

AIR TERMINAL PLACEMENT
(Lowering Device Pole)

AIR TERMINAL PLACEMENT (Cantilever DMS)

LAST REVISION 07/01/14		FDOTT\} DESIGN STANDARDS	$G R O U N D I \mathbb{N G}$ AND LIGHTNING PROTECTION

GROUND ROD ARRAY PLACEMENT
20' RODS, 40' SPACING

GROUND ROD ARRAY PLACEMENT 20' RODical Modified)

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVIIINN } \\ 07 / 01 / 14 \\ \hline \end{array}$		$\text { FDOT\} } \begin{gathered} 2015 \\ \text { DESIGN STANDARDS } \end{gathered}$	$G R O U N D I N G A N D ~ L I G H T N I N G ~ P R O T E C T I O N ~$

SIDE VIEW

GENERAL NOTES:

1. Cabinet layout is for pole or base mounted installations.
2. All dimensions and scale are approximate.
3. The minimum CCTV cabinet dimensions shall be $36^{\prime \prime} H \times 24^{\prime \prime} \mathrm{W} \times 22^{\prime \prime} \mathrm{D}$.
4. Conduit entrances are in bottom of cabinet
5. There shall be froolt and rear doors. Both doors shall have the hinged
side next to the pole when pole mounted.
6. Cabinet layout represents preferred placement of typical devices.
Project-specific designs may not include all components illustrated her

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 07 \end{gathered}$		$\text { FDOTY\} } \begin{gathered} 2015 \\ \text { DESIGN STANDARDS } \end{gathered}$	TYPICAL CCTV CABINET EQUIPMENT LIAYOUTT

GENERAL NOTES:

1. Contractor shall splice fiber optic cables in cabinet to preterminater patch panel.
2. Furnish and install TVSS protection on all video, data, and power cabling in cabinet.
3. Ensure that all electronic equipment power is protected and conditioned with TVSS
4. Sizes and types of conduits and innerducts for network communications between the
5. See Index 18102 for grounding requirements.
6. All network communications conduits and ducts shall be sealed with approved
waterproof duct plugs and seals.

$\begin{gathered} \text { LAST } \\ \text { REVIIION } \\ 07 / 01 / 13 \end{gathered}$		FDOT\} DESIGN $\begin{gathered}2015 \\ \text { STANDARDS }\end{gathered}$	GROUND MOUNTED CCTV CABINET	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 18107 \end{gathered}$	$\begin{aligned} & \begin{array}{c} \text { SHEET } \\ \text { NO. } \\ 1 \text { of } 1 \end{array} \end{aligned}$

1. Lowering device to be shipped ready for pole attachment to include 100 ft . of composite power and signal cable
prewired to lowering device at the factory.
2. The lowering device manufacturer shall supply both a portable lowering tool with a manual hand crank and a half-inch
chuck variable-speed reversible industrial--luty electric drill that matches the winch's manufacturer-recommended revolutions per minute. One lowering tool per every 10 lowering devices is required.
3. The lowering device manufacturer shall provide an on-site installation inspection and operator instruction and certification. This ensures the product is assembled correctly and that all necessary persons are trained in the
proper, safe operation of the system. Before erecting the first pole the contractor must contact the lowering device proper, safe operation of the system. Bef ore erecting the fir st pole
supplier and schedule a manufacturer's representative to be on-site.
4. Design camera mounting arm and connection to tenon according to FDOT Structures Manual (current edition) CAMERA LOWERING DEVICE DETAIL
5. Camera to be mounted to camera junction box and stabilizing weight via $1^{11 / 2 "}$ Standard NPT Pipe Thread
6. Use air terminal extension when the pole top junction box is wider than top of pole.
7. The stainless steel device lowering cable shall be installed inside the pole within a $1 \frac{1}{4} \|^{\prime \prime}$ diameter PVC conduit.
8. All communication and power cables must be neatly bundled and secured.
9. Use a Camera Lowering Device listed on the Approved Product List (APL)
10. See Index 18113 for concrete pole details and Index 18111 for steel pole details

LAST REVISION	DDESCRIPTION:	DESIGN STANDARDS	CAMERA MOUNTING DETAILS	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 18110 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & \text { NO. } \\ & 1 \text { of } 2 \end{aligned}$

GENERAL NOTES:

- Verify the pole type, the dimensions of the pole at the point of installation of the camer a mount, and angle e with respect

2. Design camera mounting arm and connection to the pole according to

No field welding shall be permitted
Mounting bracket arm shall be level after installation
5. The contractor shall submit shop drawings for the proposed fixed registered in the State of Florida, to the Engineer for review and registere
aproval.
6. See Index 18113 for concrete pole details and Index 18111 for steel
7. Galvanized pipe connections and conduit entry points shall be sealed in

CAMERA MOUNTING WITH FIXED BRACKET

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 01 / 01 / 10 \end{gathered}$	気気DESCRIPTION:	FDOT 2015 DESIGN STANDARDS	CAMERA MOUNTING DETAILS	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 18110 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & \text { NO. } \\ & 2 \text { of } 2 \end{aligned}$

FOUNDATION NOTES:

1. Concrete: Class IV (Drilled Shaft) with a minimum 4,000 ps
compressive strength at 28 days for all environment compressive str
classifications.
2. Reinforcing Steel: ASTM A615 Grade 60
3. Anchor Bolts: ASTM F1554 Grade 55 with ASTM A563 Grade
A heavy-hex nuts and plate washers. ASTM F 2329 A heavy-hex
galvanization
4. Install Anchor Bolts in accordance with Section 649-5 of the
5. Foundation applies to slopes 1:4 or flatter.
6. The foundation for the CCTV structure shall be constructed
in accordance with Section 455 of the specifications exce in accordance with Section 455 of the Specifications exc
that no payment for the foundation shall be made under

INSTALLATION NOTES:

1. Cable Supports: Electrical Cable Guides and Eyebolts.
a. Locate top and bottom cable guides within the pole
aligned with each other.
b. Position one cable guide $2^{\prime \prime}$ below the handhole.
c. Position other cable guide $1^{\prime \prime}$ directly below the top of
the tenon.
d. Position Park Stands $2^{\prime \prime}$ below the top of the handhole.
2. Lowering Device Installation Notes:
a. Place the lowering cable that moves within the pole
in an interior conduit to prevent it from tangling or In an interior conduit to prevent it from tangling or
interfering with any electrical wire that is in the pole. Ensure that any electrical wire within the pole
Mount lowering arm perpendicular to the roadway or as shown the tans. Position cCTv pole so that the closures.
c. Coordinate all lowering device hardware requirements (including Tenon, Tenon mounting plates, parking
stands, etc.) with lowering device manufacturer.
3. Pole Installation Notes:
a. Install pole plumb.
b. The pole shall not be erected until the foundation Concrete has achieved 70% of
28 day compressive strength.
4. Refer to Index No. 18108 for conduit and cabinet
mounting details.

POLE NOTES:

1. The pole shaft shall be round or 16 sided or more with a constant taper of 0.14
2. Pole shaft may be either One or Two sections (with telescopic field splice).
3. Use only circumferential welds at base
. Up to two Iongitudinal seam welds are permitted.
4. Longitudinal seam welds within $6^{\prime \prime}$ of circumferential welds shall be complete
penetration welds. Longitudinal seam welds on female section of telescopic f fi splices shall be complete penetration welds for the splice length plus six inches. splices shall be conplete penetration welds for the splicie length plus six inches.
All other areas, size the partial penetration welds to at least 60% of the pole
tube thickness.
5. Perform all welding in accordance with the American Welding Society Structural requirements see AASHTO Standard Specifications for Structural Supports for
6. Identification tag:
pole with a $2^{\prime \prime} \times 4^{\prime \prime}$ (max.) aluminum identification tag, secured to pole ocate inside polel screws.
Provide Financial Project ID. fool h haighthole. manufacturer's name, yield strength (Fy
of steel) and pole base wall thickness.
7. Except for Anchor Bolts, all bolt hole diameters shall be equal to the bolt
diameter plus 1/16", prior to galvanizing. Hole diameters for anchor bolts shall not exceed the bolt diameter plus $1 / 2^{\prime \prime}$.
8. This Design Standard is considered fully detailed and no shop drawings are
necessary. Submit Shop Drawings for minor modifications not detailed in the plans.
9. Pole Material Specifications:

a. Pole: | ASTM |
| :---: |

ASTM A1011 Grade 50, 55, 60 or 65 (less than $1 / 4^{4}$) or ASTM A572 Grade 50,60 or 65 (greater than or equal to $\left.1 / 4^{\prime \prime}\right)$ or
ASTM A595 Grade A $(55 \mathrm{ksi}$ yield) or Grade B (60 ksi yield).
b. Steel Plates and Pole Cap: ASTM A36 or ASTM A709 Grade 50.
c. Weld Metal: E70XX.

Bolts: ASTM A325, Type
Nuts: ASTM A5533.
Washers: ASTM $F-436$,
Handhole frame: ASTM A709 Grade 36 or ASTM A36.
f. Handhole cover: ASTM A1011 Grade 50, 55, 60 or 65
g. Stainless steel screws: AISI Type 316.
h. Galvanization:
Nuts.
All olts ond
and washers: AStel: ASTM A123.
11. Additional wire access holes not shown in this Design Standard shall not exceed
$11 / 2$ " in diameter
12. Verify CSL access tubes will not interfere with anchor bolt installation before
excavating the shaft. When CSL access tube locations conflict with anchor bolt ocavations, move the CSL access tube location \pm two inches along the inner
oct shaft if the CSL access tube locations cannot be moved out of conflict with anchor bolt locations.

LAST REVISION O7/01/13	\|	$\text { FDOT\} } \begin{gathered} 2015 \\ \text { DESIGN STANDARDS } \end{gathered}$	STEEL CCTV POLE

LOWERING DEVICE INSTALLATION NOTES:

1. Place the lowering cable that moves within the pole in an interior conduit to prevent it from tangling or interfering wis any electrical wire that is in the pole. En sure that any
electrical wire within the pole is routed securely and free
from slack
2. Mount lowering arm perpendicular to the roadway or as shown
in the plans. Position CCTV pole so that the camera can be safely lowered without requiring lane closures.
3. Coordinate all lowering device hardware requirements (inclufing Tenon, Tenon mounting plates, parking stand, etc.)
with lowering device manufacturer.

POLE NOTES:

Pole Material Specifications:
a. Pole: Use Class VI Concrete with 6 ksi minimum strength at
b. Prestressing Strands: ASTM A416 Grade 270 low relaxation.
c. Reinforcing Steel: ASTM A615 Grade 60 .
d. Spiral Reinforcing: ASTM A1064 Cold-Drawn.
e. Bolts: ASTM F1554, Grade 55 .
Nuts: ASTM A533, Grade A Heavy Hex. Washers: ASTM F436.
f. Steel plates and Pole Cap: ASTM A36 or ASTM A709 Grade 50
g. Galvanization: $\begin{aligned} & \text { Bolts, nuts and washers: ASTM F2329 } \\ & \text { All other steel: ASTM A123 }\end{aligned}$
2. The pole shall be round or 12 -sided.
3. Cut the tip end of the prestressed strand first or simultaneously with
4. For spiral reinforcing, one turn is required for s
turns are required at the tor and bottom of poles,
5. For Reinforcing Steel, lap solice to consist of a $3^{\prime \prime}-0^{\prime \prime}$ ap length at each spice. No more than two opposing rebar to be splic
6. Provided a Class 3 surface finish in accordance with Specification
7. Provide a $1^{\prime \prime}$ minimum cover
8. Provide handhole and coupler cover plates made of non-corrosive materials. Attach cover plates to poles using leat anchors or threaded inserts smbedd
plated screws.
9. Provide Identification Markings on the poles where indicated on the following sheets. Include the following information using inset numerals with l' "height or as approved in the Producers' Quality Control Program
Financial Pro ect ID Pole Manufac
Pole Length
10. Install pole plumb.
11. Tie ground wires to the interior of reinforcing steel as necessary to
12. This Design Standard is considered fully detailed and no shop drawings are necessary Suummit Shop Drawings for minor modifications not
detailed in the plans.
3. Storage, Handling and Erection locations shown may vary within \pm 3"

LAST REVISION 07/01/14	\|	FDOT) $\begin{aligned} & 2015 \\ & \text { DESIGN STANDARDS }\end{aligned}$	CONCRETE CCTV POLE

NOTES:
. If no guardrail or barrier wall exists, structure shall be outside the clear zone.
Clear zone shall be measured do edge of the drilled shatt if drilled shaft is more
than 4" above ad jacent grade.
2. Extend Catwalk from DMS to outer edge of paved shoulder but not less than
four feet in length.
3. Clear zone distance and setbacks from edge of travel lane shall be in
accordance with Plans Preparation Manual Volume I, Chapters 2 and 4 .

TYPICAL PLAN VIEW
DMS CANTILEVER SIGN STRUCTURE

| $\begin{array}{c\|} \hline \text { LAST } \\ \text { REVIISION } \\ 07 / 01 / 14 \\ \hline \end{array}$ | \|c|cose | $\underset{\text { FDOTY }}{2015} \begin{gathered} 2015 \\ \text { DESIGN STANDARDS } \end{gathered}$ | DYNAMIC MESSAGE SIGN WALK-IN |
| :---: | :---: | :---: | :---: |

NOTES:

1. Conductors for grounding shall be connected to steel framework that
has been cleaned to base metal by use of bonding plates having contact area of not less than 8 square inches or by welding or brazing.
Drilling and tapping the steel structure to accept a threaded connector
is is also an acceptable method.
2. If steel framework is to be drilled and tapped to accept threaded Connector, the threaded connector shall be galvanized and have at least
5 thread's fully engaged and secured with a jam nut to the steel framework.
3. Bends in the conduit shall not be less than the minimum bending
radius for the cable contained in the conduit.
4. Catwalk and handrail design and installation shall comply with AISC
5. All data, fiber optic and power cables for the DMS shall be completely
encased within the sign structure or in conduit.
6. Permanently stamp/mark foundation to conduit locations.
7. Transition conduit in foundation to underground conduit with
appropriate reducer outside the limits of the foundation.

LAST REVISION 07/01/14	気DESCRIPTION:	$\text { FDOTY) } \begin{gathered} 2015 \\ \text { DESIGN STANDARDS } \end{gathered}$	DYNAMIC MESSAGE SIGN WALK-IN	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 18300 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & \text { NO. } \\ & 2 \text { of } 9 \end{aligned}$

HANGER LOCATION DETAIL
(Cantilever Sign Structure Shown, Span Sign Structure Similar)

NOTES

1. Design Specifications: FDoT Structures Manual (current edition) and AASHTO Standard
Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals.
2. DMS and Hanger Design Wind Speed: 150 miles per hour. Maximum DMS weight for design:
3. Shop drawings including the DMS
these shop drawings are approved.
4. Locate the sign horizontal on the structure as shown in the plans. Vertically center the sign
5. Before erection, after both the delivery of the DMS and the steel truss, the contractor shall hangers and horizontal mouting memper attached to the sign enclosure. Field locate holes to
allow vertical hanger placement as shown on the plans with no conflicts with gusset or splice
6. All steel items shall be galvanized as follows:

All nuts, bolts and washers SASTM
All other steel itemsASTM A123
7. All bolt holes shall be equal to the bolt diameter plus $1 / 16^{\prime \prime}$, prior to galvanizing.
8. All bolts shall have single self-locking nuts, or locking nut system, installed in
9. Cost of the installation of the DMS on truss including the vertical hanger,
associated members, and hardware shall be incidental to the cost of the sign structure.
10. Threaded couplings shall be located on sign side of column above the sign
truss.

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 14 \end{gathered}$	気DESCRIPTION:	$\text { FDOTY) } \begin{gathered} 2015 \\ \text { DESIGN STANDARDS } \end{gathered}$	DYNAMIC MESSAGE SIGN WALK-IN	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 18300 \end{gathered}$	NO. 5 of 9

NOTES:

1. Cabinet layout is for pole or ground mounted installations.
2. All dimensions and equipment locations are approximate.
3. Conduit entrances are at bottom of cabinet,
4. Minimum number of duplex outlets is three, (2) SPD
protected and (1) GFI protected.
5. Either an access controller or local access panel shall be
provided to provide full access to DMS for control, programming and troubleshooting.
6. Load center shall be sized for connected equipment and convenience
outlets with at least one main disconnect and three circuit breakers.
7. Batteries and UPS may be located in sign housing or cabinet.
8. Power Distribution Assembly component layout, orientation

| $\begin{array}{c\|} \hline \text { LAST } \\ \text { REVIISION } \\ 07 / 01 / 14 \\ \hline \end{array}$ | \|c|cose | $\underset{\text { FDOTY }}{2015} \begin{gathered} 2015 \\ \text { DESIGN STANDARDS } \end{gathered}$ | DYNAMIC MESSAGE SIGN WALK-IN |
| :---: | :---: | :---: | :---: |

CABINET LAYOUT 2

LAST REVISION $07 / 01 / 14$		\qquad	DYNAMIC MESSAGE SIGN WALK-IN	$\begin{gathered} \text { INDEX } \\ \text { NO. } \\ 18300 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ \text { NO. } 9 \\ 9 \text { of } 9 \end{gathered}$

