BEAM NOTES

1. All bar dimensions are out-to-out.

2. Place one (1) Bar 5K or 5Z at each location as detailed alternating the direction of the ends for each bar (see "ELEVATION AT END OF BEAM", Index Nos. 20036, 20045, 20054, 20063, 20072, 20078, 20084 and 20096).

3. Strands Ø shall be ASTM A416, Grade 270, seven-wire strands Ø /2 or larger, stressed to 10,000 lbs. each.

4. For beams with ends not to be encased in permanent concrete diagrams, cut wedge to recess Prestressing Strands at the end of the beam after detensioning without damaging the surrounding concrete. See STRAND RECESS DETAIL on Sheet 2.

5. For beams with ends not to be encased in permanent concrete diagrams, protect end of recessed strands in accordance with Specification 450.

6. Unless otherwise noted, the minimum concrete cover for reinforcing steel shall be 2".

7. At the Contractor's option, welded deformed wire reinforcement may be used in lieu of Bars 3D, 5K, 4M, and 5Z as shown on the Standard Details for each beam size. Welded deformed wire reinforcement shall conform to AASHTO M221, with a minimum yield strength of 75 ksi.

8. Safety Line Anchorage Devices or sleeves are required and permitted in the top flange only to accommodate full protection systems used during construction. See shop drawings for details and spacing of any required embedments.

9. For beams with skewed end conditions, the end reinforcement, defined as Bars 3C1, 3C2, 3D1, 3D2, 5K, 5Y and 5Z placed within the limits of the spacing for Bars 3C in "ELEVATION AT END OF BEAM", shall be placed parallel to the skewed end of the beam Bars 3D3, 5K and 4M3 located beyond the limits of Bars 3C shall be placed perpendicular to the longitudinal axis of the beam. Fan Bars as needed to avoid overlapping bars at the transition to Bars 3D3 and 4M3, and field cut to maintain minimum cover.

10. Placement of Bars 3C1, 3D1 and 4M1 correspond to END 1, and Bars 3C2, 3D2 and 4M2 correspond to END 2. END 1 and END 2 are shown on the beam "ELEVATION".

11. For beams with vertically beveled end conditions, place first row of Bars 3C1, 3C2, 3D1, 3D2, 5K, 5Y and 5Z parallel to the end of the beam. Progressively rotate remaining bars within the limits of Bars 5Z until vertical, by adjusting the spacing at the top of beam up to a maximum of 1". For welded deformed wire reinforcement, cut top cross wire and rotate bars as required or reduce end cover at top of the beam to minimum 1".

12. For beams with skewed end conditions, welded deformed wire reinforcement shall not be used for end reinforcement (Bars 3D1, 3D2, 4M1 and 4M2), and 5Z shall be placed parallel to the fully bounded strands in the bottom or center row (see "STANDARD PATTERN" on the Table of Beam Variables in Structures Plans). At the Contractor’s option the length of the bottom legs of Bars 5K and 5Z may be extended to facilitate tying to the exterior strands. Provide additional Bars 4M1, 4M2, 3D1 and 3D2 as required; additional bars are not included in the Lump Required on the "BILL OF REINFORCING STEEL". For placement locations, see "SKEWED BEAM END DETAILS". For placing Bars 4M1, 4M2, 3D1 and 3D2 as shown on the "BENDING DIAGRAM" for skewed end conditions.

13. Bars 5K and 5Z shall be placed and tied to the fully bonded strands in the bottom or center row (see "ELEVATION AT END OF BEAM", Index Nos. 20036, 20045, 20054, 20063, 20072, 20078, 20084 and 20096). At the Contractor’s option the length of the bottom legs of Bars 5K and 5Z may be extended to facilitate tying to the exterior strands. For welded deformed wire reinforcement, supplemental transverse #4 bars are permitted to support Bars 5K and 5Z parallel to the fully bounded strands in the bottom or center row (see "STANDARD PATTERN" on the Table of Beam Variables in Structures Plans). At the Contractor’s option Bars 3D1, 3D2 and 3D3 may be fabricated as a single bar with a 1'-0" minimum lap splice of the top legs, or the length of the bottom legs may be extended to facilitate tying to the exterior strands.

14. For beams with ends not to be encased in permanent concrete diagrams, protect end of recessed strands in accordance with Specification 450.

15. For referenced Dimensions, Angles and Case Numbers, see the Table of Beam Variables in Structures Plans.
REVISION

C:\d\projects\standards\structure\current\ready for release 2014 BOOK 20010-2 of 2.dgn

NO. SHEET INDEX

DESCRIPTION:

SKEWED BEAM END DETAILS FOR WIDENING EXISTING BRIDGES

(Florida-I 36 Beam shown, others similar)

PARTIAL VIEW (SHOWING TOP FLANGE)
(End 1 Shown, End 2 Similar)
(Bars 5A, 5Y & Strands not shown for clarity)

PARTIAL SECTION THRU WEB (SHOWING BOTTOM FLANGE)
(End 1 Shown, End 2 Similar)
(Bars 5Y & Strands not shown for clarity)

INSERT DETAIL

TYPICAL SECTION SHOWING STRAND RECESS LIMITS

TYPICAL SECTION AFTER EPOXY COATING

STRAND RECESS DETAIL

PLAN SECTION THRU BEAM WEB AT INSERT FOR DIAPHRAGM REINFORCING
(When Intermediate Diaphragms are Required by Design)

INSERT NOTES

1. Provide 5/8", zinc-electroplated, ferrule wing nut or coil inserts, UNC threads, 1/2 minimum gage wire, not more than 4" in depth with a minimum ultimate tensile strength of 11,400 lbs. in 4,000 psi concrete.

2. If inserts are needed on both sides (faces) of beam webs, an assembly as long as the thickness of the beam web, consisting of two (2) ferrule or coil inserts attached by two (2) or more struts may be utilized. The connecting struts shall have a minimum ultimate tensile strength of 11,400 lbs.

3. Inserts for diaphragm reinforcing are required at each end of each intermediate diaphragm shown on the Beam Framing Plan and may be required at the end of the beams when end diaphragms are shown. See Superstructure and Beam Framing Plans for longitudinal location of inserts for each face of beam.

TYPICAL FLORIDA-I BEAM DETAILS AND NOTES

LAST REVISION
07/01/12

FDOT 2014
DESIGN STANDARDS