Index 20120 AASHTO Type II Beams (Rev. 07/13)

Design Criteria

AASHTO LRFD Bridge Design Specifications, 6th Edition; Structures Detailing Manual (SDM); Structures Design Guidelines (SDG)

Design Assumptions and Limitations

Index 20120 is the standard for the AASHTO Type II Beam. Use this standard with Indexes 20005, 20199, 20510, and 20511 or 20512.

This standard must be supplemented with project specific information including a Table of Beam Variables, Strand Pattern Details and a Strand Debonding Legend which must be completed and included in the Structures Plans. This standard and the supplemental project specific information that is included in the plans provides sufficient information to permit beam fabrication without the submittal of shop drawings.

Data tables for associated Indexes 20005, 20199, 20510 and 20511 or 20512 must also be completed and included in the plans.

A Framing Plan is required for bridges meeting the criteria stated in the SDM.

The use of End Diaphragms is not preferred on simple span, pretensioned, I-Beam structures. In lieu of End Diaphragms, the preferred detail is a Thickened Slab End at all locations of slab discontinuity. Where End Diaphragms are required by design or for widening projects, partial depth diaphragms are preferred. See SDM Chapter 15 for suggested details.

Except for widening projects where special details may be required, squared beam ends are preferred on all pretensioned I-Beam structures.

The prestressed beams in these Standard Drawings are generally assumed to act as simple spans under both Dead Load and Live Load even where the deck is detailed to be continuous across the intermediate supports or back-to-back diaphragms are present. For detailing purposes, Prestressed I-Beams are assumed to be erected plumb.

When the total initial tensioning force of the fully bonded strands required by design exceeds the value shown below, shield additional strands at the end of the beam when possible. The end reinforcement may only be redesigned to accommodate an increased vertical splitting force when approved by the State Structures Design Office. If approval is granted, Index 20120 must then be modified for inclusion in the contract documents and signed and sealed by the EOR.

To limit vertical splitting forces in the webs of beams, the maximum prestress force at the beam ends from fully bonded strands must be limited to the following:

<table>
<thead>
<tr>
<th>Index No.</th>
<th>Beam Type</th>
<th>Max. Bonded Prestress Force</th>
<th>Last Revision Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>20120</td>
<td>AASHTO Type II</td>
<td>755 Kips</td>
<td>07/01/05 or later</td>
</tr>
</tbody>
</table>
Do not apply losses when calculating the Bonded Prestress Force.

If the beam grade exceeds 2%, provide Embedded Bearing Plates and Beveled Bearing Plates at each end of the beam as shown on Index 20511 or 20512.

See additional instructions in the SDG.

Plan Content Requirements

In the Structures Plans:

Complete the appropriate "TABLE OF BEAM VARIABLES" and include it in the plans. Use additional sheets when the actual number of beams or strand patterns exceeds the capacity of a single plan sheet using the standard table. Supplemental details and modifications are permitted if special conditions require dimensions, details or notes. However, the "TABLE OF BEAM VARIABLES" itself should not be modified. See Introduction I.3 for more information regarding use of Data Tables.

Report elastic and time dependent shortening effects (DIM R) at the top of the beam @ 120 days. The average of the calculated values for the top and bottom of the beam may be used.

Show strands in the outermost positions of the two lowest rows to support Bars D.

Round Angle Φ up to the nearest degree.

Specify shear stirrup spacings V1, V2 and V3 for Bars 4K or 5K to the nearest inch.

Prepare a Framing Plan for bridges meeting the criteria stated in the SDM.

When intermediate diaphragms are required by design, show them on the Framing Plan. Tabulate insert locations with respect to the beam ends and beam faces. Include length adjustments for beams placed on grade and for elastic and time dependent shortening effects. Show Type 33 No. 8 reinforcing bars with 3" thread lengths for attachment to the inserts on the intermediate diaphragm details. Include these bars in the Superstructure Reinforcing Bar list.

For bridge widenings where beam ends are encased in full height diaphragms and the diaphragms are to be extended, modify Index 20120 and include it in the plans as follows:

- Modify the Design Standards in accordance with Method 1, Method 2 or Method 3 as defined in the Terms Of Use for the Borderless DGNs provided in the Design Standards eBooklet.
- Remove all notes, call-outs and details regarding cutting the strands and coating the ends of the beams with epoxy.
- Insert all notes, call-outs and details to ensure proper placement of Bars 4L as shown in the 2010 Design Standards. Detail the number of bars, bar locations and bar bending diagrams.
Table 20120 - AASHTO Type II Beam - Table of Beam Variables

Payment

<table>
<thead>
<tr>
<th>Item number</th>
<th>Item description</th>
<th>Unit Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>450-1-AAA</td>
<td>Prestressed Beams</td>
<td>LF</td>
</tr>
</tbody>
</table>

Design Aids

AASHTO Type II and Florida-I Beam Estimated Maximum Span Lengths

Extremely Aggressive Environment, FDOT Limits with 8.5 ksi Concrete

- **FDOT 196 Beam**
- **FDOT 184 Beam**
- **FDOT 78 Beam**
- **FDOT 72 Beam**
- **FDOT 163 Beam**
- **FDOT 154 Beam**
- **FDOT 145 Beam**
- **FDOT 136 Beam**
- **Type II Beam**

Chart Design Assumptions:
- Interior beam design;
- extremely aggressive corrosive conditions;
- beam concrete strength: 8.5 ksi @ final 6.0 ksi @ release
- deck concrete strength: 4.5 ksi @ final
- 6 beams in bridge section;
- 2"-32" F Shape barriers applied and distributed evenly over all beams;
- 8 inch composite bridge deck with additional non-structural 1/2" sacrificial surface;
- 20 psf 5-1-P form weight applied
- 1 inch structural build-up applied (min. required for 2% cross slope); 0.1 kip/ft applied per FIB or 0.025 kip/ft for Type II Beam for additional live loads including build-up;
- HL-93 Live Load applied;
- FDOT Standard splitting/bursting reinforcement used;
- All revised FDOT 2009 SDG criteria regarding splitting, debonding, and stress limits are followed;
- Spans shown are bearing to bearing; 0.6'-120K Low Lax Strands used.

- **Beam Spacing (ft.):** 4 6 8 10 12
- **Max Beam Span (ft.):** 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

- **AASHTO Type II**
- **FIB 56***
- **FIB 54**
- **FIB 45**
- **FIB 36**
- **FIB 24**
- **FIB 18**
- **FIB 12**
- **FIB 6**
- **FIB 3**
- **FIB 1**

- **Spans shown are bearing to bearing; 0.6'-120K Low Lax Strands used.**
Instructions for Design Standards
Topic No. 625-010-003-i
Index 20120 AASHTO Type II Beams (Rev. 07/13) 2014

AASHTO Type II and Florida-I Beam Estimated Maximum Span Lengths
*Moderately Aggressive Environment, FDOT Limits with 8.5 ksi Concrete

Chart Design Assumptions:
- *interior beam design;
- *moderately aggressive corrosive conditions;
- *beam concrete strength:
 - 8.5 ksi @ final
 - 6.0 ksi @ release
- *deck concrete strength:
 - 4.5 ksi @ final
- *6 beams in bridge section;
- *24" F Shape barriers applied and distributed evenly over all beams;
- *8 inch composite bridge deck with additional non-structural 1/2"
 sacrificial surface;
- *20 psf S-L form weight applied;
- *1 inch structural build-up applied
 (min. required for 2% cross slope);
- *0.1 kip/lf. applied per FIB or 0.025 kip/lf. for Type II beam for additional misc. dead loads including build-up;
- *HI-93 Live Load applied;
- *FDOT Standard splitting/bursting reinforcement used;
- *All revised FDOT 2009 SDG criteria regarding splitting, debonding, and stress limits are followed;
- *Spans shown are bearing to bearing;
- *0.6"/270K low loss strands used.
SECTION PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (in.²)</td>
<td>369</td>
</tr>
<tr>
<td>Ixx (in.⁴)</td>
<td>50,979</td>
</tr>
<tr>
<td>Iyy (in.⁴)</td>
<td>5,333</td>
</tr>
<tr>
<td>yt (in.)</td>
<td>20.17</td>
</tr>
<tr>
<td>yb (in.)</td>
<td>15.83</td>
</tr>
</tbody>
</table>

These section properties are based on gross section properties and neglect the 3/4" chamfers on the bottom flanges.