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EFFECT OF CONFINEMENT IN TRANSFER REGION
ON THE INTERACTION BETWEEN BOND AND SHEAR FORCES IN
PRESTRESSED CONCRETE GIRDERS

SUMMARY

The purpose of this research is to study the effects of the geometric ratio of shear
span to depth and the moment to shear ratio on the interaction between bond and shear
forces in prestressed concrete girders. Another aspect of this research is to identify the
parameters that will affect the transfer lengths of the prestressing strands and to evaluate
the current code recommendations.

The project consisted of testing two identical sets of four simply supported beams
each with a length of 35 feet. The testing procedure began by testing the first beam in a set
at its development length of 77 inches at one end and then at a distance of two times its
effective depth at the other end. The order of testing was reversed and the span was
reduced to eliminate the destroyed section of beam for the second test.

The beams that were tested at 2D tended to fail in a brittle manner. The failure of
these beams was governed by a strut and tie action due to the presence of disturbed
regions. The beams that were tested at LD tended to fail in a more ductile manner than the
beams tested at 2D. These beams had a shear span to depth ratios greater than 2.5. The
modified compression field theory provided a rational and comprehensive method of

analysis for prestressed concrete members with shear span to depth ratios greater than 2.5.



The presence of the shear cracks in these beams appeared to deteriorate the bond
between the tendons and the surrounding concrete. As the shear cracks formed there were
sudden increases in tendon slip in every case. The shear and bond forces did appear to be
related but any premature shear failures due to excessive loss of bond was not

experienced.

The imposition of the upper bound in the simplified expression as recommended by
the ACI code predicting the shear strength of a prestressed concrete beam appears to be

overly conservative.
Based on these test results, the ACI equation for transfer length appears to be

unconservative. The suggestion of using fi;/3 ;instead of f,./3 appears to provide a closer

comparison with the test results.

xi



CHAPTER 1
INTRODUCTION

1.1 General Information

Since its development in the late 1920s, prestressed concrete has grown to be a
dominant component of the construction industry in North America. Prestressed concrete
has proved to be technically advantageous, economically competitive, and aesthetically’
superior for modern structures and particularly in bridge design. Prestressed concrete
bridge girders constitute the dominant structural component in the highway system for
the State of Florida. Through improved serviceability and crack and deflection control at
service-loads, prestressing allows for the efficient utilization of high-strength materials.
Thus, smaller and more economical members may be designed, and the range of use for

structural concrete is greatly expanded.

1.2 Problem Statement

Previous studies have raised serious questions about the adequacy of current
design requirements for bond and shear in prestressed flexural members. The effect of
prestressing on shear requirements and the interaction between bond and shear seem to be
considerably underestimated. The underestimation of the effect of prestressing on shear
strength leads to a conservative design, but the effect of the shear-bond interaction could

lead to unsafe circumstances.



Present design recommendations for prestressed concrete beams follows an
essentially empirical procedure where each internal force component of flexure, shear,
bond, axial force and torsion is accounted for independently from each other. While present
design procedures are based on this assumption, it is generally accepted that flexure and
shear as well as shear and bond forces interact to create a complex state of internal stresses.
For beams that have relatively low shear span to depth ratio, where shear stresses become
dominant, the initiation of shear cracks could lead to the deterioration of bond stresses and
result in insufficient development length. This becomes particularly important in
prestressed concrete members if a reduction in bond strength could lead to a reduction in

shear capacity which could ultimately lead to a sudden and catastrophic collapse.

1.3 Scope and Objectives

1.3.1 Scone

This research will examine current design recommendations for bond and shear in
prestressed concrete flexural members. These will be evaluated in light of available
information in the published literature. The analytical phase of this project consists of
analyzing each beam according to current ACI code (Ref. 1) requirements and comparing
these results to various analytical models and to the experimental results. The test phase
consists of conducting shear tests on two identical sets of four simply supported beams 35
feet in length. The beams to be tested have a 12-inch width and heights of 30, 36, 42, and
48 inches. All of the beams are designed for a full AASHTO HS 15 truck loading and each

beam will have approximately the same ultimate flexural strength. The beams were also
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designed to have the same tensile stress at midspan under full service load conditions of 50 psi.
The 48-inch beam was designed for minimum shear reinforcement for the entire span length as
suggested by the ACI code (Ref. 1). The same size and spacing of stirrups was provided for

every beam in order to keep the amount of shear reinforcement constant.

1.3.2 Objectives

The primary objectives for this project are as follows:

(1) Investigate to what extent the shear strength of a section located within the transfer length
region of strands differs from that of a section loaded outside of the anchorage zone.

(2) Identify the parameters that will affect the transfer length of prestressing strands and

evaluate current recommendations as well as propose new recommendations.

1.4 Summary

The purpose of this project is to study the effects of the geometric ratio of shear span to
depth and the moment to shear ratio on the interaction between bond and shear forces in
prestressed concrete beams. A literature survey was conducted in order to determine the
existing information and research in the area of bond and shear in prestressed concrete
members. An overview of the background information on these findings can be found in

Chapter 2.

This project consisted of the testing of two identical sets of four simply supported beams
each with a clear span of 35 feet. The beams all had a width of 12 inches and height of 30, 36,

42 and 48 inches. The testing procedure began by loading the first beam
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in a set at its development length of 77 inches at one end and then at a distance of two times
its effective depth at the other end. The order of testing was reversed and the span was
reduced to eliminate the destroyed section of beam for the second test.

The test data was presented in graphical form of load versus displacement and load
versus strain. The complete summary of all of the test results can be found in Chapter 4. The
test data was compared to several analytical models which are presented in Chapter 5 The
two primary ones being the strut and tie model and the modified compression field theory.

The discussion and comparison of the results to the predicted values is presented in
Chapter 5. The summary, conclusions and suggested design recommendations and

recommendations for further research are presented in Chapter 6.



CHAPTER 2
BACKGROUND

2.1 Transfer Length

2.1.1 General Information

In pretensioned prestressed concrete members, the total force of prestressing must be
transferred to the concrete entirely by the bonding of the prestressing strand to the concrete
surrounding it. This differs from post-tensioned construction, where the full compressive force
is transferred to the concrete section by means of special end anchorages and end plates.

When the external jacking force is released in pretensioned beams, the prestressing force
is effectively transmitted to the concrete near the ends of the member over a distance that is
known as the transfer length. In the transfer zone, reduction in the tensile strain of the steel does
not equal the compressive strain in the concrete at the same point. There is relative movement
of the steel and concrete, and accordingly adhesion does not have a significant effect on
prestress transfer. The mechanism that provides this transfer is primarily due to friction
combined with the Poisson effect or lateral swelling of the steel in the transfer zone. When the
strand is stressed in tension there is a slight reduction in diameter. For a pretensioned tendon,
the diameter reduction has already taken place when the concrete is poured. After the initial
prestress force is released, the tension at the ends of the member is greatly reduced. This

reduction in longitudinal stress is accompanied by a slight



increase in the diameter of the steel which causes radial compression across the concrete steel
interface. The "swelling" of the tendon tends to enhance the frictional resistance to pullout.
This improvement in bond caused by lateral expansion of the released tendon is sometimes
referred to as the Hoyer effect (Ref. 2).

When a member is subjected to bending due to externally applied loads, another type of
bond mechanism termed flexural bond is mobilized. As these loads are increased, the stress in
the strand also increases. The additional length over which the increase in strand force is
transmitted to the concrete is known as the flexural bond length. As the ultimate capacity of the
member is approached, the total of the transfer length and the flexural bond length is known as
the development length.

The determination of the development length in pretensioned beams is of particular
importance because the transverse stresses due to shear are usually a maximum within this
region. These stresses can be considerable and a knowledge of the transmission length is
necessary to ensure that sufficient build-up of horizontal stress has taken place to develop the
strands. The total development length must be sufficient to prevent the overlapping of the
transfer bond region and the flexural bond region. If inadequate development is provided,
ultimate strength is governed by bond rather than flexure. Bond slippage of the strands
generally occurs in three stages:

(1) Progressive bond slip begins at flexural cracks.
2) General bond slip is initiated along the entire development length.
3) Mechanical interlock between the helical strand surface and the concrete is destroyed.

Even though excessive slip has occurred, the mechanical interlock is generally

sufficient enough to maintain considerable strand stress. In many cases the strand stress



after general bond slip is reduced to the stress developed from initial prestressing force only and
not to zero as might be expected. Thus, the final effect of inadequate development length may be a
premature flexural failure at a reduced strand stress, corresponding to a final bending moment

less than the computed design strength in flexure.

2.1.2 Bond Parameters

It is generally accepted that the most significant parameters affecting transfer length of
prestressing steel are:

- type of steel (e.g., wire, strand), steel size (e.g., diameter)

- steel tensile stress level

- condition of the steel (e.g., clean, oiled, rusted)

- type of loading (e.g., static, repeated, impact)

- technology used to release prestressing (e.g., gradual or sudden by flame cutting or
sawing)

- shape of shear reinforcement around prestressing steel (e.g., helix or stirrups)

- time-dependent effects

- consolidation and consistency of concrete around steel

- amount of concrete cover

It is also generally agreed that transfer length is greater for larger steel sizes, higher
prestress levels and lower concrete strengths. The effect of sudden release may be minimized by
gradual heating of the strand in a sufficient length before cutting. Strands develop some
mechanical bond with concrete in addition to friction; thus the transfer lengths of strands are

shorter than those of smooth wires of comparable diameter.



2.1.3 Current ACI/JAASHTO Provisions

Current ACI code (Ref. 1) and AASHTO (Ref. 3) requirements for bond and
anchorage are essentially the same. Therefore, for discussion purposes, the transfer and
development length provisions of both codes can be considered identical.

The current ACI provisions for development length of prestressing strand are
contained in Section 12.9 of ACI 318-89 (Ref. 1). The provisions are as follows:

Section 12.9.1: Three- or seven-wire pretensioning strand; shall be bonded beyond

the critical section for development length, in inches, not less than:

la= (fps - 2/3f5c) dy Eq. 2-1
where, f,; = stress in prestressing reinforcement at nominal strength, ksi,
fee = effective stress in prestressed reinforcement after all losses, ksi.
dy = nominal strand diameter, in.

Section 12.9.2: Investigation maybe limited to cross-sections nearest to each end of
the member that are required to develop full design strength under specified factored
loads. The above equation can be rewritten as follows:

la= (fse/3) dp + (fps — fie) db Eq. 2-2

The variation of the strand stress along the development length of the strand is
shown in Figure 2-1. The first term in Equation 2-2 represents the "transfer length" and the
second term represents the “flexural bond length.”

The effective steel stress, fs., depends on the initial prestress, f;, and the amount of

prestress loss. Zia and Mostafa (Ref. 4) have pointed out that the denominator "3" in the
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expression for transfer length represents a conservative average concrete strength at the
time of transfer in ksi. Similarly, the expression for flexural bond length implies a value
of 1 ksi in- the denominator. ACI Code assumes a bond strength of 750 psi within the
transfer length and then 256 psi for the interior portion of the strand where the bond,
stress is calculated on the basis of the nominal circumference of the strand (i.e., m, dy).

In a comprehensive study Zia and Mostafa proposed, the following equation for

development length:

lt = (15 fsi db)/ f’ci‘ 4.6 Eq. 2-3
Ip=1.25 (f,s- fie) dp Eq. 2-4
li=L+ 1, Eq. 2-5

where, f;;= stress in prestressing steel at transfer, ksi.

f’c.i =compressive strength of concrete at transfer, ksi.

l; = transfer length of prestressing strand, inches.

1, = flexural bond development length of prestressing strand, inches.

The expression for I, is based on the theoretically derived expression:

lp = (fps - fse) dp/4Uayg Eq. 2-6

where u,y, 1s the average bond stress within l. The ACI code assumes this stress to be
250 psi while Zia and Mostafa use a value of 200 psi. This equation for transfer length
is applicable for concrete strengths ranging from 2-8 ksi and takes into account the

effects of strand size, initial prestress and the concrete stress at transfer.
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It has also been suggested by Shahawy (Ref. 5) that the ACI equation for transfer
length (fs/3) appears to be inadequate. Through a series of tests on: shielded and unshielded
systems; he suggests that the stress in the prestressing strand at transfer, fg;, be used instead

of fi.

2.2 Shear in Prestressed Concrete Members

2.2.1 General Information

Prestressed concrete beams are usually designed for flexure first which leads to the
size of the section and the arrangement of the longitudinal steel to provide the necessary
moment resistance. The beam is subsequently designed to account for the effect of shear
forces. The flexural strength of a prestressed concrete beam can be predicted fairly accu-
rately and a flexural failure is usually preceded by obvious cracking and large deflections. It
1s more difficult to accurately predict the shear strength.

The shear stresses that are produced in a prestressed concrete beam are usually much
below the shear strength of the: concrete. The primary concern is with the principal
diagonal tensile stress in the concrete that is produced by the shear stresses, either acting
alone or in combination with longitudinal normal stress. As a result of it, failure may take

place suddenly and without warning if the member is overloaded.

2.2.2 Beam and Arch Action

The average value of shear stress in concrete beams can be calculated as follows:

V= . Eq. 2-7
b, jd

W
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where jd = 0.875d and by, is the thickness of the web. This equation assumes that the beam is
prismatic and that the lever arm jd is constant. The relationship between shear force and the

force in the tendons can be written as follows:

v="L(174) Eq. 2-8
dx
which can be expanded as
=40, dld) Eq.2-9
dx dx

Normal elastic beam theory assumes that the lever arm jd remains constant, therefore:

d(jd) _, :V:@jd Eq. 2-10

dx dx
where d(T)/dx is the shear flow across any horizontal plane between the reinforcement and the
compression zone. This shear flow must be present in order for a specimen to exhibit "beam"

action. If'the shear flow is equal to zero then

V= TM Eq.2-11
dx

This may occur if the shear flow can not be transmitted due to debonding of the steel or if an
inclined crack is extending from the load to the reactions. When this is the case, the shear is
transferred by "arch" action rather than beam action. The shear resisting mechanisms are very
different for regions displaying beam action, referred to as B-regions, and those displaying arch
action, referred to as D-regions. The D refers to a discontinuity or disturbance which results in

load transfer by in-plane forces such as arch action.



29

D-regions extend about one member depth in each direction from concentrated loads,
reactions, and abrupt changes in section. The regions between these D-regions may be
treated as B-regions. The general behavioral trend is that, arch action tends to increase the.
strength of the section while the corresponding B-regions tend to be weaker.

The behavior of beams that exhibit shear failures is extremely variable depending on
the relative contributions of beam action and arch action. Therefore, beams can be divided
into four general types based on their shear spans: very short, short, slender, and very
slender. These divisions have a shear span to depth ratio, a/d, of < 1, 10 to 2.5, 2.5 to 6.5, >
6.5 respectively. The term deep beam is used to describe beams with very short and short
shear spans. Deep beams with a/d less than 1 tend to develop inclined cracks that join the
load and the support which, in effect, destroy the horizontal shear flow from the longitudinal
steel to the compression zone. Thus, the behavior changes from beam to arch action. In this
type of beam the most common mode of failure is an anchorage failure at the ends of the
reinforcement.

When beams with short shear spans develop inclined cracks they tend to redistribute
the internal forces allowing for additional load to be carried in part by arch action.

The final failure of such beams will be caused by a bond failure, a splitting failure, a
dowel failure along the tension reinforcement, or by crushing of the compression zone over
the crack. Beams that are slender and very slender usually fait in flexure before inclined

cracking occurs.
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223 Truss Analogy

Early design procedures for reinforced concrete design in shear were based on the
"truss analogy" developed at the turn of the century by Ritter and Morsch (Ref. 6). The
truss analogy, which assumes concrete does not resist tension, models a reinforced concrete
beam as a truss with parallel longitudinal chords and a web composed of diagonal concrete
struts and transverse steel ties as shown in Figure 2-2. When a load is applied to this truss,
the diagonal struts and the top chord go into compression while tension is developed in the
transverse ties and the longitudinal chords. The force components in each can be
determined by static. It was later made clear by Mitchell and Collins (Ref. 7) that rather
than having discrete diagonal compressive struts there was a continuous field of diagonal.
compression resisting the shear. The equilibrium conditions of the 45-degree truss model
are shown in Figure 2-3. The magnitude of the principal compressive stress in Figure 2-3
can be calculated by the following expression,

=2 Eq.2-12
b jd

The longitudinal component of the diagonal compressive force, V, must be
counteracted by an equal tensile force, Ny, in the longitudinal reinforcement. From the
free-body diagram in Figures 2-3(b) and 2-3(c), it can be seen that the diagonal
compressive stress, fo, must be balanced by the tensile force in the stirrups, A, fi.

Therefore, the following equation is developed:
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AVfV _L
s jd

Eq. 2-13

where A, = the cross-sectional area of the stirrups

s = the stirrup spacing

f, =the tensile stress in the stirrups
The equilibrium conditions alone are not sufficient to find the stresses in the beam resulting from a
given shear. There are four unknowns (i.e., the principal compressive stress, the tensile force in the
longitudinal reinforcement, the stress in the stirrups, and the inclination, 6, of the principal
compressive stresses), but there are only three equilibrium conditions. Therefore, Morsch
concluded that it was mathematically impossible to determine the slope of the diagonal
compression struts but that 45 degrees was a conservative assumption.

Provided that the beam is designed as an under-reinforced section, the capacity of the beam
will be governed by the yielding of the longitudinal and web reinforcement. Any contribution of
the concrete to the shear capacity of the beam is neglected. This is a very conservative
assumption, especially for beams designed with little or no web reinforcement. The 45-degree truss
model would predict the shear strength of abeam without shear reinforcement to be zero, but in fact
the beam will not fail in shear until diagonal cracks have formed. This excessive conservatism
made it necessary to develop some rational method of: accounting for the shear strength provided

by the concrete.
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2.2.4 Modified Truss Approach

After extensive testing, the conservatism existing in the truss model was
corrected by the development of the modified truss model. This was done with the
addition of an empirical term called the "concrete contribution" factor, V., and
accounting for the fact that 8 is typically less than 45 degrees. This empirical term, V.,
is the sum resistance offered to shear by aggregate interlock, dowel action, and the
untracked portion of the concrete. The Modified Truss Approach incorporates a
combination of the truss model and the supplementary concrete contribution. Figure 2-
4(a) shows an example of a variable angle truss model for a beam under a symmetric
two point loading. From the geometry in Figure 2-4(b) of the crack at ultimate, the

number of stirrups at a constant spacing, s, crossing the crack is:

z z
n=——=—cotf Eq. 2-14
s(tand) s 1

The stirrups are assumed to be at yield hence Vj is calculated as:
V,=A,fn=A4,f,>cot Eq. 2-15
s

where, A, = area of web reinforcement within spacing, s
fy = yield strength of web reinforcement
z = depth of truss model
s = stirrup spacing

0 = inclination at failure of the diagonal compression struts in the truss model
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The proposed concrete contribution factor behaves elastically prior to initial cracking
and then decreases linearly. This reduction of the concrete contribution is a function of the

nominal shear stress across the section:

vy = u Eq 2-16

As the nominal shear stress increases, the concrete contribution approaches zero and
full truss action is considered to model the ultimate behavior of the beam. When this point
is reached the capacity of the truss is that provided by the web reinforcement. Figure 2-5
shows a plot of the three possible stages of concrete contribution: uncracked, transition and
full truss action.

The concrete contribution in the uncracked stage is the diagonal tension cracking
strength in terms of shear stress, v, times K. The v, factor is the nominal shear stress

required to crack a non-prestressed concrete beam. The recommended value for v, is:

v, =21 Eq. 2-17

The constant K, accounts for the increased shear force required to reach the tensile
strength of the concrete.

The beneficial influence of prestressing in reducing diagonal tension in concrete
becomes evident when using Mohes circle to compare a non-prestressed beam, Figure 2-
6(a) and a prestressed beam, Figure 2-6(e). A small element "a" is located at the neutral
axis of the reinforced concrete beam and is subjected to positive shear stress v acting on the
vertical faces, and negative shears of the same magnitude on the horizontal faces Figure 2-

6(b). Making use of Mohr's circle, it is found that the principal tension stress fj
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is equal (in absolute value) to the shear stress and acts at 45 degrees to the horizontal axis
of the member Figure 2-6(g). Thus the value of K is 1.

The corresponding element "b" in the prestressed beam is subjected to identical
shearing stresses Figure 2-6(f) and is also subjected to horizontal compressive stress f
due to the presence of prestressing. Again using Mohr's circle Figure 2-6(g), the principal
tension is reduced to a much lower value and acts at a considerably greater angle with the
horizontal beam axis Figure 2-6(¢). Therefore, an increase in the shear stress is required

to exceed the tensile strength of the concrete and the value of K is calculated as:

0.5
K :{pr‘} Eq. 2-18

1
t

where, f,. = compressive stress due to prestressing
f*= tensile strength of concrete
The maximum value of K is limited to 2. The Value of K is set at 1 when the
flexural stresses exceed the cracking capacity of the beam at ultimate strength. This
limitation is similar to the ACI and AASHTO specification which limits the concrete
contribution to the lesser of V, and V.

The concrete contribution in the transition stage is calculated as follows:
K
V. = 3[(K ) R Eq. 2-19

where, K =constant which accounts for the increased shear force required to reach
the tensile strength of the concrete.
v = shear stress of concrete at diagonal cracking

v, = shear stress of concrete at ultimate failure
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by = width of the web

7 = effective shear depth.

Limits are placed on the orientation of the diagonal compression struts and the
compressive stresses allowed in these members. The limits for the orientation of the truss
diagonals and the compressive stresses in the struts have been proposed' by James G.
MacGregor (Ref. 8) as 25° <0 <65° and 0.5 f', respectively.

The main advantage of the truss model approach is that it allows a clear visualization
of the internal shear carrying mechanisms of beams, thus aiding in the proper detailing of

the reinforcement.

2.2.5 Deep Beams/Strut and Tie Model

Deep beam behavior becomes dominant in beams with shear span to depth ratios less
than 2.5. In general, a deep beam is a beam in which a significant amount of the load is
carried to the supports by a compression thrust joining the load and the reaction. Elastic
analysis of deep beams is only meaningful prior to cracking. Afterwards, it cannot
accurately predict the redistribution of stresses that will occur after cracking of the
concrete. The primary interest in the elastic analysis of a deep beam is that it shows the
distribution of the stresses which cause cracking and hence gives guidance as to the
direction. of cracking and the flow of forces after cracking.

Considerable insight into the flow of forces in these disturbed or D-regions can be
gained by the use of a simple strut and tie model. After significant cracking has occurred,
the principal compressive stress trajectories in the concrete tend to be straight lines and can

be approximated as straight compressive struts in uniaxial compression. The principal
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reinforcement is modeled as a tension tie that joins the compression strut at a nodal zone
which is subject to multidirectional stresses.

Recent studies by Marti (Ref. 9) of elastic stress fields in D-regions has pointed out
the importance of considering the actual dimensions of the compressive struts and the
tension ties in formulating the strut and tie model. This also implies that the truss joint
or nodal zone is a member with finite dimensions. In developing a strut and tie model the
first step is to sketch the flow of forces and to locate the nodal zones The nodal zones must
have sufficient size to ensure that the compressive stresses remain below permissible
limits. These limits are presented in the context of ACI (Ref. 1) load and factors. Concrete
compressive stresses should not exceed 0.85®f; in nodal zones bounded by compressive
struts and bearing areas, 0.75®f; in nodal zones anchoring one tension tie, and 0.600f,
in nodal zones anchoring tension ties in more than one direction. The strength reduction
factor, @, is assumed as that forbearing on concrete (® = 0.70). The nodes are located at
the intersection of the forces which meet at the nodal zones. After the geometry of the
truss has been determined the forces in the struts and ties due to factored loads can be
found with the use of simple static.

Once the forces in the truss have been determined, the required area of tension tie
reinforcement is calculated. The strength reduction factor for axial tension (® = 0.90) is
used. In order to resist tension due to factored loads, the area of reinforcement in the

tension tie must satisfy

daf, +4,1,)zN, Eq. 2-20
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The dimensions of the strut must be large enough to ensure that
¢Acf2max 2 Nu Eq 2-21

where, N, = axial compression in strut due to factored loads

® = strength reduction factor for axial compression,(® = 0.70)

A. = effective cross-sectional area of the strut

f2max = effective compressive strength of concrete

The effective cross-sectional area of the strut is determined using the available
concrete area and the bearing and loading conditions at both ends of the strut. The size of
the bearing plate that the beam rests on and the plate that is used to transfer the load are
both used to determine the size of the strut. The concrete compressive, stress in the strut

must not exceed the crushing strength of the cracked concrete, fomax, where,

L<O

Jamex = 48170 O~

851" Eq. 2-22

The value of the principal tensile strain, [}, is calculated considering the strain
conditions in the concrete and the reinforcement in the area of the strut. If a tension tie
crosses a compressive strut, the straining will reduce the capacity of the concrete, to resist
compressive stresses. It is assumed that the tensile strain in the tie is U, and that the prin-
cipal compressive strain in the strut at failure is 0.002. It can be deduced from the principal
tensile strain required by compatibility is

0, = O¢H(0s+ 0.002) cot” a Eq. 2-23
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where, o = the smallest angle between the tie and the strut

[0, = tensile strain in tension-tie reinforcement

The strut and tie model is valid for beams with a shear span to depth ratio less than
approximately 2.5 as recommended by James G. MacGregor (Ref. 8). In this range the
strength decreases rapidly as the shear span increases. Failure modes of beams in this
range usually involve crushing of the concrete to some extent. Beams with shear span to
depth ratio greater than 2.5 have failure mechanisms governed by conditions away from
the disturbed regions near the supports and the load. The response of these beams can be
more accurately predicted by sectional models such as the modified compression field
theory. The strength of beams in this range is not influenced by details such as the size of
the bearing plates and the strength decreases by only a small amount as the shear span

increases.

2.2.6 ACI/AASHTO Design Provisions for Shear

The shear provisions in the ACI/AASHTO code are based on a member that is at a
hypothetical overload, stage, with calculated dead loads and service loads multiplied by the
usual overload factors. Part of the shear resistance of a beam is attributed to concrete in
tension, the "concrete contribution," and the remainder to the web reinforcement, the "steel
contribution." In the format of the ACI Code (Ref. 1), the design of across section subjected
to shear is based on the following relation:

VosqV, Eq. 2-24

u n
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where, V, = shear force applied at factored loads
V., = nominal shear strength of the section
@ = strength reduction factor, 0.85 for shear
The nominal shear strength V,, is calculated from the following equation:
Va=V:+V; Eq. 2-25
where, V. = nominal shear strength provided by the concrete
V; = nominal shear strength provided by the steel

The shear strength provided by the concrete V is assumed to be equal to the shear
causing significant inclined cracking. Extensive testing has shown that there are two types
of diagonal cracking that occur in prestressed concrete beams: flexure-shear and web-shear
cracking.

Flexure-shear cracks occur after flexural cracks that extend vertically into the beam
from the tension face have already formed. When a critical combination of flexural and
shear stresses have formed at the head of the flexural crack, that crack propagates at an
inclined direction. If inadequate web reinforcement is provided a flexural-shear crack may
lead to a shear-compression failure. This is where the compression area of the concrete
near the top of the beam is reduced by the diagonal cracking and is unable to resist the
forces resulting from the flexure.

Flexure-shear cracks are the most common type of shear cracks, but web-shear
cracks may also form, especially near the supports of heavily prestressed beams with
relatively thin webs. Web-shear cracks initiate in the web without the formation of

previous
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flexural cracks. These cracks form when the principal tension in the concrete becomes equal to
the tensile strength of the material. This type of distress leads to the formation of sudden inclined
cracks which ultimately may lead to a rapid and catastrophic shear failure.

The value of V. is assumed to be the smaller of V,; and V., determined by flexure-shear

cracking and web-shear cracking, respectively. V; is calculated as follows:

v
V,=0.64f".bd+V + Ml M, Eq. 2-26

where, by, = width of the web
d = depth from the compression face to the centroid of the prestressing steel, "d" is
taken as the greater of d or 0.8h
Vi =the factored shear. due to the superimposed, dead load and live load
V, = shear due to the self weight without load due to the superimposed dead
M. = the factored moment due to the superimposed dead load and live load
M, = the moment causing flexural cracking due to superimposed dead load and live
load
The cracking moment, M, is the moment resulting from superimposed dead and live
loads in addition to the moment due to the members self-weight. This value may be calculated

based on the tensile concrete stress at the bottom face equal to the modulus of rupture of

concrete which is conservatively assumed as 6,/ /' .

M, = £—(6\/f_ + o)~ fo) Eq.2-27
2

where, f5,= concrete compressive stress at the bottom face from axial and bending effects

of eccentric prestress force, P,
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f, = flexural stress at bottom face resulting from self weight
The self weight and the external loads are applied separately since the self weight is
uniformly distributed and the external loads may have any distribution. The ACI code

places a lower bound on V;

1.7, f". byd Eq. 2-28

The value for V., is computed from:
Vew=03.5{f". +03f)byd+V, Eq. 2-29

where, f.. = compressive stress at the centroid of the member due to the effective
prestress.
Vp = the vertical component of the effective prestress
When shear reinforcement perpendicular to the axis of the member is used, its

contribution to shear strength is:

yo= Eq. 2-30

The code also specifies a minimum amount of shear reinforcement to be provided in
all prestressed concrete members. The minimum area of reinforcement is to be taken as

the smaller of:

A =50=>x Eq. 2-31




42
and

A
A, :Jﬁi i Eq. 2-32
80 £, d\b,

in which A, is the cross-sectional area of the prestressing steel, fy, is the yield stress of
the stirrup steel, and f,,, is the ultimate tensile strength of the prestressing-steel. The maxi

mum stirrup spacing is not to exceed the lesser of 0.75h or 24".

2.2.7 Compression Field Theory

Current design procedures for reinforced concrete beams in shear are largely based
on the truss analogy developed by Ritter, and Morsch nearly a century ago. Recent years
have seen a renewed interest concerning the behavior of reinforced concrete in shear.
Much of the work has been directed toward formulating a more general model, free of
empirical limitations.

Mitchell and Collins (Ref. 7) extended the truss analogy by realizing that the angle
of inclination of the concrete struts was really only part of the strain compatibility require
merits that must be satisfied together with the equilibrium requirements. This was done
by introducing a compatibility condition for strains in the transverse and longitudinal
reinforcement as well as the diagonal struts. It was assumed that after cracking, the
concrete carries no tension and that the shear is carried by a field of diagonal
compression. If strains in: three directions are known, the strains in any other direction
can be found using geometry. The Mohr's circle of strains in Figure 2-7 is used to

illustrate the transformations
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involved. This resulted in the following expression for the angle on inclination of the
diagonal compression:

tan2 BZM

Eq. 2-33
0 -0, 1

where, [y = longitudinal strain of web, tension positive

[J; = transverse strain, tension positive

[, = principal compressive strain, negative quantity
If the value of 0 is known then the aforesaid equation can be regarded as a compatibility
condition relating the three strains, [, [ and [,
From Mohr's circle, the principal tensile strain in the web is

0, =0Ox+0¢- 0Oy Eq. 2-34
and the shear strain in the web is

Yxy= 2 (Ox - Oz)cot O Eq. 2-35
For beams with low crack inclinations (low 0), the web reinforcement will be highly
strained while for steep crack inclination (high 0), the longitudinal reinforcement will be
highly strained.

When any typical prestressed concrete beam is subjected to shear, it can be shown

that for any given level of shear, V, there are five unknowns: the stress in the longitudinal

bars, f;; the stress in the longitudinal-prestressing tendons, f,,, the stress in the stirrups, f,;

the diagonal compressive stress in the concrete, f;; and the angle of inclination, 0; of these
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diagonal compressive stresses. In order to solve for these five unknowns we must apply
the three equilibrium equations, two compatibility equations, and the relationships for the
materials that link the stresses and strains. The complete load-deformation response of a
member subjected to shear can be determined by using equilibrium, compatibility and
stress strain relationships. This approach has become known as the compression field
theory.

The compressive stress-strain relationship for concrete is usually defined by the
response of a standard concrete cylinder. That is the stress peaks at a stress of £’ when he
corresponding strain is [1’.. The strain conditions in the cracked concrete in the web of a
beam subjected to shear are quite different than those of a concrete cylinder test. The
concrete in a cylinder test is subject to small tensile strains as a result of the Poisson
effect. Whereas, the diagonally cracked concrete in the web of a beam is subjected to
very substantial tensile strains. Additionally, the compressive stress may need to be
transmitted across previously formed cracks. These factors cause the concrete in a
diagonally cracked web to be weaker and softer than the concrete in a cylinder test.

Mitchell and Collins found that the principal compressive stress in concrete, f;, is a
function of the principal compressive Strain, [, and the coexisting principal tensile

strain, [;. They suggested the following stress-strain relationship:

2
ad O
f2 = f2max 2(D_,2] - (D_'ZJ Eq 2-36
where,
S 2 = ! <1.0 Eq. 2-37

/', 08+1700,
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The strength and the load-deformation response of members loaded in shear can be
predicted fairly accurately using the compression. field theory. However, the exclusion of
the tensile stress in the cracked concrete leads to conservative estimates of deformation and
strength.

2.2.8 Modified Compression Field Theory

In an effort to reduce some of the conservatism that is inherent in the compression
field theory, Mitchell and Collins developed the: modified compression field theory. This
is an analytical model which predicts the behavior of reinforced concrete subjected to in-
plane shear, axial and flexural stresses. The main difference is that the modified
compression field theory accounts for the contribution of the tensile stresses that can exist
in the concrete between the cracks. Although application of this method is too complex for
use in everyday design, the procedure provides a rational method whenever a more
thorough analysis is warranted.

The equilibrium equations for the modified compression field theory are best
developed while investigating a beam section as shown in Figure 2.8. When a
symmetrically reinforced member is subjected to pure shear, the shear force at a particular
section must be resisted by the diagonal compressive stresses, f,, together with the
diagonal, tensile stresses, f;. The diagonal tensile stresses in the cracked concrete vary
from zero at the crack locations to a maximum between the cracks. Therefore, it is
acceptable to use the average value of tensile strains when formulating these equilibrium

expressions.
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The principal tensile stress, fj, is derived using Mohr's stress circle as follows:

fi=(tan 6 +cot0) v- 1, Eq. 2-38
where,
V= r Eq. 2-39
b, jd

where, by, = width of the web
d = depth from the compression face to the centroid of the prestressing steel, "d"
is taken as the greater of d or 0.8h
j =-0.875
The diagonal compressive stresses tend to push the flanges of the beam apart while the
tensile stresses tend to pull them together. The unbalanced component must be carried by
tension in the web reinforcement. This equilibrium requirement can be expressed as

follows:

A, f,= (f2 sin® 0 — f; cos” 0) by s Eq. 2-40

where, f,, is the average stress in the stirrups.

Substituting for f, from Equation 2-38 yields:

4
V = by jd cot 0+ 22 d cot 0 Eq. 2-41
S

Equation 2-41 expresses the shear resistance of a member, as the sum of the concrete
contribution and the steel contribution. The concrete contribution is dependent on the
tensile stress of the concrete while the steel contribution is dependent of the tensile stress

of the
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steel. This is similar to the ACI shear equation of V., + V. Vecchio and Collins (Ref. 10)
tested several reinforced concrete panels in pure shear and recommended the following
relationship for the average tensile stress versus average tensile strain:

if, ) < Oe then fi=E. U Eq. 2-42

aa
D] 2 Dcr then f = 172/ cr

L1+5000,

Eq. 2-43

where, a; = factor accounting for bond characteristics of reinforcement

oy = 1.0 for deformed reinforcing bars

a;= 0.7 for plain bars, wires or bonded strands

oy = 0 for unbonded reinforcement

ap = factor accounting for sustained or repeated loading

ap = 1.0 for short-term monotonic loading

a, = 0.7 for sustained and/or repeated loads

Equation 2-43 was developed using average stresses and strains without dealing
with local variations. At a crack the tensile stresses in the concrete are zero so the tensile
stresses in the shear reinforcement become larger. Therefore, the shear capacity of a
member may be limited by the ability of the member to transmit forces across the crack as
shown in Figure 2-9.

Tension is transmitted across a crack by local increases in shear reinforcement
stresses. As the shear force increases the transmission of tension across a crack will require
local increases in shear stresses on the crack surface, v.i. The limiting value of v is

suggested as:
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2.16,/f".
- 2L Eq.2-44

vci
03+ 24w
a+0.63

where, a = Maximum aggregate size

w = Width of the diagonal cracks

' = Compressive strength of concrete
The ability of the crack interface to transmit these shear stresses depends on the crack width, w,
which can be taken as the product of the principal tensile strain, [1;, and the average spacing of
the diagonal cracks. Thus,

W = 1Sme Eq. 2-45

The stresses shown in Figures 2-9(b) and 2-9(c) must be statically equivalent. Hence, the

principal tensile stress, f;, must be limited to

A
fi= v tan 0 + Tv(fVy - 1) Eq. 2-46
s

where v,; is given by Equation 2-44.
The spacing of the inclined cracks depends on the crack control characteristics of the
longitudinal and the transverse reinforcement. This spacing is suggested as

- I Eq 247

SmH
(sin @ cos Hj
+

S S

Where smy 1s the average crack spacing that would result if the member was subjected to

longitudinal tension and s, 1s the average crack spacing that would result if the member
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was subjected to a transverse tensile force. The following equations are used for uniform

tensile straining:

d
bx Eq. 2-48

X

s =2l e +2% | +0.25%,
10

dbv

s = 2(cv + %} +0.25k, Eq. 2-49

In the previous equation p, = Ay/(bws), px = (A« + Apx)/Ac and k; 1s 0.4 for deformed bars and
0.8 for plain bars or bonded strand.

The previous formulations can be used in analyzing any reinforced or prestressed
concrete beam by considering the beam to be composed of a series of concrete layers and
longitudinal steel elements. This layered approach allows for the analysis of beams with
unusual cross-sectional shapes or reinforcing details. Each concrete layer is defined by its
individual width b, depth h, amount of transverse reinforcement py, and position relative to the
top of the beam y. The longitudinal steel elements are defined by their crosssectional area A,
initial prestrain AL, yield strength f;, and position relative to the top of the beam y, Properties
common to the entire beam cross section can include the concrete cylinder strength f.’, concrete
strain at peak stress [.’, yield strength of the transverse reinforcement fy,, and Young's
modulus for steel E.

The concrete layers and the longitudinal steel elements are analyzed individually while
conditions of equilibrium and compatibility must be satisfied for the section as a whole. The
force equilibrium requirements are as follows: (1) balancing of the shear, moment and axial

load acting on the section and (2) horizontal shear equilibrium. Uniform
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stress conditions are assumed to exist in each layer and element. The only section

compatibility requirement that is applied is that plane sections remain plane.

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7:
Step 8:

Step 9:

Mitchell and Collins (Ref. 7) have outlined a solution technique as follows:

Choose a value of [1;, at which to perform the calculations.
Estimate 0.

Calculate w from Egs. (2-45), (2-47), (2-48), and (2-49).
Estimate f.

Calculate f; from Egs. (2-43 and 2-46).

Calculate V from Eq. 2-41:

Calculate f, from Eq. 2-38.

Calculate f, from Eq. 2-37.

Check that £, < Hax

If £, = f2max,solution is not possible. Return to step 1 and choose a smaller [1.

Step 10: Calculate .

0,=0, (=1= 7.7 fonat)
Step 11: Calculate [y and U from Egs. 2-33 and 2-34 as

_ [, tan® G+,

D 2
l+tan” &

X

1-0+0 tan” &
l+tan’ 8

t

Step 12: Calculate f, = E; [, < f,y.

Step 13: Check estimate of f,. If necessary, revise estimate and return to step 5.

Step 14: Calculate fx = E; Uy < fyand f, = Ey(Ox + Alp) < fy.
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Step 15: Calculate the axial force on the member.
V . .
N = Asvax + Aprp -—— fibwjd - fc (Ac _bwjd)
tan @

where f; is the axial compressive stress in the concrete areas outside the web.

If O, 1s tensile then f. = 0, otherwise,

rer {8 HE] |

Step 16: Check the axial load. If N is not equal to the desired value (usually zero), make

a new estimate of 0 and return to step 2. Increasing 6 increases N.
Step 17: Check that the longitudinal reinforcement can carry stresses across the crack.

If this requirement is not satisfied, lower f; and return to step 6.

2.3 Summary

This chapter consists of three subchapters. The first subchapter has dealt with the
basic definition and the theory of determining transfer length of a prestressed concrete
member. The second subchapter has explained the theory involved with strut and tie
model, compression field theory and modified compression field theory.

The theory presented in the first subchapter has been exactly followed to
determine the transfer length. In the same manner the theory presented in the second
subchapter has been followed to determine the shear strength of the test beams. Chapter
4 and Chapter 5 of this study present the comparisons of the test results and the

theoretical results for transfer length and shear strength of the test beams.
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Shear strength of the test beams have been estimated analytically by applying the
theory associated with the strut and tie model and modified compression field theory. The
summary of the comparison of the test results and the analytical results for shear strength

of the test beams are presented in Chapter 6.
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CHAPTER 3
TESTING AND INSTRUMENTATION

3.1 General
This chapter describes the variables that were considered during this study as well
as a description of the test specimens, instrumentation, and the test sequence.

3.1.1 Beam Nomenclature

Each of eight beams were loaded at both ends for a total of 16 individual tests. The
nomenclature used to identify the different tests consists of the following:
UF - identifies test series performed at the University of Florida;
lor2 - indicates the first or second beam in a series;
30, 36, 42, 48 - represents section height in inches; and
2D or Ld - identifies the loading point, either twice the effective depth (2D)
or the development length (LD).

3.1.2 Description of Test Specimens

There are two identical sets of four simply supported beams 35 feet in length. The
beams all have a width of 12 inches and heights of 30, 36, 42 and 48 inches and were
reinforced with 1/2-inch grade 270 ksi Lolax strand. Figures 3-1 and 3-2 show an
elevation view of the test beams and the different tendon layouts. All of the beams are
designed for a full AASHTO HS 15 truck loading. The beams are also designed to have

the same
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tensile stress at midspan under full service load conditions of 50 psi. Another initial design
requirement was that all of the test specimens have the same moment capacity, therefore
the amount and location of the tendons varied for each set of beams. The shear
reinforcement is provided by #3 bars spaced at 24 inches for the entire span length in all
beams. Straight tendons were utilized for the prestressing force. Based on an assumed
compress size concrete strength of 5,000 psi, and including a conservative factor of safety,
the specimens were designed to ensure that they could be loaded to failure using equipment
and facilities available in the structures testing laboratory at the University of Florida. The
maximum capacity of the loading equipment was 200 kips.

Each specimen was tested twice; first loading one end of the specimen to failure under a
concentrated load and then altering the test configuration to load the other end to failure.
One end was tested with the load at twice the effective depth (2D) from the center line of
the support while the other end was tested with the load at the development length (LD)
from the center line of the support. To prevent damage in the first test from affecting the
second test, the second test was performed at a reduced span, insuring that the cracks
formed from the first test would not impinge on the test zone for the second. For the two
replicate specimens of each design, the order of performing the 2D and LD test was
reversed. Table 3-1 represents the number of tendons, effective depth, eccentricity of the
tendons and loading position for each specimen.

The prestress jacking force, P;, was measured by the elongation of the tendon and verified

with a pressure gauge at the prestressing jack.
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Beam | Height | Number of Eccn. | Effec. Loading

R B Tendons- | Depth Position
- UF1-30-2D 30" 14 65" 21.5" 43"
i UF1-30-LD | 30" 14 6.5" 21.5" 77"
"-' UF2-30-2D 30" 14 6.5" 21.5" 43"

UF2-30-LD | 30" 14 6.5" 215" 7"
UF1-36-2D | 36" 11 | 85" | 265" 53"
'UF1-36-LD 36" AL 8.5 26.5" 77"
UF2-36-2D | ~ 36" 11 8.5" 26.5" 53"
“UF2-36-LD |~ 36" ° 11 8.5"- 26.5" 77"
UF1-42-2D 42" 9 - 11" 32,0 64"
UF1-42-LD | . 42" 9 11" 32.0" 77
. UF2-422D | 42" 9 1" 32.0" 64"
- UF2-42-LD" 42" 9 11" - 32.0" 77"
_UF1-48-2D | 48" 8 125" | 365" 73"
_UF148LD [ 48" | 8 125" | 365" 77"
{LuF2481D | 48" 8 125" " | 365" 77"

prestressing tendons at transfer, fg, is determined as follows:

The losses for these test specimens were calculated in accordance with the

calculations are presented in Appendix E .

requirements of AASHTO Section 9.16.2. The prestress jacking force, initial prestress

force and effective prestress force for each beam are listed in Table 3-2. The sample

It 1s also of interest to determine the strand stresses at the loading stages. The

Ji =

P
Aﬁ

Eq. 3-1

stresses present at the loading stages are presented in Table 3-3. The stress in the
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Table 3-2. Prestress Force Per Tendon (kips)

BEAM ' P, = ; “_Pi B B P, | “
UF1-30 210 99 |- - 167 |
~ UF2-30 210 | - 199 - | 167 |
~ UF1-36 219 | 202 | 14 |
™ ur3e | 219 | 22 [ 174 |
o UFl42 | 22 | 217 | 191 “
1 UF242 | 22 | .27 | 190 o o

UF1-48 | 26 o219 | 196 |
' “ UF2-48 226 | 219 | 196 |

Table 3-3. Steel Stress at Load Stages (ksi)

BEAM | - f | £ £

UF1-30 130 | 109 _2170 -
UF2-30 | 130 | 109 | 2165
UFl36 | 132 | - m4 | 2270
ur236 | . 132 | m4 | 2210 |
UF1-42 142 . 125 | 2285
UF2-42 . 142 125 . 2285
UF1-48 143 128 1 2340
UF2-48 | - 143 128 | . 2190

The stress in the prestressing tendons resulting from the application of the

effective prestress force, P, acting alone and the associated strain are determined by:

Eq. 3-2

Eq. 3-3

The stress in the steel at transfer and after losses, can be found directly from

Equations 3-1 and 3-2, whereas the steel stress at failure must be found from an iterative
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approach. In order to do this it is necessary to determine the strain at an intermediate load
stage between failure and transfer. At decompression the increase in strand stress is given

by the following expression

n=f [, Eq. 3-4
PAE\ 4

When the member is overloaded to the limit stage the neutral axis is at a distance ¢ below
the extreme compression fiber of the: beam and the increment of strain beyond

decompression is

d,—c
D3 :Dcu c Eq 3-5

where, [, = 0.003, the ultimate strain-capacity of concrete
d = effective depth of the member.
The total steel strain at the limit stage, U, is the sum of the three components found
from Equations 3-3, 3-4 and 3-5:
Ops = 04t 0o+ O; Eq. 3-6

and the corresponding steel stress is obtained from the stress-strain relationship for the

strand.
The following procedure was used to determine the steel stress at failure, fi:

1. Assume a reasonable value of f,; and note the corresponding value of U, from
the steel stress-strain curve.

2. Determine the depth c to the neutral axis for that steel stress using the following

equation.
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= 0.8111,23;6 b ka3
3. Calculate the incremental failure strain [13 (Eq. 3-5) and add this to [, and [J, as
indicated by Eq. 3-6.
4. If the failure strain [, differs significantly from that assumed in step (1), revise

the assumption and repeat steps (1) through (3) until convergence is reached.

3.1.3 Fabrication of Formwork and Concrete

The beams were designed using- a standard 5000 psi mix. The mix design is
presented in Appendix B. Steel forms were positioned along the length of the casting bed.
They were then secured at the top to prevent separation due to the lateral pressure of the
concrete. Form oil was sprayed on then sides of the forms to ensure easy separation after
the concrete cured.

The concrete was poured in three layers according to ASTM specifications. Two
identical beams were cast simultaneously end to end in a 550-foot prestressing bed. Care
was taken to ensure that concrete was not: poured directly onto the instrumented stirrups.
After each layer was poured, two vibrators were utilized to ensure adequate compaction.
The concrete surface was then smoothed over and the beam designation sketched into the
surface.

3.1.4 Material Properties

3.1.4.1 Concrete. The slump of the mix was measured prior to casting the

specimen. For each beam, nine 4-inch by 8-inch test cylinders and two 6-inch by 12-inch

test



64

cylinders were cast. The two 6-inch by 12-inch cylinders were tested for
compressive strength at release of prestress. Three of the 4-inch by 86-inch
cylinders were tested for compressive strength at 28, days after casting, while three
were tested as split cylinders at the same age. If the slump did not meet the minimum
specifications as, given in Appendix B, the batch was discarded and a new batch
was tried. The specimens were allowed to cure for three days and the forms were

then removed. The results of tests for the concrete strengths are given in Table 3-4.

Table 3-4. Su.lfun'ér'j!ffof Concrete Strengths

[ Beam | sLome [ @ release | -release | '@ test
L Gn) | . (ps)) .| date |  test | date

1 o (psi) g
| UFl48 | 25 [ 6370 | 414 | 7374 7/21
f UF248 | 4 | 5840 | 4n4 | 9353 | 724
j.ll?"":-r"J'F-.1.4'42'_. J 325 [ 6010 | 421 | 8367 N7
f ur242 | 425 | 4280 | 421 | 8356 | 720
UF1-36 [ 325 | 4700 | 428 | 6800 |- 71

{ ur2-36 | 225 | 4950 | - 4/28 7633 |  6/18
L uFl30 | 3 | 6300 | 5/4° 7182 | 6/29
lLuezso [ s | 4700 [ s [ 748 [ 6n4

3.1.4.2 Steel. The reinforcement consisted of 1/2-inch grade 270 ksi Lolax

prestress concrete strand. Tests on the strand produced the following results:

Breaking Load = 42,840 1bs
Guaranteed Ultimate Breaking Strength = 41,300 lbs
Load @ 1% Elongation = 40,200 Ibs
Elongation @ 31,000 lbs = 0.00718 in/in
Nominal Area = 0.153 in®

Modulus of Elasticity = 28,200 ksi
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3.2 Variables
The test beams have clear, spans ranging from 35 feet to 25 feet 6 inches and
effective depths ranging from 21.5 to 36.5 inches. In each case there is a clear span to
depth ratio, I,/d, greater than 5.0 and according to ACI 11.8.1 (Ref. 1) these beams may be
treated as slender members. However, the loading point of 2D with a single concentrated
load causes the short shear span to act as a deep beam. Since the shear spans and the
effective depths varied in our testing the same behavioral model may not be valid for every

test situation. The test variables for each beam are listed in Table 3-5.

Table 3-5. . Test Variablesfx' :

~ BEAM Cad L
UF1-30-2D | 200 | 350 1953, | . ..089 ,
UF1-30ID .| 358 | 285 | 1591 | 053 “
UF2-302D | 200 | 255 | 1423 | . 083

Ld AT “

UF2-30-LD 358 | 350 | 1953 | 053
UF1-36-2D . 200 350 | 1585 | 055
UF1-36ID | 291 | 280 | 1268 | - 047
UF2-362D | 200 | 280 l 1268 069
UF2-36-LD 291 350 | 158 [~ Tos4 f
UF1-42-2D 2.00 26.5 994 | 044
UF1-42ID |- 241 |~ 350 4 1313 | : 040
CUF2-422D. | 200 | 350 | 1313 042
UF2-42ID | 241 | 287 | 1000 [~ 038
'UF1-48-2D 2.00 350 | 1151 | 029
UF1-48-LD 211 | 257 |44 028 |
UF2-48-2D 200 255 i 838 |- 038
UF2-48-1D 2.11 350 | - 1151 |- 037

The variables presented in Table 3-5 are as follows: |

a/d = shear span to depth ratio
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L, = clear span

d = effective depth of the member

VvV = shear acting at the loading point

b = member width

e = compressive strength of the concrete.

3.3 Instrumentation

3.3.1 Stirrup Instrumentation

Three stirrups at each end of the beam were instrumented with strain gauges located at
the bottom of the stirrup, the tendon centroid, and the neutral axis of the beam as shown in
Figure 3-3.

3.3.1.1 Surface preparation. The location of the strain gauges was ground flat

to remove deformations and provide an adequate surface for instrumentation. The strain
gauges were attached using a strain gauge welder and placing a series of spot welds along
each edge of the gauge. After the gauges were welded in place, the lead wires were soldered to
the tabs of the gauge and the gauges were insulated.

3 3.1.2 Insulation and mechanical protection. Once the gauges were attached to

the rebar a considerable amount of attention was given to mechanical protection. The first
step was to apply several coats of an epoxy sealant over the entire gauge and the wire
connections. Once this had dried a rubber pad was placed on top of the gauge and then
wrapped with a. protective metallic tape. This was done in order to protect the gauge from

the concrete in contact with the gauge region. This process was repeated for every internal
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3.3.2 External Strain Gauge Instrumentation

Once the concrete had set and the forms were removed, the external strain
gauges were applied. Since two beams were being cast simultaneously, the two adjacent
ends were instrumented with strain gauges. These gauges were applied at 6-inch
increments along the tendon centroid and in the form of a rectangular rosette along the
diagonal compression strut. The location of these gauges was determined by drawing a
horizontal line at the neutral axis and a line extending from the load to the support. The
location of each group of strain gauges was taken as 6 inches to either side of the
intersection of these two lines. Figure 3-3 shows the strain gauge locations for a typical,
loading situation.

3.3.2.1 Surface preparation. Before the external strain gauges could be applied

the concrete had to be ground smooth in order to remove any foreign material. The area
that was ground smooth was then directly heated with heat lamps in order to remove any
moisture from the immediate area. A very thin coat of epoxy was then applied to the
smooth area. Once this had dried the area was wet with a mild acid and sanded smooth
with a very fine sand paper. A neutralizer was applied and then the area was swabbed
dry with gauze. Before the strain gauges were applied, a neutralizer was used to clean
the strain gauge location. The strain gauges were then attached to the epoxy with super
glue.

3.3.2.2 Insulation and protection. After the strain gauges were attached to the

concrete the lead wires were then soldered to the tabs of the gauges and the entire
gauge was coated with M-Coat A. As a final precaution, the gauges and the leads were

coated with a layer of silicon to protect them from any adverse weather conditions.
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3.3.3 Instrumentation for Measuring Displacements

Prior to testing the beams were instrumented with linear voltage differential
transducers (LVDT) at one foot to either side of the load and at midspan in order to
measure deflections during testing. LVDT's were also used to monitor the relative
motion between the strand and the concrete at each end of the beam. The LVDT's were
attached to a bracket that was then attached to the individual strands as shown in Figure
3-2. A strip of plastic was :glued to the surface of the beam in order for the end of the
LVDT to bear on. This was necessary since the strands tend to rotate as they are
slipping. The LVDT's that were used on the tendons, Schaevitz type GCD-121-250, had
a maximum travel of 0.25 inches in either direction while the LVDT's that monitored
deflections had a maximum travel of 1 inch in either direction.

The output for all of the strain gauges and the LVDT's was monitored and
recorded with the use of a Hewlett-Packard 3497A Data Acquisition/Control unit

together with a PC controller system.

3.3.4 Instrumentation for Strain Gauges Used for Rosettes

The principal stresses were measured at two positions. These position were
located in the shear span and were found by the intersection of two lines. One line was
marked off from the load to the center of the support. Another line was marked off
along the section centroid. The rosettes were placed six inches to the left and right of

this intersection.
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Each rosette comprised of three strain gages. One strain gage was placed perpen-
dicular to the centroidal axis and the other two were placed at 45-degree angles to the
left and right of this gage. Figure 3-4 shows the position and orientation of the rosettes.

3.4 Test Procedure

The testing procedure can be divided in two categories; field tests and laboratory
tests.

The following is a listing of the activities during the field testing operation:

1. Place and secure all instrumented stirrups after stressing the tendons.

2. Cast test cylinders for compressive strength tests.

3. Grind smooth and prepare strain gauge locations with a thin coat of epoxy.

4. Attach strain gauges, solder leads and protect the gauges with M-Coat A and
silicon.

5. Attach all leads to data acquisition equipment.

6. Take an initial transfer length reading just prior to detensioning and then a

final one after all of the prestress has been transferred to the concrete.
The following is a listing of the activities that went on once the beams were trans-
ported to the University of Florida in preparation for the laboratory testing operation:

1. Center loading point of specimen underneath the actuator that is attached to
the load frame.

2. Once in position, place the specimen on a 6-inch wide steel plate with a 1-
inch diameter bar welded to the bottom. This acts as a roller which is then
placed on a 6-inch wide steel support.

3. Construct frame to support LVDT's that measure deflections, attach and zero
LVDT.

4. Install and zero out LVDT's on strands.



Apply strain gauges in rectangular rosette form along compression strut.

Attach all leads to the data acquisition equipment.

Take initial readings and start loading in 10-kip increments up to first
cracking and then continue in 5-kip increments until failure.

Break test cylinders after test has been performed.
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CHAPTER 4
TEST RESULTS

4.1 General
The measured data are presented in this chapter in order to generate a generalized

representation of the relevant results of the investigation.

4.2 Description of Test Data

The data was reduced and displayed for each test in a suitable graphical format in order
to permit a clear evaluation. The following is a list and description of the plots that are presented
for each specimen:

1. Plot of load versus deflection (P-Delta). The deflection at the loading point and at
midspan were continuously monitored and plotted during the loading and unloading of
the specimen.

2. Plot of load versus strand slip. Tendon slip was monitored as load was applied in order to
determine the load at which initial slip occurs and to what degree it affects behavior.

3. Plot of load versus stirrup strain. The internal strains in the stirrups at the bottom, tendon

centroid and neutral axis are plotted at each load increment.
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4.  Plot of load versus principal tensile strain. The principal tensile strains from the
rectangular rosette data are calculated from a Mohes Circle transformation and
plotted versus the shear acting on the member.

5. Plot of longitudinal strain along the centroid of the prestressing steel. The strains at
detensioning are plotted versus position along the beam in order to determine the
transfer length.

4.3 Failure Modes

4.3.1 Beams Tested at 2D

A brief description of the testing-procedure for each beam loaded at twice its
effective depth and its failure mechanism is given below. Failure is the load at which
diagonal cracks develop and excessive crack widths are present or excessive deflections
without further load carrying capacity. ACI recommends a maximum crack width of
0.012 inches for prestressed members located in areas subjected to high humidity. The
loads at which the tests were terminated were called the collapse loads. The graphs
referenced are found in Figures 4-1 through 4-24.

4.3.1.1 Specimen UF1-30-2D. This specimen was tested at a full span length

of 35 feet. The P-Delta curve remained in the linear elastic range until a load of 100 kips
was reached as shown in Figure 4-1. The first flexural cracks were observed at 100 kips
and occurred at several locations as shown in Figure A-1. These cracks occurred at
positions 5, 6, 8, and 10 feet from the support. These flexural cracks extended until a load
of 135 kips. At 135 kips another sudden flexural crack formed at the stirrup located 12
feet from the support. Up until this load there were no noticeable slips in the tendons nor

strains in
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the stirrups. Existing cracks continued to extend until a-load of 165 kips. This load
resulted in a sudden web-shear crack between the stirrups located 2 and 4 feet from the
support. The slip associated with this load is shown in, Figure 4-2. At 170 kips a large
flexure-shear crack was observed between the load and support. This was accompanied
by additional slip. Crack width of 0.020 inches were-observed at this load. A web-shear
crack appeared at a load of 200 kips. The test was terminated at a collapse load of 200
kips. The beam failed due to formation of excessive web and flexural shear cracks.

4.3.1.2 Specimen UF2-30-2D. This specimen was tested on a reduced span

length of 25 feet and 6 inches in order, to remove the damaged portion of the beam.
Figure A-3 shows the cracking pattern for this specimen. The P-Delta curve shown in
Figure 4-4 remained in the linearly elastic range up to 115 kips and was accompanied by
a flexural crack directly below the load. Cracks extended until 125 kips and another
flexural crack formed at the 6-foot stirrup. All tendons exhibited continuous slippage with
increasing load. All the flexural cracks continued to extend until a load of 170 kips with
no sudden changes in the tests data. At 170 kips, two sudden vertical cracks developed
directly under the load which did not extend to the bottom of the beam. Crack widths
were unacceptable at this load. At 180 and 185, kips, sudden web-shear cracks developed
with the latter terminating the test. The beam experienced a web shear failure.

4:3:1:3 Specimen UF1-36-2D. This specimen was tested with a full span

length of 35 feet. The cracking pattern is shown. In Figure A-5. The P-Delta curve,
shown in Figure 4-7, remained linear up to 120 kips. At this load a flexure crack formed
near the stirrup located 6 feet from the support. At this crack, there were no noticeable

slips in the tendons. At 120 and 141 kips, two flexural cracks formed. Figure 4-8 shows
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in the tendons associated with this load. Between these two loads there were no change in strains of
the stirrups. However, at 154 kips there was a sudden crack at the stirrup located 4 feet from the
support. This was associated with high tensile strains at the tendon centroid. At this load crack
widths became unacceptable. Between 154 and 171 kips the cracks extended and widened. There
were no other significant events. At 171 kips crushing was observed under the load. The test was
terminated at a collapse load 171 kips. The test was terminated due to excessive crushing under the
load resulting in almost no compression zone.

Specimen UF2-36-2D. This specimen was. tested with a reduced span length of 28 feet.

This was the first test in which the load position was tied to the effective depth. The racking pattern
is shown in Figure A-7. The P-Delta curve, shown in Figure 4-10, remained in the linear elastic
range up to a load of 140 kips at which several large cracks appeared directly under the load. The
tendon slips are negligible as shown in Figure 4-11. After the first flexural crack formed, three other
flexural cracks formed in the shear span. These cracks appeared at 154, 168 and 180-kips. Between
each of these loads there were no slips in the tendons. The test was terminated at a collapse load 180
kips. The specimen failed in, flexure mixed with flexural shear cracks.

4.3.1.5 Specimen UF1-42-2D. This beam was loaded with a span of 26 feet and 6 inches

and developed its first flexural crack at 113 kips. A slight reduction of stiffness in the P-Delta curve
as shown in Figure 4-13 also took place at this load increment. The cracking pattern is shown in
Figure A-9. A flexure crack at a load of 113 kips formed directly under the load. The stirrup located
6 feet from the support which is in contact with this crack exhibited a sudden increase in tensile

strain. Flexural cracks extended until
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a load of 135 kips. At this load, there were sudden slips in the tendons. At 149 kips a sudden
flexure crack formed at a position 11 feet from the support. There appeared to be no slips
associated with this crack. At 169 kips a sudden flexure shear crack developed at the stirrup
located 4 feet from the support. This crack extended to mid-height of the specimen. Figure 4-
14 shows that a significant amount of tendon slip occurred at this loading point. A horizontal
crack also developed at the tendon centroid at 170 kips. The stirrups experienced a sudden
increase in tensile strain occurring simultaneously with the shear crack as shown in Figure 4-
15. At a collapse load, 188 kips the test was terminated. This beam experienced a flexural
failure combined with flexure shear failure.

4.3.1:6 Specimen UF2-42-2D. This specimen was loaded with a full span of 35 feet. The

cracking pattern is shown in Figure A-11. The P-Delta Curve is shown in Figure 4-16. The
P-Delta curve for this beam remained linearly elastic until 100 kips. The first flexure crack
appeased at a load of 100 kips. The stirrup located at 6 feet from the support was indirect
contact with this crack. A sudden increase in stirrup strain was associated with this cracks
Between the load of 100 and 139 kips new flexural cracks appeared. There were no
significant events associated with these cracks. At 139 kips a sudden flexural shear crack
appeared. Stirrups located at 4 and 6 feet from the support showed sudden increases in tensile
strain. This is shown in Figure 4-18 Up to this load crack widths are acceptable. Cracks
extended until a load of 159 kips. At this load, a sudden flexural crack appeared associated
with an increase in stirrup strain as shown in Figure 4-18. The test was terminated at a

collapse load 177 kips. The specimen failed in flexure along with flexural shear.
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4.3.1.7 Specimen UF1-48-2D. This specimen was tested with a full span length of

35 feet. The cracking pattern is shown in Figure A-13. The P-Delta curve shown in Figure
4-19 remained linearly elastic until a load of 113 kips. At 113 kips a flexure crack appeared
under the load. At this event, all tendons showed a sudden slip. These are shown in Figure
4-20. Crack widths at this load are already unacceptable. At 136 kips a flexure crack
appeared at the stirrup located 10 feet from the support. This was accompanied by sudden
tendon slips shown in the Figure 4-20. At 158 kips a large flexure crack appeared at the
stirrup located 4 feet from the support. This, crack extended up to near the load. Tendons
continued to slip and the test was soon terminated at a collapse load 165 kips. The specimen
failed primarily in flexure due to opening up of large flexural cracks as shown in Figure A-
13.

4.3.1.8 Specimen UF2-48-2D. This specimen was tested with a reduced span length

of 25 feet and 6 inches. The cracking pattern is shown in Figure A-15. The P-Delta curve,
shown in Figure 4-22, remained linearly elastic up to a load of 115 kips. The first flexural
crack appeared at this load. There were no slips associated with this crack nor it was
associated with any increase in tensile strain in the stirrups. However, crack widths were
already unacceptable. Nothing of significance occurred until, a load of 151 kips was
applied on the beam. At the loads of 151 and 154 kips, two cracks appeared. The crack
which appeared at the load of 154 kips caused a large slip in the tendons. This slip is shown
in figure 4-23. These cracks continued to extend until the test was terminated at a collapse
load 174 kips. The specimen failed in flexure due to large flexural cracks with excessive

width.
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4.3.2 Beams Tested at LD

A brief description of the testing procedure for each beam loaded at development
length and its failure mechanism is given below. Failure is the load at which diagonal
cracks develop and excessive crack widths are present or excessive deflections without
further load carrying capacity. AC I recommends a maximum crack width of 0.012 inches
for prestressed members located in areas subjected to high humidity. The loads at which
the tests were used to be terminated are called as collapse loads. The graphs referenced to
are found in Figures 4-25 through 4-48.

4.3.2.1 Specimen UF1-30-LD. This specimen was loaded on a reduced span length

of 28 feet and 6 inches. The cracking pattern is shown in. Figure A-2. The P-Delta Curve
shown in Figure 4-25 remained linearly elastic up to a load of 80 kips. The first flexural
crack appeared at 80 kips directly under the load and through the stirrup located 8 feet
from-the support. At 100 kips, two more flexural cracks appeared at locations 9 and 11
feet from the support associated with a tensile strain in the stirrup 8 feet from the support.
Strain gages in stirrups located 4 feet and 6 feet from the support were not functioning.
The tendon at RX1 exhibited a considerable slip at 125 kips corresponding to two sudden
flexure cracks as shown in Figure A-2. Two large web-shear cracks between the load and
support were observed at 145 kips and 150 kips. A load of 160 kips resulted in a
catastrophic failure. The test was terminated at this collapse load. The failure mechanism
of this beam was a total collapse due to the formation of web shear cracks.

43.2.2 Specimen UF2-30-LD. This specimen was tested with a full span of 35

feet. The cracking pattern of this beam can be observed in Figure A-4. The P-Delta Curve

shown in Figure 4-28 remained linearly elastic until 60 kips. A flexural crack .
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appeared at 70 kips directly under the load. This flexural crack did not result, in any
increases in tendon slips or strains. There was no sudden change in behavior until a load
of 110 kips. At 110 kips the stirrup located at 6 feet from the support indicated a sudden
increase in strain at the tendon and section centroid. At 130 kips there was crushing
observed under the load. Two flexure shear cracks appeared at this load. These cracks
formed inside the shear span. The testing was terminated due: to excessive crushing and a
reduction of the compression zone under the load at a collapse load 135 kips. This
specimen failed as a result of excessive web shear cracking and crushing of the concrete
under the load.

4.3.2.3 Specimen UFI-36-LD. This specimen was loaded with a reduced span of

28 feet. The cracking pattern is shown in Figure A-6. The first flexural crack appeared at
88 kips under the load and no slips were observed in the tendons. The reduction in
stiffness of the P-Delta curve in Figure 4-31 did not occur until 115 kips. At 100 kips a
flexural crack appeared at a location 6 feet from the support. This was accompanied by a
large tensile strain in the stirrup. The crack intersected this stirrup at a load of 105 kips as
shown in Figure A-6. At 118 kips there was an abrupt slip in the tendon RI1CI. This
corresponded to a flexural crack near the stirrup located 10 feet from the support. A
sudden flexure crack appeared at 155 kips correlates to a sudden tendon slip as shown in
Figure4-32. The specimen showed no other significant behavior patterns until the test was
terminated due to formation of excessive flexural cracking and crushing under the load at
a collapse load 165 kips. This beam experienced a flexural failure with the presence of

flexural shear and crushing under the load.
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4.3.2.4 Specimen UF2-36-LD. This specimen was tested with a full span of 35

feet. The cracking pattern is shown in Figure A-8. The P-Delta curve remained linear
elastic until a load of 100 kips as shown in Figure 4-34. The stirrup 6 feet from the
support abruptly developed high strains at 120 kips, just prior to the appearance of first
flexural crack. As shown in Figure 4-35 tendon slips developed suddenly at 120 kips.
The first flexure crack appeared at a load of 133 kips. The test was terminated at a
collapse load 150 kips. This beam experienced a flexural failure with the presence of
flexural shear.

4.3.2.5 Specimen UF1-42-LD. This specimen was loaded with a full span of 35

feet. The cracking pattern is shown in Figure A-10. The P-Delta curve, shown in Figure
4-37, remained linearly elastic until-80 kips. The first flexure crack also appeared at 90
kips at locations 6 and 8 feet from the support coinciding with stirrups. At 115 kips a
new flexural crack appeared at a location 15 feet from the support. This appears to have
an influence on the strain in the stirrup located 8 feet from the support. Sudden tendon
slips took place as shown in Figure 4-38 at 134 kips which were load increments where
large flexural cracks developed. There were also large horizontal cracks which
developed at the tendon centroid at this point. Flexure cracks continued to grow with
some crushing under the load point occurring at 150 kips. The test was terminated at a
collapse load of 165 kips. This beam failed almost entirely in compression
accompanied with excessive crushing under the load.

43.2.6 Specimen UF2-42-L.D. This beam was loaded with a span of 26 feet

and 8 inches with the first flexural crack appearing at 90 kips at which point the P-

Delta curve in Figure 4-40 begins to loose stiffness. Sudden tendon slips in Figure 4-41
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kips and 150 kips which correspond to initial cracking and the formation of flexural and
flexural shear cracks. The cracking pattern can be seen in Figure A-12. At 105 kips the
strain in the stirrup 6 feet from the support, as shown in Figure 4-42, exhibited a rapid
increase which continued until failure of the specimen. This was the result of a crack at the
stirrup located 6 feet from the support. At 145 kips a sudden large flexure crack developed
accompanied by a sudden slip as shown in Figure 4-41. Also shown in Figure A-12 is a
horizontal crack at 145 kips resulting in bond slip at this load. Only one flexure crack bent
over at 10 feet from the support and it was formed at a load of 135 kips. At 157 kips two
sudden flexure cracks occurred between the stirrups located 8 and 10 feet from the
support with one not extending to the bottom of the beam. The test was terminated at a
collapse load 157 kips. This beam failed due to the formation of large flexural cracks
which led to the development of excessive flexural shear cracks.

4.3.2.7 Specimen UF1-48-LD. This beam was loaded with a span of 26 feet and 6

inches and formed its first flexural crack at 110 kips which corresponds to initial reduction
in stiffness of the 'P-Delta curve in Figure 4-43. The first, flexure crack was associated with
no sudden slips in the tendons. Flexure cracks continued to grow and-at a load of 140 kips
one bent over slightly as shown in Figure A-14. At 134 kips one tendon slipped
considerably as shown in Figure 4-44. This was a reflection of the horizontal crack at the
tendon centroid and flexure crack. At 174 kips the flexure crack 10 feet from the support
became very wide. The test was terminated at a collapse load 174 kips. The specimen
failed in flexure with flexure shear cracks and loss of bond.

4.3.2.8 Specimen UF2-48-LD. This beam was loaded with a full span of 35 feet and

formed its initial flexural crack at 92 kips which corresponds to a slight kink in the
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P-Delta curve shown in Figure 4-46. The cracking pattern can be seen in Figure A-16.
Two tendons exhibited slips at this load. The largest of these occurring to the tendons
located at the bottom row. At 140 kips a large flexure shear crack appeared between the
load and support extending up to near the load. The compression zone was small at this
load. There were also several horizontal cracks those developed along the tendon centroid
at this load. The test was terminated at a collapse load 140 kips. This beam developed
some shear forces but appeared to fail by the formation of a hinge under the load and the
beam rotating about this point.

4.4 Transfer Length Results

The plot of the longitudinal strain on the concrete surface along the tendon centroid
at transfer for the 30 inch beams are shown in Figures 4-49 and 4-50 and the 36-inch
beams are shown in Figures 4-51 and 4-52. The strains due to the dead weight of the
beam have been subtracted from the field data. Thus, the following graphs represent the
strains due to the initial prestress, P;, only. The data for the 42- and 48-inch beams are
unavailable due to problems with the data acquisition equipment during the transfer
operation.

An determining the transfer length, measured strains were plotted versus distance
from the end of the beam. A regression analysis was then performed to determine an
equation that best represented the data. This equation was then used to plot a curve
through the data points.

The transfer length is assumed to be the distance from the end of the beam to the

point onward which the tendons had constant strain. Generally, the strain values increased
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linearly from zero at the end of the beam up to a point where they became, approximately

constant. It is assumed that at this point the full prestress force is transferred to the

concrete. It can be seen from Figures 4-49 through 4-52 that the lines of "constant strain"

exhibit some random fluctuations between data points. This is partially, due to

experimental error that is inherent in this type of field test.

A summary of all of the transfer length test results and a comparison of transfer

length results according to ACI equations, the equation proposed by Zia and Mostafa (Ref.

4) and the equations proposed by Shahawy (Ref 5) are presented in Table 4-1. These

equations are presented in Chapter 2.1.3.

Table 4-1. Transfer Length Results

BEAM | ACI Zia & Mostafa - |  Shahawy TEST ||
_UF1-30 | 1805 113 _ 226 24
UF2-30 | 18.05 17.0 226 30
| UF136 | 18385 - 18.0 . .236. I
_ UF2-36 18.85 16.8 236 24 |

The transfer lengths determined from Figures 4-49 through 4-52 are higher than the

predicted value according to ACI. Based on these observations it appears that Shahawy's

suggestion of using f;; instead of fi. in the ACI/AASHTO equation is a reasonable

approach for estimating the transfer length in prestressed concrete beams.
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CHAPTER 5
BEHAVIORAL MODELS

5.1General Information.

The prestressed concrete members were observed very carefully during testing in
order to determine the load and corresponding shear force at which it developed the
first diagonal crack. Throughout this study this particular load is referred as the failure
load. The load at which the tests were terminated is called the collapse load.

The prestressed concrete members have clear spans ranging from 35 feet to 25
feet and 6 inches and effective depths ranging from 21.5 to 36.5 inches. In each case
there is a clear span to depth ratio, 1,/d, greater than 5.0 and according to ACI 11.8.1
(Ref. 1) these beams may be treated as slender members. However, the loading point of
2D with a single concentrated load causes the short shear span to act as a deep beam.
Since the shear spans and the effective depths varied in our testing the same behavioral
model may not be valid for every test situation. The test variables for each beam are

listed in Table 5-1.

Where, a/d = shear span to depth ratio
l, = clear span
d = effective depth of the member
V, = shear acting at the loading point at the appearance of first diagonal
crack
b = member width

£ = compressive strength of the concrete.

94



~ Table 5-1. Test Variables

—

BEAM a/d L 1/d V,/bdf! V,/bdvE!
(&) :
UF1-30-2D 2.00 35.0 19.53 .089 6.68
UF1-30-LD | 3.58 | 285 | 1591 053 438
UF2-30-2D | 200 | 255 | 1423 083 533
UF2-30-LD | 3.58 350 | 19.53 .053 409
ﬂ UF1-36-2D | 2.00 350 | 1585 055 3.75
UF1-36-LD | 291 28.0 12.68 047 3.68
UF2-36-2D° | 2.00 280 | 1268 |  .069 4.06
UF2-36-LD | 291 | 350 | 1585 |  .054. 375 .
UF1-42-2D 2.00 265 | 994 | 044 404
UF1-42-LD | 241 350 |-.13.13 | - .040 - 360 "
UF2-42-2D | 2.00- | .35.0 1313 |  .042 3.76
|} UF2-42-1LD | 2.41 287 | 1000 | 038 3.40 -
UF1-48-2D | 200 | 350 | 1151 | . .029 . 329
| UF148L1D | 211 | 257 | 844 028 2.83
H UF2-48-2D | 200 | 255 | 838 [ 038 | 320
UF2-48-LD | 2.11 037 | 304

5.2 Plastic Truss Model/Strut and Tie

350

pression struts inclined at an angle 6 to the horizontal, tension chords, stirrups and longi-
tudinal chords. The longitudinal reinforcement provides the tension chord while the

compression strut is provided by the concrete compression zone.

stirrups by compression struts radiating from the load point which are referred to as

compression fans. Between the compression fan there is a compression field of uniformly

Based on the presentation in Chapter 2 the plastic truss model consists of com-

The concentrated loads and reactions in slender beams are transmitted to several

sloped compression struts.

11.51
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Generally, a deep beam is any beam in which a significant amount of the load is
carried to the supports by a compression thrust joining the load and the supports. This
condition occurs at the loading point of 2D which provides a shear span to depth ratio
(a/d) of 2.0, thus causing deep beam behavior. This type of behavior causes the
compression an regions to overlap so that no compression field can exist. The net result is
the formation of a major compression diagonal.

The load carrying mechanism for the beams tested at 2D is best modeled by strut
and tie action. The 42-inch beam that was loaded at the assumed development length of
77 inches has a shear span to depth ratio of 2.4. Therefore, its behavior is also governed by
the strut and tie model.

5.2.1 Implementation of the Strut and Tie Model

The primary task in developing the strut and tie model is the determination of the
size of the compression strut. The size of this strut is strongly influenced by details such
as the size of the bearing plate under the loading and the bearing plate at the support as
well as the anchorage conditions.

Mitchell and Collins (Ref. 7) suggest the following method of determining the
shear capacity of a prestressed concrete beam using the strut and tie model. The first step
-is the determination of the smallest angle existing between the tension tie and the
compression strut, 6. The following equation is used to calculate this angle with the
variables illustrated in Figure 5-2:

h—0.5h, —0.5d,

a

tan@ =

Eq. 5-1
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where, h the overall height of the beam

0.5h, = the distance from the bottom the bottom face of the beam, to the centroid of

the tension reinforcement

da

depth of the top horizontal compression strut

a = shear span.
All of the variables in this equation are known but the depth of the horizontal compression
strut, d,. Therefore, an initial guess of this value must be made.

From the equilibrium conditions in the strut and tie model in Figure 5-1 it can be seen
that the tension, T, in the horizontal tie must equal the compression, C, in the compression
strut and that these two forces are related to the applied load, V. Thus

C=T=Vcot0 Eq. 5-2
The capacity of the top horizontal strut can be found by

C= ¢Acf2max Eq 5-3

where, @ = (.70, strength reduction factor for axial compression
A, = effective cross sectional area of the top strut
fhmax = effective compressive strength of the strut.
For the top horizontal strut fo,.« is assumed to be 0.85f, since this strut is not crossed by a
tension tie.
The load necessary to reach the capacity of the top horizontal strut can be found by

Equation 5-3. The compressive force in the diagonal is found by
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p=_V Eq. 5-4
sin @

The top end of the diagonal also is not crossed by a tension tie so fym.,x can be
assumed as 0.85 f.'. The capacity is still calculated from Equation 5-3 except in this
case the effective cross sectional area, A., is dependent on the anchorage conditions.
The top end of the diagonal consists of a strut anchored by a bearing plate and
another strut as. seen in Figure 5-2, View B. Therefore,

A, = [lb sin@+d, cos H]width Eq. 5-5
The bottom end of the diagonal is crossed by a tension tie and hence it is necessary to

determine fomax from the following equation:

_ [
S 0.8+1700,

Eq. 5-6
where, [, = Os+ (Os + 0.002) cot’ 0 (strain in concrete)

O = tensile strain in tension-tie reinforcement
The bottom end of the diagonal consists of a strut anchored by a bearing plate and a
tension-tie. The capacity is still calculated from Equation 5-3 and A, is governed by

the anchorage conditions shown in Figure 5-2, View A. Therefore,

A = [l,, sinfd+ H , cos H]Wia’th Eq. 5-7
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The capacity of the compression diagonal is assumed to be the smaller of the top
or bottom capacity and then compared to the force existing in the diagonal. If thus value
is close to the initial guess a new estimate of d, has to be made and the procedure
repeated until the values converge.

5.2.2 Comparison of Predicted and Experimental Results

The process mentioned above was used to determine the shear capacity of the
diagonal compression strut at shear span to depth ratios ranging from 1 to 7. The shear
force at the loading point towards the support at failure was then normalized by dividing
by bdf’., and was plotted against the different shear span to depth ratios.

The strut and tie model yields very consistent results when compared with the test
results as seen in Figures 5-3 through 5-5 This model illustrates how the shear strength
of a simply supported prestressed concrete beam loaded with a concentrated load
changes as the shear span changes. In every case the beams can resist very high shear
forces if the shear is a result of a load near the support but the shear strength is greatly
reduced as the shear span to depth ratio (a/d) increases.

All four of the normalized shear forces for the 48-inch beams are plotted against
their aspect ratios in Figure 5-6. The beams tested at 2D and ID have shear span to depth
ratios of 2.0 and 2.14 respectively. If these beams exhibited normal deep beam behavior
then it would be expected that the strut and tie model would yield accurate predictions.
From Figure 5-6 it can be seen that all four of the beams failed at loads lower than

predicted. All of the beams formed an initial crack under the load which acted as a hinge.



Both ends of the beam then acted as rigid bodies rotating about the hinge. This type
of failure mechanism is typical behavior for an under reinforced section.

Because of this behavior the beams never had a chance to develop a
compression strut or a compression field. Therefore, neither the strut and tie model

nor the modified compression field theory correctly models this situation.

5.3 Modified Compression Field Theory Analysis
5.3.1 Implementation of MCFT

The modified compression field theory analysis is based on the information
presented in Chapter 2. Since analysis using the modified compression field is a
highly iterative procedure, it was not practical for normal calculations. The
computer program RESPONSE, written by Mitchell and Collins (Ref. 7), was used
to complete the analysis.

RESPONSE is an interactive menu-driven program used to determine the load
deformation response of a prestressed concrete cross-section subjected to combined
moment, axial load and shear. In order to perform any analysis using this program

the material properties as well as the section properties must be supplied as data.

5.3.1.1 Concrete material properties. The following is a sample

representation of the concrete properties for UF1-36 that were required for this

analysis:
Compressive strength of concrete, f” =6.800 ksi
Strain at max compressive stress, ‘.= -2.36 millistrain
Tensile strength of concrete, foe =300 psi

Tension Stiffening Factor, o

a; = 1.00 deformed bars under short term monotonic loading
a; = 0.70 plain bars, wires and bonded strands for short-term monotonic

loading
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o= 0.00 for unbonded reinforcement
oy = 0.49 for plain bars, wires and bonded strand for sustained or repeated loading
This tension stiffening factor, accounts for the complex situation that develops in
concrete after the formation of cracks. There are no tensile stresses in concrete at crack
locations whereas tensile stresses do exist between these cracks due to the concrete
bonded to the reinforcement. These tensile stresses between the cracks tend to increase
the stiffness of the member. In order to account for this "tension stiffening" the
following estimate of the average tensile stress in the concrete is used:
_a,+a,+f,

1+,/5000,

These tensile stresses will be concentrated in a zone of concrete around the

Eq. 5-8

reinforcement called the "effective embedment zone" which is suggested as 7.5 dy above
and 7.5 dy below the longitudinal reinforcement.

5.3.1.2 Steel material properties. The steel material properties that were used

for the regular reinforcement and the prestressing steel are listed below:

REINFORCING STEEL

Elastic modulus of reinforcing steel, E, = 28200 ksi

Yield stress of reinforcing steel, fy = 60 ksi

Strain when strain hardening begins, O = 40 millistrain

Strain when reinforcing steel reaches ultimate strength, Uwpt = 40 millistrain

Ultimate reinforcing stress, f, = 60 ksi
PRESTRESSING STEEL

Elastic modulus of prestressing steel, E, = 28200 ksi

Ultimate tensile stress, fou = 270ksi

Strain when prestressing steel reaches’ ultimate strength, Uy, = 40 millistrain
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53.13 Section properties. The program requires that all of the section

dimensions be input. The program prompts the user for the standard dimensions such as
width, effective depth and stirrup spacing. The crack control characteristics of the
longitudinal and transverse reinforcement, characterized by spx and sp, respectively, must
be calculated. Both of these expressions are found in Section 2.2.7. The only other
requirements are that the section be divided into a series of no more than 20 finite concrete
layers and longitudinal steel elements and that the location and initial prestress of the
tendons be defined.

5.3.2 Comparison of Predicted and Experimental Results

The smaller beams that were loaded at the development length, L.d, had shear spans
of 2.5 or greater. The background theory presented in Chapter 2 suggests that deep beam
behavior becomes less likely to dominate the failure modes. The beams begin to form a
diagonal compression field when loaded at these higher aspect ratios, thus the modified
compression field theory appears to be an acceptable method of analysis.

A summary of these results and a comparison between the ACI nominal shear
strength (V, = V. + Vj) is presented in Table 5-2.

It can be seen from the data in Table 5-2 that the theoretical results from the
modified compression field theory agree very well with the results for the beams tested at
LD but is inconsistent for the beams tested at 2D. The calculated shear capacities of the
beams tested at LD were within 7% of the experimental results.

The prestressed concrete members UF1-36-LD, UF1-36-2D and UF1-42-LD were
instrumented along the compression strut with strain gauges in the form of a rectangular

rosette. Principal tensile strains were calculated from these strain readings at every
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Table 5-2. Comparison of MCFT, ACI and Test Results

| Test -| MCFT [. ..

BEAM v, v, | v. | v | v |wac|wmcrT]
UF1302D | 1000 | 118 | 1118 | 148 | 948 | 132 156
UF130ID | 613 | 118 | 731 | 97 | 948 | 133 | 102 ||

UF2-302D | 1070 | 11.8 [ 1189 | 133 | 948 | 112 | 140 |
UF2-30-LD | 630 | 118 | 748 | 102 | 948 | 136 | 107 |
UF1-36-2D [ 1030 | 146 | 176 | 109 | 115 | 093 | 095 1|
UF1361D | 714 | 146 | 860 | ‘107 | 115 | -124 | 093 |
UF2-36-2D | 101.2 146 | 1158 | 118 | 115 102 | 102 |
UF236LD | 716 | 146 | 962 | 109 | 115 | 113 | 095 |
UF1-42-3D | 952 | 176 | 1128 | 128 | 1183 | 113 | 108 |
UF1-42.LD | 9.5 | 176 | 1042 | 114 [ 1183 | 109 | 096 |
UF2-422D | 966 | 176 | 1042 | 126 | 1183.] 121 | 107 |

UF2-42-1D | 9374 | 176 1013 | 114 | 1183 | 113 | 09 |

loading increment. These principal tensile strains, [J; are-plotted versus the shear
force Figures 5-7 through 5-9.

Results for beam UF1-36-LD as shown in Figure 5-7 with a shear span to
depth ratio of 3.58, demonstrate the formation of a diagonal compression field. The
stirrups in this beam registered tensile strains as shown in Figure 4-36 which is an
indication that a compression field develops. It can be seen from Figure 5-7 that the
measured shears and principal tensile strains correlate very well with the results
predicted by the modified compression field theory. Only the experimental data up to
the failure load is shown in Figure 5-7 which corresponds very well with the failure
load that is predicted. This analytical procedure appears to provide a rational

analysis for prestressed concrete beams subjected to these loading conditions.
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The prestressed concrete member UFI-36 2D as shown in Figure 5-8 has a shear
span to depth ratio of 2.0. As can be seen in Figure 5-8 the principal tensile strains and
shear values do not agree very well to the response predicted by the modified compression
field theory. The random fluctuations in the principal tensile strain readings and high shear
value are a result of the loading point being in a disturbed region. From Figure 5-8 it is
apparent that a compression field never existed for this test and that the modified
compression field theory is not an acceptable method of analysis for this situation.

The 42-inch, beams that were loaded at LD have a shear span to depth ratio of 2.4
which is right on the border line between deep and slender beam behavior. From Figure 5-
9 it appears that UF1-42-LD is following the response predicted by the modified
compression field theory but the collapse load was little bit less than predicted. This
implies that the beam is still behaving as a deep beam and that the strut and tie model is a
more accurate method of analysis.

The primary reason the modified compression field theory can not properly estimate
the shear capacity of disturbed regions is that it is a sectional model that assumes that plane
sections remain plane. Therefore, it is not capable of predicting the local effects caused by
the support and loading conditions. At loading conditions with aspect ratios of 2.5 and
lower a significant’portion of the load is carried by strut action. Thus, the beneficial
transverse compressive stresses induced by the support are ignored and the shear capacity

is not justly estimated.
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5.4 Moment Curvature Analysis

5.4.1 Compatibility and Equilibrium Conditions

The hypothesis that plane sections remain plane is the fundamental assumption that
forms the basis of modern beam theory. Because of this assumption, it is possible to develop
the compatibility conditions for prestressed concrete members. The concrete strain
distribution is defined by two variables; the strain at the op face and the strain at the bottom
face of the member. This is a linear strain distribution defined by the strain at the centroid,
een, and the curvature, ®. The curvature is equal to the change in slope per unit length
along the member. Thus, the strain in the concrete at any level y is given by

Ue = Oeen - @y Eq. 5-9

In prestressed members, the strain in the tendons at any level y is equal to the strain in
the surrounding concrete plus the initial strain due to prestressing.

Up = Ueen — @y + Al Eq. 5-10
The sign convention for the preceding equations assumes that tensile strains are, negative
and compressive strains are positive.

The section stresses, when integrated over the section, must add up to the required

sectional forces M and N in order to satisfy equilibrium.

5.4.2 Predicting the Response of Flexural Members

The response of flexural members can be predicted using the preceding compatibility

and equilibrium conditions together with the material stress-strain relationships.
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The stress-strain relationship used to describe the behavior of the concrete was the
Hognestad parabola, shown in Figure 5-9 (Ref. 11). The rising portion of this curve is
approximated by a parabola with its vertex at the maximum stress. The. parabola is
followed by a sloping line terminating at a limiting strain of 0.0038. The concrete stress

corresponding to a given strain, [l is given by the following:

O

4

2
e —(DCJ Eq. 5-11

o

where, Lo = 1.8 f°. /E..
The stress-strain response for prestressing strand is obtained using the modified

Ramberg-Osgood function recommended by Mattock (Ref. 12) given as:

-4 </ Eq. 5-12

fp:EPDPf A+|_l+(BDpf)CJl/c =

This function which consists of two straight lines joined by a smooth curve is
defined by three constants A, B and C. The typical values for these constants, 0.025, 118.0
and 10.0 were used for the determination of f;.

If the strain distribution across the section is known, then the stress-strain
relationships can be used to determine the distribution of stresses across the section. Once
the stresses are known; then the moment and axial load acting at that section can be
determined using the equilibrium conditions.

In determining the moment curvature response of a typical section with zero axial
load, an initial value of the top concrete strain is chosen and then the bottom strain that will

result in zero axial load is found by trial and error. The moment and curvature associated
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with the chosen strain distribution can then be found. Repeating this process for several
different values of top strain allows the complete moment curvature response of the
section to be developed.

5.4.3 Comparison of Predicted and Experimental Results

The procedure mentioned above was used to develop a moment curvature response
for each beam. The cracking moment, M is taken as the force that will cause a tensile
strain of 0.00015 at the bottom of the concrete. This point is labeled for each beam. A
spreadsheet was used to assist in the calculations. The predicted responses for the 30-, 36-,
42- and 48-inch beams are found in Figures 5-11 through 5-14.

The moment that was developed in each test specimen at the formation of the first
crack is shown in Table 5-3 and compared to the calculated cracking moment, M.

From the moment curvature relationships it is possible to calculate the deflected
shapes for each beam. This was done using the conjugate beam method for calculating
deflections. In the conjugate beam method, the deflection at a given point equals the
bending moment at that point for a beam loaded with the curvature diagram.

For each moment curvature relationship a regression analysis was performed to
determine an equation that would best represent the data. In order to obtain a more
accurate fit, the moment curvature graph was divided into three sections and three
separate second order curves were fit through the data points. Once an equation for every
section along the graph is known, the curvature can be calculated for any given moment.

After the curvature at any given point has been calculated the deflection at that point can



Table 5-3. Comparison of Predicted and Experimental M,
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" 'BEAM

“TESTM,,

% DIFFERENCE

. CALCULATED M,
(k-in) (k-in)

UF1-30-2D 4945 5000 C1.11
UF1-30-LD 6160 5000 '18.83
- UF2-30-2D 4730 15000 5.71
UF2-30-LD 5390 5000 7.24
UF1-36-2D 5300 5707 7.68
UF1-36-LD - 6930 . 5707 17.65
UF2-36-2D 5830 5707 2.11
 UF2-36-LD 8470 5707 32.62
" UF1422D. | 7360 5942 19.27
 UF1-42-1D 6930 5942 14.26
 UF2-42-2D 6400~ 5942 7.16
UF2-42-LD . 6930 5942 "14.26
1 UF1-48-2D 8760 6645 24.14
 'UF1-48-LD 8470 6645 21.55
I UF2as2p | ssa1 6645 22.19
L_Ur248.1D_ _7084 6645 6.19

be calculated. By discretising the beam into a series of finite segments and calculating the

deflection at each point, the deflected shape for the entire member can be calculated.

The equations that were determined for each moment curvature response are

expressed in units of kips and inches. The equations are presented in the following pages.

UF-30

M =

2013.84 +1.595x 10 @ - 1.781 x 10"*®?

for-12x10°<®<28x 107

4401.99+2.693 x 10’ ® - 3.6 x 10'°@*

for 2.8x 10° < ®29.0x 107

7203.84 +9.73 x 10°® - 9.431 x 10° ®*

for29.0x 10° < ® <57.9x 107
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UF36:
"M = 2556.19 +2.394 x 10% - 5.851 x 1012¢?
for-.77x 10° < $<2.32x10° - .
M = 542103 +3.612 x 107 - 6.57 x 109%¢*
for2.32 x 105 < <24.6 x 10%
M = 9252.8+5.987 x 105 - 6.343 x 10°¢?
| for 24.6 x 10% < <49.4 x 10%.
UF42: ‘
M = 227883 +5.171 x'10°% - 1.196 x 10°¢?
for -.42 % 10%<$ < 793x 10°
M = 5465.73 +4.256 x 107 - 9.96 % 101°<|>2 »
for 793 x 10-5<¢< 16.6 x 105
M = 9266.63 +4.449 x 10% - 3.795 x 109<1>2
for 16.6 x 10 < <|) <64.7 x 107
UF48:

M = 2515.17 +8.639 x 10%¢ - 4. 730 x 103¢?
for -.26 x 10'5<¢< 882>< 10s

M = 6083.91 +4.442 x 1o’¢ 1112 % 1ou<]>2
for 882 x 105 < p < 14.5 x 105

M = 9900.58 + 2.864 x 106¢ - 1.685 x 109¢2
for 14.5 x'10%< ¢ <793 x 10°%
The deflected shape was determined for each specimen for the load at which.‘initial_
cracking took place, the failure load and an intermediate poiht. A typical deflected shape

for a beam loaded at 2D and at LD are illustrated in Figures 5-15 and 5-16. |
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The moment curvature relationship can also be used to determine the deflections at
a single point for the entire loading sequence. Therefore, a predicted P-Delta relationship
can be determined at any point along the span of the member. The deflections were
calculated at one foot toward midspan of the load for each prestressed concrete member.
Each specimen was instrumented with LVDT's one foot to either side of the load. Thus, a
direct comparison of experimental and predicted values can be made. Typical results are
illustrated in Figures 5-17 through 5-19. Figures 5-17 and 5-18 represent the typical P-
Delta curves where the predicted and experimental curves correlate very well. The events
that occurred during testing are associated quite closely to the predicted values. The
moment curvature analysis is a flexural analysis that does not consider shearing strains
nor the effects of inclined cracking. Since the predictions are so close to the experimental
in most cases it is evident that flexure played a dominant role in the failure mechanisms.

Figure 5-19 illustrates a P-Delta curve that exhibited less correlation between the
test and theoretical results than the others. The beam UF2-30-2D was supported with
neoprene pads between the beam and the support. The deviation of the experimental data
from the predicted data may be the result of a rigid body deformation due to the
compression of the neoprene pad.

5.5 Effect of Shear Force on Bond Slip

To study the impact of shear force on longitudinal tendon slip in the prestressed
concrete members the longitudinal slips of the tendons were monitored with the help of

the LVDTs. The shear force at which tendons develop considerable slipping was monitor

ed. The effects of different variables such as normalized ratio (V/bd\/z ), diagonal



128

cracks and aspect ratio on the interaction between shear force and the first longitudinal
bond slip are discussed in subsequent sub-sections. The results of test beams loaded at the

development length are represented graphically in the Figure 5-20. Test results are also

presented in tabulated form in Table 5-4.

Table 5-4. Shear Force at First Longitudinal TendonSlip '

NAME SPAN ad | V@lstsip | M@ 1st slp
X @ f - o dps) | o (kipf)
UF1-30-2D | 3500 | 2 148 - | 531 -
UF2-30-2D | 25.50 2 o138 | 493
 UF1-36-2D .| :35.00 2. . 114 o502
UF2-36-2D | 28.00 3 122 . | . 809
UF1-42-2D 2650 |2 : 135 - | 7200
| UF2422D | 3500 | 2 | 127 | 678
UF1-30-LD | 2850 | 3.58 Tz | 1
UF136LD | 2800 | 291 | 112 | =TT =
"UF236LD | 3500 | 201 | 14 | v 7134
- UF1-42-LD 3500 | 244 109 {702
UF2-42-LD | 2667 | 244 | 17 750 |

5.5.1 Effect of Diagonal Crack

Figure 5-20 shows the variation of the percentage shear with aspect ratio of the
prestressed concrete girders. Percentage shear is defined as the ratio of the shear force
when a longitudinal strand slipped considerably to the shear force when the first diagonal
crack appeared. Referring to Figure 5-20 it seems that the value of the percentage shear is
always greater than one. The formation of diagonal cracks always precedes longitudinal
tendon slip. At the appearance of a diagonal crack the loading was stopped. Usually

longitudinal slip was observed with the next increment of load. The formation of diagonal
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crack always preceded the longitudinal bond slip of tendon for all the tests performed in the
laboratory.

5.5.2 Effect of Normalized Ratio

To normalize the section properties, material properties and the ratio of the shear
force at which the diagonal crack first appeared to the product of the width, effective depth
and the square root of compressive strength of concrete are determined for each test beam.
The values of this normalize and dimensionless ratio for each beam are tabulated in Table
5-1.

The ACI code suggests a simplified approach to: the prediction of the shear strength
for members with an effective prestress force not less than 40 percent of the tensile strength

of the flexural reinforcement. The shear strength expression is as follows:

V. {0.6\/7; +700

V”d}bwd Eq. 5-13
Mll

where, V. = assumed nominal shear strength at the appearance of the first diagonal crack.
f. = concrete compressive strength
by = width of the web
d = effective depth
V,, = factored shear force acting at the section

M, = factored moment acting at the section

In Equation 5-13 the quantity V,d/M, is not to be taken greater than 1.0. The above

expression for shear strength has got a lower bound and a upper bound as follows:
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2/ d<V.<5(fb,d Eq. 5-14

Equation 5-13 reduces to the following form for beams loaded with a single concentrated

load acting at a distance "a" from the support:

vd _V.d
A Vd _d Eq. 5-15
M, Va a

Substituting Equation 545 into Equation 5-13 and dividing both sides of the equation by

\/70' byd we get:

v
. -0+ 04 Eq. 5-16

fibd V7 a

In order to include the term p, percentage reinforcement ratio in Equation 5-13; a new

factor k is defined as follows:

700 =kp Eq. 5-17
Thus,
k= 700 Eq. 5-18
0

Equation 5-13 further reduces to the following:

e =0.6+k—— Eq. 5-19

\/wad \/-]T a



If we define the variable "x" as follows:

d
x = L_
/ fc a
where, p = reinforcement ratio in percentage
f,” = concrete compressive strength
d = effective depth

a = shear span

ne,n

and the variable "y" as follows:

= —Vc
g Jfb.d

the final form of the Equation 5-13 reduces to the following:

y=0.6+kx
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Eq. 5-20

Eq. 5-21

Eq. 5-22

A plot of normalized ratio versus the variable "x" for the test beams is presented

in Figure 5-21. Figure 5-21 shows that as the variable "x" for the test beams increases

the normalized ratio increases.

The Equation 5-22 is of the form of a straight line. A regression analysis is

computed for the test results. A straight line is fitted through the test results on the

basis of a least squares analysis. The variable "x" is assumed to be the independent

ne,n

variable and the normalized ratio "y" is assumed to be dependent variable. Figure 5-22

represents the
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equation of the straight fine obtained by the regression analysis of the test results. The
equation is as follows:
y =1.85 + 82882x Eq. 5-23
Assuming the value of percentage reinforcement ratio to be the average value of the
test beams the value of the factor k is determined as 140,000. Analyzing the test beams it
has been found that a following equation containing the term p fits the test results, very

well as shown in Figure 5-21.

%
y=—Ye  —06+140000-L-¢ Eq. 5-24

f.b,d 1 a

Equation 5-24 proves to be a very good approximation to predict the shear strength
at the appearance of first crack of the prestressed concrete beams under consideration.
Equation 5-23 shows that the test results follow a definite linearly increasing relation
between the variable "x" and the variable "y" as described in earlier paragraphs. It appears
that the ACI equation is conservative as expected. Particularly for the higher values of the
variable "x" the ACI equation is overly conservative since an upper bound is imposed on
the ACI equation.

The value-of the strength reduction factor for shear recommended in the ACI code
is 0.85. Equation 5-24 reduces to Equation 5-25 with the strength. reduction factor for

shear as follows:
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v 0.85{0.6 + 14ooooii} Eq.5-25

Both the Equations 5-24 and 5-25 are represented graphically in Figure 5-20. The upper bound
for the normalized ratio according to Equation 5-24 is assumed as 5 and the lower bound as 2 as
recommended by ACI code. The upper bound and lower bound for the normalized ratio according to
Equation 5-25 are 1.7 and 4.25 respectively. It will be of interest to determine the effect of transverse
reinforcement, spacing of stirrups and include these terms in the simplified expression predicting the

shear strength of a prestressed concrete beam at the appearance of first diagonal crack.

5.5.3 Effect of Aspect Ratio

Aspect ratio plays an important role in the utilization of the full shear capacity of a prestressed
concrete member. The prestressed concrete members which were tested in the laboratory had aspect
ratios ranging from 2 to 3.58. Asthe aspect ratio of the beams in the moment arm also increases. Thus
for the same shear force the beam having higher aspect ratio develops a higher bending moment.
Higher bending moment induces higher amount of longitudinal stress in the tendons of the members.
The tendons tend to slip more as a result of the development of this longitudinal stress due to flexure.
The development of this: longitudinal flexural stress seems to lower the shear force causing the first
longitudinal bond slip. Table 5-4 shows that at first longitudinal bond slip the bending moments are

higher and shear forces are lower for the test beams loaded at LD than the test beams loaded at 2D.
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5.6 Summary

Comparison of shear strength predicted by different behavioral models, such as, strut
and tie model, modified compression field theory and shear strength of the tests beams as
determined from the performed tests were presented in Tables 5-2. The comparison shows
that the strut and tie model proved to be an acceptable method of analysis for prestressed
concrete members subjected to loading conditions with a shear span to depth ratios less than
2.5. On the contrary the modified compression field theory provides a rational and
comprehensive analytical procedure for analyzing prestressed concrete members with shear
span to depth ratios greater than 2.5.

The moment curvature relationship for each test specimen was developed and
presented in Figures 5-11 through 5-14. The moment curvature analysis used does not
account for shearing strains nor the effects of inclined cracking. It can be seen from Table
5-3 that the predictions of the cracking moments were very close to the experimental results
in most cases.

The test results regarding the effect of shear force on first longitudinal bond slip
presented in Table 5-4. The results show the shear force at first longitudinal tendon slip
decreases as the aspect ratio of the test beams increases. The results also, point, out that
shear force at first appearance of diagonal cracks are always lower than shear force at first
longitudinal bond slip. The formation of diagonal crack always preceded the longitudinal

bond slip of tendon for all the tests performed in the laboratory.
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CHAPTER 6
SUMMARY, CONCLUSIONS

6.1 Summary

6.1.1 General Information

The objectives of this project outlined in Chapter 1.3.2 were accomplished by testing
a series of 8 beams at each end for a total of 16 individual tests. This was done by holding
the testing point of 77 inches (LD) a constant at one end of the beam and testing the other
end at twice its effective depth (2D). Both ends of each beam were instrumented with
internal and external strain gauges to collect data to study the effects of shear forces. Only
one end of each beam was instrumented with strain gauges along the tendon centroid in

order to measure the transfer and development lengths.

6.1.2 Testing Performed at 2D

The beams, tested at 2D, had low shear span to depth ratios (a/d < 2.5) resulting in
shear stresses becoming dominant. As seen from the analysis in Chapter 5 the behavior of
these beams is governed by strut and tie action due to the presence of the disturbed regions.
The majority of the load is carried by a major compression diagonal, thus the web
reinforcement was never fully mobilized. Therefore, the capacity of the sections is governed

by the strength of the concrete and the load required to develop diagonal cracks.
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The presence of the shear cracks in these beams appeared to deteriorate the bond
stress between the tendons and the surrounding concrete. As the shear cracks formed there
were sudden increases in tendon slip in every case. In the cases when excessive tendon slip
occurred there was also the simultaneous formation of a flat shear crack which split along
the tendon centroid or a separate horizontal crack formed at the tendon centroid. The
location and orientation of these cracks is an indication of a bond failure taking place. The

failure mechanism of these beams tended to be more brittle than the beams tested at LD.

6.1.3 Testing Performed at LD

The 30 and 36 inch beams tested at LD had a shear span to depth ratio greater than
2.5 allowing the shear flow to be uninterrupted by a disturbed region. Therefore, they had a
chance to develop a compression field which was evident from the generation of tensile
strain in the stirrups in every case.

The formation and propagation of shear cracks in these beams resulted in loss of
bond between the strand and the concrete which led to significant tendon slip. Increasing the
load resulted in failure of the beam from excessive crack. widths and flexural and shear
cracks leading to excessive crushing of the concrete near the loading point and significant
reduction of the compression zone. The failure of these beams tended to be more ductile

than the beams tested at 2D.
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6.1.4 Transfer Length

The experimental transfer lengths were compared with analytical predictions presented by
the ACI/AASHTO code, Zia and Mostafa and by Shahawy. The comparison between the
measured results, and the analytical predictions is presented in Table 4-1. It can be seen from
Table 4-1 that the present ACI/AASHTO code equation far transfer length, (f/3)ds,, appears to be
unconservative. The calculated values based on the ACI equationsunderestimate the measured
transfer length by an average, of 38%.

In the report presented by Shahawy, he suggested that the value of f;; be used instead of f;
in the ACI/AASHTO equation for transfer length. This equation provides a much closer
approximation of the actual transfer length with results an average of 10% less than the
experimental.

The equation presented by Zia and Mostafa has been accepted to be applicable for concrete
strengths ranging from 2,000 to 8,000 psi. This is evident by the relatively close comparison in
for UF2-36 as shown in Table 4-1. This equation gives comparable results to the
ACI/AASHTO code for low concrete strengths at transfer but as the concrete strengths increase

the results become increasingly more unconservative.

6.1.5 Effect of Shear Force on Longitudinal Bond Slip

The comparison of shear force at first longitudinal tendon slip and shear force at first
appearance of diagonal cracks was presented in Chapter 5. The ratio of the shear force when a
longitudinal strand slipped considerably to the shear force when the first diagonal crack appeared,
always seems to be greater than one. The formation of diagonal cracks always precedes

longitudinal tendon slip. At the appearance of a diagonal crack



132

the loading was stopped. Usually longitudinal slip was observed with the next increment of

load.

6.2 Conclusions

Based on the results of this tests, the following conclusions have been drawn:

1))

2)

3)

The modified compression field theory provides a rational and comprehensive
analytical procedure for analyzing prestressed concrete members with shear span to
depth ratios greater than 2.5. The strut and tie mode proved to be an acceptable
method of analysis for prestressed concrete members subjected to loading conditions
with a shear span to depth ratio less than 2.5.

Attention should be given to ensuring the development of: a compression field
and avoiding the formation of a strut and tie which tends to produce a brittle failure.
The development of a uniform compression field can be accomplished by providing
sufficient amount. of hear reinforcement within the development length region of a
beam. Additional detailing requirements should be such that adequate shear
reinforcement is provided in order to develop the full capacity of the beam and a
compression field.

The ACI/AASHTO equations.-for transfer length should be reevaluated. The
suggestion of using f/3 instead of fi/3 appears to provide a closer comparison with
test results.

Tendon slip and shear forces appear to be related. There appears to be a direct
correlation between the formation of shear cracks and the initiation of a bond slip.

This is evident from the sudden increases in tendon slip that occurred immediately
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after the formation of diagonal shear cracks as well as the horizontal cracking along
the tendon centroid in the test beams. Deep beams with a/d less than 1 tend to develop
inclined cracks that join the load and the support which, in effect, destroy the
horizontal shear flow from the longitudinal steel to the compression zone. Thus, the
behavior changes from beam to arch action. In this type of beam the most common
mode of failure is an anchorage failure at the ends of the reinforcement. The lowest
aspect ratio (a/d) of the test beams was 2 and none of the test beams collapsed due to

loss of bond in the anchorage region.



APPENDIX A

CRACKING PATTERN OF SPECIMENS

The following pages are the sketches of the cracks as they appear in the

photographs taken.
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APPENDIX B
CONCRETE MIX DESIGN

The concrete that was used to construct these test beams was provided by Gate
Concrete Products Company located in Jacksonville, Florida. The concrete used for

each beam was a Class III 5000 psi mix.

SOURCES OF MATERIALS

Tarmac Florida, Inc. Grade 67
Florida Rock Industries

Coarse aggregate:
Fine aggregate:

Pit no. (coarse): 87-145 Type: Limestone
Pit no. (fine): 71-132 Type: Silica-Sand
Cement: Tarmac Type | Spec: AASHTO-M22

Ist Admixture:

Master Builders 100-XR  Spec: ASTM C-494

QUANTITIES OF MATERIALS

Cement (1bs.): 611
Coarse aggregate (1bs.): 2013
Fine aggregate (1bs.): 1078
Ist Admixture (0z.): 17
Water (gal.): 27.9
Water (1bs.): 232
Slump range (in.): 1-4
Unit weight (wet): 145.7 pcf
Water cement ratio (1bs./1bs.): 0.38
Maximum allowable w/c (field): 0.38
Theoretical yield (cu. ft.): 27
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APPENDIX C
GRAPHICAL REPRESENTATION OF DEFLECTED SHAPES

The deflected shapes for every test are presented in Figures C-1 through C-16. The
deflected shapes for the load at initial cracking, the failure load and an intermediate load
are shown in each graph. The graphs were developed based on the analysis presented in

Chapter 5.
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APPENDIX D
P-DELTA COMPARISON

The experimental and predicted P-Delta curves are compared in Figures D-1

through D-16. These values are compared at a point offset 1 foot towards midspan from

the point where the load was applied.
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APPENDIX E
COMPUTATION OF PRESTRESS LOSSES
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Sheet no. 1 of 4
Computed by: AB Checked by: Date: 11/20/95
Subject : Prestressed Concrete Design

Design-Example # UF1-30-2D

Compute Prestress Losses (LRFD Refined Method): (AASHTO 9.16.2.1)
H = Relative Humidity = 77 (figure 9.16.2.1.1)
Delta(f(p)(SH)) = Loss in P/S Steel Stress Due to Shrinkage = (17.0 - 0.150*H),
(Equn. 9-4)
where: H= 77
Therefore, Delta(f(p)(SH)) = 545 ksi
Eci =33000* w(c)"1.5 * sgrt(f’ci), (Equn. 9-8)
where: w(c) = Unit Weight of Concrete = 146 pcf
f’ci = Spec. Comp. Strength at Initial Loading = 6.30 ksi
Therefore, Eci = 4606.53 ksi
Use Low Relaxation Strands.
rho = Aps/Abeam, .
where: Aps = Area of Prestressing Steel = 2.142 Inches”2
Abeam = Area of Beam 360.00 Inches”2
Therefore, rho = 0.0060
n(i) = Es/Eci,
where: Es = Modulus of Elasticity of Prestressing Tendons = 28000 ksi
Eci = Modulus of Elasticity of Concrete at Transfer = 4606.53 ksi
Therefore, n(i) = 6.08
f(s2) - f(pj) - Delta(f(p)(FR)),
where: f(pl) = 136.99 ksi
Delta(f(p)(FR)) = 0.00 ksi

Therefore, f(s2) = 136.99 ksi
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Sheetno. 2 of 4
Computed by: AB Checked by: Date: 11/20/95
Subject: Prestressed Concrete Design

Design Example # UF1-30-2D

Compute Prestress Losses (LRFD Refined Method) (Continued): (AASHTO 9.16.2.1)

f(cir) = Sum of Concrete Stresses at the Center of Gravity of P/S Tendons Due to the P/S
Force at Transfer and the Self-Weight of the Member at the Sections of Maximum

Moment =
{rho*f(s2)*(1+(e"2 *Abeam/lg)) - M(DLb)*e/lIg) / {1 + rho*n(i)*(1+(e"2 * Abeam/ig))}
where: rho = 0.0060
f(s2) = 136.99 ksi
e= 6.50 Inches
Abeam = 360.00 Inches"2
Ig = 27000 Inches™4
M(DLb) = 55.78 K-feet = 669.31 K-inches
n(i) = 6.08
Therefore, f(cir) = 1.05 ksi
Delta(f(p)(ES)) = Loss in P/S Steel Stress Due to Elastic Shortening= (Ep/Eci) * f(cir),
(Equn. 9-6)
where: Ep = 28000 ksi
Eci = 4606.53 ksi
f(cir) = 1.05 ksi
Therefore, Delta(f(p)(ES)) = 6.40 ksi
For noncomposite girder,
Delta(f(cds)) = M(Deck) * e/ 1,
where: M(Deck) = Moment Due to Deck Slab =
0.00 K-feet = 0.00 K-inches
e= 6.50 Inch
I= 27000 Inch™4
Therefore, Delta(f(cds)) = 0.00 ksi
Delta(f(p)(CRC)) = 12.0*f(cir) - 7.0*Delta(f(cds)) >=0 (Equn. 9-9)
where: f(cir) = 1.05 ksi
Delta(f(cds)) = 0.00 ksi

12.0*f(cir) - 7.0*Delta(f(cds)) = 12.64 ksi
Therefore, Delta(f(p)(CRC)) = 12.64 ksi
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Sheetno. 3 of 4
Computed by :  AB Checked by:  Date: 11 /20/95
Subject: Prestressed Concrete Design

Design Example # UF1-30-2D

Compute Prestress Losses (LRFD Refined Method) (Continued): (AASHTO 9.16.2.1)

Delta(f(p)(CRS)) = Loss in P/S Steel Stress Due to Relaxation of Steel After Transfer = 5.0 -
0.1 *Delta(f(p)(ES)) - 0.05*(Delta(f(p)(SH))+Delta(f(p)(CRC))),
(Equn. 9-10A)

where: Delta(f(p)(ES)) = 6.40 ksi
Delta(f(p)(SH)) = 5.45 ksi
Delta(f(p)(CRC)) = 12.64 ksi
Therefore, Delta(f(p)(CRS)) =  3.45 ksi
Delta(f(p)(T)) = Total Loss in Prestressing Steel Stress = (Equn. 9-3)
Delta(f(p)(ES) + Delta(f(p)(SH)) + Delta(f(p)(CRC)) + Delta(f(p)(FR)) + Delta(f(p)(CRS)),
where: Delta(f(p)(ES)) = 6.40 ksi
Delta(f(p)(SH)) = 5.45 ksi
Delta(f(p)(CRC)) = 12.64 ksi
Delta(f(p)(FR)) = 0.00 ksi
Delta(f(p)(CRS)) = 3.45 ksi
Therefore, Delta(f(p)(T)) = 27.95 ksi
f(pl) = f(p) - Delta(f(p)(ES)) - Delta(f(p)(FR)),
where: f(p1) = 136.99 ksi
Delta(f(p)(ES)) = 6.40 ksi
Delta(f(p)(FR)) = 0.00 ksi
Therefore, f(p1) = 130.59 ksi
f(pf) = f(pj) - Delta(f(p)(T)),
where: f(pj) = 136.99 ksi
Delta(f(p)(D) = 27.95 ksi
Therefore, f(pf) = 109.04: ksi
Initial Prestressing Force = P(i) = f(pi)*Aps,
where: Aps = 2.142 Inches”™2
f(pi) = 130.59 ksi
Therefore, P() = 279.72 Kips
Final Prestressing Force = P = P(e) = f(pf) * Aps = f(pe) * Aps,
where: Aps = 2.142 Inches”2
f(p) = f(pe) = 109.04 ksi
Therefore, P=P(e) = 233.57 Kips
Notes:
In the report f(pi) = 135.39 ksi

In the report f(pe) = 108.30 ksi



Sheet no. 4 of 4
Computed by: AB Checked by : Date: 11/20/95
Subject : Prestressed Concrete Design

Design Example # UFI-30-2D

Compute Prestress Losses (LRFD Refined Method) (Continued):

LOSS = 1 - (f(Pf)/f(PD),

where: f(pf) = f(pe) = 109.04 ksi
f(pj) = 136.99 ksi
Therefore, LOSS = 0.204
LLOSS =1 - (f(pf) / f(pi)),
where: f(pf) = f(pe) = 109.04 ksi
f(pi) = 130.59 ksi

Therefore, LLOSS = 0.165
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