SINGLE COLUMN GROUND SIGN NOTES:

1. DESIGN WIND SPEED: See Wind Speeds by Count
2. GENERAL SPECIFICATIONS: Current FDOT Standard Specifications for Road and
3. DESIGN SPECIFICATIONS: AASHTO Standard Specifications for Structural Supports
for Highway Signs, Luminaires and Traffic Signals, as modified by the or Highway Signs Lat
FDOT Structures Manual.
4. ALUMINUM: Aluminum Materials shall meet the requirements of Aluminum Association
Alloy 6061 TG (ASTM B209, B221, or B308), except as noted below.
5. CONCRETE: Class I.
6. SIGN PANELS: 0.08 inches min. thick Aluminum Plate with all corners rounded
7. ALUMINUM BOLTS, NUTS, AND LOCK WASHERS:

224 T 4 with at least 0.0002 inches
b. Nuts: ASTM F447 All
b. Nuts: ASTM F467, Alloy 6061 -T6 or 6262-T9,
c. Lockwashers: ASTM B221, Alloy 7075-T6.
8. STAINLESS STEEL BOLTS, NUTS, AND LOCKWASHERS: Stainless Steel Bolts, Nuts, and Lockwashers: ASTM F593 and ASTM F594, Alloy Group 2 .
Condition A, CW2, or SH4 may be provided in lieu of Aluminum Bolts, Nuts, and Washers.
U-BOLTS, NUTS, AND LOCKWASHERS:
9. $\begin{aligned} & \text { UOOTTS, NUTS, AN } \\ & \text { U-bolts, Nuts, and } \\ & \text { With ASTM F F } 329 \text {. }\end{aligned}$.
10. BREAKAWAY SUPPORTS REQUIREMENTS: Install non-frangible aluminum column (post) (larger than $31 /{ }^{\prime \prime}$) with breakaway supports as shown on sheet 5. Signs
shielded by barrier wall or guardrail do not require breakaway support.

WIND SPEEDS BY COUNTY:

110 MPH
Alachua, Baker, Bradford, Clay, Columbia, Gadsden, Gilchrist, Hamilton, Hardee, Jack son
Jefferson, Laf ayette, Lake, Leon, Madi ion, Marion, Polk, Putnam, Sumter, Suwannee and Union counties.

30 MPH
Bay, Brevard, Calhoun, Charlotte, Citrus, De Soto, Dixie, Duval, Flagler, Franklin, Glades,
Gulf, Hendry, Hernando, Highlands, Hillsborough, Holmes Lea Leal Liberty llanale assau, Okaloosa, Okeechobee, orange, Osceola, Pasco, Pinellas, Sara sota, Seminole,
150 MPH
50 MPH
Broward,
Broward, Collier, Dade, Escambia, Indian River, Martin,

GUIDE TO USE THIS STANDARD:

1. Calculate the area and the centroid for an individual sign or a sign cluster. Note that the centroid and areas have
been calculated for frequently used sign clusters. These are shown on Sheet No. $6,7 \& 8$ of 8 .

Deen calculated for rrequertly used sign clusters. These ar are shown on Sheet No. $6,7 \& 8$ of 8 .
Determine the height H fro ground ine for the individual sign or the cluster.

EXAMPLE:

	$\begin{aligned} & \text { Size } \\ & H \times V \end{aligned}$	Centroid			' $n_{n}{ }^{\prime}$	' $X_{n}^{\prime} \times A^{\prime}{ }_{n}^{\prime}$	'Y' \times 'A' ${ }_{n}$
		$\begin{aligned} & \text { local } \\ & Y_{n} \\ & Y_{n} \end{aligned}$	$\begin{aligned} & \text { global } \\ & x_{n}^{\prime} \\ & x_{n} \end{aligned}$	$\begin{aligned} & \text { global } \\ & \substack{Y_{n} \\ \hline} \end{aligned}$			
	(in. x in.)	(in.)	(in.)	(in.)	(in.2)	(in. ${ }^{\text {3 }}$)	(in. ${ }^{3}$)
(1)	21×15	7.5	$\begin{gathered} -10.5-1.5-1.5 \\ =-13.5 \end{gathered}$	7.5	315	$-4,252.5$	2,362.5
(2)	21×15	7.5	$\begin{gathered} \begin{array}{c} 10.5+1.5+1.5 \\ = \\ =13.5 \end{array} \end{gathered}$	7.5	315	+4,252.5	2,362.5
(3)	24×24	12	$\begin{aligned} & \begin{array}{c} -12-1.5 \\ \stackrel{y}{13} \end{array} \end{aligned}$	$\underset{28}{15+1+12=}$	576	-7,776	16,128
(4)	24×24	12	$\begin{aligned} & 12+1.5 \\ & =13.5 \end{aligned}$	$\underset{28}{15+1+12=}$	436	5,886	12,208
(5)	24×12	6	$\begin{aligned} & -12-1.5 \\ & =-13.5 \end{aligned}$	$\begin{gathered} 15+1+24+ \\ 1+6=47 \end{gathered}$	288	-3,888	13,536
©	24×12	6	$\begin{aligned} & 12+1.5 \\ & =13.5 \end{aligned}$	$\begin{gathered} 15+1+24+ \\ 1+6=47 \end{gathered}$	288	3,888	13,536
					2,218	-1,890	60,133

$x_{c}^{\prime}=\frac{\Sigma\left('_{n}^{\prime} x^{\prime} A_{n}^{\prime}\right)}{\Sigma^{\prime} A_{n}^{\prime}}=-0.1 \mathrm{ft} . \quad{ }^{\prime} r_{c}^{\prime}=\frac{\Sigma\left(Y_{n}^{\prime} \times A_{n}^{\prime}\right)}{\Sigma^{\prime} A_{n}^{\prime}}=2.26 \mathrm{ft}$
Assume: Bay County, ' A ' $=1 \mathrm{ft}$., ' B ' $=7 \mathrm{ft}$.
Calculated: ' $x_{c}^{\prime}=-0.1 \mathrm{ft}$. ' C ' $=$ ' $y_{c}^{\prime}=2.26 \mathrm{ft}$.
Since ' x ' $\ll \sigma^{\prime}$, it is not a cantilever sign, only dark-bold lines in the table will be referenced to
$H^{\prime}=A^{\prime} A^{\prime}+B^{\prime}+C^{\prime}=10.26 \mathrm{ft} .=\Rightarrow$ USE $11 \mathrm{ft}$. . $\Sigma\left({ }^{\prime} A_{n}{ }^{\prime}\right)=15.4 \mathrm{ft}. .^{2}==>$ USE $16 \mathrm{ft}. .^{2}$
ALUMINUM COLUMN (POST) SELECTION TABLE

For wIND SPEED $=130 \mathrm{MPH}$
$\mathrm{H}^{\prime}=11 \mathrm{ft}$. Area $=16 \mathrm{ft}.{ }^{2}$
Refer to the 130 mph Column (Post) Selection
Table, as copied from Sheet 3 and shown her aaber, as copied from Sheet 3 and shown here.
Using the 16 trit area on the left hand side of
the table, go across to the 11 ft. height and find the table, go across to the 11 ft . height and find
the cll mared with X
find the symbol 4 which the dark-bold line under find the symool 4 ,
the x cell leads to.
In the Post and foundation Table, the symbol 4
concludes that the design requires a $4.0^{\prime \prime}$ diameter

$\mathrm{BZ} \Delta=$ Cantilever SER SIGN configuration (see Cantilever SIgn Detalis) falls in this region,
use next larger post size than that indicated.

NOTES AND EXAMPLE

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 01 / 01 / 12 \end{gathered}$ | \|c|cent | \qquad | SINGLE COLUMN GROUND SIGNS | $\begin{gathered} \hline \text { INDEX } \\ \text { NO. } \\ 11860 \end{gathered}$ | $\begin{aligned} & \hline \text { SHEET } \\ & \text { NO. } \\ & 1 \text { of } 8 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

ALUMINUM COLUMN (POST) SELECTION TABLE

ALUMINUM COLUMN (POST) SELECTION TABLE

ALUMINUM COLUMN (POST) SELECTION TABLE
(WIND SPEED $=150$ MPH)

CANTILEVER SIGN

$$
\begin{aligned}
& \text { NoTE: } \\
& \text { All cantilever sign installations shall comply } \\
& \text { with Standard Index 17302. }
\end{aligned}
$$

POST AND FOUNDATION TABLE								
Foundation Alternatives								
Post Size			Driven Post *Depth (FT)		Concrete (Class I)			
	$\underset{\text { (IN) }}{\text { Diameter }}$	$\begin{aligned} & \text { Wall } \\ & \text { IN } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { without } \\ \text { Soil Plate } \\ \hline \end{array}$	$\begin{gathered} \text { with } \\ \text { Soil Plate } \end{gathered}$	$\\|_{(\text {DT) }}^{\text {Diameter }}$	$\begin{aligned} & \text { Depth } \\ & \text { (FT) } \end{aligned}$	$\begin{gathered} \text { Length } \\ (F T) \end{gathered}$	
0	2.0	1/8	4.5	2.5	2.0	2.0	2.0	
11	2.5	1/8	5.0	3.0	2.0	2.0	2.0	
2	3.0	1/8	5.0	3.5	2.0	2.5	2.5	
3	3.5	3/16	6.0	4.5	2.0	3.0	3.0	
4	4.0	1/4	---	---	2.0	4.0	3.0	
5	4.5	1/4	---	---	2.0	4.0	3.0	
6	5.0	1/4	---	---	2.0	4.5	3.0	
7	6.0	1/4	---	---	2.0	5.0	3.0	
8	8.0	$5 / 16$	---	---	2.0	5.5	3.0	

* installing frangible column supports:

Columns (posts) may be installed by driving the columns
in accordance with this Index, or as an alternate method
in accordance with this Index, or as an alternate method,
the column (posts) mal be set to the dept indicated
in preformed holes backfilled with suitabte material tamped
in layers not thicker than 6 "t oprovide adequate
compaction or filled with flowable fill or bagged concrete.

ALUMINUM SOIL PLATE DETAILS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ \text { O1/01/11 } \end{gathered}$	\|	$\underset{\text { FDOTY }}{\substack{5}} \begin{gathered} 2015 \\ \text { DESIGN } \\ \text { STANDARDS } \end{gathered}$	S INGLE COLUMN GROUND SIGNS

STOP

YIELD

rectangle

SHIELD

DIAMOND

COUNTY

NOTES

1. For signs with heights greater than $30^{\prime \prime}$ a
third zee bracket wind beam shall be
third zee bracket wing
installed along the q.
2. For Yield signs greater than $36^{\prime \prime}$ a third
zee bracket wind beam shall be installed zeo bracket
along the.
3. Use only one Wind Beam at q Sign for
sign height up to 12".

SLIP BASE NOTES: \qquad

1. Use sleeves with an inside diameter (I.D.) no more than $1 / 16^{\prime \prime}$ Iarger than th
2. outside diameter (0.D.) of the column.
or Alloy $2024-T 4$ or 6061 -T6 (ASTM Banz 111).
Base bolts. Nuts, and Washers: high stralt (with lock nuts)
3. Base bolts, Nuts, and Washers: high strenoth ASTM A-325 galvanized per ASTM F2329,
4.

Base plates may have either single or double beveled slots.
 aluminum pipe, may be used as an alternate to fabricated base plate welded alu
pipe stub combination. For cast base plate and sleeves bolted to aluminum pipe
6. $\begin{gathered}\text { found } \\ \text { Assem }\end{gathered}$
 b. Assemble top base plate to stub base plate using high strength bolts with three hardened washers per bott. one of the three washers
per boot and two bolt keeper plates go between the base plates.
orient the bolt keeper
 c. Ste shim stock as requir ed to ol Dimb the ctions of
d. Tighten all bolts to the maximum possible with. (This will bed the washers mand shims ans and cleart wh the boit to threads.) e. Loosen each bolt one turn and using a calilrated whench retig
the prescribed torque (see table) under the supervision of the

Project Engineer.
f. Burr threads at junction with nut using a center punch to prevent nut
7. Useosening. ganized steel shims to obtain a tight fit between the column face
bolts. Use shims that are $1^{\prime \prime}$ shorter than the height of the sleeve.
 Texas Transportation Institute, College Station, TX on February 10 , 2003,
and both alternate assemblies were determined to be compliant with the performance recommendations of the National Cooperative Highway Research Program (NCHRP) report 350

SLIP BASE AND FOOTING DETAIL (non-frangible post)

SLIP BASE AND FOOTING DETAIL IN CONCRETE (non-frangible post in crossovers, medians, \& sidewalks)

(frangible post in crossovers, medians, \& sidewalks)

Base Plate	$\int^{\text {Hole Size 'D' }}$	SLIP BASE DETAILS											
侤	Stub size equals min. sleeve size or larger	Column	Sleeve	Sleeve	Weld	Base Plate		$\underset{\text { Radius }}{\text { R' }}$	Base Bolt		Base Plate Torque		$\begin{aligned} & \text { Hole } \\ & \text { Size ' }{ }^{\prime} \text {, } \end{aligned}$
		Size	I.D. (Max)	Height		'L'	'T'		Size	Length	ft-lbs	in.-lbs	
		$4 \times 1 / 4$	4/1/6	6	5/8	8	3/4	${ }^{11 / 32}$	5/8	3	29	345	11/16
		$41 / 2 \times 1 / 4$	4\%/6	6	5/8	8	7/8	11/32	5/8	$33^{1 / 4}$	29	345	11/16
		$5 \times 1 / 4$	51/6	7	5/8	8	7/8	11/32	5/8	31/4	29	345	11/6
		$6 \times 1 / 4$	$6^{1 / 1 / 6}$	8	11/16	9	1	13/32	3/4	31/2	46	554	13/6
		$8 \times 5 / 6$	81/6	10	3/4	11	1	15/32	7/8	33/4	53	640	15/6

STUB DETAIL

BASE AND FOUNDATION DETAILS

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 14 \end{array}$		$\underset{\text { FDOT\} }}{\substack{\text { DESIGN } \\ 2015 \\ \text { STANDARDS }}}$	SINGLE COLUMN GROUND S IGNS	$\begin{gathered} \hline \text { INDEX } \\ \text { NO. } \\ 11860 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ \text { NO. } \\ 5 \text { of } 8 \end{gathered}$

$\begin{array}{\|c\|} \hline \text { LAST } \\ \text { REVISION } \\ \text { O7/01/07 } \end{array}$	N:	FDOTM $\begin{gathered}2015 \\ \text { DESIGN STANDARDS }\end{gathered}$	SINGLE COLUMN GROUND SIGNS	$\begin{gathered} \text { INDEX } \\ \text { No. } \\ 11860 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ \text { No. } \end{gathered}$

