
Evaluation of Smart Video for Transit Event Detection 

Project #BD549-49 

FINAL REPORT 

Prepared for the 

Florida Department of Transportation 

Research Center 

 

 

Prepared by the 

National Center for Transit Research 

Center for Urban Transportation Research 

and 

Department of Computer Science and Engineering 

University of South Florida 

 

 

June 2009 



 USF Center for Urban Transportation Research 

ii 

 

 

Disclaimer 

The opinions, findings, and conclusions expressed in this publication are those of the authors 

who are responsible for the facts and accuracy of the data presented herein.  The contents do not 

necessarily reflect the views and policies of the Florida Department of Transportation or the 

Research and Innovative Technology Administration.  This report does not constitute a standard, 

specification, or regulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 USF Center for Urban Transportation Research 

iii 

 

 

Aknowledgements 

We would like to thank David Kelsey at the Hillsborough Area Regional Transit (HART) 

agency for their generous support, allowing us to use their resources for testing surveillance 

equipment, and providing us with information and perspectives from the transit community.  We 

would also like to thank Gary O’Neal of Verint and Mark Steffler of Vidient for allowing us to 

demonstrate commercial technology, and providing us with information on the state of the art.  



 USF Center for Urban Transportation Research 

iv 

1.  Report No.   2.  Government Accession No. 3.  Recipient's Catalog No. 

4.  Title and Subtitle 
Evaluation of Smart Video  for Transit Event Detection 

5.  Report Date 
June  2009 

6.  Performing Organization Code 

7.  Author(s) 
Dmitry B.  Goldgof, Deborah Sapper, Joshua Candamo, and 
Matthew Shreve 

8.  Performing Organization Report No. 
2117-7807-00 

9.  Performing Organization Name and Address 
 
National Center For Transit Research (NCTR) 
Center for Urban Transportation Research  
University of South Florida – CUT100 
4202 East Fowler Avenue, Tampa, FL 33620 
 

10.  Work Unit No.  (TRAIS) 

 11.  Contract or Grant No. 
  BD 549-49 

12.  Sponsoring Agency Name and Address 
Office of Research and Special Programs (RSPA) 
U.S.  Department of Transportation, Washington, DC 20590 
 
Florida Department of Transportation 
605 Suwannee Street, MS 26, Tallahassee, FL 32399 

13.  Type of Report and Period Covered 
Final Report 

14.  Sponsoring Agency Code 
 

15.  Supplementary Notes 

16.  Abstract 
Transit agencies are increasingly using video cameras to fight crime and terrorism.   As the volume of video 
data increases, the existing digital video surveillance systems provide the infrastructure only to capture, store 
and distribute video, while leaving the task of threat detection exclusively to human operators.   
 
The objective of this research project was to study and develop an evaluation framework for commercial 
video analytics systems.  A state-of-the-art research literature survey was conducted.  Identified strengths, 
weaknesses, future directions of research and state-of-the-art commercial video analytics products were 
surveyed.  Product capabilities were identified by working together with vendors and analyzing the available 
literature offered by the providers.  Use of analytic technology in transit agencies in Florida was analyzed.  
A technology survey among the largest agencies in the state indicates very low use of video analytics, 
significant skepticism, and poor general knowledge of the technology and its capabilities.  Based on existing 
general evaluation frameworks, an evaluation framework for video analytics technology was developed, 
including annotation guidelines, scoring metrics, and implementation of the scoring metrics in the scoring 
software. 

17.  Key Word 
Transit Security, Video Cameras, Video Analytics,  
Anomaly Detection Systems 

18.  Distribution Statement 
Available to the public through the National Technical 
Information Service (NTIS), 5285 Port Royal Road, Springfield, 
VA 22161, (703) 487-4650, http://www.ntis.gov/ , and 

through the NCTR web site at http://www.cutr.usf.edu/ 

19.  Security Classif.  (of this report) 
Unclassified 

20.  Security Classif.  (of this page) 
Unclassified 

21.  No.  of 
Pages 
76 

22.  Price 
No Cost 

http://www.ntis.gov/�
http://www.cutr.usf.edu/�


 USF Center for Urban Transportation Research 

v 

EXECUTIVE SUMMARY 

 Transit agencies are increasingly using video cameras to fight crime and 

terrorism.   As the volume of video data increases, the existing digital video surveillance 

systems provide the infrastructure only to capture, store, and distribute video, while 

leaving the task of threat detection exclusively to human operators.  Studies were done by 

Sandia National Laboratories for the U.S. Department of Energy to test the effectiveness 

of an individual whose task was to sit in front of a video monitor(s) for several hours a 

day and watch for particular events.  The studies showed that even when assigned to a 

person who is dedicated and well-intentioned, this method of using technology will not 

support an effective security system.  After only 20 minutes of watching and evaluating 

monitor screens, the attention of most individuals has degenerated to well below 

acceptable levels.  Monitoring video screens is boring, mesmerizing, and has no 

intellectually engaging stimuli.  To address this problem, New Jersey Transit has 

connected over 1,400 of its cameras to computers that can automatically detect suspicious 

activity, using complex vision-based algorithms.  Any abnormal behavior detected will 

set off an alarm or a pager or give a call to whoever is responsible for that camera.  Other 

types of smart video surveillance that can be used by transit agencies include:  

1)  The ability to preempt incidents - through real time alarms for suspicious 

behaviors. 

2)  Enhanced forensic capabilities - through content based video retrieval. 

3)  Situational awareness - through joint awareness of location, identity, and 

activity of objects in the monitored space.   
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 In transit scenarios, an increase in situational awareness would directly benefit the 

safety and efficiency of both the passengers and the security personnel on the ground.  

Early warnings also can be issued before events occur.  Decision making also becomes 

easier since the event can be replayed immediately on command, rather than second-

guessing what may have been seen, and unnoticed behavior that is a concern becomes 

less common. 

 When criminal activity or a threat is detected, security personnel and the proper 

authorities can be provided with real-time information when assisting the situation.  

Various alerts can be set up, triggered by pre-defined operationally relevant events.  

Information can be disseminated using text messaging, on-screen alerts, email, geo-coded 

maps, pictures, and video.  The faces of detected criminals can help pinpoint further 

appearances in past, current, or future video data.  Attention-intensive activities such as 

object removal or objects left behind will be detected by the system immediately instead 

of possibly being unnoticed, resulting in a delayed reaction by a surveillance operator.   

 Some drawbacks of video analytic systems are their vulnerability to 

environmental variables, such as detrimental lighting conditions and weather.  These 

adverse conditions can trigger false alarms, which may become a source of frustration for 

the user.  Another drawback with video analytics is that events must be pre-defined, so 

events that have not been defined will not be detected.  Conversely, a human analyst may 

use judgment and training to determine if an alarm should be raised for a wider range of 

scenarios.  Video analytic algorithms often are sensitive to parameters and initial 

calibration.  Event detection performance typically depends on this calibration process.  It 

is difficult to achieve a good balance between event detection and false alarms.  
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Typically, a higher detection rate produces a higher false alarm rate, and vice-versa.  

Additionally, some video analytic implementations may require the system to be re-

calibrated over time.  Improved core technology algorithms are needed to increase the 

reliability of human behavior recognition.   

 During the last decade, numerous methods for evaluating core technologies have 

been proposed.  However, there are no standard evaluation methods for human behavior 

recognition.  Creating standard evaluation tools includes defining a common terminology 

and generating operationally similar datasets.  For example, a bus and a metro station can 

both be “crowded.” But operationally, the “crowds” in both situations are very different.  

Thus, without a standard, precise definition of “crowd,” formal comparisons become a 

very difficult task.   

 The cost-effectiveness of these systems to transit agencies will depend on 

independent verification of the systems’ performance against the task(s) deemed most 

important by the transit agencies for the application.   
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CHAPTER 1  

BASIC TERMINOLOGY AND CONCEPTS 
 

CLOSED-CIRCUIT TELEVISION (CCTV) 

 Closed-circuit television (CCTV) is the use of video cameras to transmit video 

signals to a given set of monitors.  CCTV is commonly used in public transit surveillance 

as well as other applications that may need surveillance monitoring such as banks, 

casinos, military installations, among others.  The total number of CCTV systems has 

increased rapidly over the last few decades [1].  Today, transit networks have large 

CCTV traffic-monitoring systems, which are used to review accidents and detect 

congestion status.  For example, in England, the number of CCTV systems is estimated to 

have surpassed four billion [1

 

].   

BASIC VIDEO PROCESSING SOFTWARE 

 Basic video processing software refers to application software that can perform 

basic video processing techniques, such as video resizing (zooming), format conversion, 

jitter removal, noise removal, filtering, scene/cut segmentation, etc.  Basic video 

processing capabilities are included in most CCTV packages.  Basic video processing 

does not include video analytics, which can be used to automatically detect complex 

behaviors and events that are operationally relevant in public transit surveillance, such as 

suspicious baggage left behind, object exchange, loitering, intrusion, vandalism, etc.  

Basic video processing can also include smart recording technology.  Smart recording 
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refers to systems that record video when something of interest occurs.  For example, a 

camera pointed towards a door needs to record only when people moving through it. 

 

MANUAL VIDEO ANALYTICS 

 Manual video analytics is defined as a labor-intensive task where human analysts 

scan video data looking for operationally-relevant behaviors and events (suspicious 

behavior, accidents, etc.), without the aid of video analytics software.  Manual video 

analytics can be done pro-actively (live/streaming feed) or reactively (after-the-fact) by 

reviewing previously-archived video data.  After-the-fact video analysis is referred to as 

video forensics. 

 

SOFTWARE VIDEO ANALYTICS 

 Software analytics is computer software technology that automatically detects 

pre-defined behaviors and events in video.  Similar to its manual counterpart, software 

analytics products can be used pro-actively (real-time automated monitoring) or re-

actively (video forensics).  In the literature, software video analytics is also referred to as 

Intelligent Video Surveillance (IVS), or anomaly / event detection systems.  In general, 

software analytic capabilities increase security, reduce shrinkage, and increase 

operational awareness and efficiency. 

 The analytics software is responsible for detecting pre-defined events of interest, 

which are instances of actions or behaviors of objects in a scene.  The simplest form of 

video analytics is to detect motion in videos.  A more complex example would be 

detecting a trespasser crossing the rails in a subway station or loitering behavior at a bus 
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stop, typical of drug dealers and beggars.  Smart recording is commonly used in 

conjunction with analytic software, which will considerably reduce the amount of video 

data that needs to be stored.  The analytics software can either run on remote computers 

or be embedded within the surveillance equipment.  Researchers distinguish between 

real-time and forensic analytics, since the variation between the two will impact the 

capabilities of the system.  Some systems may process pre-recorded data to detect events 

of interest but cannot detect events as they occur.  Conversely, some systems may be 

designed to detect events only in real time and will not be able to analyze archived data 

from cameras outside the network. 

 

OBJECTS 

 An object is defined as anything that is of interest for further analysis [2

 

].  In 

transit systems, common objects include humans, vehicles, bags, briefcases, backpacks, 

etc.  Distinguishing characteristics of different objects are used to separate them (size, 

shape, motion, speed).  Most behavior recognition algorithms rely on tracking objects 

over time.  A behavior of interest may be a pedestrian loitering at a bus stop.  For this, the 

object (person) must be tracked across the entire video, where occlusion (such as walking 

behind another object) is often a problem.  Another example is if an object (person) 

suspiciously leaves behind an unattended object (such as a bag), in which case there are 

two very different objects of interest that must be tracked over time to establish a 

meaningful spatio-temporal relationship.   
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EVENTS 

 The most general definition of an event is something that happens at a given place 

and time.  Commercial surveillance system providers might use slightly different 

definitions for the term event.  However, the general definition in transit surveillance is 

widely accepted by the industry.  To clarify further, event can refer to a single, low-level 

spatiotemporal entity that cannot be further decomposed (such as a person walking) or to 

a composition of multiple of these entities (such as loitering).  Also, manufacturers will 

often refer to anomaly detection rather than event detection to emphasize the general 

purpose of video analytics.  The general goal of analytic software systems is to accurately 

pinpoint occurrences of certain events of interest, which are often deviations of normal 

behavior.   

 

SYSTEM ARCHITECTURE 

 Modern analytic surveillance systems usually consist of three components, as 

shown in Figure 1.  The first component is a set of cameras, which collect and broadcast 

video through a data channel.  Depending on the provider, previously-mounted cameras 

may be compatible with newer surveillance equipment; however, the specifications of 

each camera will directly influence the overall capabilities of the system.  For example, 

accurate object detection can depend on the level of detail acquired in the video 

(resolution), so older cameras may offer reduced quality compared to newer ones.   

 The next component is the processing box.  The processing box processes each 

channel from the cameras.  The number of channels required depends on the size of the 



 USF Center for Urban Transportation Research 

5 

area to be surveyed, could range from a dozen for a small facility to tens of thousands for 

a large one.   

 The third and final component is the video analytics software, which may be 

partially embedded into the prior components using specialized hardware or run remotely 

on a computer server. 

 

Analytic 
Software

Hardware

C CCC
Channels

Cameras

Basic Video 
Processing 

 

Figure 1  Typical Setup for Transit Surveillance Systems that Include Video Analytics 
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CHAPTER 2 

RESEARCH LITERATURE SURVEY 
 

 Visual surveillance is an active research topic in image processing.  Transit 

systems are actively seeking new or improved ways to use technology to deter and 

respond to accidents, crime, suspicious activities, terrorism, and vandalism.  Human 

behavior recognition algorithms can be used proactively for prevention of incidents or 

reactively for investigation after the fact.  In this section, the current state-of-the-art 

image processing methods for automatic behavior recognition techniques are described, 

with a focus on the surveillance of human activities in the context of transit applications.   

 This survey provides a summary of progress achieved to date and helps identify 

areas where further research is needed.  A thorough description of the research on 

relevant human behavior recognition methods for transit surveillance is presented.  

Recognition methods include single person actions (such as loitering), multiple person 

interactions (such as fighting, personal attacks), person-vehicle interactions (such as 

vehicle vandalism), and person-facility/location interactions (such as objects left behind, 

trespassing).  A list of relevant behavior recognition studies is presented, including 

behaviors, datasets, implementation details, and results.  Also, algorithm weaknesses, 

potential research directions, and contrast with commercial capabilities as advertised by 

manufacturers are discussed.  A summary of literature surveys and developments of the 

core technologies (low-level processing techniques) used in visual surveillance systems, 
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including motion detection, classification of moving objects, and tracking, is also 

presented.   

 

INTRODUCTION TO VIDEO ANALYTICS TECHNOLOGY 

 Military, intelligence, and mass transit agencies are increasingly using video 

cameras to fight crime and terrorism.  Due to hardware and storage improvements during 

the last decade, a collection of continuous surveillance video is already at our doorsteps, 

while the means to continuously process it are not.  To illustrate the scope and scale of 

large surveillance transit systems, consider the following examples.  The New York 

Metro [3] is the busiest metro system in the United States (based on 2006 statistics), with 

a total of 468 stations and 1.49 billion riders per year, 4.9 million per day.  Moscow 

Metro [4

 As the volume of video data increases, most existing digital video surveillance 

systems provide the infrastructure only to capture, store, and distribute video, while 

leaving the task of threat detection exclusively to human operators.  Detecting specific 

activities in a live feed or searching in video archives (video analytics) almost completely 

relies upon costly and scarce human resources.  Detecting multiple activities in real-time 

video feeds is currently performed by assigning multiple analysts to watch the same 

] is the busiest metro in Europe, and as of 2007 has 176 stations with 2.52 billion 

riders annually, 9.55 million per day. This ridership represents a 9.53 percent growth 

since 1995.  Transit systems are spread across hundreds of kilometers and already require 

several tens of thousands employees for daily operations.  A complete deployment of 

visual surveillance to cover systems of this magnitude requires thousands of cameras, 

which makes human-based/dependant surveillance infeasible for all practical purposes. 
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video stream simultaneously.  Each analyst is assigned a portion of the video and is given 

a list of events (behaviors) and objects to look for.  The analyst issues an alert to the 

proper authorities if any of the given events or objects are spotted.  Manual analysis of 

video is labor-intensive, fatiguing, and prone to errors.  Additionally, psychophysical 

research indicates that there are severe limitations in the ability of humans to monitor 

simultaneous signals [5

   The ability to quickly search large volumes of existing video or monitor real-time 

footage will provide dramatic capabilities to transit agencies.  Software-aided real-time 

video analytics or forensics would considerably alleviate the human constraints, which 

currently are the main handicap for analyzing continuous surveillance data.  The idea of 

creating a virtual analyst or software tools for video analytics has become of great 

importance to the research community.  The purpose of this study is to review the state-

of-the-art methods for automatic video analytic techniques, with focus on surveillance of 

human activities in transit systems.  Human and vehicle behavior recognition has become 

one of the most active research topics in image processing and pattern recognition [

].  It is clear that there is a fundamental contradiction between the 

current surveillance model and human surveillance capabilities. 

6, 7

94

, 

, 123].  Previous surveys have emphasized low-level processing techniques used in 

visual surveillance (“core technologies,” such as motion detection, tracking, etc).  In 

contrast, this research focuses on human behavior recognition topics, drawing special 

attention to transit system applications.  For clarity, a brief review of the state-of-the-art 

core technologies is offered, and previous surveys in related areas are identified (see 

Table 1). 
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Table 1  Related Literature Survey Summary 

First Author Yr Topic Ref # 
Zhan 2008 Crowd analysis [123] 
Kang 2007 Intelligent visual surveillance [94] 
Stoykova 2007 3D scene capture [40] 
Sun 2006 On-road vehicle detection systems [154] 
Forsyth 2006 Human motion [8
Yilmaz 

] 
2006 Object tracking [74] 

Radke 2005 Image change detection [46] 
Valera 2005 Intelligent distributed surveillance systems [7] 
Haykin 2004 Object tracking [73] 
Foresti 2004 Multi-sensor tracking [85] 
Weiming 2004 Motion and tracking for surveillance [6] 
Fasel 2003 Facial expressions (small-scale body movements) [36] 
Moeslund 2000 Human motion capture (large-scale body movements) [9
Aggarwal 

] 
1999 Motion analysis of the human body [95] 

Gavrila 1999 Human movement [65] 
Pavlovic 1997 Hand gestures (small-scale body movements) [35] 
Ju 1996 Human motion estimation and recognition [67] 
Cedras 1995 Motion-based classification [66] 
Aggarwal 1994 Elastic non-rigid motion [96] 
Cedras 1994 Motion detection [67] 
Barron 1992 Optical flow [56] 
 

  Video analytics gained significant research momentum in 2000, when the 

Advanced Research and Development Activity (ARDA) started sponsoring detection, 

recognition, and understanding of moving object events.  Research focused on news 

broadcast video, meeting/conference video, Unmanned Aerial Vehicle (UAV) motion 

imagery and ground reconnaissance video, and surveillance video.  The Video Analysis 

and Content Extraction (VACE) project focused on automatic video content extraction, 

multi-modal fusion, event recognition, and understanding.  The Defense Advanced 

Research Projection Agency (DARPA) has also supported several large research projects 

involving visual surveillance and related topics.  Projects include the Visual Surveillance 

and Monitoring (VSAM, 1997) project [10] and the Human Identification at a Distance 

(HID, 2000).  Recently, the Video and Image Retrieval Analysis Tool (VIRAT, 2008) 

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(stoykova%20%20e.%3cIN%3eau)&valnm=Stoykova%2C+E.&reqloc%20=others&history=yes�
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project was announced.  VIRAT’s purpose is to develop and demonstrate a system for 

UAV video data exploitation, which would enable analysts to efficiently provide alerts of 

events of interest during live operations, and retrieve video content of interest from 

archives.   

 Video analytics have become increasingly popular in commercial systems.  Later 

in this survey, a summary of some of the existing commercial systems is provided.  The 

list includes advertised capabilities for human behavior recognition.  It is unclear how 

well systems are able to cope with crowds of people, typical of mass transit systems.  The 

cost-effectiveness of behavior detection systems to transit agencies depends on 

independent verification.  Verification of the systems’ performance is based on the tasks 

deemed most important by the transit agencies for the application.  Efforts to create 

standard evaluation frameworks (methodologies to quantify and qualify performance) 

have been of increasing interest to the research surveillance community [11, 12, 13, 14, 

15, 16, 17, 18, 19 21, ].  Additionally, there are methods for evaluating the performance 

of the evaluators [20

 In the last decade, there have been many conferences and workshops dedicated to 

visual surveillance, among them the IEEE International Conference on Advanced Video 

and Signal based Surveillance (AVSS) 2005 challenge, which focused on real-time event 

detection solutions.  CREDS [

].  Despite the large number of existing evaluation techniques, a 

robust study that experimentally compares algorithms for human activity recognition is 

still missing. 

21], defined by the needs of the public transportation 

network of Paris (RATP, the second busiest metro in Europe), focused on proximity 

warning, dropping objects on tracks, launching objects across platforms, and persons 
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trapped by the door of a moving train, walking on rails, falling on the track, and crossing 

the rails.  Several CREDS solution proposals can be found in the References section of 

this report [22, 23, 24, 25].  The Performance Evaluation of Tracking and Surveillance 

(PETS) [26] workshops started with the goal of evaluating visual tracking and 

surveillance algorithms.  The initiative provides standard datasets, with available ground 

truth, for evaluating object tracking and segmentation.  Recently, a metric to evaluate 

surveillance results also was introduced [27

 Around the world, large underground transit networks (such as France’s RATP, 

United Kingdom’s LUL and BAA, Italy’s ATM, etc.) have deployed and tested large 

real-time transit visual surveillance systems that include human behavior recognition.  

Several transit surveillance projects have been funded by the European Union.  The Pro-

active Integrated Systems for Security Management by Technological, Institutional and 

Communication Assistance (PRISMATICA) [

].  Some PETS datasets contain relevant 

information closely related to transit systems.  Datasets include single-camera outdoor 

people and vehicle tracking (PETS 2000); multi-camera  camera outdoor people and 

vehicle tracking (2001); diverse surveillance-related events including people walking 

alone, meeting with others, window shopping, fighting, passing out, and leaving a 

package in a public place (2004); and images containing left-luggage scenarios (2006). 

28] has deployed video analytic systems in 

France.  The Content Analysis and Retrieval Technologies to Apply Knowledge 

Extraction to Massive Recording (CARETAKER) [29] project was deployed in Italy.  

The Annotated Digital Video for Intelligent Surveillance and Optimized Retrieval 

(ADVISOR) [30] was successfully deployed and tested in Spain and Belgium, including 
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previous work from the Crowd Management with Telematic Imaging and 

Communication Assistance (CROMATICA) project [31, 32, 33, 34

 

]. 

LITERATURE SURVEY ORGANIZATION 

 The main focus of this survey is to offer a comprehensive survey of image 

processing human behavior recognition algorithms in the context of transit applications.  

All the pre-processing steps prior to behavior recognition are referred to in this study as 

“core technologies.” Human behavior recognition using video starts with the detection of 

foreground objects are commonly achieved through environmental modeling or motion-

based segmentation.  Subsequently, foreground objects are classified depending on the 

application as humans or vehicles.  Object classification can be shape-based, motion-

based, or based on a particular descriptor suitable for a specific application.  Finally, 

tracking establishes the spatio-temporal relationship between the objects and the scene.   

 The organization of this report is shown in Figure 2.  The report begins with a 

brief glance of the core technologies to facilitate the understanding of the later sections of 

the paper.  For organization purposes, all pertinent surveys dealing with core technologies 

are identified and summarized in Table 1.  In Chapter 3, behavior recognition strategies 

are discussed.  Chapter 4 elaborates on many important topics describing the current 

state-of-the-art, strengths, weaknesses, and future research directions.  Chapter 5 

summarizes the report. 
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CORE TECHNOLOGIES 

Motion Detection 

 Visual surveillance systems for fixed cameras traditionally include some sort of 

motion detection.  Motion detection is used to segment moving objects from the rest of 

the image.  Knowledge about the motion of objects is useful in both the object and 

behavior recognition processes.  A survey on early work in motion detection can be 

found in a 1994 study.  In transit surveillance applications, motion detection typically 

refers to movement of objects as a whole (movement of pedestrians or vehicles).  Human 

motion can also be referred to articulated motion of the human body, such as the motion 

of certain body-parts like legs or arms.  There are two types of articulated motion: large-

scale body movements like movements of the head, arms, torso, and legs [9], and small-

Figure 2   Study Organization Flowchart 

Core  
Technologies 

Behavior Recognition 

Discussion  and Future 
Developments 

Single Person/ No Interaction 
Multiple Person Interactions 
Person-Vehicle Interactions 
Person-Facility Interactions 

 

Conclusions 

Motion Detection 
Object Classification 

Object Tracking 

 Paper Table (Behaviors) 

Core Technology Limitations 
Evaluation Framework 
Standard Terminology 
Datasets 
Distributed Surveillance 
Aerial Surveillance 
Commercial Systems 

 

Surveys Table 
Introduction and 

Overview 



 USF Center for Urban Transportation Research 

14 

scale body movements like hand gestures and facial expressions [35, 36

 Advances in image sensors and the evolution of digital computation is leading to 

creation of new sophisticated methods for capturing, processing, and analyzing 3D data 

from dynamic scenes.  Recent developments include 3D environmental modeling 

reconstructed using the shape-from-motion technique [

].  In general, 

motion detection can be subdivided into environment modeling, motion segmentation, 

and object classification.  All three often overlap during processing.  Nearly all current 

surveillance systems rely on 2D data for motion processing; thus, the focus of this study 

will be on this domain.   

37] and 3D imagery from a 

moving monocular camera [38].  Most 3D approaches require landmarks to be present in 

the scene [39] in order to accurately estimate the required extrinsic parameters of the 

camera, which sets an additional set of practical constraints for deployment of systems.  

A survey on emerging perspective time-varying 3D scene capture technologies can be 

found in Stoykova et al. [40

 

].   

Background Subtraction and Temporal Differencing 

 A popular object segmentation strategy is background subtraction.  Background 

subtraction compares an image with an estimate of the image as if it contained no objects 

of interest.  It extracts foreground objects from regions where there is significant 

difference between the observed and the estimated image.  Common algorithms include 

methods by Heikkila and Olli [41], Stauffer and Grimson (Adaptive Gaussian Mixture 

Model or GMM) [42], Halevy [43], Cutler [44], and Toyama (WALLFLOWER) [45].  A 

detailed general survey of image change algorithms can be found in Radke et al. [46].  
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The GMM is one of the most commonly-used methods for background subtraction in 

visual surveillance applications for fixed cameras.  A mixture of Gaussians is maintained 

for each pixel in the image.  As time passes, new pixel values update the mixture of 

Gaussians using an online K-means approach.  The estimation update is used to account 

for illumination changes, slight sensor movement, and noise.  Nevertheless, transit 

surveillance researchers continue to emphasize the importance of robust background 

subtraction methods [48] and online construction and adaptive background models [47].  

A large number of recent background subtraction methods improve on prior existing 

methods by modeling the statistical behavior of a particular domain or by using a 

combination of methods.  For example in Cheung and Kamath [48

 Another common object segmentation method is temporal differencing.  In 

temporal differencing, video frames are separated by a constant time and compared to 

find regions that have changed.  Unlike background subtraction, temporal differencing is 

based on local events with respect to time and does not use a model of the background to 

separate motion.  Typically, two or three frames are used as separation time intervals, 

depending on the approach.  A small time interval provides robustness to lighting 

conditions and complex backgrounds, since illumination changes and objects in the scene 

are more likely to be similar over short periods of time and a image stabilization 

], a slow adapting 

Kalman filter was used to model the background over time in conjunction with statistics 

based on an elliptical moving object model.  Robust background subtraction is typically 

computationally expensive; thus, methods to improve standard algorithms are becoming 

increasingly popular [31].  For example, Dominguez-Caneda et al. [40] state that for a 

GMM, speed can be improved by a factor of 8 with an image size of 640 by 480 pixels.   
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algorithm is required when there is significant movement of the camera [49].  Temporal 

differencing is usually computationally inexpensive, but it regularly fails at properly 

extracting the shape of the object in motion and can cause small holes to appear.  For 

these reasons, hybrid approaches [50, 51

 

] often combine both background subtraction 

and temporal differencing methods in order to provide more robust segmentation 

strategies.   

Optical Flow 

 Optical flow is a vector-based approach that estimates motion in video by 

matching points on objects over multiple frames.  A moderately high frame rate is 

required for accurate measurements.  It should be noted that a real-time implementation 

of optical flow will often require specialized hardware, due to the complexity of the 

algorithm.  A benefit of using optical flow is that it is robust to multiple and simultaneous 

camera and object motions, making it ideal for crowd analysis and conditions that contain 

dense motion.  Popular techniques to compute optical flow include methods by Black and 

Anandan [52], Horn and Schunck [53], Lucas and Kanade [54], and Szeliski and 

Couglan [55].  A comparison of methods for calculating optical flow can be found in 

Barron et al. [56

 

]. 

Object Classification 

 After finding moving regions or objects in an image, the next step in the behavior 

recognition process is object classification.  For example, a pedestrian crossing a street 

and a vehicle running a red light can be similar if there is no knowledge of the object 
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causing the motion.  Object classification could distinguish interesting motion from those 

caused by moving clouds, specular reflections, swaying trees, or other dynamic 

occurrences common in transit videos.  It is important to note that there are multiple 

possible representations of objects before and after classification.  Common geometric or 

topological properties used include height/width ratio, fill ratio, perimeter, area, 

compactness, convex hull, and histogram projection.  (For detailed definitions of these 

properties, see [57

 

]).  Some of these properties are also used in post-object classification 

to keep track of the object in sequential frames or separate cameras.  In general, for object 

classification in surveillance video, classification methods are shape-based, motion-

based, and feature-based. 

Shape-Based Classification 

 The geometry of the extracted regions (boxes, silhouettes, blobs) containing 

motion often are used to classify objects in video surveillance.  Some common 

classifications in transit system surveillance are humans, crowds, vehicles, and clutter 

[10].  For transit applications, especially those oriented to human behavior recognition, 

appearance features extracted from static images have been proven effective in 

segmenting pedestrians without the use of motion or tracking [58, 59, 60].  Shape-based 

recognition methods find the best match between comparisons of these properties in 

association with a-priori statistics about the objects of interest.  For example, in Bird et al. 

[61], blobs are first extracted and classified based on the calculated human height/width 

ratio based on data from the National Center for Health Statistics.  Shape-based 

classification is particularly useful in certain transit systems when only certain parts of 
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the objects are fully visible; for instance, in buses and metros, objects will be partially 

occluded most of the time, in which case the head [62

 

] could be the only salient feature in 

the scene.   

 Motion-Based Classification 

 This classification method is based on the idea that object motion characteristics 

and patterns are unique enough to distinguish between objects.  Humans have been 

shown to have distinct types of motion.  Motion can be used to recognize “types” of 

human movements such as walking, running, or skipping, as well as used for human 

identification, Starting with the HumanID Gait Challenge [63], image processing 

researchers actively proposed gait-based methods [64] for people identification at a 

distance.  (For more information on motion-extraction and motion-based classification, 

see [65] and [66]; for an overview of motion estimation and recognition with focus on 

optical flow techniques, see [67

 

]).   

Other Classification Methods 

 Skin color [68] has proved to be an important feature that can be used for the 

classification of humans in video, as it is relatively robust to changes in illumination, 

viewpoint, scale, shading, and occlusion.  Skin color has also been successfully combined 

with other descriptors [69 61] for classification purposes.  In Bird et al. [ ], the authors 

describe a method that consists of three parts.  First, a red-green-blue (RGB) 

normalization procedure was adopted to get the pure color components.  A color 

transform was then applied which correlates each pixel to that of its Gaussian distribution 
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of the skin color, higher intensities being closer to the center.  Hence, the output showed 

the region of the image that closely matched with skin color indicating human motion.  

This method was extended in Yang et al. [70] and fused with other methods, including 

depth analysis using binocular imaging.  The fusion of methods has shown to be very 

effective when combining shape and motion-based methods [71, 72

 

]. 

Object Tracking 

 In the context of transit systems, tracking is defined as the problem of estimating 

the trajectory of a pedestrian in the image plane while he/she is in the transit station or 

vehicle.  The increasing need for automated video analysis has motivated researchers to 

explore tracking techniques, particularly for surveillance applications.  Object tracking in 

general is a difficult task.  Many problems that come from general object tracking are the 

same as those for human and vehicle tracking, among them multiple moving objects, 

noise, occlusions, object complexity, scene illumination variations, and sensor artifacts.  

(For additional information on tracking, see detailed object tracking surveys [73, 74]).  

Specific issues that arise within the transit domain include dealing with multiple persons 

in complex scenarios [75], tracking across large-scale distributed camera systems [76], 

tracking in highly-congested areas with crowds of people [77] (such as near ticket 

offices, metro, or buses waiting areas at rush hour, etc.), or tracking using mobile 

platforms [78].  Extremely frequent occlusions are typical; consequently, the traditional 

localization and tracking of individuals is not sufficiently reliable.  Surveillance inside 

transit vehicles often allows only parts of individuals to be captured by the sensors (such 
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as common occlusions from seats and other passengers often exposes only faces inside 

buses and metros).   

 Tracking systems assign persistent identification tags to tracked pedestrians in 

different frames of a video.  Depending on the application requirements, it is common for 

the system to also maintain other subject characteristics, such as aspect ratio, area, shape, 

color information, etc.  Selecting good features that can be used for future tracking or 

identification is a necessity, since the object’s appearance in a later frame may vary due 

to orientation, scale, or other natural changes.  Also, feature uniqueness plays an 

important role.  Some common features used in image processing applications are color, 

edges, motion, and texture.  In Gasser et al.  [79], researchers describe a system that 

monitors suspicious human activity around bus stops, in which tracking of pedestrians is 

performed using a kernel-based method proposed in Comanciu et al. [80

61

].  This tracker is 

based on the color distribution of previously-detected targets.  Current position is found 

by searching the neighborhood around the previously found target and computing a 

Bhattacharyya coefficient, which is used as a correlation score.  In Bird et al. [ ], the 

shirt color is used as the main feature for tracking purposes, and kernel-based tracking is 

dropped in favor of a blob-based tracking.  Blob-based tracking offers a computational 

advantage over kernel-search since the latest has to be first initialized, which would 

redundantly require blob-extraction to be performed.  Blob-based methods are extremely 

popular in the literature; for example, in proposed solutions to the CREDS challenge, 

Spirito et al. [22] considers the use of a long-memory matching algorithm [81

24

] using the 

blob’s area, perimeter, and color histogram, and another [ ] performs a blob-based color 

histogram tracking.  The French project Système d’Analyse de Médias pour une Sécurité 
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Intelligente dans les Transports publics (SAMSIT) focuses on automatic surveillance in 

public transport vehicles by analyzing human behaviors.  Inside metros and buses, faces 

are the only body part mostly captured by surveillance cameras, while the other body 

parts are occluded, especially by the seats.  Therefore, tracking is performed using faces 

with a color particle filter [82], similar to [83].  The tracking is based on the likelihood 

from the Bhattacharyya distance between color histograms in the Hue-Saturation-Value 

(HSV) color space.  Color-based tracking is robust against vibration of the moving 

vehicles like trains and buses and is sensitive to extreme changes in lighting conditions, 

such as a train entering a tunnel.  Many multi-sensor approaches [84, 85], algorithm 

fusion techniques [86], and integrating features over time [87

 

] have been proposed to 

overcome many of the mentioned tracking difficulties, and to generate robust tracking 

performance in transit surveillance applications. 

TYPES OF HUMAN BEHAVIOR RECOGNITION 

 In this survey, the terminology and classification strategy for human behavior are 

similar to those used by the VIRAT project.  VIRAT divides human behavior in two 

categories: “events” and “activities.” An event refers to a single low-level spatiotemporal 

entity that cannot be further decomposed (such as a person standing, a person walking).  

An activity refers to a composition of multiple events (such as a person loitering).  Across 

the literature, the term “event” is often used interchangeably to describe “events” or 

“activities” as defined by VIRAT.  For clarity, in this study the term “behavior” includes 

both “events” and “activities.” For organizational purposes, transit surveillance 

operationally-relevant behaviors are divided into four general groups: (A) Single Person 
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or No Interaction, (B) Multiple Person Interactions, (C) Person-Vehicle Interactions, and 

(D) Person-Facility/Location Interactions.  Provided below are examples of each of these 

groups: 

• Single Person or No Interaction (Figure 3) consists of behaviors that can be defined 

only by considering person(s) who are not interacting with any other person or 

vehicle, such as loitering, people-counting (crowd–counting), crowd flow (behavior) 

analysis, person talking on a cell phone, etc. 

  
 

  

(Suspicious person marked with an ellipse loitering for a long  
period of time without leaving in a bus stop) 

Images courtesy of the Center for Distributed Robotics, University of  
Minnesota.  Images are part of the dataset used in [61]. 

 
Figure 3.  Sample Single Person or No Interaction Behavior 

 
 

• Multiple Person Interactions (Figure 4) are behaviors that involve persons interacting 

with each other.  An example of the behavior includes: following, tailgating, meeting, 

gathering, moving as a group, dispersing, shaking hands, kissing, exchanging objects, 

kicking, etc.  breaking window, dropping off, picking up, etc. 
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Images courtesy of the Computer Vision Laboratory, ETH Zurich.   

Images are part of the dataset used in [87]. 
 

Figure 4  Sample Multiple Person Interaction Behavior: Pedestrians on a Crosswalk 

 

• Person-Vehicle Interactions (Figure 5) consist of behaviors that are defined through 

interactions with persons and vehicles, for example, driving, getting in or out of the 

car, loading or unloading, opening or closing the trunk, crawling under the car, etc. 

 

  

  
 

Crime solver public video release from  
Hartford Police Department in Connecticut. 

 

Figure 5  Sample Person-Vehicle Interaction: Person Being Run Over by Vehicle 
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• Person-Facility/Location Interactions (Figure 6) are behaviors defined through 

interactions with persons and facilities/locations.  An example of this behavior would 

include entering or exiting), standing, waiting at checkpoint, evading checkpoint, 

passing through gate, object left behind, vandalism, etc. 

 

    

Object left behind sample images from PETS 2006 dataset [26] 

Figure 6   Sample Person-Facility/Location Interaction:  
Person Leaving a Bag in a Train Station 

 

 In surveillance systems, behavior recognition can be ambiguous depending on the 

scene context.  The same behavior may have several different meanings, depending upon 

the environment and task context in which it is performed.  Human behavior recognition 

has been the focus of several workshops such as Visual Surveillance (1998) [88, 89], 

Event Mining (2003) [90, 91], and Event Detection and Recognition (2004) [92, 93].  

(See [94] for a brief background review of advances in intelligent visual surveillance and  

[95, 96

 Any reliable behavior recognition strategy must be able to handle uncertainty.  

Many uncertainty-reasoning models have been proposed by the artificial intelligence and 

image understanding community and already have been used in visual surveillance 

applications.  The Bayesian approach is perhaps the most common model due its 

] for a review on studies of motion of the human body.) 
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robustness and relatively low computational complexity as compared to other methods, 

such as the Demptster-Shafter theory [97].  Uncertainty handling can improve visual 

attention schemes [98].  Various other models have been used in surveillance-related 

applications, including classifying human motion and simple human interactions using a 

small belief network [99], human postures using belief networks [100], description of 

traffic scenes using a dynamic Bayes network [101], human activity recognition using a 

hierarchal Bayes network [102], and anomalous behavior detection using trajectory 

learning with Hidden Markov Models [103,104

 

].   

SINGLE PERSON OR NO INTERACTION 

Loitering 

 Loitering is defined as the presence of an individual in an area for a period of time 

longer than a given time threshold.  Methods for automatically detecting loitering in real-

time would enable deployed security to investigate suspicious individuals or to target 

loitering stations for future investigation.  Loitering is of special interest to public transit 

systems since it is a common practice of drug dealers, beggars, muggers, and graffiti 

vandals, among others.  In this study, loitering refers to behavior that involves a human 

exclusively.  It is not to be confused with stationary objects (such as objects left behind), 

which in this classification falls under Person-Facility Interaction behaviors.  Before a 

loitering activity is detected, individuals can be engaged in other activities like browsing, 

entering, leaving, and passing through [105

 In general, literature for loitering detection in transit system applications consists 

primarily in tracking using indoor video (see 

]. 

Table 2).  However, publications often lack 
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of implementation and technical details [23, 106, 107

61

].  The technical literature 

exclusively to outdoor loitering detection is scarce.  In Bird et al. [ ], outdoor loitering 

is used as a cue to detect potential drug-dealing operations in bus stations.  Drug dealers 

often wait for their clients to come by bus, buy drugs, and leave.  Consequently, 

suspicious activity is defined as individuals loitering, using a time threshold longer than 

the maximum time that it would typically take to catch a bus.  The technique proposed in 

Bird et al. [61] uses a refined Gaussian Mixture background subtraction algorithm to 

detect motion blobs in a calibrated scene.  Blobs are classified as humans using size and 

shape descriptors, and a short-term biometric based on the color of clothing is used for 

tracking purposes.  A calibrated scene is used to calculate the effect of distortions in the 

pedestrian’s size due to the perspective projection.  In transit scenes it is often impractical 

to manually measure camera parameters on site and almost impossible when working 

only with pre-recorded examples [108

 

]. 

Crowd Counting 

 Accurate people detection can increase management efficiency in public 

transportation by marking areas with high congestion or signaling areas that need more 

attention.  Estimation of crowds in underground transit systems can be used to give 

passengers a good estimate of the waiting time in a queue.  Multiple solutions to 

automate the crowd-counting process have been proposed, including solutions from a 

moving platform (such as a camera on a bus) [109] that analyze the optic flow generated 

from the moving objects as well as the moving platform.   
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 Researchers have identified crowd counting to be often highly-sensitive to 

training data [110], in which cases algorithms or crowd density classifiers [111] will 

greatly benefit from having a realistic and robust training dataset.  New techniques for 

creating human crowd scenes are continuously being developed, especially due to the 

growing demand from the motion picture industry [112].  Simulated crowds have been 

widely studied in many application domains, including emergency response [113] and 

large-scale panic situation modeling [114, 115]; perhaps simulated crowds [116

 Solutions using fixed cameras that use standard image processing techniques can 

be separated into two types.  In the first, an overhead camera that contains “virtual gaits” 

that counts the number of people crossing a pre-determined area is used.  Clearly, 

segmentation of a group of people into individuals is necessary for this purpose [

] or flow 

models could also potentially offer visual surveillance researchers a new way to 

efficiently generate training data. 

117].  

The second type attempts to count pedestrians using people detection and crowd 

segmentation algorithms.  In the overhead camera scenario, many difficulties that arise 

with traditional side-view surveillance systems are rarely present.  For example, overhead 

views of crowds are more easily segmented, since there is likely space between each 

person, whereas the same scenario from a side-view angle could be incorrectly 

segmented as one continuous object.  When strictly counting people, some surveillance 

cameras are placed at bottlenecked entrance points where, at most one person at any 

given time, is crossing some pre-determined boundary (such as a security checkpoint or 

an access gate at a subway terminal).  A potential drawback is that overhead views are 

prone to tracking errors across several cameras (unless two cameras are operating in 
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stereo), since human descriptors for overhead views are only reliable for a small number 

of pedestrians [118], using multiple cameras may further complicate crowd counting.  In 

the cases where over-head surveillance views are not available, side-view cameras must 

be used to count people, and the multiple problems associated with this view (such as 

crowd segmentation and occlusion) come into play.  In the case of crowd segmentation, 

some solutions that have been proposed include shape indexing, face detection, skin 

color, and motion [119

 Most of these methods rely heavily on image quality and frame rate for accurate 

results.  Shape indexing and skin colors are considered robust to poor video quality, while 

motion and face detection are most dependent on video quality.  Occlusion is another 

problem, since all or part of a person may be hidden from view.  Some techniques try to 

mitigate this issue by detecting only heads [

, 121]. 

120] or omega-shaped regions formed by 

heads and shoulders [121

 

].   

Crowd Behavior 

 Crowd behavior analysis has drawn significant interest from researchers working 

closely to the transit domain [122].  A recent survey [123

108

] focused on crowd analysis 

methods employed in image processing.  The flow of large human crowds [ ] is a 

useful cue for human operators in real-time behavior detection, such as diverging crowd 

flow and obstacles.  Flow cues can be used reactively by human operators to efficiently 

deal with accidents or preventively to timely control situations that potentially could lead 

to graver incidents.  Recent crowd behavior analysis methods include tracking of moving 

objects [124], motion models using optical flow [125, 126, 127, 128] and crowd density 
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measurement using background reference images [129].  A related surveillance problem 

consists of identifying specific individual events in crowded areas [130], in which motion 

from other objects in the scene will cause significant clutter under which algorithms 

might fail.  Detecting particular behaviors based on crowd analysis (such as panic, 

fighting, vandalism) is a new research direction for projects like SERKET [131

127

], recently 

funded by the European Union to create methods to analyze crowd behaviors and aid in 

the fight against terrorism.  Common abnormal crowd characteristics that have been 

researched are fallen person, blocked exit, and escape panic [ , 132, 133

 

].  Behavior 

classification is often based on the vector fields generated by crowd motion instead of 

individual person tracking.   

Human Pose Estimation (Stance Change) 

 In transit surveillance applications, human pose estimation refers to the pose of 

the entire human body (for example, going from standing to lying down in a metro is an 

indication of pedestrian collapse) and not pose-related to a single body part, such as a 

head pose that can be used in applications such as driving monitoring [134].  Keeping 

track of multiple body parts is often useful to estimate the global body poses.  There are 

two main approaches to estimating body pose.  The first approach calculates ratios 

between the height and width of the bounding box around a detected human.  In Balan et 

al. [135], vertical and horizontal projection templates are used to detect standing, 

crawling/bending, lying down, and sitting.  The second approach attempts to track 

specific joints and body parts [136, 137], both because they are useful for indicating 

human pose and also because when accurately modeled, they can be used to recover the 
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pose even after occlusion and other common tracking failures [138].  Due to self 

occlusion and background clutter, some approaches also use the motion generated from 

each body part as a feature for pose change [139], since movements from each joint are 

shown to be inter-dependent.  In a study by Baumberg and Hogg [140

 

], the observed 

motion is compared with registered motion exemplars, while action models are used to 

estimate possible future poses.   

Multiple Person Interactions 

 Multiple person interactions have largely been motivated by the growing demand 

for recognizing suspicious activity in security and surveillance applications.  In [141], the 

behavior detection process consists of foreground segmentation, blob detection and 

tracking.  Semantic descriptions of suspicious human behavior are defined through 

groups of low-level blob-based events.  For example, fights are defined as many blobs’ 

centric moving together, merging and splitting, and overall fast changes in the blobs’ 

characteristics.  Attacks are defined as one blob getting too close to another blob, with 

one blob perhaps being initially static, and one blob erratically moving apart.  Large 

projects like BEHAVE (years 2004-2007) [142] and CAVIAR (years 2002-2005) [143] 

have each produced several publications focusing on multiple person interactions.  

Algorithms include the use of a nearest neighbor classifier based on trajectory 

information [144] in order to detect human interactions such as walking together, 

approaching, ignoring, meeting, splitting, and fighting, Bayesian networks [145] and 

moment Invariant feature descriptions [146] to detect events including sitting down, 

standing up, bending over, getting up, walking, hugging, bending sideways, squatting, 



 USF Center for Urban Transportation Research 

31 

rising from a squatting position, falling down, jumping, punching, and kicking.  Often, 

performance relies on the ability to accurately segment and separate multiple human 

motions.  Multiple free-form blobs and course models of the human body were used in 

two person interaction in [147], which used a hierarchal Bayesian Network to recognize 

human behaviors based on body part segmentation and motion.  This work was extended 

[148] to track multiple body parts of multiple people.  Processing at three levels (pixel, 

blob, and object) was used to distinguish punching, hand-shaking, pushing, and hugging.  

A technique that does not use temporal motion information but instead uses pose is 

discussed in study by Park and Aggarwal [149

 Exchanging objects between persons is a common security concern in airports and 

other transit scenarios.  In Haritaoglu et al. [

].  By using a string matching method 

using a K-nearest neighbors approach, the authors were able to classify shaking hands, 

pointing, standing hand-in-hand, and the intermediate transitional states between these 

events. 

150], backpack exchanging is detected based 

on the shape analysis of each person.  First, a person is detected to be carrying or not 

carrying a backpack or any other object.  Then, the object is segmented and tracked for 

possible future exchanges between people.  The involuntary exchanging of objects such 

as pick-pocketing is discussed in Cupillard et al.  [151] and a real-time implementation of 

this behavior can be found in Alberto et al. [152

130

].  Other methods have extended the 

concept of “objects left behind” to analyze higher-level information of objects being 

“switched,” such as changing hands.  A non-contact hand-gesture between people such as 

waiving was studied in Ke et al. [ ].  This event was based on the localization of patio-

temporal patterns of each human motion, and uses a shape and flow matching algorithm.   
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Person – Vehicle Interactions 

 In general, transit systems involve surveillance of motorized vehicles as well as 

humans.  Spatiotemporal relationships between people and vehicles for situational 

awareness [153] are the basis for analysis of “the big picture.” Operationally-relevant 

behavior detection (such as human breaking-in or vandalizing a car) has not yet been 

addressed in the research literature.  As mentioned before, the focus of interest for this 

survey is human behavior recognition; for completeness this following section provides a 

short general overview on vehicle visual surveillance.  (For a complete review of on-road 

vehicle detection systems, see Sun et al. [154

 Most existing automated vehicle surveillance systems are based on trajectory 

analysis.  Detected events are abnormal-low-frequency ones (such as U-turns, sudden 

braking, pedestrians trespassing the street, etc.) [

].) 

155, 156], or a small group of pre-

defined events, such as accidents [157, 158], illegal parking [159], congestion status 

[160], illegal turns, or lane-driving [161].  Events of interest are commonly learned using 

Expectation Maximization [162] or modeled using semantic rules [163] similar to the 

human interpretation of such events and validated using existing data.  Trajectory-based 

approaches have been the subject of significant study, especially in the traffic analysis 

domain.  Common approaches to trajectory analysis are based on Kaman filter [164] 

[165], dynamic programming [166 162], and Hidden Markov Models [ ].  Discrete 

behavior profiling has been proposed [167]to avoid tracking difficulties associated with 

occlusion and noise.  There is significant research done in domain-independent anomaly 

behavior detection [168, 169], as well as events based on group activities [170].  Transit 
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surveillance involves many sub-problems, including classification of different types of 

vehicles [171, 172, 173], vehicle recognition [174], or discrimination between vehicles 

and other frequent objects [175

 

], such as pedestrian, bicycles, buses, cars, pickups, 

trucks, and vans.   

PERSON – FACILITY/LOCATION INTERACTIONS 

Intrusion or Trespassing 

 Intrusion or trespassing is defined as the presence of people in a forbidden area.  

A forbidden area can also be defined in terms of time (such as after hours) or spatial 

relationships (such as a pedestrian walking close to the train platform edge or walking on 

the rails).  A large number of intrusion-detection algorithms rely on the use of a digital 

“tripwire.” A tripwire typically is a line drawn over the image that separates regions into 

“allow” and “don’t allow” areas.  In Spirito et al. [22], Black et al.  [23], and Seyve [25], 

whenever a bottom corner of the bounding rectangle of an object intersects this line (rails 

in a subway), an intrusion is detected and a warning is given.  The warning stops when 

both corners of the rectangle come back to the allowed area.  Intrusion detection is 

necessary to detect suicidal behavior, such as people jumping on the train tracks.  To 

reduce false positives, often the blob needs to be tracked over time for a given number of 

frames after intrusion.  To mitigate strong illumination changes, edges can be used in the 

motion extraction process [176 141].  Trespasser hiding [ ] can be defined as a blob 

disappearing in many consecutive frames, with the blob’s last centroid position not close 

to an area previously defined as a possible “exit area.” Access time and motion trajectory 
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have also been shown to be useful for intrusion violation detection using Hidden Markov 

Models [177

  Another security-sensitive activity similar to intrusion is tailgating (illegal piggy-

back entry).  Tailgating is a topic that has not received much attention in research but has 

been implemented in many commercial systems (see Table 2).  Rather than strictly 

detecting an intrusion past a trip wire, illegal entry can occur when a human gains access 

through a door or gate by staying close to the person or car in front of them, sometimes 

without the knowledge of the authorized person. 

]. 

 

Wrong Direction 

 Wrong direction occurs when an object is moving in a restricted direction.  

Typical examples of this behavior are people or crowds breaching security checkpoints at 

airports and subways or cars driving in wrong traffic lanes.  In general, algorithms used 

to detect wrong direction  rely heavily on a tracking algorithm, since successful tracking 

allows the movement of the object to be easily estimated and later compared with 

acceptable motion vectors [178

108

].  In some scenarios, the overall crowd characteristics, 

which do not rely on the tracking of individual objects, may be sufficient [ ].  For 

instance, the movement of large groups of people in an uncommon direction may indicate 

panic or danger.  To automate the process entirely, motion vectors can be calculated in 

conjunction with a GMM to learn the correct directional patterns of traffic in the scene 

[179

 

]. 

 



 USF Center for Urban Transportation Research 

35 

Vandalism 

 Vandalism is defined in Fuentes and Velastin [141] as irregular centroid motion 

of a blob, combined with detected changes in the background.  This definition is also 

implemented in Ghazal et al. [180] when a blob enters a scene and causes changes in the 

background or predefined “vandalisable” areas.  In Sacchi et al. [181

 

], vandalism is 

detected in unmanned railway environments using a neural net by detecting erratic or 

strange behavior of a single person or a group. 

Object Stationarity (Object Removal and Object Left Behind) 

 In this survey, object stationarity refers exclusively to non-animated objects.  In 

transit surveillance systems, objects left behind usually represent suspicious or potentially 

dangerous elements (such as a suitcase, backpack, etc).  Detection of dangerous objects is 

a critical task that leads to safety and security of the passengers.  In 2004 and 2006, 

object stationarity was one of the events targeted by the Workshop on Performance 

Evaluation of Tracking and Surveillance (PETS).  Most algorithms presented a simple 

background subtraction to find stationary objects that were not present before.  Many 

other methods have been proposed to deal with objects left behind or removed.  In 

Spagnolo et al.  [182

23

], an edge-matching algorithm is used, which compares the current 

frame to the background model in order to detect objects removed or left behind.  In 

Black et al.  [ ], a block-based matching algorithm is used to detect stationarity.  Each 

video frame is separated into blocks and classified as background or foreground using 

frame differences with respect of the training phase.  If at any given time a foreground 

block is not moving, it is then considered to be stationary.  There is still quite a lack of 
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research in terms of object stationarity in the context of crowded areas, but Sijun et al. 

[183

STATE-OF-THE-ART DISCUSSION AND FUTURE DEVELOPMENTS 

] have admitted this weakness and mentioned ways to include crowd segmentation 

algorithms to improve stationarity detection performance. 

 Future developments mentioned in the previous survey [6] include multi-modal 

data fusion, robust occlusion handling, usage of 3D data, and use of personal 

identification.  In this section, additional potential directions of work are explored.  Also, 

an analysis of the current state-of-the-art behavior understanding algorithms is presented.  

Research weaknesses are identified, and possible solutions are discussed.  The surveyed 

studies in Table 2 offer an indication to the level of interest in this research area.  As 

shown in Figure 7, it is clear that behavior recognition is an active research topic.  In fact, 

there are three times as many publications in the last three years than the number of all 

publications found before 2005.   
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Figure 7   Increasing Interest in Human Behavior Recognition Research  
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CORE TECHNOLOGY LIMITATIONS 

 Human behavior algorithms rely heavily on the core technology available.  There 

are many limiting factors to the usability of these core technologies in real transit 

systems.  Implementing analytics on some videos may not be feasible or could be 

restricted to only a subset of the algorithms available.  There are many hardware-related 

problems such as poor resolution, low frame-rates, or insufficient processing hardware.  

For instance, crowd monitoring algorithms usually rely on the calculation of optical flow, 

which requires a moderately high frame-rate and significant processing power.  In fact, 

optical flow often requires special hardware if a real-time solution is needed [6].  In this 

study, algorithms are separated in terms of processing speed into two groups: real-time 

and offline processing (Table 2).  Nevertheless, in the last decade the image processing 

community in this context agrees that the definition of real time is not clear even though 

many researchers use it in their systems [9].  This point brings the biggest concern for 

creating an accurate assessment of core technology limitations: the lack of independent 

studies that compares behavior detection performance in transit environments with a 

common set of dataset and metrics.  For instance, although significant progress has been 

made in object tracking in the last decade, tracking methods usually rely on assumptions 

that often over-simplify the real problem.  Assumptions such as smoothness of motion, 

limited occlusion, illumination constancy, and high contrast with respect of background 

[74] effectively limit the algorithms usability in real scenarios within the transit 

surveillance domain. 
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EVALUATION FRAMEWORK 

 Robust evaluation of automatic computer-vision methods is a complicated task.  

Standard baseline algorithms are required for comparison purposes.  These baseline 

algorithms are usually well known to computer scientists working in related areas of 

research, but there are no accepted baseline algorithms in behavior recognition for transit 

applications.  Surprisingly, few studies in Table 2 formally compare performance against 

any other related work, making behavior detection algorithms comparison scarce in the 

literature.  Dealing with new detection tasks that have not been studied previously will 

clearly require baselines to be developed.  In any case, the use of well-known and 

standard low-level processing techniques is a must.  A meaningful study must compare 

performance with techniques that are likely to work under most circumstances, rather 

than compare to techniques likely to fail under the scope of interest.  Transit data are far 

from common as are the problems that come along with them.  On top of typical 

problems faced in vision-based surveillance applications, the transit domain faces 

especially difficult problems, including poor illumination with drastic lighting changes 

(such as underground stations and tunnels) and heavily crowded scenes.  In outdoor 

transit, weather can also have a significant impact on the quality of the data.  A previous 

study on capturing human motion, which compares over 130 studies, found algorithms to 

be heavily constrained to assumptions [9] related to movement, environments, and 

subjects.  Nearly a decade later, algorithms still rely on many of the same assumptions.  

The problem is that performance under these situations is not well specified in the 

literature.  In transit environments, particular concerning are assumptions of camera 

motion, camera parameters, field of view, background complexity, landmarks, lighting 
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and weather conditions, crowd density, number and severity of occlusions, subject 

initialization or a-priori information (such as known pose, movement, tight-fitting 

clothes, etc.), and variability of motion patterns.  Going back to a point made earlier, 

there is a lack of independent studies that attempt to describe the effect of these problems 

in different transit scenarios; therefore, it is unclear how behavior detection algorithms 

and commonly used low-level processing methods are affected by some of these domain-

specific problems.   

 

STANDARD TERMINOLOGY 

 It is often assumed that crowds will distribute evenly across the available space.  

However, that is not necessarily the case in transit areas such as a metro platform, where 

people are “competing” for space to ensure they get on the next train.  The occupancy 

capacity of a given area depends on the pertinent licensing authority, such as fire or 

police department, emergency agency, etc.  For example, in England, the Communities 

and Local Government regulations set the limit occupancy for a bar [184] to 0.3 to 0.5m2 

per person, but the same regulations do not apply to shopping malls.  In image 

processing, to find a common ground for publications and experimental results, 

sometimes it is necessary to use standard operational definitions.  In Still [185

110

] and 

Rahmalan et al. [ ], definitions based on current practical safety guidelines are used.  

For example, very low density is defined as people/m2<0.5, while very high density when 

people/m2>2.  Other studies use less mathematically-precise definitions such as 

“overcrowding occurs when too many people congregate within certain location and.  

congestion is a situation where it becomes difficult for an individual to move within a 
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crowded area” [23].  A common approach is to describe a crowd in terms of the number 

of individuals in it, as in Marana et al. [34], where the authors define “very low density 

(0-15 people), low density (16-30 people), moderate density (31-45 people), high density 

(46-60 people) and very high density (more than 60 people).” Clearly, comparing related 

work dealing with “crowds” becomes extremely complicated, since there is no widely-

accepted standard for defining crowd levels in the literature.  Additionally, it is difficult 

to identify methods that refer directly to similar datasets in terms of crowd density. 

 

DATASETS 

 This study found across the literature the tendency to not fully specify the dataset 

used.  As shown in Figure 8, most studies, regardless of the review process, chose to not 

completely disclose the dataset description of their work.  This information is necessary 

when showing the significance of an algorithm and understanding results.  Relative 

improvements over other previously-reviewed publications may be difficult to quantify 

since a comparison of the datasets cannot be made.  It is often unclear what level of 

empirical validation is behind published techniques.  An advantage of using similar or 

common datasets is that performance scores from different algorithms can be compared 

directly, as long as the evaluation framework is comparable.  In general, transit security 

data is difficult to come by, due to the difficulty of gathering an adequate supply of valid 

video sequences containing operationally relevant events [141] and overcoming privacy 

and security concerns.  Initiatives like TRECVID [186] encourage research by providing 

large dataset collections and uniform scoring procedures.  Efforts like this will be 

required as organizations become interested in comparing behavior detection reliability 
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and results.  Nevertheless, some authors using available datasets report concrete results 

only on very small portions of the dataset, but make reference of general testing on the 

entire data.  Other authors refer to algorithms being able to work without any level of 

detail on performance, which does not offer researchers in the field with any meaningful 

performance information.  This study found these to be common problems in the 

literature. 

 In Figure 8, the dataset description analysis based on 52 transit surveillance-

related studies surveyed in this work is shown.  “None” refers to studies that do not 

include any reference to the datataset used.  “Complete” indicates a full description is 

included, that is, quantity and pixel resolution for both training and testing data.  

“Incomplete” indicates some description but not enough to account for “Complete.” 

 

8%

56%

36%

None Incomplete Complete

Dataset Description

Percentage 
of Papers

 

Figure 8  Dataset Description 
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DISTRIBUTED SURVEILLANCE 

 Distributed surveillance systems are networks of sensors that can be spread over 

large regions.  Often, a single view of a transit scene could be insufficient to determine 

certain complex human behaviors.  Large networks of cameras and other sensors could 

interact to form a “bigger picture,” which can potentially offer a viable solution to 

complex problems.  Many transit systems have large sensor networks (such as audio, 

video, motion sensors, smoke detectors, etc.) already in place.  In such scenarios, 

multiple sensors can be used to generate more accurate, complete, and dependable data.  

For example, camera networks can be used to provide multiple views of a scene, which 

might diminish the number of tracking occlusions [187].  Also, sensors can often 

overcome weaknesses of other sensors; for example, fusing color and infrared video can 

be used to improve tracking through occlusions [188

7

].  There is not much work reported 

on the integration of different types of sensors in automated video surveillance systems 

[ ].  Multi-modal fusion, such as audio and video [189] or infrared and stereo-vision 

[190

7

], can potentially offer better scene understanding, thereby improving situational 

awareness and response time.  (For general distributed surveillance, see a detailed survey 

[ ] for more information.) 

 
AERIAL SURVEILLANCE 

 Moving cameras and mobile surveillance platforms are yet to become an 

important player in transit surveillance.  With much research and commercial interest in 

unmanned aerial vehicles (UAV) and mobile surveillance platforms, current solutions are 

not far from being usable as an efficient surveillance platform for transit networks.  Early 

work using surveillance video from UAV [191, 192] describe behavior analysis 
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algorithms for low resolution vehicles to monitor road-block checkpoints (such as 

avoiding, passing-thru, getting closer, etc.).  As aerial surveillance has gained increased 

interest within the research community, authors have proposed techniques to detect low 

resolution vehicles [193] and buildings [194] from aerial images.  As surveillance 

techniques using image processing algorithms are created to be used on aerial platforms, 

tracking-based methods often used in current transit applications will likely have 

problems with aerial video.  Tracking systems have problems with objects following 

broken trajectories resulting from limited field of view and occlusion due to terrain 

features.  Recent work is being driven by these problems, leading to solutions for 

problems such as the study of global motion patterns [195] from aerial video.  As 

resolution and video quality increases, transit surveillance including people, vehicles, and 

behavior analysis is logically the next step. 



 USF Center for Urban Transportation Research 

44 

Table 2  Publications on Behavior Recognition Algorithms  
Applicable to Transit Surveillance Systems 

  
First 

Author Yr Behaviors Dataset O R C Ref # 

Yasin 08 Bending down, gun shot, jumping up, kicking front, and punching 
forward 

185 videos containing 5 types 
of motion 

N N N [146] 

Bissacco 08 Human pose 2950 images of human walking 
in circle, unspecified 
resolution. 

N N N [138] 

Jang 08 Human pose 600 images of unspecified 
resolution 

N N N [140] 

Li 08 Crowd counting Classifier training 1755 
positive samples of 32x32px, 
and 906 for testing.  Counting 
testing 12 minutes of video 

Y N Y [121] 

Blunsden 07 Walking together, approaching, ignoring, meeting, splitting, and 
fighting 

Unspecified number of videos 
from CAVIAR.  Data 
described using number of 
activity points and sequences 

N N N [144] 

Dong 07 People counting, crowd density 2 videos Y Y Y [119] 
Fathi 07 Human Pose 1008 images (divided into 4 

subjects), unspecified 
resolution 

N N N [139] 

Ghazal 07 Theft, graffiti, defacing 3 videos Y Y N [180] 
Ke 07 Picking up object, waiving, pushing elevator button 20 minutes of video, 

160x120px 
Y Y Y [130] 

Lee 07 Human pose Unspecified number of videos, 
including indoor and outdoor 
scenes 

Y N N [136] 

Monteiro 07 Wrong direction Unspecified number of 
320x240 px images 

Y Y N [179] 

Park 07 Human-vehicle situational awareness 30 minute video Y N Y [153] 
Park 07 Person – person interaction,  shaking hands, pointing, standing 

hand-in-hand 
Train 30 images, test 38 
images 

N N N [149] 

Ribnick 07 Thrown objects Unspecified indoor and 
outdoor videos 

Y Y N [196

Andrade 

] 

06 Crowd behavior: normal, blocked exit, and fallen person 6000 384x288px images N N Y [126] 
Andrade 06 Crowd behavior: normal, blocked exit, and fallen person Unspecified number of 

384x288px images 
Y N Y [127] 

Andrade 06 Blocked exit 3 simulated 384x288px 
datasets, train 1 sequence with 
2000 frames 

N N Y [128] 

Bird 06 Abandoned object 3 hours and 36 minutes, 4 
videos, 320x240px 

Y Y Y [197

Ferrando 

] 

06 Object left behind, object switching 800 images N Y N [198
Park 

] 
06 approaching, departing, handshaking, pointing, pushing, hugging Unspecified number of 

sequences, 320x240px 
N N N [148] 

Rabaud 06 Crowd density 900 320x240px images, and 
1000 640x480px images 

Y N Y [124] 

Rahmalan 06 Crowd counting 150 200x200px training and 75 
testing images 

Y N Y [110] 

Ribnick 06 Camera tampering Unspecified indoor and 
outdoor videos 

Y Y Y [199

Sijun 

] 

06 Object ownership ,  object stationarity 92 training and 45 testing 
videos 

N N N [183] 

Velastin 06 Circular and diverging flows, obstacle detection Unspecified number of 
512x512px grayscale videos 

N Y Y [108] 

Wu 06 People counting, crowd density 70 320x240px images  Y N Y [111] 



 USF Center for Urban Transportation Research 

45 

Angiati 05 Vandalism 2 videos (diurnal and 
nocturnal) with 7 graffiti drawn 

Y N N [200

Bird 

] 

05 Loitering Train 205 images.  Test 30 
minutes 720x480px video 

N N N [61] 

Black 05 Crossing ,  falling on, proximity, throwing objects to, walking on 
tracks 

Entire CREDS dataset N Y Y [23] 

Fuentes 05 Unattended luggage, intrusion into forbidden areas, falls onto 
tracks, 
People hiding, vandalism, fights 

Unspecified number of 
384x288px color images 

N Y Y [141] 

Lee 05 Human Pose PETS 2003 Smart meeting 
video 

N N N [137] 

Liu 05 Virtual gate crowd counting, proximity to tracks 1 10 minute video N N Y [117] 
Nasciment
o 

05 Passing, entering, and leaving a storefront in a public area  40 trajectories from 25 movies 
of about 5 minutes.  each 

N N N [105] 

Schwerdt 05 Abnormal direction of motion, loitering ,  objects left behind, train 
presence, and crossing ,  proximity, walking on tracks 

Camera C sequences from 
CREDS dataset 

N Y N [24] 

Seyve 05 Crossing, dropping, falling, proximity, throwing object, walking 
on tracks, trap by train door 

Unspecified dataset from 
CREDS 

N Y N [25] 

Velastin 05 Overcrowding/congestion, Abnormal direction of motion, 
loitering,  objects left behind, train presence 

PRISMATICA live test.  
Validation of results with at 
least 200 activity samples 

N Y Y [28] 

Aubert 04 Loitering, objects left behind 436 stationary situations test 
cases on gray level 256x256px 
images 

N N N [32] 

Fuentes 04 Objects left behind , intrusion, falls, hiding, vandalism/graffiti, 
fights, attacks 

Unspecified number of  
384x288px color images 

N Y N [201

Kang 

] 

04 Security breaches (i.e., wrong direction) Dataset not specified N Y N [178] 
Reisman 04 Crowd detection 320x240px video from mobile 

platform 
Y Y Y [109] 

Kettnaker 03 Intrusion detection Training 18 security officer 
sequences, and 9 cleaning 
sequences.  Testing 15 
sequences of normal and 12 of 
illegitimate behavior on 
120x160px  color images 

N N N [177] 

Park 03 Approaching, departing, pointing, standing hand-in-hand, shaking 
hands, hugging, punching, kicking, and  pushing 

56 320x240px sequences N N N [147] 

Cupillard 02 Fighting, blocking, forbidden zone, pickpocket 20 sequences N N N [151] 
Sacchi 01 Graffiti, gang behavior: “agitated” and “calm” behavior 270 frames for training, 118 

image sequences for testing 
N N N [181] 

Aubert 99 Queue length estimation 255 measurements from 2 
hours of video of airport scenes 

N Y Y [31] 

Haritaoglu 99 Handbag detection, object exchange 100 320x240px videos Y Y N [150] 
Marana 97 Crowd density estimation 151 train and 149 test images N Y Y [34] 
Yin 95 Crowd density estimation 1 training and 2 testing train 

station sites 
N N Y [129] 

Velastin 94 Crowd detection 100 512x512px gray level 
images 

N Y N [202

(O  = Dataset includes outdoor dataset, R = Mentions a real-time implementation, C = Dataset includes crowded scenes) 

] 
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Table 3  Experimental Results as Stated in Their Respective Publications 
 

Ref # Feature Results 
[23] Blobs 7%-100% TP depending on configuration.  0%-25% FP 
[24] Blobs Only qualitative results given, no quantitative empirical analysis 
[25] Blobs, motion characteristics 64%-100% TP depending on event.  0%-29% FP 
[28] Edges, motion, blob’s position, shape, and trajectory 87.5%-100% TP depending on event.  0%-4% FP 
[31] Motion and intensity 5.9 average.  Queue length error in pixels over 255 measurements.  Robust 

low contrast, illumination changes, and crowded scenes 
[32] Level-lines 98% TP, 2% FP 
[34] Intensity texture 53.85-94.44% accuracy depending on type of crowd.  Provides an output in 

terms of a range of densities 
[61] Blob’s size, shape and clothing’s color  100% TP and 11%FP with 66% tracking accuracy 
[105] Motion Results shown using penalized log-likelihood by the activity type 
[108] Motion Overcrowding estimates 95.62% TP and 4% FP.  Congestion 98.51% TP 

and 0.28% FP.  Object stationarity 87.5-100% TP and 0-12.5% FP for 
different conditions including occlusions and pose/position variations 

[109] Optic flow No empirical analysis 
[110] Grey Level Dependency Matrix (GLDM), 

Minkowsky Fractal Dimensions (MFD), Translation 
Invariant Orthonormal Chebyshev Moments 
(TIOCM) 

TIOCM (novel) is compared with MFD and GLDM (see right).  Accuracy 
for TIOCM reported as approx.  86% (based on chart), compared to approx.  
35% for MFD, and approx.  80% for GLDM.  Results based on morning and 
afternoon conditions.  One operating point is used, and no false alarm rates 
given. 

[111] Statistical methods (Grey Level Dependency Matrix, 
GLDM) 

Total error is less than 12%.  No FP rate is reported 

[117] Motion, Blob’s color, position, shape, and trajectory Only visual sample results, no empirical analysis 
[119] Silhouettes of connected blobs, Fourier descriptors, Confusion matrix and ROC given.  Overall accuracy reported as 94.25% 
[121] Histogram of oriented gradients Shown by ROC analysis 
[124] Feature tracking based on KLT, connectivity graphs Average error ranges from 6.3% to 22%.  No FP rates reported. 
[126] Features extracted from optical flow Results shown using the log-likelihood mean and standard deviation, before 

and after an event has occurred 
[127] Features extracted from optical flow Results shown using the log-likelihood mean and standard deviation, before 

and after an event has occurred 
[128] Features extracted from optical flow Results shown using the log-likelihood mean and standard deviation, before 

and after an event has occurred 
[129] Number of pixels classified as pedestrian 1-2 difference (in persons) between manual and automatic pedestrian count  
[130] Spatiotemporal shape contours, optical flow Shown by Precision and Recall graph, one for each event detected 
[136] Motion  Results are given based on the error between detected joints and actual joints 

(in pixels).  Average error reported (per joint) is 9.86 pixels (which 
translates to 7-12 cm away from actual joint position for their dataset) 

[137] Regions, texture, skin color Results are given based on the error between detected joints and actual joints 
(in pixels).  Average error is 24.99 pixels 

[138] Silhouette, Harr, edges and lines Accuracy reported as mean error, which ranges from 0.27 to 0.30 
[139] Motion Results are given based on the error between detected joints and actual joints 

(in pixels).  The mean error reported ranges from 15 pixels to 30 pixels 
depending on joint 

[140] Motion, landmarks Results shown as the proportion of the principle axis 
[141] Motion, blob’s color, centroid, position, height, and 

width 
Only visual sample results, no empirical analysis 

[144] Eight motion features based on speed and direction 
between two people 

Overall accuracy given for two scenarios: frame based, and sequence based.  
Frame based results are as follows: Walk Together – 100%, Approach – 
46.9%, Ignore 85.1%, Meet – 100%, Split – 100%, Fight – 57.1%.  Total 
accuracy is 90.8%.  Sequence based as follows:  Walk Together – 100%, 
Approach – 50%, Ignore 100%, Meet – 100%, Split – 100%, Fight – 100%.  
Total accuracy is 90.4%.  Results are based on one operating point, with no 
FP rates reported 
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(TP = True Positives, FP = False Positives, ROC = Receiver Operating Characteristic Curve) 

Ref # Feature Results 
[146] Calculates Hu Moment Invariants (7), and Euclidean 

distance from Binary image 
Approach is compared to four other classifiers (Fuzzy-K Nearest Neighbor, 
Mahalanobis Distance, Quadratic Bayes Gaussian, and Linear Bayes 
Gaussian).  Accuracy rate is 87.6%.  Algorithm is the fastest running 
compared to all other classifiers 

[147] Individual body-part motion 50 to 100%  (78% average) TP depending on the event, no FP rate reported 
[148] Blobs, contours, intensity Overall score for one operating point (given) is 86%.  Individual accuracy 

range 68%-100% depending on event.  No FP rate is reported 
[149] Blobs, individual body part motion, normalized 

feature vector which is based on body part distances. 
Overall accuracy rate of 86%.  Shaking hands and standing hand-in-hand 
detected 100%, pointing 74%.  No FP rates reported 

[150] Motion periodicity and silhouette symmetry Shown by ROC analysis.  Approximated operating point at 90% detection, 
20% FA 

[151] Motion, blob’s centroid, position, height, and width 70-95%, 3% FP 
[153] Motion features generated from planar homography 

using 4-point algorithm. 
Precision and Recall rates given.  One operating point approximated at 93% 
precision and 95% recall 

[177] Access time and motion trajectories Normal behavior 100% detection, Unusual behavior 75% detection at 
regular “business hours” and 100% detection at “unusual hours.” No FP 
rates reported 

[178] Motion, color and shape Only qualitative results, no quantitative empirical analysis 
[179] Motion calculated from optical flow, Harr-like 

features used to distinguish motion 
Only qualitative results given, no quantitative empirical analysis 

[180] Features are generated by motion Only qualitative results given, no quantitative empirical analysis 
[181] Motion, blob’s area, perimeter, centroid, and speed About 84% TP, 9% FP 
[183] Eigenfeatures Accuracy ranges from 78% to 93.7%, depending on event.  Misclassification 

rates are given 
[196] Motion history, blobs, compactness, density Accuracy ranges from 68 to 85% depending on size of object thrown 

relative to camera.  Overall (average) accuracy is 74%.  Results are based on 
one operating point 

[197] Blobs Evaluation based on Percent Events Detected (PED) and Percent Alarms 
True (PAT), analysis of PED/PAT results with respect to time given.  
Overall score for one operating point (given) ranges from 42% to 67% 

[198] Motion history, blobs, color, Hu-moments Results are given based on low and medium scene complexity.  Low scene 
complexity detection rate ranges from 75% to over 99%, with a FP rate that 
ranges from less than 0.05% to 8.3%.  Medium scene complexity TP rate 
ranges from 83% to 98.6%, with a FP rate ranging from 1.5% to 9.5%. 

[199] Image dissimilarity based on RGB and gradient 
histogram 

Evaluation based on Percent Events Detected (PED) and Percent Alarms 
True (PAT).  Overall accuracy reported as PAT 79.2% and PED 95% with 5 
FP and 3 missed events 

[200] Motion, blob’s position Diurnal: 65-97% TP, 5% FP.  Nocturnal: 0-91% TP, 6% FP 
[201] Motion, blob’s color, centroid, position, height, and 

width 
Only visual sample results, no empirical analysis 

[202] Motion Results shown through polar plots where the direction angles are divided 
into a discrete range 
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CHAPTER 3 

EVALUATION FRAMEWORK 
 

 The purpose of an evaluation framework is to statistically present a meaningful 

and objective comparison of different techniques used in surveillance applications.  For 

this purpose, the Detection and Tracking Evaluation (DATE) software [11] is used to 

evaluate tracking algorithms in transit scenes.  The performance measures are generated 

from the spatial overlap between the ground truth and the output of the tracking 

algorithm.  These measures can be generated from a rigid or course level of overlap; at 

the rigid level, a one-to-one mapping is required from the ground truth annotation and the 

system output, while the course level will use a weight or threshold to determine a 

satisfactory level of overlap.  Both the Video Analysis and Content Extraction (VACE) 

and the Performance Evaluation of Tracking and Surveillance (PETS) [12] metrics can be 

computed with this software.  A comparative study of these metrics can be found in 

Manohar et al. [203

 

]. 

      

Figure 9   Example Ground Truth Images Used for Tracking 
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 The first step for computing the evaluation scores is to annotate the ground truth.  

This was done using the VIPER [204,205

Figure 

] ground truth annotation tool.  Some example 

ground truth images are given in 9.  Next, using the USF DATE (version 5) 

software, performance evaluation scores are computed between the ground truth images 

and the system output.  The scores in Table 4 are based on the Sequence Frame Detection 

Accuracy (SFDA), which is a rigid frame level measurement that accounts for number of 

aligned, mal-aligned and missed tracking boxes, false alarms and spatial fragmentation.  

It is done separately for each frame in the sequence, and the scores are then summed and 

normalized.   

  The bounding box around each object in a scene can be different for two different 

outputs, yet be equally accurate.  Some algorithms are entirely dependent on the object 

being detected and not concerned with the spatial coordinates of the objects.  In these 

cases, the alignment can be relaxed to generate a more realistic measure of performance.  

The general idea is that if a portion of the tracking boxes overlap, then it is fully accurate.  

The exact portion of overlap can be defined by the user in the software.  In this sample 

results, 25 percent is used. 

 

Table 4  Performance Scores between Annotation and Ground Truth  
(OLB=Object Left Behind) 

 
 OLB (Ground Truth) Breach (Ground Truth) 

OLB (annotator) 100% (CLEAR) n/a 

Breach (annotator) n/a 85% (CLEAR) 
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 Other than overlap based performance scores, the USF DATE (version 5.2.0) 

software also provides other useful information about the event detection performance as 

well.  Instead of using the overlap between bounding boxes used in tracking, it is also 

possible to use other properties such as the centroid of either the object being tracked or 

the bounding box.  Diagnostic measures are also available for pinpointing areas that were 

missed or where false alarms were given. 

 

PERFORMANCE MEASURES 

 The measures used to generate the performance scores between the ground truth 

and the system results were proposed and discussed in detail in Yin et al. [12].  NCTR 

researchers slightly changed the definitions to fit the needed requirements.  For instance, 

objects are now referred to as events.  To be clear, the following notion are used: 

 - iG   denotes the thi ground truth event and t
iG denotes the thi ground truth event in 

tht frame. 

- iD   denotes the thi detected event and t
iD denotes the thi detected event in tht frame. 

- )(t
GN  and )(t

DN denotes the number of ground truth events and the number of detected 

events in the frame t respectively. 

- GN  and DN denotes the number of unique ground truth events and the number of 

unique detected events in the given sequence respectively.  Uniqueness is 

defined by the object IDs. 

- framesN  is the number of frames in the sequence. 
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- i
framesN , depending on the context, is the number of frames the ground truth event ( iG ) 

or the detected event ( iD ) existed in the sequence. 

- mappedN  is the number of mapped ground truth and detected events in a frame or whole 

sequence, depending on the context (detection / tracking). 

 

The Sequence Frame Detection Accuracy (SFDA) is frame-based measure based on the 

principle that the two corresponding objects ( iG  and iD ) should overlap.  Any 

fragmentation caused by spatial alignment, missed objects, or false alarms will reduce the 

accuracy of the measure.  First, the measure used for a single frame (FDA) is addressed. 
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Hence, 
t
mappedN  is the number of mapped events, with minimal special overlap.  To 

measure the entire sequence (SFDA), the FDA is normalized using the number of frames 

where the events were detected.  And so, 
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CHAPTER 4 

COMMERCIAL SYSTEMS 
 

 There are many professional-grade surveillance systems that can be used by 

residential, commercial, government, and law enforcement agencies.  Many of these 

systems now include analytic software capable of some level of event detection.  The 

capabilities of commercial surveillance systems have increased significantly over the last 

decade.  Early systems allowed clients to record only when motion was detected in 

regions of interest or when an external sensory device was triggered.  Such technology 

was often limited to indoor scenes, as different weather conditions would frequently 

trigger false alarms.  More recently, newer and more powerful analytic systems include 

environmental modeling, which have helped resolve such limitations.  For instance, 

instead of triggering an alarm that is based only on motion within a user specified region 

of interest, the client is able to specify defining attributes of the object creating the 

motion, such as dimensions and shape.  This, in turn, allows efficient retrieval of pre-

defined events from large amounts of video.  Moreover, the actual storage of the video 

can be reduced significantly if the client chooses to record only during such events. 

 Surveillance footage can be used proactively to detect suspicious events in real-

time or reactively used to review archived data.  Clearly, manual real-time surveillance of 

large transit systems is not usually possible.  For example, New York metro, according to 

2006 statistics [206], is the busiest metro in the United States and second busiest in the 

world.  It has a total of 468 stations and 1.49 billion riders per year, 4.9 million per day.  
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Monitoring objects left behind (left baggage, briefcase, purse, etc.) in real-time footage 

would require thousands of analysts, a scarce and costly resource.  Clearly, the ability to 

monitor real-time video for specific events would provide dramatic surveillance 

capabilities to transit agencies, which would become a great asset technology to deter and 

respond to accidents, crime, suspicious activities, terrorism, and vandalism.  This 

technology is not limited to visual cues on security monitors; other common features 

include automatic messaging to Personal Display Assistants (PDAs) or other devices 

when an event has been detected.  This would, in turn, allow key personnel in close 

proximity to further investigate the situation where the event took place.   

 During the last decade, human event detection has become one of the most active 

research topics in computer vision.  After the catalytic terrorist attacks of September 11, 

2001, against the United States, technology to automate surveillance security has grown 

exponentially.  Recent reports from market researchers in the global technology industry 

[207

2

] have shown a massive increase in the market, from 67.7 million in 2004 to 839.2 

million in 2009.  Surveys of state-of-the-art research dealing with event detection for 

transit systems [ ] have also emphasized the importance of this topic among computer 

scientists.  As public transit agencies are under mounting pressure to provide a safe and 

secure environment for passengers and staff, they are likely to start embracing this new 

generation of technology.  As capabilities advertised by commercial providers increase, 

the necessity for an independent evaluation of such capabilities becomes more and more 

prominent.  Currently, there are no published efforts in the literature or independent data 

that can sustain the providers’ claims.  Furthermore, it is not clear how typical 

problematic conditions of mass transit systems, such as heavy traffic, crowded areas, 
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detrimental weather effects, and drastic illumination changes, could affect performance.  

Additionally, without independent verification studies, there is no way to determine strict 

technical terminology commonality; therefore, comparing performance across platforms 

was not possible in this study.  For example, regarding the detection of loitering behavior, 

Table 5, which is based on the information available on each of the respective vendor’s 

websites as of March 2009, indicates that almost 2/3 of vendors advertised loitering 

detection capabilities.   Only software products offering software analytics are listed.  

Taking into account that, as discussed earlier, loitering is detected over long periods of 

time, including likely situations of subjects leaving the scene or being frequently 

occluded, it is unclear if any of the systems listed in Table 5 can achieve the same results 

as in Bird et al. [61].  In fact, based on direct discussions with some vendors, it was made 

clear that systems in general have significant limitations with respect to camera 

placement, image quality and resolution, lighting conditions, occlusions, object contrast 

and stationarity, and weather. 

 

COST 

 Cameras can be analog or digital. Analog cameras are less expensive (around 

$250 each), but they tend to incur in higher deployment labor and infrastructure costs, 

since they use a technology that is already becoming obsolete.  Digital cameras (IP 

cameras) are more expensive (around $1,800), but they are more flexible, manageable 

over networks, durable, and easier to deploy, which greatly reduces installation costs.  

The general approach is to use the cameras to gather video, send the raw data across a 

network, then store and process the data on a server.   
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Table 5  Behavior Recognition Summary Advertised by  
Commercial Providers on Their Websites 

 
 

Ref # Manufacturer Object 
Tracking Breach Loiter Crowd 

Analysis 
Stance 
Change 

Object 
Left 

Object 
Removal 

[208 Agent Vi ]        

[209 Aimetis Corp ]        

[210 Cernium Corp ]        

[211 Eptascape, Inc ]        

[212 Honeywell 
International, Inc ]        

[213 Indigo Vision ]        

[214 Intelliview 
Technologies Inc ]        

[215 Intellivision ]        

[216 IPSOTEK Ltd ]        

[217 March Networks ]        

[218 Mate Intelligent 
Video ]        

[219 Object Video ]        

[220 SightLogix Inc ]        

[221 Verint ]        

[222 Vidient ]        

[223 Nice Systems ]        

[224 TrueSentry, Inc. ]        

[225 Ioimage, Ltd ]        

 

 Clearly, analytics software prices will vary, depending on the vendor.  The 

number of events to be detected will also affect the price.  The system integrator will 

likely determine the final selling price based on a competitive bid.  Assuming cameras 

are already installed (either using existing CCTV or acquiring new equipment), the 

overall cost per channel (for each analytics-capable camera) is roughly $1,700 - $2,100 

for analog cameras and $1,900 - $2,300 for digital cameras (based on a small survey of 

commercial providers in Florida).  Additionally, a server is required to host the data and 

will cost around $5,000.  All prices provided thus far include installation fees, and it is 

worth noting that discounts and bulk rates will most likely apply.   
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CHAPTER 5 

SURVEY OF SOFTWARE ANALYTICS USE IN FLORIDA 
 

 To get a clear picture of the use of video analytics, a survey of the largest transit 

agencies in Florida was conducted by NCTR researchers.  All transit agencies involved in 

this survey are shown in Figure 10.  The survey includes the largest transit agencies in the 

state based on classification by the Florida Department of Transportation [226

 Most large transit agencies in Florida already have CCTV systems available for 

surveillance monitoring purposes (Figure 11).  Only labor-expensive manual forensics is 

used on archived video to review reported incidents.  New Jersey Transit, the largest 

statewide transit agency in the United States, currently uses real-time video analytics in 

conjunction with its CCTV systems to detect unattended packages [

], which is 

based on the agencies’ fixed-route fleet size, from largest to smallest.  The survey 

includes only agencies with a fixed-route fleet size of more than 9 buses.  The response 

rate of the survey was as follows: large - 100% (2/2), medium - 100% (7/7), and small - 

55% (6/11).  The purpose of this study was to relate the state-of-the-art and the current 

effective use of the analytics technology.  Complete data for this survey cannot be 

released due to the safety sensitivity of the data.   

227] in its facilities.  

Only 20 percent of Florida agencies are agencies using any form of video analytics 

(forensic or real-time) for surveillance purposes.  At the time of the survey, no agency in 

Florida was considering evaluating or deploying analytic systems, reporting that budget 

constraint was a limiting factor.  Existing CCTV systems can potentially be used to  
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Underlined agency names correspond to those included in the security survey.   
 Map Source: Florida Department of Transportation, “Trends and Conditions, Pocket Guide 2007.” 

 
Figure 10.  Transit Agencies in Florida 

 

87%

13%

With Cameras No Cameras

 

                    (a) 

50%50%

With Analytics No Analytics

 

(b) 

80%

20%

Basic Video Processing Software
Software Analytics

 

                          (c) 

a) Agencies currently using CCTV systems for surveillance.  (b) Transit agencies’ responses “Does your camera 
system include video analytics (i.e., software to automatically detect accidents, theft, or any other suspicious event)?”  
(c) Reported CCTV systems that currently include some form of video analytics capabilities. 

 
Figure 11.  Ownership of CCTV Systems and Video Analytics in  

Transit Agencies in Florida 
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deploy analytics software solutions, significantly reducing the investment cost.  Another 

reason for not evaluating analytics software is the misconception that there are no 

previous incidents that would have benefited from analytics software.  But, as shown in 

Table 1, there are many suspicious behaviors that current analytic systems can detect in 

real-time, which are most likely being missed in day-to-day operations.   

 The security survey was distributed to the person responsible for safety and 

security at the transit agencies.  As shown in Figure 11, agencies confuse manual video 

analytics (human operators manually review archived video) with software analytics 

(software that automatically detect pre-defined events) when asked “Does your camera 

system include video analytics (software to automatically detect accidents, theft, or any 

other suspicious event)?  Fewer than 20 percent of the agencies in Florida currently have 

some sort of software analytic capabilities, and it is unclear to what extent they are being 

used or if they are being used at all. 
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CHAPTER 6 

IMPACT OF ANALYTIC SOFTWARE 

 

 A surveillance systems equipped with analytic software has many benefits; 

primarily, resource and manual personnel intensive work becomes automated.  This 

directly leads to potential decreases in the resources such as cost and labor and an 

increase in awareness (safety and efficiency).  Post-event detection also becomes 

available and useful for finding evidence in forensic investigations.   

 

LABOR AND COST REDUCTIONS 

 With analytic software, the necessity for continually monitoring video feeds can 

be reduced significantly.  It may also provide a solution for transit scenarios that are far 

too large or busy to be completely monitored by human operators.  Analytic software can 

be used to assist a single operator when searching for evidence in large amounts of 

previously-recorded video data.  Previously, this would have required many operators 

working in parallel.  Also, human-prone errors and false alarms are minimized since 

alarms would be triggered only by the continuous automatic surveillance system. 

 

EFFICIENCY 

 In transit scenarios, increases in situational awareness would directly benefit the 

safety and efficiency of both the passengers and the security personnel on the ground.  
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For instance, alerts can be provided if long queues at a ticket booth are detected or if 

crowds become too heavy or show irregular behavior.  Early warnings can also be issued 

before events occur.  For example, if someone is heading towards a prohibited location, 

an alert can be provided before the subject actually reaches his/her destination.  

Furthermore, a single operator can monitor larger areas by taking the appropriate action 

when a suspicious behavior or alarm is triggered.  Decision making also becomes easier 

since the event can be replayed immediately on command, rather than second-guessing 

what may have been seen, and unnoticed behavior of concern becomes less common. 

 

SECURITY 

 When criminal activity or a threat is detected, security personnel and the proper 

authorities can be provided with real-time information when assisting the situation.  

Various alerts can be set up, triggered by pre-defined, operationally-relevant events.  

Information can be disseminated using text messaging, on-screen alerts, email, geo-coded 

maps, pictures, and video.  The faces of detected criminals can help pinpoint further 

appearances in past, current, or future video data.  Attention-intensive activities such as 

object removal or object left behind will be detected by the system immediately instead 

of possibly being unnoticed, resulting in a delayed reaction by a surveillance operator. 

 

DRAWBACKS 

 While it is clear that video analytics can offer many advantages over traditional 

CCTV systems, there are some concerns that should be addressed [22].  Video analytic 
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systems may be vulnerable to environmental variables, such as detrimental lighting 

conditions and weather (see next section).  These adverse conditions can trigger false 

alarms, which may become a source of frustration for the user.  Another drawback with 

video analytics is that events must be pre-defined, so events that have not been defined 

will not be detected.  Conversely, a human analyst may use judgment and training to 

determine if an alarm should be raised for a wider range of scenarios.  Video analytic 

algorithms are often sensitive to parameters and initial calibration.  Event detection 

performance typically depends on this calibration process.  It is difficult to achieve a 

good balance between event detection and false alarms.  Typically, a higher detection rate 

produces a higher false alarm rate, and vice-versa.  Additionally, some video analytic 

implementations may require the system to be re-calibrated over time.  For example, 

outdoor scenarios can change drastically depending on seasonal effects (such as leaves, 

rain, snow) or even the time of day (such as the shadow of a building being present in the 

afternoon but not in the morning).  Hence, the initially high deployment cost and 

additional recurring costs to maintain and support the system over time may deter many 

potential users.  This becomes even more valid since only sparse research is available that 

compares actual capabilities with advertised capabilities.  The lack of independent 

verification of commercial products represents a great liability for transit agencies.  

Agencies like the Metropolitan Transit Authority have attempted to deploy camera 

systems costing over $300 million, as reported in the New York Times on May 28, 2009 

[228].  Transit authority officials indicated that the system was not living up to its 

promise.  This situation is likely to recur since there is no formal independent evaluation 



 USF Center for Urban Transportation Research 

62 

of such systems.  In simple terms, no studies corroborate the vendor’s performance 

claims or indicate a relative performance comparison across different available products.   
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CHAPTER 7 

CONCLUSIONS 
 

 Public transit agencies are under mounting pressure to provide a safe and secure 

environment for their passengers and staff on their buses, light-rail, subway systems, and 

transit facilities.  Transit agencies are increasingly using video surveillance as a tool to 

fight crime, prevent terrorism, and increase the personal safety of passengers and staff.  

Visual surveillance for transit systems is currently a highly active research area in image 

processing and pattern recognition.  The number of studies published in the last three 

years outnumbers all previous related literature three-fold.   

 Included in this report are an overview of state-of-the-art developments on 

behavior recognition algorithms for transit visual surveillance applications and a 

literature sample of 52 studies on state-of-the-art strengths and weaknesses.  Analysis 

includes behaviors, datasets, and implementation details.  A strategy is presented that 

classifies these studies by the targeted human behavior, including single person or no 

interaction, multiple person interactions, person-vehicle interactions, and person-

facility/location interactions. 

  In this report, a brief overview of the core technologies (all pre-processing steps 

before behavior recognition) has been provided.  There are many well-known limitations 

in the core technologies that should be addressed, including sensitivity to poor resolution, 

frame-rate, drastic illumination changes, detrimental weather effects, frequent occlusions, 

and other common problems prevalent in transit surveillance systems.  Consequently, 

improved core technology algorithms are needed to increase the reliability of human 
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behavior recognition.  During the last decade, numerous methods for evaluating core 

technologies have been proposed.  There are no standard evaluation methods for human 

behavior recognition.  Creating standard evaluation tools includes defining a common 

terminology and generating operationally similar datasets.  For example, a bus and a 

metro station can both be “crowded.” But operationally, the “crowds” in both situations 

are very different.  Thus, without a standard precise definition of “crowd,” formal 

comparisons become a very difficult task. 

 A comparison of event detection capabilities across commercial providers is 

presented in this report.  A survey of the largest transit agencies in Florida is used to 

identify the current use of analytic software in public transit.  Data suggest that fewer 

than 20 percent of agencies have some sort of software analytics capabilities.  

Furthermore, there is no indication that any of these agencies are using the software to its 

full extent.  A formal, independent evaluation of commercially-available systems for 

event detection currently does not exist.  However, the means for performing such an 

evaluation do exist in the research literature.  The evaluation framework used in academic 

research could be used to evaluate commercial systems at the event level.  A meaningful 

and robust evaluation would allow public transit agencies to objectively compare 

commercial systems and evaluate product capabilities for their specific needs.   

 Vast amounts of untapped information are present in surveillance video footage, 

which can be exploited for automatic behavior detection, and a large gap exists between 

the analytical skills of a security guard and state-of-the-art image processing algorithms.  

On the other hand, there is a never-ending struggle to increase security personnel 

effectiveness over long periods of time while reducing labor costs.   
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