Index 20299 Build-Up and Deflection Data for Florida U Beams

Design Criteria

| AASHTO LRFD Bridge Design Specifications, 6th Edition; Structures Detailing Manual (SDM); Structures Design Guidelines (SDG)

Design Assumptions and Limitations

Use this standard in conjunction with Indexes 20210, 20248, 20254, 20263 and 20272.
Unless otherwise required as a design parameter, beam camber for computing the theoretical build-up must be based on 120-day old beam concrete.

Consider the effects of horizontal curvature with bridge deck cross slope when determining the minimum theoretical build-up over the tip of the inside flange.

For a given size and type of beam, beam camber and associated Dim B and Dim D will vary due to span lengths and beam spacings. Dim B and Dim D will also vary from span to span along the length of a bridge due to deck geometry. To provide for better aesthetics and potentially easier detailing of the supporting pedestals, where possible adjust the values of Dim B and Dim D over equal height beams in adjacent spans so as to allow the beam bottom flanges to line up. Dim B and Dim D do not necessarily have to be the same value for a single beam. See the following sketch:

Plan Content Requirements

Complete the following "Build-Up and Deflection Data Table for Florida-U Beams" and include it on the superstructure detail sheets. See Introduction I. 3 for more information regarding use of Data Tables.

NOTES: Work this sheet with Design Standard Index No. 20299.

Payment

Include estimated build-up concrete quantities with the estimated deck concrete quantities. Do not break out estimated build-up concrete quantities.
In the absence of more refined calculations, the following method to calculate estimated concrete build-up quantities may be used:

For Case 1, 2 \& 3
$V=$ Left Flange + Right Flange:

$$
V=\frac{L W\left[C+\left(\frac{B+D-2 C}{6}\right)\right]}{27}+\frac{L W\left[C+\left(\frac{B+D-2 C}{6}\right)\right]}{27}
$$

For Case 4
$\begin{aligned} & \begin{array}{l}\text { V }=\text { Left Flange } \\ \text { Right Flange: }\end{array}\end{aligned} \mathbf{V}=\frac{\mathbf{L W}\left[\left(\frac{\mathbf{B}+\mathbf{D}}{2}\right)+\left(\frac{\mathbf{2}}{3}\left(\mathbf{C}-\frac{\mathbf{B}+\mathbf{D}}{2}\right)\right)\right]}{27}+\frac{\mathbf{L W}\left[\left(\frac{\mathbf{B}+\mathbf{D}}{2}\right)+\left(\frac{\mathbf{2}}{3}\left(\mathbf{C}-\frac{\mathbf{B}+\mathbf{D}}{2}\right)\right)\right]}{27}$
Where:
$\mathrm{V}=$ Total Volume of build-up per beam (CY)
$\mathrm{L}=$ Beam Length (ft)
$\mathrm{W}=$ Width of beam top flange (ft)
B; C; D = Build-up Thickness (ft)

