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1. INTRODUCTION

Previous studies show'. that a heavy truck's grass weight, axle weights, and axle configuration
directly affect the service life of highway bridge superstructures. Damage typically occurs in
the bridge deck and in the main "superstructure elements including floor beams and girders;
diaphragms, joints, and bearings Nowadays, "with' the rapid development of highway'
transportation, the increasing frequency of passing heavy trucks attributes to fatigue damage
and causes more difficulty and financial' costs to bridge maintenance as the result of shorter:
periods between needed maintenance, rehabilitation, or replacement, etc. These heavy loads
may severely shorten the life span in service of the existing bridges. Moreover, -it is necessary
to investigate the damage mechanisms of specific local= members caused by heavy trucks. This

investigation will greatly benefit the maintenance of existing highway bridges.

The need for reliable truck weight data has been recognized by many state departments .of
transportation. The knowledge of actual truck-load spectra may reduce the uncertainty involved
in the- detrimental influence of heavy trucks: It is useful in many aspects, such as evaluation of
the load-carrying capacity, estimation of remaining life," and prediction of* deterioration rate.
To -monitor gross vehicle weight (GVW) of passing heavy trucks, stationary weight scales have
been established over, -major highways: However, this :conventional scale measurement has:
several drawbacks,. such as drivers' awareness (may avoid.’it. on purpose) "and delay; of
traffic. More recently, weigh-in-motion (WIM) measurements have been. developed as' an

extensive device
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throughout the nation. The use of WIM databases can achieve more accurate truck' loading since
it can overcome the shortcomings :inherent in stationary weight scales. Nowak et al. (1993)
employed the WIM measurementon 1-94 and US-23 in Michigan to obtain average daily truck
traffic (ADTT) and: truck weight. Totally, there are five highway bridges selected as samples for

data acquisition. It is found that the obtained truck traffic data are very site-specific.

It is estimated that there is a volume range of approximately 3,000 to 14,300 heavy: trucks per
day on 1-75 between the Georgia State :line and Florida's Turnpike. Since the state of Florida has
thousands of small to middle span bridges, it is necessary to perform corresponding research to
meet the need of rapid increase in highway transportation. However, accurate truck traffic data
is not available on specific highway bridge sites:: The objective of the research project-is to
establish a truck: traffic database (including axle weight and spacing), which is useful, for the
maintenance of highway bridges in the state Florida. This database is ;essential in estimating
histograms of heavy trucks in association with their gross weight, axle weights, and axle
configurations, and providing the fatigue life of the existing bridges to ensure the operation safety

of these structures.

Literature search indicates that similar studies have been’ recently accomplished by a few
researchers in the field of, detrimental influence of heavy-duty trucks on steel highway bridges.
Wang et al. , (1993): predicted .fatigue life of composite and non-composite steel bridges under
various roadway surface conditions and with an assumption of 100 HS20-4,f trucks per _day.
Nowak et al. (1993) developed a statistical basis for the: live load model for Michigan Bridges

based on data of truck counts and WIM measurements.: carried out at stationary truck; weigh
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station. Accordingly, an accumulative: fatigue damage percentage is calculated and a fatigue-
load model is recommended. Based on the measured data, Hwang and Nowak (1991) performed
numerical simulations of truck loading. Laman and Nowak (1996) developed three- and four-
axle: fatigue truck models to represent actual trucks with axle numbers ranging from three to
eleven:; Moreover, the live load model is an important issue: in the study of policy and
checking of heavy permit trucks (Dicleli and Bruneau 1995; Fu and Hag-Elsafi 2000). Dicleli
and Bruneau (1995) analyzed several existing steel bridges located in North America based on
five typical heavy truck configurations, which were provided by the Ministry of Transportation
of Ontario (MTO) by their permit-issuing experience. It was found that bridge members are
largely affected by.: such overloads. Policy for the issuance of permit to heavy trucks was
recommended according to the cumulative impact, damage of these overloads. In summary,
these studies indicate that the collection of actual heavy truck traffic data at a specific bridge
site is essential for the evaluation of potential structural damage caused by these trucks. Most of
the previous analytical studies used relatively simplified bridge and/or truck models. To further
study dynamic impacts of multigirder bridges, Wang et al. (1992) and Huang et al. (1993)
developed a three-dimensional nonlinear truck model for the AASHTO standard design truck
HS20-44 and used the grillage bridge model. Based on' these 'studies, a more detailed scientific

investigation: of impact and loading of normal truck traffic on bridge structures is available:

Distinct from previous studies, the peculiar features of this research- project include the
following; (1) dynamic response due to passing single or multiple trucks. will be calculated by
the finite element model’, (2) several types of existing trucks will be modeled as rigid bodies

connected with dampers and springs; (3) * road surface roughness: is generated as correlated
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random processes; and (4) passing speed of trucks will be involved in the calculation. As a
result of these facts, two advantages are- apparent in the present study: : (1) no need for strain
measurement on a specific' bridge site;; which will certainly reduce cost for fatigue analysis;
and (2) structural dynamic response under passing trucks (including: the excitation of road

surface roughness) is taken into account:

The objective of this study includes the following aspects: (1) synthesize truck traffic data
collected through WIM measurements; (2) establish live-load spectra; (3) perform fatigue
damage analysis for typical bridges; (4) carry out static and dynamic analyses: Three-
dimensional nonlinear. mathematical models of typical trucks with significant counts are
developed based on the measured axle -weights and- configurations.-Road surface roughness is
simulated as transversely correlated random processes. The multigirder bridges are treated as a

grillage beam system. Several important findings and conclusions are summarized.

Chapter 2 presents the systemization methodology of requested truck traffic data. Bridge and
truck models, are described in Chapter 3. Chapter 4 gives the simulation of correlated road
surface roughness in the transverse direction. In Chapter 5, the static and dynamic effects under
typical, trucks are studied. In Chapter 6, fatigue damage accumulation is analyzed using normal
traffic. In Chapter 7, the effects of correlation of road surface roughness on dynamic impact
factors are investigated. Chapter 8 summarizes the findings and conclusions obtained in this

research:
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2. SYNTHESIZATION OF TRUCK TRAFFIC DATA

2.1 COLLECTION OF TRUCK TRAFFIC DATA

Truck traffic counts and axle weights have been monitored by the extensive WIN4 measurements
in the state of Florida (see Florida AADT Report 1998). Figure 2-1 shows he locations of these
weigh; stations. In this study, truck traffic data are collected at twenty stations in a one-week
period. Through truck traffic counts, it is found that stations #19 and #26, respectively, located on
interstate, highway 1-95, approximately, 3.5 ;miles south of SR514, - Malabar, and 1-'75,
approximately 3 miles south of 1-4, Tampa, have heavy truck traffic. These two stations are used
as truck traffic input data in this study. The ADTT is 2838 for station #19 and 3689 for station
#26; respectively.: Figures 2-2 through 2-9 show the truck. counts and the histogram of GVW at

the two stations.

2.2 SYNTHESIZATION OF TRUCK TRAFFIC DATA

Since there is a large diversity of truck weights . and configurations, one classification method is.
developed hereby to simplify the analysis. According to FHWA classification scheme "F", there are
a total of fifteen vehicle types as shown' in Fig. 2-1-8.-1n each type, trucks are’ sub-categorized

by loading condition - empty or loaded. The dividing line for empty or loading condition: is
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selected by judgment: to ensure the acceptable coefficient of variation (COV), which is generally
considered acceptable if it is less than 0.3. According to the established criteria,: a computer

program is written to synthesize the data.

In thin study, multiple presence of trucks is neglected because the occurrence is small, less than 8%
according to Nowak et al. (1993). Single-lane truck traffic is processed and used as- input data.
Two lanes are herein selected as input data - southbound direction lane #l of station #19 and
southbound lane #2 of station #26. The lane ADTT is 1999 for station #19; and 1065 for station
#26," respectively. The trucks are classified into twenty-four categories for station #19 and twenty-
three categories for station #2.6 in this analysis. The mean 'value (MV) and standard deviation (SD)
of axle weights and configurations are calculated in each category. The MVs are used to obtain
average loading effects in the following. static and dynamic impact study. Tables 2=1 through 2
present the synthesized results for each empty and loaded truck type. From Tables 2-1 through 2-4,

it can be seen that coefficients of variation in the two categories are generally less than 0.3.
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3. TRUCK AND BRIDGE MODELS
3.1 TRUCK MODELS

Table 3-1 presents the GVW (the sum of the mean values of each axle weight) and passages of each
category processed in Chapter 2. According to the:: traffic counts in Table 3-1, three types-of trucks
are predominant: types 5 8, and 9. Mathematical- models of the three types of trucks areestablished
based on the: data of nationwide-used truck types H20-44, HS20-44; and 3S2: The masses of
tractor and trailer are derived according- to their static equilibrium relationship with the measured
axle weights. The three-dimensional mathematical models for types 5,.8(2S1), 9, and 10 are
illustrated in Fig. 3-1. Truck-Aype 10 (developed from type 3-3) is' of interest because it is the
heaviest truck with -a single trailer. These-models simplify the trucks into several rigid masses
connected by springs and dampers. The total numbers of degrees of freedom are, respectively, seven,
eleven, sixteen, and eighteen The equations of motion of the vehicle systems were derived using
Lagrange's formulation. Details of derivation refer to Wang and Huang (1993). Fig. 3-2 shows the
configurations and axle weights of these typical trucks; Appendix A shows the' derived data for

these typical trucks.
3.2- BRIDGE MODELS

In order to. study, the effects of normal truck traffic, six simply supported steel I-girder bridges and

four prestressed concrete I-girder bridges were designed: according to AASHTO

Final Report : ' ' _ _ _ 7



Specifications (1996) and the Standard Plans for Highway Bridge Superstructures (1990) from

the U.S. Department of Transportation. The design is based on HS20-44loading.

For the steel bridges, the span lengths are 10.67m (35ft), 16.76m- (55ft), 22.-86m (75ft),
30.48m (100ft), 36.58m (120ft), and 42.67m (140ft), respectively. The bridges have a roadway
width of 8.53m (28ft) and -a-concrete deck thickness of -019m (7.5in). All the bridges consist
of five identical girders. The five: girders are evenly spaced at 2.13m (7ft) for the first three
spans and 2.44m (8ft) for the last three spans. Also, there are diaphragms transversely
connecting these girders. The number of intermediate diaphragm(s) is 1, 2, 3, 4 and 5;
respectively, increasing with span length. Except for the shortest span length of 10.67m (35ft),
fall the bridges have composite sections. Typical cross section of the bridge with a-span of
16.76m (55ft)" is shown in Fig. 3-3. Table 3-2 presents the mass and girder properties of these

bridges.

For the prestressed concrete bridges, the span lengths are 9.14m (30ft), 18.29m (60ft) 30.48m
(100ft), and 42.67m (140ft), respectively. All the bridges are of [-beam sections with a cast-in-
place deck. The bridges; have a roadway width of 9.74m (32ft) and a .concrete deck “thickness
of 0.19m (7.51n). Typical cross section of the bridges' is shown in Fig. 3-4. All five girders have
identical sections and are transversely connected to each other by diaphragms. The number- of
diaphragms is 0, 1, 2, and:2,-respectively, for the shortest to the longest span length. Table 3-3

presents the mass and girder properties of these bridges.
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3.2.1 Grillage Model
These multigirder bridges are modeled as grillage beam' systems. The node parameters are
5 ={&:g;)' (3-1)
where 8; = {w; 0xi8y,. }” = the displacement vector of the left joint; 3= {W, 0- Gyj}T = the
displacement vector of the right joint; w = vertical displacement in the z-,direction; and 6, and
0y rotational displacements about x- and y-axes, respectively. Fig. 3-5 shows the plan of one
bridge and the corresponding grillage model. More details refer to Wang et al. (1992) and

Huang et al. (1993).

3.2.2 Governing Equation

The equation of motion of a specific bridge under a .moving vehicle can be written as:

M3 b +Cp0p +Kp0b Fj (3-2)
where M= global mass matrix of -bridge structure; Ky, = global stiffness matrix of bridge
structure; C, = global: damping matrix, of bridge structure; 0,0,,0b, = global nodal
displacement, velocity, and acceleration vectors; and F, = global load vector, due to the
interaction between bridge and vehicle. One percent damping ratio is assumed for the first and
second modes of steel: bridges in this study. The consideration of damping matrix refers to

Clough and Penzien (1996).
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3.2.3 Interaction between Truck end Bridge

The interaction force between the ith wheel of a truck and a bridge is given as the following:

F, =K, U, +C.U, (3-3)
where K= tire stiffness of the ith wheel; Cy,; = tire damping coefficient of the ith wheel; Uy,; =
Zwr -- (-Ug) - (--zp;), the relative displacement between the ith wheel and bridge, and the
superscript dot of Uy,; denotes differential with respect to time; Z,,; = vertical displacement of the
ith wheel; ugi = road surface roughness under the ith wheel (positive upwards); and z;; bridge

vertical displacement under the ith wheel (positive upwards), which can be determined by the

nodal displacement & ¢ and the displacement interpolation function of the element.
p p p

In the present study, the fourth-order Runge-Kutta integration algorithm is employed to solve the
nonlinear equations- of motion of a vehicle (Chu et al. 1986, Wang et al. 1993). The dynamic
equations of the bridge are solved by the modal superposition procedure based on the subspace

iteration method:
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4. SIMULATION OF ROAD SURFACE ROUGHNESS

Road surface roughness is one of the most important factors in the vehicle-bridge interaction.
Currently, there are two widely accepted power spectral density (PSD) functions describing
road surface roughness: one by Dodds and Robson (1973) and the other by Honda et- al. (1982).
The PSD function proposed., by Dodds and Robson (1973) for highway surface roughness is as

follows:

S(p) ={A(p/p) " p= g, (4-1)
{Ap/ ™ o g,
where S(b); = PSD function (m*/cycle/m); ¢ = wave number (cycle/in); ¢o = discontinuity,
frequency = 1/2n (cycle/m); A = roughness coefficient (m’/cycle); and wi, w,= roughness
exponent, herein taken as 2.050 and 1.440, respectively; for the principal road. The PSD
function proposed by; Honda et al. (1982) for surface roughness on bridge decks is as follows:
S(d) =ad™ (4-2)

where a = spectral roughness coefficient; and n = spectral roughness exponent (n is taken as ,

1.94).

A comparison between the two spectra is shown in Fig. 4-1 on a log-log scale. The midpoint in
the good condition- range' is used for. roughness coefficients A and a, i.e., A = 20.0x10°
m’/cycle and a = 0.62x 10° m?/(mcycle™). From Fig, 4-1, it can be seen that Dodds and’

Robson's PSD has higher values for the frequencies above 1/2 © cycle/m.
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4.1 ARMA APPROACH

The PSD functions-in Fig. 4-1 present he characteristics of road surface-roughness along the
longitudinal direction. In reality, these longitudinal random processes vary in the transverse
direction (Fenves et al. 1962; Dodds and Robson 1973; Law et al. 1975; Honda et al. 1982). To
reflect the reality in the transverse direction, an auto-regressive and moving average (ARMA).
approach suggested by Samaras et al. (1985) is employed to simulate. road roughness based on

a given spatial correlation relationship:

(4-3)

”

Y, :Zq:Bin—i _iAin—i +B,X

i=1 i=1

where Y' = two random processes (r = 1, 2); Aj. and B; (i =0, 1, ...., q) = 2x2 auto-regressive
(AR) and moving-average (MA) coefficient matrices, respectively; p and g = orders of an
ARMA model; and X, = two-variate Gaussian white noise series with mean zero and satisfying:

E[X,X[]1=10, (4-4)

where [ = 2x2 identity matrix; d,s = Kronecker's delta.

The target (p+1)x(p+1) correlation function matrix C can be, expressed in the following:
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Cw(@  CLM - Ch(p) - N

' . - C Tep=111 - .
co|Cr7 €aO® - Chr-n)| @s)
- e - €O

: \ﬁh_cre the elements of C, (k) (k =0, 1, ..., p) consist of the auto- and cross-correlation

functions of the two random processes Y; and Y».

t)ncé the coefﬁciént r'nétrices A; and B; are obtained, the randdm process Y (r=1, 2) can be
generated recurswcly using Eq (3) A; and B; are determmed based on only the prcscnbcd

| comelatlon functlon matnx C m Eq (5) The detaﬂed proccdure is shown as follows

le is"a;ss'umed to be an ideﬁtity matrix;

2.Bois solv_éd by. the'following' fdnn_ula:_ 5

L L 4-6.'.':_-_

 BBI=3AC,H) Ry
i=0 .

where A, = the identity matrix and [&, ... &,]=-[CL,() .. CL(p]C';and

‘3.A;and B (z = 1 v q) are obtamed as’ fo]lows

[Bl Bq Al Aq]=[cm(—1) Crx(*"Q) —C;,(l) ;C;(q).]nﬁ. RGN

‘where
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I 0 —-C%.(0) 0]

D= 0 B I —_C;,(.(i~q_). —C;;X('O) ' (4-8)
—Cy(0) ... —C(-9)  Cu0) ... Chlg-D |
0 . mCrO) Culg-D .. CuO |

4.2 SIMULATED ROUGHNESS AND CORRELATION FUNCTIONS

In this study, the input parameters p -and q are chosen as 49 and 40, respectively. The spatial
coherence function in the transverse direction can be derived from available measured data. Based
on Honda's study (1982), the value of correlation function Coh*(& ,¢) in-the range of ¢ = 0 0.01
to .1.0 cycle/m is roughly 0.4. Thus, the coefficient of correlation can be obtained as ¢ =

Coh*(& ,d) = 0.63. Fig. 4-2 shows the simulated correlated road surface roughness. In this
simulation, Dodds and Robson's PSD function is adopted and the frequencies in use range from
0.01 to 6.0 cycle/m. Fig. 4-3 shows the simulated auto- and cross-correlation functions together

with the targets. From Fig. 4-3, it: can be seen that the simulated results, are of good accuracy.
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5. STATIC AND DYNAMIC EFFECTS ON I-GIRDER BRIDGES

From Table 3-1, it can be seen that the GVWs of trucks of the same type and loading condition
are close for stations #19 and #26. Generally, the trucks with significant counts have more gross
weight at station #26 than at station #19. Hence, the processed truck configurations and: axle

weights at station #26 are used in the static and dynamic analyses in this chapter:
5.1 STATIC EFFECTS

The static moments and shears are calculated for each synthesized truck category. The
processed mean values of actual axle weights as shown in Tables 2-3 and 2-4 are utilized as
moving loads. One truck loading: position placed symmetrically along the axis of girder #2 is
used, as shown in Fig. 5-1(a). Figures 5-2 and 5-3 show the histograms of flexural stress at
midspan and shear at end due to the synthesized truck data and one-truck loading. The
cumulative distribution function (CDF) of the static stresses at midspan and shears at entrance
end for the six bridges are listed in Fig. 5-4. From Fig. 5-4, it is observed that the CDFs of these
flexural stresses and shears for the six span lengths are different. Figure 5-5 demonstrates the

static moment and shear due to moving loaded type 9 loading.

To investigate the effects of overloaded trucks, the heaviest GVW in each truck type is searched
from the surveyed data at station #26, as shown in Fig. 5-6. It can be seen that the: heaviest GVW

(in truck type 13) is approximately twice that of the AASHTO standard design, truck HS2Q-44
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(0.32MN or 72kips). The comparison of the effects of these heaviest trucks with HS20-44 is
shown in Fig. 5-7. In Fig 5-7, the moment and shear of girder #2 are computed. It can be seen
that the effects of several; heaviest truck types, 6, 7, 8, 10, and 13, exceed those caused by HS20-
44. The "overloading" can reach as high as 42%. Because these results are based on single truck
loading, this "overloading" does not mean than the ultimate strength of the subject girder is
violated. Two heaviest truck types, 11 and 12, produce less loading than the design truck. This
indicates that in addition to; GVW, the truck loading is closely related to axle configuration. To
further examine local effects, all the axle weights of these heaviest trucks are shown in Fig. 5-
8(a). It is found that all of them are less than 0.14MN (32kips) - the heavy axle weight of HS20-
44. Nevertheless, the distance. between tandem axles is about 1.5m, which is much less than
bridge span length. Fig. 5-8-(b) indicates the weights of the tandem axles and those of HS20-44.
It is seen that the tandem axle weights might significantly exceed that, of HS20-44 and the
limiting value of 0.15MN (34kips) by AASHTO Guide (1991). Therefore; it is worthwhile in
future study to check whether such a heavy weight may cause severe local damage in the bridge

deck and secondary members.

5.2 DYNAMIC-IMPACT EFFECTS

The impact factor is defined as the following:

1, (%)= (% - ljxl 00% (5-1)

N

6
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where R4 and R = the: absolute maximum dynamic and static responses for individual histories,

respectively:

5.2.1 I-Girder Steel Bridges

In the study of dynamic impact factors,, the girder subject to the highest loading is of interest.
Figure 5-9 shows the lateral distribution of maximum flexural stress at midspan and shear at
entrance end of each girder due to moving loaded truck type 7 loading. The purpose of the use of
stress instead of moment is to avoid significant difference in moment for various span lengths.
From: Fig. 5-9, it is seen that among the five girders the highest moment occurs at girder #2 for the
spans of 10.67m, 16.76m, and 22.86m and at girder #1 for the spans of 30.48m, 36.58m, and

42.67m. The highest shear always occurs at girder #2.

To study the dynamic effects of these realistic trucks, the variation of impact factors, I, with
span lengths is shown in Fig. 5-10. The truck loading position is shown in Fig. 5-1(a). Truck
models include types 5, 8(2S1), 9, 10, and HS20-44. The actual truck models are established based
on the MVs of measured axle weights as, shown in Fig. 3-2. Traveling speed is taken as 88km/h
(55MPH), close to the speed limit of most highways. To simulate the truck entering the bridge
with nonzero initial displacements and velocities at every degree of freedom, the truck is started at
a five-vehicle length distance, L,, away from. the entrance end of the bridge. Each impact factor is
taken as the mean value of twenty-time simulations on good road roughness. Dodds and Robson’s
PSD function is used in this analysis. There are approximately 2000 simulations carried out in this

analysis. From Fig. 5-10; it is observed that the impact factors, for
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two loaded types 9 and 10 (with a GVW of 0.29MN and 0.36MN) as well as HS20-44 (with a
GVW of 0.32MN), are in accordance with AASHTO Specifications (1996). The commentary of
AASHTO Guide Specifications (1990) reports that an average of 10 percent of impact is observed
in the field measurements. The computed average impact factor of loaded types 9 and 10 is 10%,
coinciding: with the field observations. The reason for the: impact factors higher than -the
specified- value by AASHTO Specifications(1996) is that he corresponding trucks have GVWs
less than 0.16MN, which is half of HS20-44. For example, the impact factors for empty truck
types 5 and 8' (2S1) is very high because they have rather low GVWs of 0.06MN and 0.10MN.
This confirms the tendency that a lighter truck weight generally leads to a higher impact factor

(Hwang and Nowak 1991; Huang et al. 1993).

5.2.2 f-Girder Prestressed Concrete Bridges

Since the chance of two heavy trucks; passing a bridge at the same time is relatively low; the one
truck loading position. (load case 1) shown in Fig. 5-1(b) is used in the analysis. The truck is
assumed to travel along the center of lane 1. To simulate the truck entering the bridge with
nonzero initial displacements and velocities at every- degree of freedom, the truck is started at a
five-vehicle length distance, Lo, away from the entrance :end of the bridge. Honda et al.'s PSD
function is used to generate longitudinal road profiles. There re a total of twenty sets of good.
surface roughness generated in: this study. The roughness coefficient a is taken as 0:62x10°

M?*/(m-cycle ") and the PSD function is shown in Fig. 4-1.
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In the st_udjr_'o_f dynamic irripae‘t_- factors, th.e' girder subject to the highest loading- is of interest.
Figure 5-_1 .1._-sh.ows- the maximum static and dynamic moments at_: the n.lidspan' sections due to
movixig truck type 9 at 88km/h (55MPH) in the Iongitudinel direction. It can be seen that the
highest moment ocours at girder #2 for the bridge of span length of 9. 14m (30f0), while it ocours

at 'girder—#'l for all other bridges. The girder with the hi ghest loading is used in this study.

- Under vanoos passmg speeds rangmg from 24 to 121km.fh (15 to ?SMPH) the dynannc 1.mpact_-.
: factors of moment at mjdspan are shown 1in Fig. 5-12. These results are for various typical trucks
.'and bndge__span lengths. At each truck speed, t;he impact factor is taken as the_-average of tw.enty'
simula_t_io.n_si. From Fig. 5_..12,_ it cen- be _se.en' that for heavy trucks (types 9 an& 10 and thc'.';’.ié.sl;_gn:
truck HSZOA%M-), the impact Ector.s.-'.are generally well below the specified values of AASHTO:
S:'andar} (1996) and AASHTO LRE‘D_ (1998). Occasional exceptions occur in tﬁe-.casa- of Spao
length of 9. .141'.11l(.3(_)_ft—)—anc.l type 9 legding. For light trucks (types 5 and 8), the impact factors may
~ be ihhch. hi'gher" than the. speciﬁed valu.es. This is beeause the two light.-tfucks. have .very low.:
GVWS compared w1th ‘that of HS20-44 (the ratlo 1is 0.30 and 047 respectlvely) Flgure 5-13
- gives the dynamlc hlstory of the moment at midspan.of girder #2 (L = 9. 14m or 30ft) due to type.

- 9 tmck ata trave]mg speed of 24km/h (15MPH)

5.3 LIVE LOAD LATERAL DISTRIBUTION -

' The wheel load distribution factor is defined as:

NEO
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where M; = the sum of maximum moment/shear of all girders at the specific section; n number of
wheel loads-in. the transverse direction;. and M, = maximum moment/shear of the ith girder at the
section. In this study, the dynamic moment/shear for M; and M (including, impact effect) is taken

into account.

Figure 5-14 shows the wheel load distribution factor of dynamic moment at midspan when a single
truck travels along the center of lane 1. The results are obtained based on one simulation and a
traveling speed of 88km/h. From. Fig. 544, it is observed that the five selected trucks cause
similar lateral moment distribution among the five girders, regardless of the variation in their axle
weights and configurations. To examine the distribution factors specified by AASHTO
Specifications (1996) and AASHTO LRFD (1998), the simulation is performed twenty times and
an' average is taken for each case. A two-lane loading (using the same truck) is considered in the
analysis, which is achieved by the superposition of one-lane loading results. This assumes the
symmetry of distribution factors for loading on each lane. Figure 5-15 shows the maximum wheel
load distribution' factor of moment at midspan and shear at end: along with the specified values
for' interior girders by AASHTO Specifications (transferred to wheel load case). Also, in Fig. 5-15
the distribution factors are calculated on the basis of static moments and shears. It car be seen that
the maximum distribution factors: are similar for different truck types. The computed maximum
factors based on both static and dynamic moments/shears are similar. The calculated factors for
interior girders are lower than the specified values. This is consistent with the measured results
reported by Kim'and Nowak (1997). However, it should be noted that in this study two-lane traffic

is used, while the specified values are obtained based on the controlling
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static moment/shear caused by any number of trucks that fit the bridge transversely (Zokaie 2000).

Thus, the specified values may lead to higher™ distribution factors.
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6. FATIGUE ACCUMULATION ANALYSIS _

6.1 FATIGUE DAMAGE ACCUMULATION

To evaluate fatigue damage caused by the surveyed normal traffic, it is necessary to obtain the
dynamic stress ranges of a specific girder. Based on the previously described impact study, the
impact factors can be approximately taken as 1.15. for loaded trucks and 1.20 for empty trucks,
as shown in Figs. 5-10(a) and 5-10(b). The two values are intentionally selected to cover most
of the calculated impact factors caused by types 9 and 10. The purpose is to consider mainly the
heavy trucks that cause significant flexural stresses. This consideration of dynamic impacts will
not involve significant loss of accuracy in fatigue analysis since empty trucks cause only a low
level of stress ranges. Combining the dynamic impacts with the aforementioned static results,
the histogram of dynamic stress range of the most highly stressed girder at station #26 is shown
in Fig. 6-1. The corresponding CDF of dynamic stress ranges is given in Fig. 6-2. It can be seen
that the stress ranges due to the normal truck traffic are different for the six bridge spans. The
stress ranges from 6.89 to 43:43Mpa (1.0 to 6.3ksi). The bridges with a span length less than
30.48m (100ft) are assumed to have rolled girders (Category A), while other bridges are assumed
to have welded girders (Category B). According to AASHTO Guide (1990); the calculated stress
ranges multiplied by. the reliability factor RS, (RS 0:95x1:35 = 1.28 for nonredundant
members; alternative 3 for fatigue truck, Fy, = 0.95) are less than the limiting stress range of

Categories A and-B. Therefore, the fatigue life of these girders can be considered infinite.
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The fatigue damage analysis is performed based on: the Miner's linear' damage rule and the stress-
life approach (Miner 1945; Bannatine-et al. 1990). According to this rule,: the damage in just one
stress range cycle is VN if N cycles of a specific stress range S; are needed to cause a structural
detail to fail.. When the number of cycles, n; at stress range S;, is applied, the damage fraction DI
is m;N;. Failure is assumed to occur when the summation of damage fraction, D1, equals 1.0.
Based on the passages in each truck category, the computed sum of damage accumulation for
various categories in 75 years for the six bridge span lengths: are shown in Fig. 6-3:. It is observed
that the truck traffic at station #26 may cause severe fatigue damage to category E', while the truck
traffic at station. #19 may cause severe damage to categories D, E, and E', when details of these
categories are used. The histogram for station #26 (shown in Fig. 6-1) is used for station #19.
Since the GVWY9 of the same truck type and loading condition for the two stations are close, this

simplification will not lead to significant errors.

Figure 6-4 :illustrates the damage accumulation in a period of one week for the WIM data and for
two fatigue trucks specified in’ the AASHTO Guide (1990) and LRFD (1998):: Based on the
surveyed trucks, the equivalent GVW is 0.24MN (54kips),: exactly the same as that of the
standard fatigue design truck in the A4SHTO Guide (1990). Based on the processed truck data,
the. equivalent GVW is 0.23MN (52.56kips), which is slightly different from that, obtained from
every truck passage. From Fig, 6-4, it can be seen that the fatigue design truck of AASHTO Guide
(1990) causes damage close to that from the surveyed: WIM data. In this analysis. Category - A of.
AASHTO Specifications (1996). is used for rolled.-girders and Category B is used for welded

built-up girders. The increase in future truck volume is not considered. The load factor of 0.75 is
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not included in the effect of the LRFD truck. If this /oad factor is considered, the LRFD fatigue
truck would be he same as that of AASHTO Guide. The stress cycles per truck passage are: taken
in accordance with AASHTO Guide (1990) and LRFD (1998); respectively. To study the role of
various trucks, the fatigue damage accumulation is calculated for each category. The results for.
the six bridges are shown in Fig. 6-5. From Fig. 6-5, it can be. seen that the loaded truck types 9,

8(2S2),7, and-8(3S1) are of the most significance. These trucks are either 4- or 5-axle.

6.2 EQUIVALENT NUMBER OF CYCLES

According: to NCHRP Report 299, the- equivalent number of .cycles for a complex cycle can be

approximately expressed as:

Ne=1+(Si1/Sp)3+(Se2 / Sip Y+ " +(Stn /S )’ (6-1)
where Sy, = the stress range for the primary cycle, and S;; = the stress. range for a higher order

cycle:

Figure 6-6 shows the equivalent number of cycles using the processed data at station #19. Figure
6-7 shows the equivalent number of cycles using the processed data at¢ station #19. Figures 6-6
and 6-7 also give the specified cycles by AASHTO Specifications (1996), and LRFD (1998). It
can be seen that truck type 9, the most important truck accounting for fatigue damage, induces a
number of cycles higher than the specified value by AASHTO Specifications (1996) for short

span lengths /ess than 10m:
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7. EFFECTS OF CORRELATION OF ROAD ROUGHNESS
To study the. effect of correlation between the road profiles in the transverse direction on the dynamic
impact factor, five cases are investigated in this study: ¢ =, 0.9, 0.63, 0.0, -0.63, and -0.9. The case of ¢
= 0.9, 0, and -0.9 denotes, respectively, strongly correlated, independent, and strongly but negatively
correlated longitudinal road profiles. It should be noted that (1) a strong correlation (¢ approaches 1.0):
excites the' pitch mode of trucks; and (2), a strong but negative correlation (¢ approaches -1.0) excites
the roll mode of trucks. Figure 7-1 shows one set of the simulated left- and right-lines of roughness.
Figure 7-2 gives the comparison between the simulated auto- and cross-correlation functions and the
targets. Honda et al.'s PSD function is used in this: analysis. The frequency range is from 0.1 to 6.0
cycle/m. The simulated functions are computed based on a total road length of 900m with an interval of

d=0.125m. From Fig. 7-2, it can be seen that the simulated results are of good accuracy.

In the simulation of the road roughness profiles at various correlationship, the following two
prerequisites are satisfied: (1) the white noise :input is the same for all the five correlation
coefficients; and (2) the truck is' assumed to run the same distance, L,, of five truck lengths on the
road before entering the bridges. These two prerequisites are introduced to: avoid the randomness
caused by initial phases. To illustrate the latter, Fig. 7-3 shows the variation of impact: factor of the
moment at midspan with the distance L,. It can be seen that (1) the variation is apparent, and (2) the

light trucks (types 8 and 5) cause more fluctuation than the heavy ones (types 9 and 10
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and HS20-44). Under these two prerequisites, it can be implied that the only difference in the simulation

using Eq. (3) exists in the prescribed (p+1)x(p+1) correlation function matrix.

The comparison of the computed impact factors of moment at midspan under the five correlation
coefficients is shown in Figs. 7-4 and 7-5. The traveling speed ranges from 24 to 121km/h (15 to 7SMPH).
Two loading cases (HS20-44 truck) in Fig. 5-1(b) are used in: the analysis. In load case II, it is assumed
that (1) the truck travels along the center of each lane; and (2) the; road surface roughness of both lanes is
the same. From Figs. 7-4 and 7-5, it can be seen that (1) the impact factors generally increase with the
coefficient ¢; and (2) for span length of 42.67m (140ft) the impact factors are insensitive to ¢ in the high-
speed range of 72 to 121km/h (45 to 7SMPH). The former implies that in the impact study of moment at
midspan, the pitch mode of vehicles is more important than the roll mode. To find out the reason for the
latter; the impact factors under smooth surface (no roughness) are also presented in Figs. 7-4 and 7-5. It is

observed that in this case the impact factors are not very sensitive to road surface roughness.

Based on Figs. 7-4 and 7-5, the maximum impact factor for each span length is listed in Tables 7-1 and 7-2
and Fig. 7-6. From Tables 7-1 and 7-2 and Fig. 7-6, it is seen that the maximum. impact factor generally
increases with coefficient of correlation c. For load case II, all the difference between ¢ = 0.9 and-0.9 is
greater than 10% and the highest can reach 19%. The shorter the span length, the more difference in the

maximum impact. factor.
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To check the variation at the midspan section, Figs. 7-7 and 7-8 give the impact -factors for girders #1,
#2, and #3 for load' case I and for all the five girders for load case III For load case 1, girders #4 and #5
are not included because the maximum static moments of these two girders are relatively small.. The
truck speed is taken as 88km/h (55MPH), which is close to the speed limit of most highways. -From
Figs. 7-7 and 7-8, it can be seen that in most cases the dynamic impact factors increase with the
coefficient of correlation c. Some exceptions occur because the roll mode of vehicles produces some

effects on exterior girders.

The above-described comparison is based on a single simulation. To further investigate the difference,
twenty simulations are performed for ¢ = 0.0 (independent) and ¢ = 0.9 ,(close to completely the
same) and the span length of 18.29m (60ft). Load case I is used for the analysis. This case is selected
:because an apparent difference is observed in Fig. 7-7(b). The average is taken as shown in Fig. 7-9.
A consistent difference still distinctly exists. Therefore, it is concluded that the coefficient of
correlation between road surface roughness plays an important role in the dynamic analysis of the

vehicle-bridge system.
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8. SUMMARIES AND CONCLUSIONS

8:1 SUMMARIES

In this study, truck traffic data are requested from the FDOT transportation statistics office. These
data have been collected on major highways throughout the state using the advanced WIIM
equipment. These data are synthesized based on truck types and loading condition (empty or
loaded). According to the classification criteria, a large number of different trucks are classified
into limited categories. In each category, the mean value is used for the representative truck.
Utilizing the processed truck configurations and axle weights, three-dimensional nonlinear
mathematical models for the typical trucks with significant counts are derived. The selected trucks
include types 5, 8, 9, and 10. Bridge structures are represented as the grillage model. The bridge
span ranges from 10.67m (35ft) to 42.67m (140ft). Road surface roughness is generated as
transversely correlated random processes. Based on these analytical models, the following aspects

have been studied:

«  Static effects of heavy trucks on bridge structures;

«  Dynamic impact factors due to typical trucks;

«  Fatigue damage accumulation due to normal traffic;
«  Live load lateral distribution of 1-girder bridges; and

«  Effects of correlation of road surface roughness on the dynamic impact factor:
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8.2. CONCLUSIONS

1. For simply supported steel bridges, static analysis indicates that truck traffic-induced flexural
stress at midspan and shear at entrance end vary with bridge span length. The, gross weight of
the heaviest trucks can be twice' that of the AASHTG standard design truck.HS20-44. Several
heaviest truck types generate more loading on bridge structures than'HS20-44. Based on
single truck loading, the observed overloading can reach as, high as 42% Truck loading does
not necessarily increase with GVW, therefore, it is closely related to axle configuration. All
the axle weights of these heaviest trucks: are found to be less than: the heavy one of HS20-44.
However, if the tandem axles spaced at about 1.5m are considered, the axle weight, will
significantly exceed that of HS20-44 and the limiting value by AASHTO Guide (1991). The
overweight may severely deteriorate the bridge deck and secondary members. This needs

further investigation.

2. For simply supported steel bridges, the average impact factors induced by heavy truck types
(9 and 10 and HS20-44) are lower than the: specified values of AASHTO Specifications
1996). Also; the total average of the computed impact factors of moment for loaded types 9
and 10 is 10%, which is in accordance with the Commentary of AASHTO Guide
Specifications (1990): Dynamic impact factors under light truck loading (types 5 and 8) are
higher than the specified values. These light trucks: have very low GVWs compared to HS20-

44.
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3. For simply supported prestressed concrete bridges, the mean values of impact factors of
moment at midspan induced. by heavy trucks (types 9 and 10 and HS20-44) are generally well .
below the specified values by AASHTO Specifications. Occasional exceptions occur at the
span length of 9.14m (30ft) with type 9 loading (GVW of 294kN or 66kips). For light trucks
(types 5 and 8), the mean values of impact factors may significantly exceed the specified

values.

4. Through the fatigue damage accumulation. analysis at two 'stations with heavy truck traffic, it
is found that the heavy traffic will not cause severe fatigue problems on steel girders of .

categories A, B, and C.

5. Through the damage accumulation analysis for six bridge ‘span lengths, the fatigue design
truck of AASHTO Guide (1990) induces damage close to that-caused by the simulation of the
actual truck-traffic flow based on the WIM measurements. The comparison of fatigue damage
accumulation demonstrates that the loaded truck types 9, 8-1(2S2), 7, and 8(3S1), either 4 or

5-axle, contribute the most to the fatigue damage.

6. Truck type 9, the most important truck accounting for :fatigue damage, induces a number of
cycles higher than the specified value by AASHTO Specifications (1996) for short span

lengths less than 10m.
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7. When the coefticient. of correlation ¢ between longitudinal road surface roughness is assumed to be a
constant, the impact factors of moment at midspan. generally increase with c. In most cases, the use of
¢ =0.9 leads to the highest impact factors and that of ¢ =-0.9 leads to the lowest impact factors. Since
the strong positive and negative correlation excites, respectively, the pitch mode and the roll mode of
trucks, the participation of the pitch mode causes more dynamic impacts on moment at midspan than

the roll mode.

8. The maximum impact factor with respect to vehicle, velocity generally increases with c. For two-truck
loading, the shorter the bridge span length, the larger the difference of the maximum impact factor. For
all bridge spans, the difference between the two cases of ¢ = 0.9 and -0.9 is more'than 10% and the
highest can reach 19% The difference between the two cases of ¢ =0.9 and 0.0 can be as high as
11.8% for short span length of 9:14m (30ft). For one-truck-loading, similar results can also be
observed. Compared with the highest specified values of AASHTO Specifications of 30% (Standard)
and 33% (LRFD) for moment at midspan of girders, these differences presented in this study may be

considered significant.

9. The extensive selection of this correlation appears to be important in the simulation of vehicle-bridge
interaction. Based on Honda et al.'s study, the coefficient of correlation may be approximately taken as
0.63. From Tables 7-1 and 7-2, the difference between ¢ = 0.9 and ¢ = 0.63 is small. For' two-truck
loading, it falls within 3% and for one-truck loading it falls within 3.2%. Therefore, it is concluded

that in practice the use of two completely the same profiles (¢ =1.0) does not cause much deviation.
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10. For other girders at the midspan section, the trends are similar to those of the girder
subjected to the highest loading. Some exceptions occur because the roll mode of vehicles

demonstrates its influence.

11. For the span length of 42.67m and a high traveling speed range of 72 to 121 km/h (45 to
75MPH), it is observed that the impact factors are insensitive to good road roughness. In
this case, the dynamic vibration- mainly depends on the characteristics of the vehicle and

the bridge.

12. The nonzero velocities and displacements in every degree of freedom of a truck before it
enters the bridge cause fluctuation in the impact factors for the light trucks obviously

more than for the heavy ones. Hence, this randomness has less effect on heavy trucks.

13. Despite the variation in axle weights and configurations,, the five typical trucks cause

close lateral distribution factors.

14. Calculated distribution-factors based on both static and dynamic moments/shears’ Are

similar.

15. Calculated lateral distribution factors for interior girders based on loading of two lanes

are lower than: the values specified by AASHTO Specifications.
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Statlstlcs of ztxle Welght at Statlon #19 (><10 k]pS)

b

Table 2 2- 1

i ‘Vehiclé :

VLpad.u.xg Statistics | Number of Axle v |

Type |Condition 1 2 ] 3 4 7 8

-4 | Empty MV. | 917 137.7_\45.,8.:,. - - -

- - | SD 1162 1201 | 140 | - -
. .j-cov |02 02 03| - B

- - Loaded MV |115911799] 66.1 | — B -

- SD | 1191201214 ] - - _

.l covjorjo1}o3 | = RN

5 | Empty | MV 362|716 ] - + - R S

i | SO {129 ]150] - - - -

] Ccov- | 02|02 - - _

Loaded | MV | 766 |1278] - - -

: SD - |17.6 | 237 | - - _ B

COV {02 {02 | - - - _

6 Empty | MV [107.0} 703 | 644 | - e

. ~ SD 1307203197 | - - ] -

SR COV. |03 ] 03 03| - - -
“Loaded | MV [1237]139.1]1297] - - -

'SD 1365|343 | 348 | - N

T Cov | 03 | 03] 03 | - - -

7 | Loaded || MV |163.9] 94.3 |182.4]186.7 - -

- SD .} 177 | 41.7 | 309 | 29.5 - -

COV | 0.1} 04 |02 | 02 - -

- & | Empty MV | 81.1]950|504 ] - - -

| type 8-1 SD | 153163 | 221 | - - -

| - . cov. jo02]02]04] - | - -

| Bmpty | MV [79.1] 943|528 528 - - -

type82 | SD | 160|164 | 114.] 123} - -

1 - [cov |o02.]02]02]02 - -

| Empty | MV 1856|712 67317101 - -

{type83 | SD |[114] 101} 89 | 204 | - -

| Cov. | 01 {01 .01 03] - -

| Loaded | MV [ 841 (1256|982 | - - -

\type8-1| SD 1153 ]271]270| - - -

| Sl covii-02 0203 - | = -

Loaded | MV ] 91.1 |141.0].95.9 | 976 | - -

’cypes 2.0 SD |} 1402431271 |31.1.} - -

- COV [ 0210210303 B -

A Loaded MV [ 101.1]94.8 | 94.2 [126.7 - -

type83 | SD [1631]191 195|380 - E -

L cov | 02 (02| 02103 B -
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Continued : : o o
9 Empty | MV 947 810 | 789 | 640 | 677 | - - B
| sD | 1761144142 ] 157160 - - -
[ covJozloz2o0z2]03]o02 - B -
| Loaded | MV [103.9]132.1[13041129.9]136.0] - - -
- - SD | 1632651263 |310] 321 - - _
- Cov |- 02-102 {02102 7}02] - 5 B
10 | Empty | MV |97.01102.5]1004| 75.7 | 73.1 | 714 | - -—
L .} SD | 163|195 198 | 202 | 169 | 20.1 - B
2 T CovV | 02| 02— 02 | 03 | 02 ] 03 - N
— | Loaded T MV |115.7]162.4]160.4[134.5]13%7[1257] - -
i | SD |194]281]281}294285]350] - -
: COV |02 | 02 |02 | 021}02]03 - .
11 Empty | MV [858 |1114]923|844 (794 - - ﬂ
Al BSOS - SD |129 177|160} 159 | 13.8 | - - -
-l cov |02]02}02]02]02] - - -
Loaded | MV | 935 [142.8|1359]118.1]118.6| - - ~
| SD 1191193224 |188 |189 | - R X
ke cov | 01} 01 ]02]02] 02 B --
12 | Empty | MV 893 [8061770]958 [885]88] - s
| SD . |136|127| 1211210 158|191 - -
- | cov | 02021020202 02 - -
"Loaded | MV [99.8 |106.7|103.4]141.6|127.2]122.1] - -
SD |15.6 150 | 174 | 24.5 | 232 | 207 R -
ot beov 102010202 02]02 - -
13 | Empty | "MV | 87.0 [1345]136.5] 540 | 640 [ 59.0 [620 ] -
b -"Taxle- SD | 113]7711813] 85 |28371198) 198 ] -
{ cov [ 01]106]061]02)|041]031)03] -
_Empty' - MV |103.0} 99.0 | 98.0 | 87.0 | 40.0 | 460 | 48.0 | 480 |
‘{8axle | SD |00 |00 ] 00|00 00] 00| 00]O00
| Loaded |~ MV .~ 878 117.8] 1340_' -'1818 1798 1708 7721 -
- 7-axle | SD | 9.9 ]110.0{39.0| 393379340 | 346 -
o ftcov fortorfo2io02]02/|021|o02f] -




‘Table

2-2.

- Statistics of Axl¢ Spacing at Station #19 (feet and tenths)

38 .

I Vehicle | Loading Stétis ties | ; __ Number of Axie - s
Type {Condition| . 12123 34 | 45 | 56| 67 | 7-8 | 89
4 | Empty | MV |240.59{41.53| - | - }. - - - B

' : SD- . 206 1.01. = = | - - - -
- -1 cov: {0.01.}002 | - B - - _ B
Loaded | MV [24557|12.64| - - - - ;i _
RIS 1 sSD - 41701096 | - | - - ~ - B
| o cov o005 o) - | - -] - =
5 | Empty | MV |168.00] = | - - N - J =
SD |2200] - | - B - - ) .
I cov. | 013} - - - - < _ _

" Loaded | MV  [180.49] - - - - - :
: SD |18.98] - - - - g - -
. pcov joir | - |- - - B . B
6 Empty | MV |173.14]43.81] - - - - - -
‘ - SD . |1446| 249 | - - - - R g
Cov | 008 | 006 | - B R - B
Loaded | MV 1190.15/44.38 | - S - B -
|- SD 2097|225} - - - - B -
. J . cov. }ol11]005) - - - - - -
7 | Loaded | MV [115.70[43.20]45.20] - B - S
. | SpD 3232041079 | - - - _ -
COV. .| 003|005 |0027] - - - - -
'8 . | Empty | MV [150.42{236.84| - - - - - -
= | type8-1 [ SD [40.02]|6432] - - E : » -
4 cov 027027 - B - - R
~ Empty | MV |134.79{294.37|42.56| - - - - -
type82 | SD . |13.99]|53.06{1038| - < - - -
-7 [cov [o10]018 024 = - - E -
Empty | MV |148.61|43.:61[250.00{. - '- - - -
type 8-3 | SD  [33.74] 1.12 |67.60| - - - - -
1 | cov ]023]003]027} - - ; ; ;
~Loaded MV - |131.79{265.08] - - - - - -
‘type8-1| SD |17.86|61.10] - - - - - -
o | cov joi14l023] - | - - - - -
- [ Loaded | MV [133.86{312.75/41.85| - - - -
{type8-2 | SD |1444{4755|582 | - - - - -
| cov—{o11]0615}014| - - - - -
[ Loaded | MV  [149.59)44.00 |299.27| - - = - -
‘type 83| SD }30.73| 1.72 |81.87} - - - -
o COV.|0211004]027]| - < - -

“To be continued



Continued

9

~ [153.93

320.03

#e2] -

- Empty |

SD

129.44

1.0L

31.26

13.27

0.15

0.02

. 0:10..

0.30 |-

R RO cov
~Loaded | W

-1157.79

43.93

325.59

46.71 |.

- SD

28.55.

1.10

28.74

16.33 |

“Cov.

1.0.18

0.03

009

035

0

163.20

4415

310.59

43.76

143.80

Empty |

SD

24.76

0.70

62.95

291

2.79

" cov

1 0.15

- 0.02

020

.0.07

- 0.06

T Loa_d_ed

170.09}

4453

319.34

44,84

4438 |

1T SD

2993

141

5T.61

- 5.07

279

CoV

0.18

0.03

- 0.16.

- 0.11

B T

. |132.42

216.86

97.30

225.04

0.06 |

SD

114.58

- 6.82

4.13

4.76

~COV.

0.11

- 0.03

0.04

134.02

21541

196.93

224.33|

| 'Lpadeq'_ :

SD-

4.72

2.70

444

COV_

013

0.02..

10.03

0.02 |

12

|133.46

44.11

203.89

97.79

235.82]

SD

127.36

0.42

5.84

4.10

3.70

--COV

02T

-0.01

-0.03

004

0.02 |

146.45

43.84

202.31

'97.50

225.94| .

Loaded .

SD

- 131.97

0.75.

6.10-

3.71.

350 |

oV

0.22

- 0.02

- 0.03

- 0.04

0.02

g :..13.

221.50

144.00{339.00

64.50

167.00

85.50

- T-axle |

SD

1 9.19

1.41

96.17

30.41

168.29

62.93 |

cov_

-0:.04

10.03

-0.28

0.47

- 1.01°

0.74

~161.00

42.00

152.00] 42.00

344.00

43.00

43.00 |

SD -

0.0

-0.00

0.00

0.00

0.00

0.00

0.00:

| 8axe [ SD
s | COoV

- 0.00:

0.00

~0.00¢

- 0.00:

“Toaded | _

1165.60

42.60

45.00

370.20

43.80

1 81.60 |

0.00

- SD

~121.79

195

2.00

28.64

164

- _.7im-e_

5477

[ cov

-} 0.13 -

- 0.05.

- 0.04

0.08

0.04

0.67




Statistics of Axle wénght at Station #26 (x10° kips).

Table 2-3.

Vehicie

Load.u-lg St.a_tistics " . - . Numher Of Axle -

" Type |Condition . 1 2. 3 1 4 5 | 7 8
4 Empty | MV | 97411479373 | - | - | - -
. SD- [ 94 [ 172129 |- | - _| - E

- cov o1 |o1rto3 | - - - -

Loaded | MV |1167]17501 700 | - | - T - -

.| SD [1631234[297| - | - -

e 4.CoV {0101 | 0aT—- | - s -

5 Empty 1 MV |[545|737 ] - | = | - | =

- SD | 167 | 165 | - - - - N

Ccov |03 |02 ] - - 3 - -

‘Loaded | MV | 779 ]140.1] - - - - -

AR SD 1204 |345] - - - _ -

CoOvV | 03 | 02 | - - - B

6 | Empty MV |109.1} 765 | 643 | - - - -

: a SD 2731253 ]201] - -] R -
COV | 03 } 03] 03 - - - -1

- Loaded MV 1343 |166.6| 1429 = - - -

: SD |350]| 446|494 | - -k - -

cov | 03|03 |03 | - | - - :

7 | Loaded | MV [1453]111.8[2062]1822] - - -

L 'SD | 260 | 276411423 - e T

COV [ 02 [02}02]02]| - | - -

8 Empty | MV [|872[88]495] - | - - -

| type81 | SD |132]152|155] - - - -

- lecov 020203 - | - | - -

Fmpty | MV | 821 (866|442 [414 ] - E -

type82 | SD | 117176 {114] 98 | - ; ;

. fcov lorloz2]o03]o02] -} - -

- Empty MV |89 ]680]535][439] - - -

type83 | SD | 138 | 155|118 | 174 ] - - -

| cov |02 ]02]02 o047 - - -

| Loaded | MV | 829 |[1488[1084| - | - - -

‘type 8-1 SD 135 | 40.5.| 60.7 | - - -

- |cov [[02]03]o6] - ] - . ,

Loaded | MV | 84.1 |168.9|148.2]148.8] - SRR e

type82 | SD | 119|408 | 588 | 647 | - - -

: | cov | 010204 |04 | - | - -

[Toaded | MV | 994 [141.0]1295]1284] - - 1=

type8-3 | SD | 12.1 [332]367 359 |- - -

- |.cov |01 | 02103 ] 03 - - -

To bé'c"onrinued_



Contznued

Enipty

T969

802 |

53.9

9 MV 71.6 537 | - - _
' SD |'13.0 | 2221200 | 18.6 | 194 | - - -
,. | Ccov | 010370303 |04] - - }
| Loaded | MV~ |100.0]146.7137.61139.7|137.8| - - -
| SD 1231278 1307|343 ]358] - - -
N S Cov | 01402 02102 o3| - 1 - -
10" | Empty | MV | 98.6 |119.5]105.1|852 | 798| 739 | . - -
1 1 Sb |1351196-1261.]347 175225 - -
0 | cov | o1 [ 02 ]02]04]02]03] - -
TEeaded | MV |101.7]1556}147.6|131.1}13601443| - | _<
| SD | 1847139.0390|41.6]2871 470 - -
. | . j cov 02103 (03]031}02]}]03] - -
711 | Bmpty | MV | 850 |1174] 90.1 | 84.8 | 763 | - - -
B SD. | 97 [ 1931262 {190 196 - - -
. cov o1 ]o02]03]027 03] - - -
" Loaded | MV | 892 [1604]146.011198[1147] - - -
| SD. 111 }27.11222 249|237 | - - |-
. 4p.cov fortoz2lo2fto2loz2] - - -
12 | Empty || MV [ 93.1]816[700]927]766] 723 - -
| SD | 129 1 155] 146|261 175185 [ - -
0 _ cev |01 ]o2]o02]03]02]03] - -
Loaded | MV |953 [102.1{ 803 |142.6]1156[1177] - -
- SD | 1831241 ]19.1.}1295]308 |322] - -
o fecov |02 1021024021103 03] - [ -
13 | Empty.| MV [109.5]113.5}152.0|158.5]155.0[142.5]159.5] -
~J-axde | SD | 1771318 ] 00 [205| 28134} 07 | -
- J.cov |02 ]03°700-]0L]00]o01]00] -
| Empty | MV [106.5|147.51188.0|185.5{140.0|146.0]144.0|141.0
“‘8-axle | SD 276219 | 424|559 | 382 | 48.1 | 38.2 | 53.7
o pecovo 103 f o102 03] 037103 03] 04




: - . ‘Table 2.4, . -
Statistics of AxIe Spacing at Station #26 (feet and tenths)

| Vehicle| Loading | g, ¢icrioc| ___ Numberof Axle
Type |Condition 12 | 23 ]34 [ 45 [ 356 ] 67 ] 78 ] 89

1 4 Empty | MV [239.42[4183] - PR DN B - -
S SD | 570 321 - | - ; 2 = g
: |-cov {082 7]008] - - - z - -
Loaded | MV [2474314135] - _[| - . - § -
| I SD |1362]238 ] - R - - = N
—| - Feov [oo06l006] - | - A = -
5. 'Empty MV |165.05). - | = - - — - =
- SD  [2237] - . - E - T
[ cov [o014a] - - - N - - -

‘Loaded | MV [178.89] - - - R - -
i - 'SD  |2L.15] - R - - B T -
~[cov o1z - B R n - 5
6 | Empty | MV  |164.19]44.52] - - - N
| [T sD J2020f372 | .| - 3 - g -
| COV 1012|008 | - R - 2 - -
| Loaded | MV  [17633[4437] - - - | - -
B SD 25404 394 | - “ < - - -
- cov 014009 - | - - - ﬁ -
"7 | Loaded | MV |116.03]43.97[4651] - - - R -
| SD [10.88] 395 | 87| - B - B -
-} | cov |009]009]019] - - R - N
8§ | Empty MV [136.30{244.80| - | - R " . -
| type8-1 | SD [2847[6442| - | - ; B _ -
| - |- cov [021]026}) - | - - - P -
‘Empty | MV [134.57]300.49[44.40| - - R - -
type8-2 [ SD__|15.67|66.65]11.90] - 3 : T
. | cov |o0i12]022 027 | - Ee N
_ Empty | MV [138.71{44.91 [289.16] - ) - —
| type8-3 | SD - |2424] 420 [60.63] - - - - -
o cov | 0.18 [ 009 [ 021 ] - N - ~ ;
Loaded | MV |145.17|251.63] - - - - - ¥
type 8-1 SD |3135|6452| - p - N - 3
| cov Jo22]026] - I - - | -
Loaded | MV [135.46[269.91]42.61] - - R -
type82 | SD [15.19][7146] 6.19 | - : E - -
S cov.|o11]027]015] --F - - SR
— [ Loaded | MV [144.83[45.01[318.93] - - _ - -
type8-3 | SD [30.54|4.04 |37.78] - - - - -
| | cov [o021]009]012] - - - Z -




Continued R o e )

9 Empty | MV [155.53]44.96 [319.66|4541] - - -
' | SD [32.14] 342 }3942]13.85] - - -
¥ | cov ]o021]0081012] 031 - - -

Loaded | MV - |147.60|45.02 [320.28]46.54| - - -
| SD |3042] 370 [3625]1540| - - -

o . b covojoz21|o008o1r]o33] - | - -

10 | Empty 1 MV [154.43{44.81 (314244305 4152 = -
S SD -130.55} 3.03 [51.19 2.69 | 323 | - -
] COvV . |020 007|016 006|008 - -

Loaded |. MV—|162.61| 46.00 [266.56] 4433 [4439| -_ | -
R SD - |30.5013.76:191.59+484 | 3.68°] - .

_ COV |0.19]008|034] 011008 - -

11 Empty | MV [127.74]214.89]96.42 [220.26] - - -

.| Spb |1107]866 533813 - - -

o . COV {0.09|0.04 006|004 ]| - - -

1" Loaded |- MV |130.63|215.46| 96.12.[221.76] . - - -

o ) SD {1159 774 1505 [ 719 | - - -

. -} cov | 009 |004] 0051003 - - -

12 | Empty { MV ]147.06}45351201:91] 99.91 [222.91] - -

‘ 5 SD 3344|336 | 9.66 | 605|982 | - -
. : - COV | 023|007 ] 005006004 |- - -
| Loaded | MV  [135.60{ 47.50 [202.60]102.10[224.90| - -
. | SD 3081|412 |11.02]1383]11.84] - -
. . | COV |0231009]005014]005]| - =
13 | Empty. | MV |176.00|42.50]42.50 |335.50/42.50|45.00] -
| T-axle SD 297010711071 | 9.19 | 0.71-| 424 | -
oo | COV 1017100210021 0031002]009] -
- Empty | MV  1161.00}44.50 | 47.00 {381.00| 50.00 | 49.00 {131.00
|+ 8axle | “SD 1990|212 | 566|849 ] 990|283 ]39.60
-0 | covloo6]005]012]002] 0201 006] 030
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»

FHWA CLASSIFICATION SCHEME "F”

CLASS T ' : NQ. OF
GROuP : . DESCRIPTION AXLES
1 | aoh MOTQRCYCLES 2z
: ﬁ - © ALLCARS P T - ——
2 | el - : - CARS Wi 1-AXLETRAILER - 3
_ - B - CARS WI 2-AXLE TRAILER 4
. - ) PICK-UPS L VANS . -
3 | ngep 122 AXLE TRAILERS 23, &4
~ BusEs = 2&31.
ZAXLE, SINGLE UNIT 2
3AXLE, SINGLE UNIT - 3
+AXLE, SINGLE UNIT 4
2AXLE. TRACTOR, 3
1-AXLE TRAILER (251) .
2-AXLE, TRACTOR. - 4
| 2AXLE TRARER (252)
I-AXLE. TRACTOR, 4
1-AXLE TRAILER (357)
" 3AXLE, TRACTOR. 5
: 2-AXLE TRAILER (352) -
= . _ X
Wi 2-AXLE TRAILER :
TRACTOR
TRACTO Wi SINGLE sa7
msmm-mu.sn ‘ 5
. &an.swt.nm 5 -
13 [ ANY TORMORE AxLE 7 or mara.
14 | ngrusen
15 | UNKNQWN VEHICLE TYPE

Fig. 2-10. FEWA. Classification Scheme “F”’

(Florida AADT Reporr 1998) -
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