Parallel Plate Test of 36-inch Diameter Steel and Aluminum Pipes

Six metal pipes were tested at the Structures Research Center during May of 2003, 4 steel and 2 aluminum, in accordance with ASTM D2412. Two additional aluminum specimens were tested to adjust the test setup and are not included in the results. All specimens were 8 feet long.

The test setup is as shown in Figure 1 and Figure 2. A pair weights in conjunction with pulleys and cables was used to keep the loading beam and load cells in contact with the actuators. The static loads from this system were zeroed out prior to testing, however, the frictional resistance of the system could not be eliminated in this fashion. This frictional resistance was measured in a couple of dry runs (runs without a pipe specimen) and the resulting resistance subtracted from the resistance measured from the specimen tests.

Figure 1

Figure 2

The pipes were supplied by Contech Construction Products Inc. and were part of their Ultra-Flo Storm Sewer piping line. The steel pipe had an aluminum coating for corrosion protection.

The measured outer diameter of both the aluminum and steel pipes was 35-5/8 inches. This measurement in both cases was to the valleys and did not include the increased diameter due to the ribs. The average measured thickness of the steel pipe was 0.076 inches and the average measured thickness for the aluminum was 0.075 inches.

The pipes were loaded at a constant rate of 0.5 inches per minute. The behavior of both the aluminum and steel pipes was very similar, disregarding their capacity, except that the aluminum ribs would crack at large deflections as shown in Figure 3. The steel ribs did not exhibit any cracking. Both pipes deformed fairly symmetrically except that the side creases were always slightly inclined in an asymmetric fashion as shown in Figure 4. This was probably due to the inclination of the ribs.

Figure 3

Figure 4

Figure 5 shows the load deflection results for all 6 tests. The deflections have been adjusted to account for the initial offset from a zero intercept but the influence of the dynamic resistance of the loading device is not included. The results of the dry runs that generated the values for this dynamic resistance are shown in Figure 6.

Figure 5

Figure 6

The pipe stiffness was calculated in accordance with ASTM D2412 for deflections of 1 percent and 5 percent of the internal diameter (ignoring the ribs) from the test data. The calculated values are provided in Table 1.

Pipe	Pipe Stiffness 1 % Deflection	Pipe Stiffness 5 % Deflection
	(lbf/in/in)	(lbf/in/in)
Aluminum	18.76	22.09
Steel	61.59	53.5

Table 1

The calculation of these values is included on the following pages.

(D2 _{d1})										
D2 _{d2}										
D211	:=	Time	LoadRate_	PID_Loop.	\MainPar	∖MainPar	∖MainPar	∖MainPar	∖MainPar	∖MainPar
		10:29:18 AM	0.05831	5.53842	0	-1.81829	2.96049	-0.01641	-0.00939	0
D2 ₁₂		10:29:19 AM	0.06664	6.75851	0	-1.85007	2.92873	-0.01641	-0.00939	0
		10:29:20 AM	0.07497	8.07651	0	-1.86597	2.99225	-0.01592	-0.00939	0
		10:29:21 AM	0.0833	9.52569	0	-1.8024	2.96049	-0.01641	-0.00939	0

$\left(D_{d1} \right)$	
D3 _{d2}	
D3 _{l1}	
(D3 _{l2})	

	:=									
)3 _{I1}		Time	LoadRate_	PID_Loop.	∖MainPar	∖MainPar	∖MainPar	∖MainPar	∖MainPar	∖MainPar
		8:39:00 AM	0	0	0	-30.4715	0.18166	-0.00261	0.005876	0
)3 ₁₂ /		8:39:01 AM	0	0.042542	0	-30.4715	0.18166	-0.00261	0.005876	0
12)		8:39:02 AM	0.00833	0.355182	0	-30.4715	0.134023	-0.00113	0.005876	0
		8:39:03 AM	0.01666	1.56653	0	-30.4715	0.149902	-0.00261	0.005876	0

AvgPeakDryRun := $\frac{\text{PeakD2} + \text{PeakD3}}{2}$

AvgPeakDryRun = 0.756kip

(A3 _{d1})					
A3 _{d2}					
A3 _{I1} ≔	Time	LVDT1	LVDT2	Loadcell1	Loadcell2
	11:31:45 AM	-0.00063	3 0.004892	2 0	0
(A3 _{I2})	11:31:46 AM	-0.00063	3 0.004892	2 0	0
	11:31:47 AM	-0.00063	0.005876	6 0	0
(A4 _{d1}) A4 _{d2}					
	Time	I VDT1	I VDT2	Loadcell1	oadcell2
11	1:15:46 PM	0.081227	0.082698	0 140051	-0.03419
A4io I	1:15:47 PM	0.081227	0.083191	0 140051	-0 03134
(112)	1:15:48 PM	0.081227	0.083191	0.140051	-0.03134
(S1 _{d1}) S1 _{d2}				, , , , , , , , , , , , , , , , , , ,	
S1 _{I1}	Time	LVDT1	LVDT2	Loadcell1	Loadcell2
	8:56:00 AM	-0.00014	0.006861	0.002801	0
(S1 _{I2})	8:56:00 AM	-0.00014	0.007846	0.002801	0
< /	8:56:00 AM	-0.00014	0.006861	0.002801	0
(S2 _{d1})					

LVDT2

 $\begin{vmatrix} S^{2}_{d2} \\ S^{2}_{l1} \end{vmatrix} := \\ S^{2}_{l2} \end{pmatrix}$ Time 9:55:00 AM 9:55:00 AM 9:55:00 AM LVDT1 -0.00261 0.005876 -0.00261 0.006369 -0.00113 0.005876

(S3_{d1}) S3_{d2} S3_{l1} : S3_{l2})

	:=									
3 ₁₁		Time	LoadRate_	PID_Loop.	\MainPar	∖MainPar	∖MainPar	\MainPar	∖MainPar	∖MainPar
••••		2:58:08 PM	0	2.8631	0	-30.4715	0.149902	-0.00113	0.006861	-0.0028
53 ₁₂ /		2:58:09 PM	0.00833	3.45173	0	-30.4715	0.102265	-0.00113	0.006861	-0.0028
· -)		2:58:10 PM	0.01666	5.13993	0	-30.4715	0.134023	-0.00113	0.006861	-0.0028

Loadcell1 Loadcell2

0

0

0

0

0

-0.0028

$\left(S_{d1}^{4} \right)$										
S4 _{d2}										
S411	.= [17.8179	48.3358	143.051	-27.9923	10.8524	17.963	18.0059	5.44797	5.16278
'' '		17.8262	34.0342	116.229	-28.2625	10.8047	17.9748	18.0059	5.45357	5.13713
(S4 ₁₂)		17.8345	19.2542	62.5849	-28.4691	10.8047	17.9748	18.0059	5.45637	5.11719
		17.8429	4.72434	0	-28.4691	10.8047	17.9827	18.0068	5.45077	5.10579

$DispA3 := \frac{A3_{d1} + A3_{d2}}{2}$	$LoadA3 := A3_{11} + A3_{12}$
$DispA4 := \frac{A4_{d1} + A4_{d2}}{2}$	$LoadA4 := A4_{11} + A4_{12}$
$DispS1 := \frac{S1_{d1} + S1_{d2}}{2}$	LoadS1 := S1 _{I1} + S1 _{I2}
$DispS2 := \frac{S2_{d1} + S2_{d2}}{2}$	$LoadS2 := S2_{11} + S2_{12}$
$DispS3 := \frac{S3_{d1} + S3_{d2}}{2}$	LoadS3 := S3 _{I1} + S3 _{I2}
$DispS4 := \frac{S4_{d1} + S4_{d2}}{2}$	$LoadS4 := S4_{11} + S4_{12}$

 $TOL = 1 \times 10^{-3}$ TOL := 0.01

A3IndexAt75X := match $(0.75, \text{DispA3})_0$

A3LoadAt75X := LoadA3_{A3IndexAt75X}

A3DispAt75X := DispA3_{A3IndexAt75X}

A3LoadAt125X := LoadA3_{A3IndexAt125X}

A3IndexAt125X := match $(1.25, \text{DispA3})_0$

A3DispAt125X := DispA3_{A3IndexAt125X}

A4IndexAt75X := $match(0.75, DispA4)_0$

A4LoadAt75X := LoadA4_{A4IndexAt75X}

A4DispAt75X := DispA4_{A4IndexAt75X}

A4IndexAt125X := match $(1.25, DispA4)_0$

 $S1IndexAt75X := match(0.75, DispS1)_0$

 $S1IndexAt125X := match(1.25, DispS1)_0$

S2IndexAt75X := match $(0.75, \text{DispS2})_0$

S2IndexAt125X := match $(1.25, \text{DispS2})_0$

S3IndexAt75X := match $(0.75, \text{DispS3})_0$

S3IndexAt127X := match $(1.27, \text{DispS3})_0$

S4IndexAt75X := match $(0.75, \text{DispS4})_0$

S4IndexAt125X := match $(1.25, \text{DispS4})_0$

A4LoadAt125X := LoadA4_{A4IndexAt125X}

A4DispAt125X := DispA4_{A4IndexAt125X}

S1LoadAt75X := LoadS1_{S1IndexAt75X}

S1DispAt75X := DispS1_{S1IndexAt75X}

S1LoadAt125X := LoadS1_{S1IndexAt125X}

S1DispAt125X := DispS1_{S1IndexAt125X}

S2LoadAt75X := LoadS2_{S2IndexAt75X}

S2DispAt75X := DispS2_{S2IndexAt75X}

S2LoadAt125X := LoadS2_{S2IndexAt125X}

S2DispAt125X := DispS2_{S2IndexAt125X}

S3LoadAt75X := LoadS3_{S3IndexAt75X}

S3DispAt75X := DispS3_{S3IndexAt75X}

S3LoadAt125X := LoadS3_{S3IndexAt127X}

S3DispAt125X := DispS3_{S3IndexAt127X}

S4LoadAt75X := LoadS4_{S4IndexAt75X}

S4DispAt75X := DispS4_{S4IndexAt75X}

S4LoadAt125X := LoadS4_{S4IndexAt125X}

S4DispAt125X := DispS4_{S4IndexAt125X}

A30ffeet - A3DienAt75X	A3LoadAt75X
	A3LoadAt125X – A3LoadAt75X
	A3DispAt125X – A3DispAt75X

$\Delta A \cap \text{ffeat} := \Delta A \cap \text{ien} \Delta t75X$	A4LoadAt75X
	A4LoadAt125X – A4LoadAt75X
	(A4DispAt125X – A4DispAt75X)

S10ffset - S1DispAt75X	S1LoadAt75X
	S1LoadAt125X – S1LoadAt75X
	S1DispAt125X – S1DispAt75X

S20ffeet - S2DienAt75X -	S2LoadAt75X
	(S2LoadAt125X - S2LoadAt75X)
	S2DispAt125X – S2DispAt75X

S3Offset := S3DispAt75X -	S3LoadAt75X
	(S3LoadAt125X - S3LoadAt75X)
	S3DispAt125X – S3DispAt75X

S4Offset := S4DispAt75X	S4LoadAt75X
	S4LoadAt125X – S4LoadAt75X
	S4DispAt125X – S4DispAt75X

DispA3 := DispA3 – A3Offset	DispA4 := DispA4 – A4Offset
DispS1 := DispS1 – S1Offset	DispS2 := DispS2 - S2Offset
DispS3 := DispS3 – S3Offset	DispS4 := DispS4 – S4Offset

 $\mathsf{TOL} := 0.001$

PeakA3 := max(LoadA3) · kip PeakIndexA3 := match
$$\left(\frac{\text{PeakA3}}{\text{kip}}, \text{LoadA3}\right)_0$$

DispPeakA3 := DispA3_{PeakIndexA3}

PeakIndexA3 := match
$$\left(\frac{\text{PeakAS}}{\text{kip}}, \text{LoadA3}\right)$$

DispPeakA3 = 6.33

PeakA4 := max(LoadA4)·kip

DispPeakA4 := DispA4_{PeakIndexA4}

$$PeakIndexA4 := match\left(\frac{PeakA4}{kip}, LoadA4\right)_{0}$$

DispPeakA4 = 6.488

PeakS1 := max(LoadS1)·kipPeakIndexS1 := match
$$\left(\frac{\text{PeakS1}}{\text{kip}}, \text{LoadS1}\right)_0$$
DispPeakS1 := DispS1_{PeakIndexS1}DispPeakS1 = 5.374

DispPeakS1 = 5.374

PeakIndexS2 := match
$$\left(\frac{\text{PeakS2}}{\text{kip}}, \text{LoadS2}\right)_{0}$$

DispPeakS2 := DispS2_{PeakIndexS2}

PeakS2 := max(LoadS2) · kip

(PeakS3 badS3]₀ Ρ

DispPeakS3 := DispS3_{PeakIndexS3}

DispPeakS4 := DispS4_{PeakIndexS4}

 $PeakS4 := max(LoadS4) \cdot kip$

PeakS3 := max(LoadS3) · kip

DispPeakS3 = 4.979

DispPeakS2 = 5.503

$$PeakIndexS4 := match\left(\frac{PeakS4}{kip}, LoadS4\right)_{0}$$

DispPeakS4 = 5.315

AvgAlumPeakLoad := $\frac{\text{PeakA3} + \text{PeakA4}}{2}$ AvgAlumPeakLoad = 6.676 kip AvgSteelPeakLoad := $\frac{PeakS1 + PeakS2 + PeakS3 + PeakS4}{4}$ AvgSteelPeakLoad = 11.157 kip AvgAlumPeakLoadAdj := AvgAlumPeakLoad - AvgPeakDryRun AvgSteelPeakLoadAdj := AvgSteelPeakLoad - AvgPeakDryRun AvgAlumPeakLoadAdj = 5.92 kipAvgSteelPeakLoadAdj = 10.4 kipAvgDispPeakAlum := $\frac{\text{DispPeakA3} + \text{DispPeakA4}}{2} \cdot \text{in}$ $AvgDispPeakSteel := \frac{DispPeakS1 + DispPeakS2 + DispPeakS3 + DispPeakS4}{4} \cdot in$ AvgDispPeakAlum = 6.409 inAvgDispPeakSteel = 5.293 inAvgAlumThk := $\frac{0.0735 + 0.075 + 0.074 + 0.076}{4}$ AvgAlumThk = 0.075AvgSteelThk := $\frac{0.0785 + 0.075 + 0.0745 + 0.0745}{4}$ AvgSteelThk = 0.076AvgOD := 35.625 $AvgID := AvgOD - 0.075 \cdot 2$ AvgID = 35.475

$OnePercentVal := \frac{AvgID}{100}$	OnePercentVal = 0.355
FivePercentVal := $\frac{\text{AvgID} \cdot 5}{100}$	FivePercentVal = 1.774
$TOL = 1 \times 10^{-3}$	
TOL := 0.01	
A3IndexAt1 := match(OnePercentVal,DispA3) $_0$	A3IndexAt5 := match (FivePercentVal, DispA3) $_0$
A4IndexAt1 := match(OnePercentVal,DispA4)0	A4IndexAt5 := match(FivePercentVal,DispA4) $_0$
TOL := 0.02	
S1IndexAt1 := match(OnePercentVal,DispS1) ₀	
TOL := 0.01	S1IndexAt5 := match(FivePercentVal,DispS1) $_0$
S2IndexAt1 := match(OnePercentVal,DispS2)0	$\texttt{S2IndexAt5} := \texttt{match}(\texttt{FivePercentVal},\texttt{DispS2})_0$
S3IndexAt1 := match(OnePercentVal,DispS3)0	$\texttt{S3IndexAt5} := \texttt{match}(\texttt{FivePercentVal},\texttt{DispS3})_0$
S4IndexAt1 := match(OnePercentVal,DispS4) $_0$	S4IndexAt5 := match(FivePercentVal,DispS4) $_0$
A3LoadAt1 := LoadA3 _{A3IndexAt1}	A3LoadAt1 = 0.758
A3LoadAt5 := LoadA3 _{A3IndexAt5}	A3LoadAt5 = 3.844
A4LoadAt1 := LoadA4 _{A4IndexAt1}	A4LoadAt1 = 0.52
A4LoadAt5 := LoadA4 _{A4IndexAt5}	A4LoadAt5 = 3.68
S1LoadAt1 := LoadS1 _{S1IndexAt1}	S1LoadAt1 = 2.287
S1LoadAt5 := LoadS1 _{S1IndexAt5}	S1LoadAt5 = 9.339
S2LoadAt1 := LoadS2 _{S2IndexAt1}	S2LoadAt1 = 2.33
S2LoadAt5 := LoadS2 _{S2IndexAt5}	S2LoadAt5 = 9.311

S3LoadAt1 := LoadS3 _{S3IndexAt1}	S3LoadAt1 = 1.985
S3LoadAt5 := LoadS3 _{S3IndexAt5}	S3LoadAt5 = 8.95
S4LoadAt1 := LoadS4 _{S4IndexAt1}	S4LoadAt1 = 1.788
S4LoadAt5 := LoadS4 _{S4IndexAt5}	S4LoadAt5 = 8.837

AvgAlumLoadAt1 :=
$$\frac{A3LoadAt1 + A4LoadAt1}{2}$$
 · kip AvgAlumLoadAt1 = 0.639 kip

 $\begin{aligned} \text{AvgAlumLoadAt5} &:= \frac{\text{A3LoadAt5} + \text{A4LoadAt5}}{2} \cdot \text{kip} \quad \text{AvgAlumLoadAt5} = 3.762 \, \text{kip} \\ \text{AvgStlLoadAt1} &:= \frac{\text{S1LoadAt1} + \text{S2LoadAt1} + \text{S3LoadAt1} + \text{S4LoadAt1}}{4} \cdot \text{kip} \end{aligned}$

AvgStlLoadAt1 = 2.097 kip

AvgStlLoadAt5 :=
$$\frac{S1LoadAt5 + S2LoadAt5 + S3LoadAt5 + S4LoadAt5}{4} \cdot kip$$

AvgStlLoadAt5 = 9.109 kip

AlumPSAt1 :=
$$\frac{AvgAlumLoadAt1}{OnePercentVal \cdot in}$$

 $8 \cdot ft$ AlumPSAt1 = 18.761 $\frac{lbf}{in}$
inAlumPSAt5 := $\frac{AvgAlumLoadAt5}{FivePercentVal \cdot in}$
 $8 \cdot ft$ AlumPSAt5 = 22.093 $\frac{lbf}{in}$
inSteelPSAt1 := $\frac{AvgStlLoadAt1}{OnePercentVal \cdot in}$
 $8 \cdot ft$ SteelPSAt1 = 61.587 $\frac{lbf}{in}$
inSteelPSAt5 := $\frac{AvgStlLoadAt5}{FivePercentVal \cdot in}$
 $8 \cdot ft$ SteelPSAt5 = 53.496