of Bars $3 D, 4 \mathrm{~K}$, and 5 Z
as shown on Sheet 4. Welded deformed wire reinforcement shall meet requirements of Specification Section 931
protection systems used during construction. See shop drawings for details and spacing of any required embedments.
. For beams with skewed end conditions, the end reinforcement, defined as Bars $3 D 1,3 D 2,4 K, 4 Y$ and $5 Z$ placed within the limits of Bars 3D in "ELEVATION AT END OF BEAM", shall be placed parallel to the skewed end of the beam. Bars $3 D$ and 4K, located beyond the limits of Bars $3 D$ shall be place perpendicular to the longitudinal
axis of the beam. For placement locations, see "SKEWED BEAM END DETALLS". Adjust the dimensions of Bars $3 D 1$ and 3D2, as shown on the "BENDING DIAGRAM" for skewed end conditions.
6. Placement of Bars 3D1 correspond to END 1, and Bars 3C2, correspond to END 2. FND 1 and END 2 are shown on the beam "ELEVATION"
end of the with vertically beveled end conditions, place first row of Bars 3D1, 3D2, 4K, 4Y and $5 Z$ parallel to the end of the beam. Progressively rotate remaining bars within the limits of Bars 52 until vertical by adjusting the spacing at the top of beam up to a maximum of $1^{\prime \prime}$. For welded deformed wire reinforcement, cut top cross wir and rotate bars as required or reduce end cover at top of the beam to minimum 1 .
7. For beams with skewed end conditions, welded deformed wire reinforcement shall
8. reinforcement (Bars 301 and 302).
Bars $4 K$ and $5 Z$ shall be placed and tied to the fully bonded strands in the bottom or center row (see
9. Bars $4 K$ and 5Z shall be placed and tied to the fully bonded strands in the bottom or center row (see
"STRAND PATTERN" on the Table of Beam Variables in Structures Plans). For welded deformed wire reinforcement supplemental transverse bars are permitted to support Pieces $K \& S$ under the cross wires on the bottom rov

10. At the Contractor's option, Bars 301, 302
minimum lap splice of the bottom legs.
11. For referenced Dimensions, Angles and Case Numbers, see the Table of Beam Variables in Structures Plans.

END 2
NDITION 2
(Special Orientation for Widenings)

(Special Orientation for Widenings)
SChematic plan views at beam ends
SCHEMATIC END ELEVATIONS OF BEAMS
show Vertical Bevel of Beam End

DETAILS AND NOTES

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 14 \end{gathered}$ | \|r|cen | FDOTS 2015
 DESIGN STANDARDS | AASHTO TYPE II BEAM | $\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 20120 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |

PARTIAL PLAN VIEW (SHOWING TOP FLANGE)
(End 1 Shown, End 2 Similar) (Bars 5A, $4 Y$ \& Strands N not shown for clarity)

For number of Bars, spacing and
placement details see Sheet 3. See
Sheet 4 for Welded Wire Reinforcement.

PARTIAL SECTION THRU WEB (SHOWING BOTTOM FLANGE)
(End 1 Shown, End 2 Similar)
(Bars $4 Y \&$ Strands not shown for clarity)
$=$ SKEWED BEAM END DETAILS FOR WIDENING EXISTING BRIDGES $\bar{\square}$

TYPICAL SECTION
Showing CUT STRAND RECESS LIMITS
TYPICAL SECTION AFTER PROTECTING

STRAND CUTTING AND PROTECTING DETAIL $=$

for reinforcing steel shall be $2^{\prime \prime}$.
At the option of the Contractor and with the Engineer's Approval deformed Welded wire reinforcement (WWR) may be used in lieu of Bars 6A1, 4A2,5B, 4C, 3D, SE, $4 F, 4 G, 4 H, 5 K, 5 L$ and $4 M$ except as noted below in note 7 , provided the wire sizes and spacing match those shown on the Standard Beam Detail sheets for these bars. WWR must con
of Specification Section 931 .

$\overline{\bar{Z}}$ TEMPORARY BLOCKING OF BEAM ENDS $\bar{\square}$

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 13 \end{gathered}$		$\underset{\text { FDOT\} }}{\substack{ \\ \text { DESIGN STANDARDS }}} \begin{gathered} 2015 \\ \hline \end{gathered}$	TYPICAL FLORIDA-U BEAM DETAILS AND NOTES	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 20210 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & \text { No. } \\ & 2 \text { of } 2 \end{aligned}$

(Bars 3D1 And 3D2 Not Shown For Clarity)

LAST REVISION $07 / 01 / 05$	DESCRIPTION:	DESIGN STANDARDS	FLORIDA-U $63 \mathbb{B} E \mathrm{~A}$ - STANDARD DE TAILS

Begin Span
BUILD-UP DIAGRAM FOR CREST VERTICAL CURVE SPANS
CONTROL AT \& SPAN
(ALONG q FLANGE) (CASE 3)

EAM CAMBER AND BUILD-UP NOTES:

The build-up values given in the Data Table* are based on theoretical beam cambers. The Contractor shall monitor beam cambers for the purpose of predicting camber values at the time of the deck pour. If the predicted cambers based Camber @ 120 Days" shown in the Data Table*, obtain approval from the Engineer to modify the build-up dimensions as required. When the measured beam cambers create a conflict with the bottom mat of deck steel, notify the Engineer a minimum of 21 days prior to casting.

Dim. "A" includes the weight of the Stay-In-Place Formwork

DEAD LOAD DEFLECTION DIAGRAM (ALONG q BEAM)

LAST REVISION 01/01/11	気気DESCRIPTION:	\qquad	BUILD-UP \& DEFLECTION DATA FOR FLORIDA-U BEAMS

