SIGNAL PLACEMENT AT RAILROAD CROSSING

(2 - LANE DESIGN)

General Notes

1. No guardrail is proposed for signals; however, some form of impact attenuation device may be specified for certain locations.
2. Advance flasher to be installed when and if called for in plans or specifications.
3. Top of foundation shall be no higher than 4" above finished shoulder grade.

4. Type of traffic control device:
 I. Flashing signals
 II. Flashing signals with cantilever
 III. Flashing signals with gate
 IV. Flashing signals with cantilever and gate
 V. Gate

5. Class of traffic control devices:
 I. Flashing signals - one track
 II. Flashing signals with cantilever - multiple tracks
 III. Flashing signals with gate - one track
 IV. Flashing signals with cantilever and gate - multiple tracks

Note:
Two separate foundations may be required (one for signals, one for gates), depending on type of equipment used.

When 10' is deemed impractical, the control device can be located as close as 2' from the edge of a paved shoulder but not less than 6' from the edge of the near traffic lane.

SIGNAL PLACEMENT AT RAILROAD CROSSING

(4 - LANE DESIGN)

See FIGURE 1

Note:
Arrows denote direction of travel, not pavement markings.

FIGURE 1

Gate Length Requirements
See Note 5 Sheet 3

When 10' is deemed impractical, the control device can be located as close as 2' from the edge of a paved shoulder but not less than 6' from the edge of the near traffic lane.
GENERAL NOTES

1. The location of flashing signals and stop lines shall be established based on future (or present) installation of gate with appropriate track clearances.

2. Where plans call for railroad traffic control devices to be installed in curbed medians, the minimum median width shall be \(\leq 12\)'.

3. The location of railroad traffic control device is based on the distance available between face of curb & sidewalk. \(9\)' to \(8\)' from nearest rail, or \(9\)' from parallel to gate when present.

4. Stop line to be perpendicular to edge of roadway, approx. \(15\)" from nearest rail, or \(8\)" from and parallel to gate when present.

5. When a cantilevered-arm flashing-light signal is used, the minimum vertical clearance shall be \(17\)" from above the Crown of Roadway to the Lowest Point of the Overhead Signal Unit.

See FIGURE 1

LOCATION OF RAILROAD TRAFFIC CONTROL DEVICE

1. The location of flashing signals and stop lines shall be established based on future (or present) installation of gate with appropriate track clearances.

2. Where plans call for railroad traffic control devices to be installed in curbed medians, the minimum median width shall be \(\leq 12\)'.

3. Location of railroad traffic control device is based on the distance available between face of curb & sidewalk. \(9\)' to \(8\)' from nearest rail, or \(9\)' from parallel to gate when present.

4. Stop line to be perpendicular to edge of roadway, approx. \(15\)" from nearest rail, or \(8\)" from and parallel to gate when present.

5. When a cantilevered-arm flashing-light signal is used, the minimum vertical clearance shall be \(17\)" from above the Crown of Roadway to the Lowest Point of the Overhead Signal Unit.

See FIGURE 1

LOCATION OF RAILROAD TRAFFIC CONTROL DEVICE

1. The location of flashing signals and stop lines shall be established based on future (or present) installation of gate with appropriate track clearances.

2. Where plans call for railroad traffic control devices to be installed in curbed medians, the minimum median width shall be \(\leq 12\)'.

3. Location of railroad traffic control device is based on the distance available between face of curb & sidewalk. \(9\)' to \(8\)' from nearest rail, or \(9\)' from parallel to gate when present.

4. Stop line to be perpendicular to edge of roadway, approx. \(15\)" from nearest rail, or \(8\)" from and parallel to gate when present.

5. When a cantilevered-arm flashing-light signal is used, the minimum vertical clearance shall be \(17\)" from above the Crown of Roadway to the Lowest Point of the Overhead Signal Unit.

See FIGURE 1

LOCATION OF RAILROAD TRAFFIC CONTROL DEVICE

1. The location of flashing signals and stop lines shall be established based on future (or present) installation of gate with appropriate track clearances.

2. Where plans call for railroad traffic control devices to be installed in curbed medians, the minimum median width shall be \(\leq 12\)'.

3. Location of railroad traffic control device is based on the distance available between face of curb & sidewalk. \(9\)' to \(8\)' from nearest rail, or \(9\)' from parallel to gate when present.

4. Stop line to be perpendicular to edge of roadway, approx. \(15\)" from nearest rail, or \(8\)" from and parallel to gate when present.

5. When a cantilevered-arm flashing-light signal is used, the minimum vertical clearance shall be \(17\)" from above the Crown of Roadway to the Lowest Point of the Overhead Signal Unit.

See FIGURE 1
NOTES:

1. When computing pavement message, quantities do not include traverse lines.

2. Placement of sign W10-1 in a residential or business district, where low speeds are prevalent, the W10-1 sign may be placed a minimum distance of 102' from the crossing. Where street intersections occur between the RR pavement message and the tracks an additional W10-1 sign and additional pavement message should be used.

3. A portion of the pavement markings symbol should be directly opposite the W10-1 sign.

4. Recommended location for FTP-83-08 or FTP-82-06 signs, 100' urban and 300' rural. See Index 17355 for sign details.

5. Gate Length Requirements:
 For Two-way undivided sections:
 The gate should extend to within 2' of the center line. On multiple approaches the maximum gate length may be reach to within 2' of the center line. For those cases, the distance from the gate to the center line shall be a maximum of 4'.

 For one-way or divided sections:
 The gate shall be of sufficient length such that the distance from the gate tip to the inside edge of pavement is a maximum of 4'.

 The gate shall be of sufficient length such that the distance from the gate tip to the inside edge of pavement is a maximum of 4'.

 For Two-way undivided sections:
 The gate should extend to within 2' of the center line. On multiple approaches the maximum gate length may be reach to within 2' of the center line. For those cases, the distance from the gate to the center line shall be a maximum of 4'.

 For one-way or divided sections:
 The gate shall be of sufficient length such that the distance from the gate tip to the inside edge of pavement is a maximum of 4'.
RAILROAD GRADE CROSSING

TRAFFIC CONTROL DEVICES

- **01/01/12**

PLAN

RAILROAD GATE ARM LIGHT SPACING

<table>
<thead>
<tr>
<th>Specified Length Of Gate Arm</th>
<th>Dimension "A"</th>
<th>Dimension "B"</th>
<th>Dimension "C"</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Ft.</td>
<td>6"</td>
<td>36"</td>
<td>9</td>
</tr>
<tr>
<td>15 Ft.</td>
<td>18"</td>
<td>36"</td>
<td>9</td>
</tr>
<tr>
<td>16-17 Ft.</td>
<td>24"</td>
<td>36"</td>
<td>9</td>
</tr>
<tr>
<td>18-19 Ft.</td>
<td>28"</td>
<td>41"</td>
<td>9</td>
</tr>
<tr>
<td>20-23 Ft.</td>
<td>32"</td>
<td>6"</td>
<td>9</td>
</tr>
<tr>
<td>24-28 Ft.</td>
<td>36"</td>
<td>9"</td>
<td>9</td>
</tr>
<tr>
<td>29-31 Ft.</td>
<td>36"</td>
<td>6"</td>
<td>9</td>
</tr>
<tr>
<td>32-34 Ft.</td>
<td>36"</td>
<td>7"</td>
<td>7</td>
</tr>
<tr>
<td>35-37 Ft.</td>
<td>36"</td>
<td>8"</td>
<td>9</td>
</tr>
<tr>
<td>38 And Over</td>
<td>36"</td>
<td>10"</td>
<td>10</td>
</tr>
</tbody>
</table>

NOTE:

For additional information see the "Manual On Uniform Traffic Control Devices", Part 8; The "Traffic Control Handbook", Part VIII; and AASHTO "A Policy On Geometric Design Of Streets And Highways".

MEDIAN SECTION AT SIGNAL GATES