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METRIC CONVERSIONS

inch x 25.40 = mm
foot x 0.3048 = m
Ib (force) x 4.448 = N
kip (force) x 4.448 = kN
Ib (mass) x 454 = g (mass)
kip (mass) x 454 = kg (mass)
kip/in x 0.175 = kN/mm
psi x 6.895 = kPa
ksi x 6.895 = MPa

mph x 1.609 = km/hr -
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CHAPTER 1

INTRODUCTION

Nowadays, many existing highway bridges in the United States, including those in
Florida, are older than 20 years. In order to insure their% safety for the traveling public and to
protect their initial investment, the evaluation of existing bridges has become very important. | '
One of the most significant aspects in the bridge evﬂuaﬁon process is how to determine the
response of bridge to moving vehicles. Unfortunately, all the existing theories and computer
software packages can accurately analyze only the static i'esponse to vehicles. Therefore, this

research project mainly deals with dynamic response of highway bridges to moving vehicles.

It is well known to most bﬁdge engineers and investigators that the impact or dynamic
load of bridges is a complicated subject. It depends on the roughness of roadway, different
kinds of vehicles, different types of bridges, the number of vehicles on the bridge, vehicle
speeds, and so on. Therefore, this project "Computer Modeling Analysis in Bridge Evaluation"
is divided into three phases. In Phase I, the following research items have been accomplished:
(1). the generation of different classés of road surface roughness, (2). the development of vehicle
computer models to simulate the dynamic responses of highway H20-44 and HS20-44 trucks,
(3). the development of computer models for the highwaj reinforcement concrete, prestressed
concrete, and steel simple bridges, (4). the formulation of bridge/vehicle interaction motions,

(5). the study of static and dynamic responses in various members of bridges, and (6). the



comparison of results of this computer modeling study with the experimental data and AASHTO

standard specifications.

In Phase I, the trucks were modeled as nonlinear space models, while the bridge was
modeled as a space beam. The computer program developed in this phase can mainly analyze
the response of simply supported beam bridges which can be reasonably treated as one space

beam, individually.

In Phase II, the specific objectives of this research are: (1). the development of vehicle
models to simulate the actions of Type 3, Type 3S2, and Type 3-3 trucks, (2). the development of
bridge models for the continuous bridges ‘and the slant-legged rigid frame bridges, (3). the
formulation of the bridge/vehicle interaction motions, (4). the study of the static and dynamic
responses in various members of bridges based on different vehicle speeds, vehicle weights, road
surface roughness, bridge types, and the lengths of bridge spans, and (5). the comparison of

results of this computer modeling study with the AASHTO standard specifications.

The mathematical models for Type 3, Type 3S2, and Type 3-3 trucks with nine, sixteen,
and eighteen degrees of freedom, respectively, are described in Chapter 2. Also, the dynamic

analysis of these vehicles is studied.

Chapter 3 is primarily devoted to the dynamic analysis of continuous multigirder
bridges. The bridge model for six continuous steel bridges is introduced first. Then, a new

numerical



procedure for analyzing dynamic response of bridges to moving vehicles is presented. Finally,

the free and impact characteristics of continuous multigirder bridges are discussed.

The dynamic behavior of a slant-legged rigid frame highway bridge is examined in
Chapter 4. A bridge model of space bar system which involves the effect of axial force caused
by dead load is described first. Then, the effect of loading positions, vehicle speed, road
roughness, damping ratio, etc. are studied. Also included in Chapter 4 are the maximum

impact factors of the bridge and their comparison with ASSHTO specifications.

The significant conclusions and recommendation are given in Chapter 5.



CHAPTER 11

HIGHWAY VEHICLE

MODELS

2.1 Introduction

The study of the characteristics of vehicles, which are the primary loadings of highways
and bridges, is very important in determining the response of roads and bridges. In phase I, two
vehicle models of H20-44 and HS20-44 ', trucks have been developed. However, the
investigations show that Type 3, Type 3S2, and Type 3-3 trucks correspond better to existing
traffic. Also, these three types of trucks are adopted for rating vehicles in the AASHTO Guide
Specifications for Strength Evaluation of Existing Steel and Concrete Bridges [8]. For these
reasons, this chapter will be devoted to developing these three new vehicle models. First, the
derivation of the motion equations of vehicles will be described. Then, the dynamic behaviors of

the vehicles passing over different kinds of road surface roughness will be analyzed.

2.2 Vehicle Models

Fig. 2-1 to Fig. 2-4 show the three vehicle models corresponding to Type 3, Type 3S2,

and Type 3-3 trucks, respectively. Their dimensions are given in Table 2-1 to Table 2-4,

including FDOT truck (Type 3S2).
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Fig. 2-4. Front View of Type 3, Typb 352, and Type 3-3 Vehicle Models
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Figs. 2-1 and 2-4 illustrate the side and front views of Type 3 vehicle model. Four rigid
masses represent the truck, steer wheel/axle set, the forward wheel/axle set of the tandem, and
the aft wheel/axle set of the tandem, individually. In the model, the truck is assigned three
degrees of freedom, corresponding to the vertical displacement (y), rotation about the transverse
axis (pitch or 6), and rotation about the longitudinal axis (roll or ). Each wheel axle set is
provided with two degrees of freedom in the vertical and roll directions. The total degrees of

freedom in the model are nine.

The vehicle model of Type 3S2 truck is shown in Figs. 2-2 and 2-4. The model consists
of seven rigid masses as tractor, semi-trailer, steer wheel/axle set, the forward and aft
wheel/axle sets of drive tandem, and the forward and aft wheel/axle sets of trailer tandem.
Tractor and semi-trailer are assigned three degrees of freedom (y, 6, and ¢), individually. Two
degrees of freedom (y and ¢) are assigned for each wheel-axle set. The tractor and semi-trailer
are interconnected at the pivot point (so-called fifth wheel point, see Fig. 2-2). The total
degrees of freedom are sixteen. FDOT testing truck is one of the Type 3S2 truck. Its

dimensions are given in Table 2-3.

Similarly, the third vehicle model (refer to Figs. 2-3 and 2-4) with nineteen degrees of
freedom is developed to represent Type 3-3 truck, composed of eight rigid masses as tractor,
semi-trailer, steer wheel/axle set, the forward and aft wheel/axle sets of drive tandem, the first
wheel/axle set of trailer, and the forward and aft wheel/axle sets of trailer tandem. Tractor and

semi-trailer are assigned three degrees of freedom (y, 6, and ¢), individually. Two degrees of

13



freedom (y and 6) are assigned for each wheel-axle set. The tractor and semi-trailer are
interconnected at the pivot point.

Suspension force conSists of the linear elastic spring force and the constant interleaf
friction force [29]. The load-displacement relationship for friction force, suspension spring
force, and the combination of these two forces are given in Phase I interim report [29]. The tire

springs are assumed to be linear.

Since the truck is a complex physical system, certain assumptions are made to simplify

the model. These assumptions are as follows:

(1) The vehicle runs at a constant speed.

(2) All components move with the same velocity in the longitudinal direction.

(3) Provision is made in thé mode\l. for wheel lift. Under this condition, the vertical tire
stiffnesses are taken as zero.

(4) Each tire contacts the road at a single point,

(5) Force inputs are limited to the vertical direction.

(6) In suspension system, damping elements were assuméd to be linear and to be of the viscous
type. Damper force is proportional to the velocity. 10% of the critical damping value was

used  for damping coefficient. In the tires, the damping forces were neglected.

The total potential enérgy, V = YV, of the system is then computed from the spring
stiffnesses and relative displacements, whereas the dissipation energy, D = ¥ D,, of the system
is obtained from the damping forces. The total kinetic energy, T = Y T;, of the system is

calculated using the mass, mass moment of inertia, and translational as well as rotational
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velocities, of the system components. The moment of inertia of all components is assumed to
be constant and the weight of each component is considered as the external force on that

component.

The equations of motion of the system are derived, using Lagrange’s formulation, as

follows:

d(aT) 0T . 9V , 9D _

actl\dq,) 9q, "9, T og; ° | (2-1)

where q; and §; are the generalized displacements and velocities. Details of derivation and the

motion ecjuations are presented in Appendix A.
2.3 Vehicle Dynamic Analysis

In order to know the vehicle dynamic characteristics of each model, the maximum
dynamic forces of suspensions and tires are calculated m 800-ft simulation length when vehicle

models with damped suspension system are running on the different classes of roads.

The equations of motion were solved by using a fourth-order Runge-Kutta Scheme, with
an integration time step of 0.005 second. Such a sﬁnall time step was necessary to avoid
numerical instability.

The real percentage of impact acquired from the study is defined as:
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Imp(%) =[ ;d"’~1]x100% (2-2)

sm

in which Ry, and R, are the absolute maximum responses for dynamic and static studies,
respectively.

A summary of the impact factors of suspension and tire forces for different road surface
conditions and vehicle speeds is given in Table 2-5 to Table 2-16 and illustrated in Figuhre 2-5
to Figure 2-28. In these Tables and Figures, we can observe that: (1) the impact factors of both
suSpension and tire forces increase with vehicle speed in most cases, (2) the impact factors are
affected slightly by the vehicle speeds in very good and good roads for both suspension and tire
forces, (3) the vehicle speeds influence the impact factors significantly in average and poor
roads, (4) the impact factors of both suspension and tire forces obtained from the poor road are

.the highest among these four different road surface conditions for speed varied from 15 to 75
mph, (5) the lowest impact factors are always found in the very good road, (6) the impact
factors of tire forc;és of tractor axle are much higher than those of trailer axle in Type 3S2 and
Type 3-3 vehicles, and (7) generally, the impéct of suspensions is much smaller than that of

tires.
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CHAPTER III

IMPACT ANALYSIS OF CONTINUOUS MULTIGIRDER

BRIDGES 3.1. General

The continuous multigirder steel bridge is one of the most popular bridge types
throughout the world. Its dynamic behavior has been an interesting subject of numerous
investigations since the 50's of the twentieth. Under the direction of J. M. Biggs, Louw [18]
investigated the response of two-span highway bridges to the single-axle vehicle loading and
Chen [1] conducted the model investigation of the vibration of continuous three-span steel,
bridges. Early field tests on actual continuous bridges have been reported by Vandegrift [25],
Edgarton [6] and Hayes [11]. The most systematic and comprehensive investigations on this
subject have been conducted at the University of Illinois [7]. Veletsos and Huang [13, 26]
presented a successful numerical approach for determining the response of multi-span bridges,
in which both planar bridge model and vehicle model were adopted. Eberhardt and Walker [5]
developed a finite element method for the analysis of dynamic response of highway bridges.

Ruhl [20] conducted an extensive study of field tests on three-span and two-span bridges.

Most previous investigations treated both continuous beam bridges and vehicles as the
planar models [10, 19, 24, 26]. Although three-dimensional models of the continuous bridge and
vehicle were used in Eberhardt's study [5], there was little information available concerning the

effect of i transverse stiffness, road surface roughness, vehicle speed, span length, etc., on 53



the impact of longitudinal girders at different sections. Therefore, due to the weakness of
previous studies, further research on continuous bridge dynamic analysis based on the different

aforementioned parameters should be carried out.

The objective of this investigation is to analyze the impact of three-span continuous
steel beam bridges with six different span lengths due to vehicles (side by side) moving over

different classes of roads with various speeds.

3.2. Equations of Motion

3.2.1. Equations of Motion for Vehicle

HS20-44 truck, which is a major design vehicle in AASHTO specifications [23] is used
for later dynamic analysis of continuous beam bridges. The mathematical model for the HS20-
44 truck has been developed in Phase I [29]. The model has twelve degrees of freedom
(DOF'S). The equations of motion of the system were derived by using Lagrange's

formulation. Details of derivation and data are presented in Phase I interim report [29].

3.2.2. Equations of Motion for Bridgg

The continuous multigirder bridge is treated as a grillage beam system (refer to Fig.3-1).
The dynamic response of the bridge was analyzed with finite element method. The bridge .was

divided into grillage elements (see Fig. 3-2). The node parameters are
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{a}=={2f} G-1)

in which {§} = [wy 8, 0,]" = the displacement vector of left joint,
{6} = [wy 0, 0,]" = the displacement vector of right joint,
w = vertical displacementl in z-direction, and

“e

0., 6, = rotational displacements about x and y axes, respectively.

The equations of motion of the bridge are

M;1{6} + [D51{6} + (Kal{3} = {Fur} 6D

in which [Mg] = global mass mat;ix,
[Kg] = global stiffness matrix,
[Dg] = global damping matrix,
{8}, {6}, {8} = global nodal displacement, velocity, and acceleration vectors, and
{Fgr} = global nodal loading vector, due to the interaction between the bridge and

vehicle.

3.2.3. Interaction Equations Between Vehicle and Bridge

The interaction force of the ith axle between the bridge and vehicle is given as:

F%T = KtyiUtyi + Dtyiﬁtyi . (3'3)
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in which K,;; = the tire stiffness of the ith axle,

D,; = the tire damping coefficient of the ith axle,
U, = the relative displacement between the ith axle and bridge = y,; - (-u,5) - (-Ys0),

Y« = the vertical displacement of the ith axle,
u,; = the road surface roughness under the ith axle (positive upwards), and
¥» = the bridge vertical displacement under the ith axle (positive upwards).

- A dot-superscript denotes differential with respect to time. The y,; can be evaluated by

the nodal displacements {6}° of the element and expressed as follows:

Yoi = [N3 O N; N, 0 N,]{6}° (3-4)
where
_ 2. 2.3
2 1 3
N,=x,-=x; +§x, R
32 2 3
37 oXi =%
l l :
2 3
N=-—+—,
l 12

N; is the displacement interpolation function of the element, x; is the distance measured from the

applied point of Fj; to the beginning node of the element.

3.3. Road Surface Roughness
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The Power Spectral Density (PSD) functions for highway surface roughness have been
developed by Dodds and Robson [4] and modified by Wang and Huang [29].

The random numbers which have approximate white noise properties were generated
first. Then, these random numbers were passed through the first recursive filter. Finally, the
output function will be the road surface roughness. The detail of the procedure and the vertical
highway surface profiles for very good, good, average, and poor roads, respectively, have been

given in Phase I interim report [29].

3.4. Numerical Methods

The equations of motion of the vehicle are non-linear, while those of the bridge are
considered as linear. Considering the different characteristics of those equations of motion, we
employ fourth-order Runge-Kutta integration scheme [2, 28] to solve the equations of motion of
the vehicle, while the solutions of the bridge were determined by the mode-superposition
procedure based on the subspace iteration method. The overall scheme of the procedure is

described as follows:

The global nodal displacement vector {b} in Eq. (3-2) can be expanded in the form

{8} _ MY} (%)

in which, the mode shape matrix, [f], corresponding to the free vibration equations of the bridge

is given as:



[8] = [ {$:}{a} - {6a} ] (3-6)
and {Y} is the generalized coordinate vector of n dimensions.

Based on Rayleigh damping matrix [3] and the orthogonality property shown as:

(21" M:1[2] = (1], 3-7
[2]"[Ks1(2] = [T, | (3-8)

where the naturai frequency vector, [Q], corresponding to Eq. (3-6) is given as:

[Q]- . . (3-9)

and [I}isann x n identityv matrix, Eq. (3-2) can be transformed to a set of n independent

normal-coordinate equations, i.e.,

(¥} + 2[cNQHY} + [OR{Y} = [B]{F} (3-10)

in which [¢] = modal damping ratio matrix. The single DOF equations can be easily solved

by any appropriate method. After obtaining {Y}, the displacements can be determined by Eq.



(3-5). The nodal forces of each element are calculated by
{S} = {Sx} + {S,} (3-11)

in which {S;} = [KIF[®]{Y} and {S,} = [m][®][Q*{Y}. The superscript e represents the

element and [m]° is the element mass matrix.

In the mode superposition process, the accurate results can be obtained from the first
several modes. The first several modes will be determined by the following subspace iteration
method [21]:

The eigenvalue equatién for undamping free vibration is shown as:

[Kal{0} = o’[Ms]{5} (3-12)

It can be rewritten in the form of Rayleigh quotient as:

- (O1K )8}
{8 IM }(8}

w? (3-13)

First, we assume the first q sets of modes and write the {8} as

{6} = X){A} (3-14)
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‘where [X] = initial assumed modes (@ << the dimensions‘ of Eq. (3-12)) and

{A} = vector needed to be calculated.
Substituting Eq. (3-14) into Eq. (3-12) and using 3*/3{A} = 0, lead to:
[Kn]'{!}} = ’[Ms]"{A} (3-15)
in which [Kg]" = [X]"[Kp][X] and [Ms]" = [X]"[M3][X].

Eq. (3-15) can be solved very quickly because its siie is much smaller than that of Eq.
(3-12). After obtaining q sets of {A} from Eq. (3-15), the second assumed modes [X] can be
modified. Repeat the procedure until the desired accuracy of the modes is reached.

Y
The main procedures for dynamic analysis of the bridge are as follows:

1. Evaluate the natural frequencies and the corresponding vibration modes of the bridge.
2. Determine the longitudinal position of eacvh"axle of the vehicle on the bridge at time t+At.
3. Assume that the verticai bridge deflection yy; under the ith axle at time t+At, in the first time

step of iteration, equals the value of y,; at time t and the initial values of y,; could be zero.
4. Use the fourth-order Runge-Kutta method to solve the equations of motion of the vehicle and

calculate the bridge/vehicle interaction forces from Eq. (3-3).
5. Solve Eq. (3-10) to obtain the generalized coordinates {Y} and calculate the vertical bridge

deflection yy; at the time t+At, in the second time step of iteration, according to Egs. (3-5)

and (3.-4).
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6. Repeat step 3 through step 5 by using the latest available values of yb; and other related
values until all differences between the previous and derived deflections are less than the

prescribed tolerance.

7. Proceed to the next time step and repeat the aforementioned

process. 3.5. Description of Analytical Bridges
In the study of general dynamic characteristics of continuous multigirder bridges, six

three-span continuous bridges with steel girders and concrete deck (refer to Figs. 3-3 and 3-4)
were designed based on-the Standard Plans for Highway Bridge Superstructures of U. S.

Bureau of Public Roads [22].

The lengths of the individual spans are in the ratio of 4:5:4 and the overall length
ranges from 130 ft. to 260 ft. The shortest bridge has spans of 40 ft.-50 ft.-40 ft. and the longest
bridge has spans of 80 ft.-100 ft.-80 ft. These bridges are of the I-beam type and are designed
for the HS20-44 loading. The bridges have a roadway width of 28 ft. and a 7.5 in. thick concrete
slab. The entire deck is supported by five steel beams. The typical cross-section of the bridges
is shown in Fig. 3-3. Fig. 3-4 shows the plan of the bridge with span of 72 ft.-90 ft.-72 ft. and

the others have similar arrangements.

The mass per unit length of each girder of the bridges and the cross-sectional area
were considered to be uniform. The flexural rigidities of cross-sections were determined as
composite sections which consist of the girders and slab. The primary data of bridges were

presented in 63
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Table 3-1.

3.6. Lnpact Analysis

3.6.1. General
Fig. 3-1 shows the grillage beam model of the continuous multigirder bridges. Along the

longitudinal axes of bridges, each girder was divided into 52 elements.

The mode damping coefficients were determined by using an approach described by
Clough and Penzien [3]. The bridges were assumed to have damping characteristics that can be
modeled as viscous. One percent of critical damping is adopted for the first and second modes

according to the experiment results [20].,

The first six frequencies of each bridge are given in Table 3-2. Fig. 3-5 to 3-14 show the
first ten vibration modes of the bridge with span'length of 80 ft.-100 ft.-80 ft. The vibration
modes of the other bridges have nearly same shapes. From those figures, we can see that modes
1,3, 6,8 and 9 are corresponding to bending modes, while modes 2, 4, 5, 7 and 10 corresponding

to torsional modes.

In order to obtain the initial displacements and velocities of vehicle DOF'S when the
vehicle entered the bridge, the vehicle was started the motion at a distance of 140 ft (42.67 m, i.e.,

a five-car length) away from the left end of the bridge and continued moving until the entire 66
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Fig. 3-6. The Second Vibration Mode
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Fig. 3-9. The Fifth Vibration Mode
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vehicle cleared the right end of the bridge. The same class of road surface was assumed for

both the approach roadways and bridge decks.

In order to get the general dynamic characteristics of each girder, a single vehicle loading

(Fig. 3-15), both symmetrically and asymmetrically, was first investigated.

Under the conditions of good road surface and 55 MPH (88.495 km/hr) vehicle speed,
the lateral static and dynaxﬁic wheel-load distribution factors as well as impact factors for

bending moment at Sections 1, 2 and 3 (see Fig. 3-1) are given in Table 3-3. The wheel-load

distribution factors acquired for the study is defined as

n = M/M, (3-16)

in which M, = M/n,

M = the sum of the bending moment of all girders at one section,

n = number of wheel-load in transverse direction, and

M; = maximum bending moment of one girder at the section.

The impact factor is defined as
Lp(%) = [RJ/R, -1]x 100% @3-17)

in which Ry and R, = the absolute maximum response for dynamic and static studies,
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respectively.

Table 3-3 gives wheel-load factors and impact factors of one bridge with spans of 56
ft.80 ft.-56 ft. for two loading cases. From Rows 3, 5 and 7 in Table 3-3, which shows the
results of symmetric loading, it can be observed that the smaller the wheel-load distribution
factors are, the larger the impact factors will be. From Rows 4, 6 and 8 in Table 3-3, which
lists the results of asymmetric loading, it can be seen that owing to the effect of torsion, the
smallest impact factor occurred at Girder 2 instead of exterior girder which has the maximum

wheel-load distribution factors at all sections.

3.6.2. Representative History Curves

With good road surface, vehicle speed of 45 MPH (72.41 km/hr) and two-truck
loading asymmetrically (see Fig. 3-16, Loading No. 4), the time histories of bending moment
at Sections 1 to 4 of Girders 1 to 3 are presented in Figs. 3-17 to 3-28 and the histories of
deflection at Section 3 of Girders 1 to 3 are illustrated in Figs. 3-29 to 3-31. The histories of
shear of Girders 1 to 3 at Section 2 are shown in Figs. 3-32 to 3-34. In Figs. 3-17 to 3-34, the
dotted lines actually represented the influence lines of bending moment, deflection and shear
corresponding to the related cross-sections respectively, provided that the two-truck loading
was treated as a unit load. Concerning the curves presented in Figs. 3-17 to 3-34, we can see
that the dynamic response arises mainly from the participation of the first six natural modes.
If we observe Figs. 3-5 to 3-14 and Figs. 3-17 to 3-28, it will be found that the shapes of

Modes 1,
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bending moment at Section 1 as well as Modes 5, 6 and the influence line of bending moment at
Section 2, individually, are very much similar to one another. Therefore, it can be expected that
the dynamic response of Sections 3, 1, and 2 is caused mostly by Modes 1, 2, Modes 3, 4 and
Modes 5, 6, respectively. Also, from Figs. 3-17 to 3-34, the impact factors of bending moment
at Section 2 (over interior supports) are larger than those at Sections 1 and 3 because of the effect

of higher modes.

From Fig. 3-17 to 3-34, it can also be observed that all time histories for Girders 1to 3 at
the same section are in similar shape and that the dynamic increments in the center girder are
much smaller than those in the exterior girder. This is because the frequencies of bending and

torsion (Modes 1 and 2) are quite close.

3.6.3. Parametric Study Effect

of Transverse Stiffness
In an attempt to better understand the influence of transverse stiffness on the dynamic

behavior of continuous multigirder bridges, we chose three types of transverse stiffnesses, which
are: (1) the original stiffness R (see Table 3-1), (2) 5R, and (3) the stiffness of deck (without

transverse beam), for the later analysis.

The maximum static wheel-load distribution and dynamic impact factors of Girders 1to 3 at
different cross-sections, with various transverse stiffness, are listed in Table 3-4. The maximum

factors were obtained by changing the position of two-truck loading in transverse 102
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direction (refer to Fig. 3-16). It was found that Loading No.4 shown in Fig. 3-16 induces the
maximum wheel-load distribution factors of both Girders 1 and 2, while Loading No.3
induces that of center girder. The results presented in Table 3-4 were calculated by
considering good road roughness and vehicle speed of 55 MPH for spans of 64 {t.-80 ft.-64

ft.

It can be seen from Table 3-4 that: (1) With the decrease of transverse stiffness, the
wheel-load distribution factors of Girder 2 increase and its impact factors at most sections
decrease greatly. (2) The impact factors of exterior girder at most sections vary slightly with
the increase of transverse stiffness. This is because two predominant effects, the increase of
static wheel-load distribution factor and torsion, which contribute to the response of exterior
girder are offsetted by each other. (3) With the decrease of transverse stiffness, the static and
dynamic wheel-load distribution factors of exterior girder decrease and those of interior
girders increase. However, the variation of the factors at most sections is not significant.
Therefore, very large transverse stiffness in this kind of steel multigirder bridges seems to be

unnecessary.

Effect of Road Surface Roughness and Vehicle Speed

Figs. 3-35 to 3-43 give the variations of impact factors of exterior girders of three
bridges with various vehicle speeds for different road surface roughness. It can be observed
from these two figures that: (1) Under the condition of very good road surface, the variation
of impact factors at all sections vary slightly with vehicle speed and are generally less than
14 % for the bridge with span of 72 t.-90 ft.-72 ft., 30 % for the bridge with span of 56 {t.-70

ft.-56 ft., and 26 % for the bridge with span of 40-50-40 ft. (2) With the increase of road
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the sections over interior supports. (3) With the variation of vehicle speeds, the impact factors
at each section appear one or more peak values. The speed corresponding to the peak value of
impact factor generally varies with different road roughness, span lengths, and sections. If the
frequencies of both vehicle and bridge, which were excited by vehicle moving on rough road
surface, are quite close or multiple values with each other, the response of the bridge will reach
its peak value. In other words, the appearance of the peak value mainly results from the

resonance between bridge and vehicle.

Effect of Span Length

Many investigations have indicated that the span length is one of the major variables
affecting the vibration of the bridge. The AASHTO specifications give the impact equation
which is the function of the span length that is the length of span under consideration for a
positive moment and the average of two adjacent spans for a negative moment.

In order to know the influence of the span length on the vibration of continuous
multigirder bridges, the maximum impact factors of bending moment of six bridges in Girders
1 to 3 at Sections 1 to 5 for different road surface roughnesses were evaluated and given in
Tables 3-5 to 3-7. The maximum moment impact factors were computed according to the
variation of vehicle speeds from 15 MPH (24.135 km/hr) to 75 MPH (120.675 km/hr) and the
variation of transverse position of two-truck loading illustrated in Fig. 3-16. As Sections 1 and 5
as well as Sections 2 and 4 are symmetrical sections about the center section of the bridge,
respectively, only the larger impact factors of the symmetrical sections were given in Tables 3-5

to 3-7.

114



v €TEl 60°8 8v°1 171 80°€ 3
18°L 60°€1 656 S1'9 19T 6€ z € "ON
2L61 61°61 1€°91 €Tl 88°9 yS'L I
61°%1 L6l pE°8e 1192 v 11 99°61 ¢ ) 0N
ST st 63°1€ YTve R 00°+1 z pue
vE'LT €6°Z¢ €7°8€ 1997 98°¥1 pEPT I ¢ ON
0511 oL'ST pEST 19°S 19° '€ € ¢ oN
S '8 ST°61 198 oL L€ z pue
R €I'LT €€°6¢ 0r'91 el orl I 1N
0p-05-0F 8v-09-8 | 95-0L9S | #9-0849 | L06TL | 08-001-08 om0 sonoas

(13) y3ua] veds

(ssauy3noy sorlIng peoy poon AIOA)
‘so8pug jo sjuowop Surpuag jo s10j0e4 jordw] WAWIXE °G-¢ S[QRL




b6'] i L0°8T LO°bT 66°8 €6 €
99°8 08°%1 28°81 s 10°01 pS°0l z € 'ON
€L'€T 8€°07 v 95°1¢ 87°v1 Ss°v I
szl 08°Le 0T'zE LIz €0°L1 €6°61 ¢  oN
LTz phes 0g'LE 06°8¢ 991 p10T z pue
b 1¥ £8°0¥ €0°9¥ 62°9€ €0°81 0L'61 1 ¢ °N
€8°61 00°LI 15°L1 c6°81 £S°¥ 86°9 € ¢ on
vTe LL0T % yL61 66°6 0v'6 z pue
SE'1E 80°0€ $9'¥E THe oF"LI ol 1 1°N
orosov | srosmy | osorss | wosv | wosz | osoores | ——

() ySuoT uedg

(ssouy3noy voejIng prOY POOO)
'sadpug jo sjuswopy Surpuag Jo s1ojoey joedw] WNWIXEW °‘9-¢ Sl




$9°0¢ 08°LI €S°p1 €6 09°b1 6L ¢

6312 € 1e 29°1 1201 58°b1 »1°6 z € "ON

L9°0¥ £8°6¢ 90°€T 9TST SE°1T €9°81 1

65°1¢ L0°TS 16'8p 87°8E 0£°S2 YT'9€ ¢ 0N

Y TP »1°98 19°TS LLE pE'ST 19°%€ z pue

60°SL 1669 51°8¢ 29°0v 5662 SL6T I ¢ N

66°7¢ 1712 00T 0L or'91 901 € ¢ on

wiT 6L°8¢ €CvT Lb'ST LT'12 pL'ST z pue

€6°LY 19°Th ree $0°9€ 6t YE'TT I 1oN
orosor | sroosr | osoros | wosto | woen | osooros | sonoas

() p3u] veds

(ssouy3noy aorjIng peoy 23LIAY)
‘sagpug Jo sjuswoly Surpuag Jo siojpey joedur] wWnWIXey */-€ SqeL




It can be seen from Tables 3-5 to 3-7 that: (1) With very good and good surface
roughness, the impact factors of most girders of the bridge with span length of 56 ft.-70 ft.-56
ft. at Sections 1, 2, 4 and 5 are larger than those of the other bridges, while the impact factors at
Section 3 (middle span) increase with decreasing overall span length. (2) With average road
surface roughness, the impact factors of exterior girders at all sections increase with shortening
overall span. The phenomenon is due to that the rougher road surface excited the higher modes
which affects the response of exterior girders. (3) The impact factors of exterior girders are
much larger than those of interior girders and the smallest values of impact factors occurs in

center girders at most sections.

In order to explain the effect of span length of continuous girder bridges more clearly,
Figs. 3-44 to 3-46 give the curves of impact factors of exterior girder at Section 1 to 3 versus
the span length which is defined according to the AASHTO specifications mentioned above.
Figs. 3-44 to 3-46 also give the curves of impact factor evaluated based on the AASHTO

impact equation for bridges which is presented as

I= 50(3-18) L+125

in which L is span length defined above in ft.

From Figs. 3-44 to 3-46, we can observe that: (1) Two groups of the relational curves

between impact factors and span lengths shown in Figs. 3-44 and 3-45 are comparatively

consistent, especially for very good and good road surfaces. Oppositely, the relations presented
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in Fig. 3-46 are quite different from Fig. 3-44 and Fig. 3-45. This situation can be explained
from mode shapes as follows (Figs. 3-5 to 3-14): As mentioned before, the firstand second
modes dominate the response of middle span, while the impact of the side span is principally
affected by the third and fourth modes. Based on this, the vibration of both side and middle
spans is similar to that of a simple beam. Consequently, the relations illustrated in Fig. 3-44
and Fig. 3-45 for side and, middle spans, respectively, will not be much different. On the other
hand, the major effect on the response of the sections over interior supports is due to the fifth
and sixth modes which are quite different from those of simple beam, while somewhat like those
of fixed beam. As would be expected, the curves shown in Fig. 3-46 will not be consistent with
those given in Figs. 3-44 and 3-45. Therefore, it may be more appropriate to use Eq. 3-18 to
calculate the impact factor of negative moment over interior support with the distance 1, (refer
to Fig. 3-10) between two inflexion points in mode 5 or 6, approximately the sum of 0.3 side
span and 0.25 middle span length, instead of the average of side and middle spans. However, a
more feasible method for predicting the impact factors of continuous girder bridges is yet to be
developed. (2) Because of the effect of higher modes, the impact factors at Sections 2 and 4 for
all six bridges are much larger than those of the other sections, especially for rougher road

surface.

It can also be observed from Figs. 3-44 to 3-46 and Tables 3-5 to 3-7 that: (1) Most
impact factors of bending moment of exterior girders at Section 1 with very good and good
roads, at Section 3 with very good, good, and average roads as well as at Section 2 with very
good roads are lower than the values specified by AASHTO specifications. However, the impact

factors over interior supports for bridges with span of 56-70-56 ft. and 48-60-48 ft. exceed the



values evaluated by AASHTO impact factor equation. (2)Under the condition of very good and
good roads, most impact factors of interior girders are lower than the values calculated by
AASHTO impact equation. (3) Very high impact factors will be found in poor road surface.

It should be noted that the maximum impact factors presented in Tables 3-5 to 3-7 are
based on one truck in the longitudinal direction of the bridges. It may be expected that lower
impact factors will occur for more heavier design loading.

Effect of Spacing of Girders

The spacing of girders is an important parameter which affects the static wheel-load
distribution. In order to understand the influence on dynamic response of the continuous
multigirder steel bridges, the spacing of 6.5 ft. (1.9812 m) shown in Fig. 3-3 was changed to 8
ft.(2.4384 m). The maximum static wheel-load distribution and impact factors of bending
moment for the bridge with span of 64 f{t.-80 ft.-64 ft. were given in Table 3-8. The results
listed in Table 3-8 were obtained based on good road surface through changing vehicle speeds
and transverse positions of two-truck loading, as described above. It can be observed from
Table 3-8 that: (1) With the increase of spacing of girders, the static wheel-load distribution
factors of each girder increase, while the impact factors of interior girders decrease.  (2) Due
to the increase of the spacing, the effect of torsion on exterior girder increases. In consequence,
the impact factors at Sections 1 and 3 increase slightly even though their static wheel-load
distribution factors increase. However, the variation of most impact factors with the spacing of

girders is insignificant.
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Effect of Damping Ratio

In order to know the influence of damping ratio, Table 3-9 presents the impact factors of Girder 1 of
the bridge with span length of 64 {t.-80 ft.-64 ft. These data were obtained based on the conditions of
good road surface, Loading No. 4 (see Fig. 3-16) and vehicle speed of 55 MPH (88.5 km/hr). From
Table 3-9, it can be seen that the influence of damping ratio on the impact factors of each section is
different. The impact of Section 3 was affected slightly by increasing damping ratios from 0 % to 3
%. While the impact of Section 2 decreases distinctly with increasing damping ratio. This can be
explained by the fact that the fundamental natural mode is the principal contributor to the response at

Section 3 and higher modes are the dominant effect of the response at Section 2.
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CHAPTER 1V

DYNANIIC BEHAVIOR OF SLANT-LEGGED RIGID FRAME

HIGHWAY BRIDGES

4.1. Introduction

The slant-legged rigid frame bridge is one of the widely used types of highway bridges
in the world. Engineers treat the entire super- and substructures as one unit by constructing a
continuous steel rigid frame with supporting legs as shown in Fig. 4-1. This type of
construction eliminates the need for concrete piers and positions the supports away from the
lower roadway, thus giving a safer structure. Generally, this type of bridge can reduce the
depth of main girder and save the material in the super structure. Consequently, the ratio of
live load to dead load will be comparatively large. Moreover, at present, most of slant-legged
rigid frame bridges are short or medium span bridges. Therefore, the investigation of the
responses of slant-legged rigid frame bridges due to moving vehicles is very important and
practically significant. Unfortunately, little dynamic behavior of slant-legged rigid frame
bridges has been reported yet. Most previous research work on dynamic response of bridges
due to moving vehicles was concentrated on the beam/girder bridges [2, 9, 12, 14, 26, 27, 29,
31] and some other bridges [10, 16, 30]. In the design of slant-legged rigid frame bridges,
engineers use AASHTO impact formula (Eq. 3-18). However, this is still lack of reliable
scientific base.

Herein the objective of this study is to investigate the response characteristics of a slant-
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legged rigid frame bridge for one or two vehicles (side by side) passing over the bridge and to analyze
the impact due to the vehicles moving over different classes of road surface roughnesses with various
speeds. In this study, the bridge was idealized as a space bar system. The traveling vehicle was treated
as a nonlinear space system. Investigation shows that the variation of impact of bending moment
along with the longitudinal direction of the bridge is very sharp. The impact behaviors of deflection,

moment, and axial force at some design control sections are quite different.

A description of the bridge model is given first. Then, the free vibration characteristics of the slant-
legged rigid frame bridge is discussed. Finally, the impact behavior of the bridge is studied. In the
later investigation, the vehicle model, road surface roughness, and the numerical method are the same

as those described in Chapter III.

4.2. Bridge Model

Figs. 4-1 and 4-2 illustrate the analytical bridge which is chosen from Kinnier and Barton (1975). The
bridge is 214.5 ft. (65.38 m) long and consists of five three-span welded rigid frames. The two interior
supports are inclined I-shaped columns framed integrally with the welded haunched girders and
supported on concrete footing with anchor bolts attached to the web in such a manner as to allow free
rotation. The ends of the bridge are simply supported on shelf abutments with allowance for
longitudinal movements. The bridge was designed for a HS20-44 live load in accordance with
AASHTO specifications (1965). The bridge has a roadway width of 39.33 ft. (11.99 m) and 8 in.

(20.32 cm) thick concrete slab which was
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connected by shear studs with steel girders.

Based on AASHTO specifications, for composite beams, the concrete deck on the top
flange of the girder is counted for the moment of inertia of each cross section. The main data
obtained primarily from Kinnier and Barton [15] are listed in Table 4-1. In Table 4-1, the
number of segments corresponds to the numbering in Fig. 4-3 and L, I, = the moment of
inertia about ti1e z-axis and y-axis, respectively. The coordinate system used herein is a right-
handed one (Fig. 4-4). The x-axis is supposed to pass through the centroids of member sections.
For elements of frames, including main girders and legs, the y-axis is parallel to the transverse
direction of the bridge. For eleménts of diaphragms and concrete deck, the y-axis is parallel

to the longitudinal direction of the bridge.

The bridge is modeled as a space.bar system (Fig. 4-5). The dynamic response of the
bridge is analyzed by finite element method. Bridge structure is discretized into space beam
elements, including girder eléments, diaphfagms, and concrete deck. The stiffness of girder
element includes the composite action of concrete deck. The transverse stiffness of the concrete

deck is considered in diaphragm elements and concrete deck elements.

Fig.4-4 shows the orientation of a three dimensional beam element with six degrees of

freedom at each end. The node parameters of element are

(- {f;j} @-1)
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in which {8} = [y; v; w; 0, 8,; 0,1%;

{8} = [u; vy w; 04 0,5 6,17

u, v, w = transverse displacements in x, y and z directions, respectively; and

0, 0, 6, = rotational displacements in X, y, z directions, individually.

The element stiffness matrix of a prismatic beam (see Fig.4-4) can be written in the form

K] = [K], +[K], ‘ @

in which the standard linear stiffness matrix [k], is

(], = @-3)

| Sym.]

klZI klZZ

12112 Sym.

[ A
0
0 O 121)112
&y =
0
0
0

et

0 o0 GIJE

0 -6IJ1 0 4

61 0 0 0 4l
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[-A 0 0 0 0 0
0 -121J2 0 0 0 -6
2
1o E 0 o0 -12* 0 6l 0
2 1]lo o 0 -GIJEO 0
0 o0 -6, 0 21 0
A 0 0 0 21|
[ 4
0 1211 Sym.
gl 0 0 120P
k) = —
1{o o 0 GJJE
0 o0 6yl 0 4
| 0 611 0 0 0 4I

4-5)

(4-6)

A = area; L, I, = moment of inertia about z-axis and y-axis respectively; J, = torsion moment

of inertia; and 1 = length of element; and the geometric stiffness matrix [k], is

_— ]
s kgﬂ kgzz
[0
0 36 Sym.
0 0 36
o o 30(1,+1)
A
0 0 -3 0 . 42
03 0 o o0 47
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([0 0 0 0 0 O
0 -36 0 0 0 -3I
0 0 -36 0 31 0
P
N i -30( +1I -
ezl = ~35110 0 0 -——(Af J o o 4-9)
0 0 -3] 0 -2 0
0 3 0 0 0 -I*|
o |
0 36 Sym.
0 0 36 |
P |
(k501 = “30il 0 0 o 3001,+1) - 4-10)
A i
0 0 3l 0 4
| 031 0 0 0 4

The matrix [k], represents the effect of axial force on the bending stiffness of the element.
The mechanical behavior of the slant+legged rigid frame bridge is similar to that of the arch bridge.
Under dead load, large axial force will be induced in legs and central segments of girders. The axial
force will affect the response of a slant-legged rigid frame bridge. The influence of axial force
mainly depends on the span length of the bridge. Generally, the longer the span length is , the
larger the effect will be. For longer span bridges, the axial force caused by vehicle loads is
much smaller, than that induced by dead load. Therefore, hereafter, only the axial forces produced

by dead load are considered and treated as a constant in evaluating the 138



dynamic response of the bridge due to moving vehicles.

Element consistent mass matrix was used in the study and can be found in the reference

[32].
The equations of motion of the bridge are shown in Chapter III (Eq. 3-2).
4.3. Free Vibration_Characteristics

In this study, each of the longitudinal girders was divided into 52 elements and each of
the legs was discretized into 5 elements. The eigenvalue problem was solved based on the
hypothesis that the bridge is subjected to initial axial forces caused by dead load without initial
deformation. The first ten computed three-dimensional mode shapes are shown in Figs. 4-6 to
4-15. As mentioned before, the slant-legged rigid frame bridge possesses the mechanical
behavior of arch bridge. Therefore, the first mode shape is antisymmetric mode. The second
and fourth modes are vertical bending, lateral bending, and tofsional vibration modes. The third
and fifth modes are symmetric vertical bending modes. From Figs. 4-6 to 4-15, we can also
observe that the bridge has the characteristics of a continuous beam supported by two

intermediate elastic supports.
4.4. Dynamic Response
4.4.1. Assumptions
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The following assumptions have been made in the latter analysis:

1. The bridge has damping characteristics that can be modeled as viscous. One percent
of critical damping is adopted for the first and second modes according to Ruhl [20] and Wang
and Huang [30]. The mode damping coefficients were determined by using an approach

described by Clough and Penzien [3].

2. In order to obtain the initial displacements and velocities of vehicle DOF'S when the
vehicle entered the bridge, the vehicle was started the motion at a distance of 140 ft (42.67 m,
i.e., a five-car length) away from the left end of the bridge and continued moving until the entire

vehicle cleared the right end of the bridge.

3. The same class of road surface was assumed for both the approach roadways and

bridge decks. All trucks have same left and right road surface roughnesses.

4.4.2. Convergence

The number of modes used is a very important factor for the accuracy of the dynamic
responses which are calculated by mode superposition method. Table 4-2 gives the convergence
of response of exterior rigid frame, for several typical sections, with variation of number of
modes. Section 1 is located 20.73 ft. (6.32 m) away from left end support. Sections 2 to 4 are
located near the haunch. Sections 5 and 6 are the fourth point and mid-span of the central span,
respectively. Sections 7 to 11 are symmetrical to Sections 5 to 1. The results were obtained
according to vehicle speed of 55 MPH (88.5 krrl/hr), good road surface, and symmetric loading

of two trucks (see Fig. 4-16, Loading No: 'l). It can be seen from Table 4-2 that the i
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convergence of the responses varies with different sections. The response of middle span
converges much faster than that of side span. Generally, the response of middle span can
reach satisfying results with ten modes. For side span, at least 25 modes should be used in
order to obtain reasonable dynamic response. It is obvious that the needed number of
modes depends on different sections, structures, and mechanical modes used. For the
planar bar system mode, less number of vibration modes will be needed to gain the

required accuracy (30]. In the latter investigation, thirty modes will be used.

4.4.3. Representative Histories

Twenty eight time history curves for the bridge are shown in Figs. 4-17 to 4-44. The
curves in Figs. 4-17 to 4-35 are for the moment. The history curve of deflection at Section 6
is demonstrated in Figs. 4-36 to 4-38. Figs. 4-39 to 4-44 present the histories of axial force at
Sections 4 and 6. The abscissas in Figs. -17 to 4-44 are the distance measured from the left
end of the bridge to the front axle of the vehicle. The results illustrated in those figures
were obtained in accordance with good road roughness, symmetric loading of two trucks
and vehicle speed of 45 MPH (72.4 km/hr). The solid lines represent the dynamic response,
while static response is indicated by dotted lines that can be considered as static influence
lines if we treat the truck loading as a unit. Concerning the curves given in Figs. 4-17 to 4-
44, the following phenomena can be drawn: The major attribution to the dynamic response
of middle span arises from the participation of the first four natural modes. The higher
modes greatly affect the dynamic response of side span. The dynamic responses for moment
and deflection at Section 6 (mid-span) are quite different. The maximum dynamic
deflection is 15% larger than the maximum static deflection. The maximum dynamic

moment is 10.3% smaller than the

153



‘1 SWel JO | UOITOAS I8 JUSWO JO SIUOISIH L]- “S1d

~ (9)EONVISIa _
0Ge 002  0ST 001  0G 0

“ 02T —

rO7—

DINVNAQ —
DILVLS -

02T

("3—d]) INANOW



*Z JWEL] JO | UONOAS JB JUSWOIN JO SOUIOISTH 81 -F “S1d

("YJ)AONVLSIA

0sZ 002  0CT 00T 0C o
“ N — 02T —
109 =
=
0 =
2
—
FARLCI=
T 02T TH
DINYNAQ — ,H
ITLVLS | Lot

Ovc



"€ QWIBl,{ JO [ UOIDSS JB JUSWON JO SQUOISIH 61- "S1d

("1J)HONV.LSIA

00¢ 0G1 001 0G

ncml

DINYNAQ —
DILVLS -~

06
001
-0GT
-00¢

-0Gc

00€

(17—d1s) INAWOW

0G1—
1001 —



*] SWRlY JO 7 UOTOAS Je JUSWON JO SAUOISIH OZ-+ “S1d

(")AONVLSIA

062 002 0GT 00T 06 0
| _ “ “ “ 00c—
}O@._Hli W
O
00T — =
=
- tos— 3
g0
I I t0g
OINVNAd — NG
DILVLS - 1001

0G1



"7 dWel JO T UONIAS Je JUSWO JO SQUOISIH [Z-p “S1d

(‘1) EONVLSIA

0G<2 007 0G1 001 0C 0
“ | “ | 00F —
/ \ T008— =
S
T OONI =
- N
—3
... 1|OO._HII A~
.
AUTN ; o Tﬁ_u
<<Z<.<<£< 7
DINVNAQ — =
DILVIS -~ 1001

00¢



"€ SWelL JO 7 UONJAS 1B JUSWON JO SSUOISIH ZZ-v "SI

(")HIONV.ISIA
0G2 002 0G1 00T 0G

| I 1 ]

I

00G—
-007—,
-00E—

-00c—
-00T1 —

)>> N T
VAT owvNaag —
IIVLS

001

00¢

NHWOW

—

("1F—d)



"] SWeI JO € UONOAS JB JUSWO JO SOUOISIH €7-1 S

(")ADONVLSIA

062 002 0G1 001 0G 0
| 3 | | 00F —
+00€— =
=
+002— B
Z,
o]
+00T— —~
2
A O
ULAS R
DINVNAQ — =
OILVIS 700l

00¢c



*7 SWRIL JO ¢ UONIAS JB JUSWOIN JO SSUOISIH +Z-p “Sig

("M)EDONVISIA

00g2 0G1 00T Om O

| | " “ 00C—
o f00b—
, =
T008— =
=
r002— 3
. +001— 2.
S \ ) - d
) v>>< > ..... 0 T_+..
VUV omvnaag — WY &

DILVLS - 1007

00¢<



"€ SWeRI JO ¢ UONJAS B JUSWON JO SIUOISIH SZ-p “S1g

(")ADONVISIA

0Ge 00¢ 061 00T - 0¢ 0
| | | | 009—

m .

T 00V — =

=]

=2

-

1002— ~

| &)
\ =

T A N s . .
aTiT 0 *
VYUY DINVNAQ — N

DILVLS -

00¢c



"1 SWelq JO $ UONJAS I8 JUSWOW JO SIUOISIH 9Z- “Sig

(")EONVISIA

062 00¢ 0G1 00T 0¢G 0
| “ | | 008 —
1002
00T —
0
DINVNAQ — 00T
OILVLS

00¢

("—dnD) ININOW



*Z SWel] JO p UONJAS T8 JUQWON JO SSUOISTH L7-¥ "1

("1)IONVISIA

0G2 002 0GT 00T 0G 0
| | “ | 007 —

=
O
-002— =
=
00T 5
A B \H._}
WV 0 2
00T
DINVNAQ — | ~
DILVLS -~ 00<

00¢




0G<c

"€ QWEI JO p UOTIOIS I8 JUSWON JO SOUOISTH §Z-b "S1d

("13)IONVILSIA

0G1 00T 0G

DINVNAQ —
DILVLS -~

1001

T0GC

00¥

("H—-dx) INIWNOW



‘] SWel JO 9 UONJAS I8 JUSWON JO SOUIOISIH 6Z-¥ “S1d

(") ADONVLSIA

00¢ 061 001 0¢ 0
| | | | 00T —
VARRETiA 0 3
, =
001 il
\XJ
1002 5
|
.M,
DINVNAQC — 7008 <+
OILVLS -~

007



*Z dWRI] JO 9 UOTIDAS JB JUSWON JO SIUOISIH O¢-4 "SI

(") ADONVISIA

062 00¢ 0G1 00T 0G 0
| | | — 00T —

S _
=
T001 =
Z,
—
002 —~
o)
tooe S
._._._. ...\.‘ H:u
e/ ODINVNAAd — +00%

o DILVLS -~

005



‘€ SWel JO g UOIIAS JB JUSWON JO SIUOISIH [¢-p 311

(") HIONVILSIA

0S2 002 06T 00T 0G 0
“ | | “ 00T —
>>>>><> A AVAVAYA DN SN O
AAVAS'RAVI
A 00T
1002
100¢
100¥
DINVNAAD — |
DILVLS - V05

009

("13—d3]) INIWOW



‘€ QWBIJ JO § UONOAS I8 JUWOA JO SIUOISIH ZE- “S1q

(1) IONV.ISIA

0ce 002  0ST 00T 0G 0
“ | S 009—
S
00— S
=
Z,
—
002 =
7
,,<><,,, < O ﬂw
OINVNAd — , ~
OILVIS

002



*€ QWEIL] JO § UONJIS I JUIWOW JO SILOISIH £€-1 "t

("Y)IONV.ILSIA

0SZ 002  0ST 007 0G 0
Ho0v— _
O
tooe— =
=]
tooz— &
loor- &
O
<<<< ,<?> ><><><<<4 0 1
..... —+
DINVNAQ — << Loo1 ~—
OILVLIS

00¢



"€ QWEIL JO ()] UONJAS Ie JUSWON JO SOUOISIH $¢- 31

(")EDONV.ISIA

0G<c 00¢c 0G1 001 0G

S DINVNAQ —
DILVLS -

—e

002

00¥

("H—dy) LNANOW



0G¢c

"€ QW] JO ] UONIAS I JUSWOJN JO SSUOISIH Se- Sy

("J)IDNV.ISIA

0032 0G1 001 06 0
| | | | 002 —

1001— 5
=

VAN N N A A —n
<_<><-<.<<-q-< O m
=
+00T g

__

DINVNAG — 7002 —

OILVLS -~

00€



‘] SWeL] JO 9 UOIJAS 8 UONIAJI( JO SOUOISTH 9¢-p “S1q

("H)AONVLSIA

0sZ 002 0ST 00T OGS O
“ - “ | 00T 0—
RRTR 0000
]
—
T00T 05
S
@)

|
+

- =)
) )
) @)
( UI) N

DINVNAQ —
OLLVLS -

00% 0



"761 SWeI] JO 9 UOIIS I8 UoNII[Jo( JO SAUOISIH L¢-1 T1

(‘YIONVLSIA
0S¢ 00¢ 0C1 001 0§ 0

| | | | 00T 0—

0000 5

2

T0010 =

s

70020 =

Z

1008 0>

-

DINVNAQ — 100%°0
OILVLIS -

00S'0




€61 dWel] JO 9 UONIAS J8 U0NIJ(J JO SOLIOISIH 8- 31

( "34)3DNVLSIA 0S¢ 00Z OST 00T 0S O

000°0

| | | | 00T "0O-

T 00¢°0
T 00€°0
T 00¥°0

T 00S°0
DINVNAQ — |
DIIVIS -~ 00970




'] SWRI JO { UONOAS I8 2010, [RIXY JO SOUOISIH 6¢-¥ "Sig

(")EONVISIA

0G1 001 0G 0

“ 08—

4 ONII

1{0._H|

,, et >>..>«>,.\><,>§> 0
il

DINVNAD — TO1
OILVLS

0¢

(d1s) §DH0d TVIXV



*Z SWeL] JO § UONJAS JB 300 [BIXV JO SQUOISIH Op-v "Sid

(") IONV.LSIA

qce 002 0Sl 001 05 0
\ Ay -->.-.\>\>\/\\v/\<
YEMvial
OINVNAd — +
DILVLS ~-

o o o O
AVER AR N (G
| | | |

-) -) o O
02 — ' —
|

(A1) H0¥0d TVIXV



€ SR JO 4 UONOAS I8 90104 [BIXV JO SSUOISIH [4-p “S1d

("Y)HIONVISIA

0SZ 002  0GT 001  OC 0
| “ | | 0/—
loml
lcmll
|O._Hl|
>D\ﬁ>>\/
<<<<<<<<<
DINVNAQ — 701
OILVLS

-
™

(d131) 30¥0d TVIXV



‘] dWeld JO 9 UOUOAS I8 3010 [BIXY JO SSUOISIH Th-p "Sid

("J)IONV.ISIA
0G2 002 0ST 00T 0G

O

- -, -
a2 e <
I |

-
ﬁ .
|

OINVNAAd —

DILVLS -

-

-
O
A um

-)
AV,

(d15) 40904 TVIXV



0Gc

‘7 SWEL] JO 9 UOIAS 18 30104 [BIXY JO SIUOISTH €p-p 31l

("13)dONVLSIA
0GT 00T

DINVNAQ —
OILVLS

0
0% —
T0E— W
=
T0c— O
=]
O
T0T— &
Q
=)
0 Ww
o
101 ~

-
o\



‘€ QUIRL] JO 9 UONIAS J& 30104 [BIXY JO SOUOISIH bh-p “F1d

("H)IONVILSIA
0Ge 002 0GT 00T

-

- - -
QA A <
| | |

|

1
-
i

|

OLLV.LS

DINVNAQ —

-

-
<

Q .
A2

(d1s]) HDHO0d TVIXV



corresponding static moment. These differences are due to the fact that the shape of the static influence
lines are different in the two cases. The variation of the influence line for moment along the span length
is much sharper than that for deflection. Consequently, the length, under which static responses are
comparatively larger, for moment is much shorter than that for deflection. ~ The static influence lines
of axial forces at Sections 4 and 6 are similar. Their dynamic axial forces will mainly be affected by
symmetric modes. It can be expected that the dynamic axial forces at those sections will not have much

difference.

4.4.4. Effect of Loading Position

In order to know the effect of lateral loading position on the dynamic response of the slant-
legged rigid frame bridge, the transverse wheel-load distribution factors and impact factors of each
frame for symmetric and asymmetric one truck loading cases (see Fig. 4-45) were evaluated and given
in Table 4-3. The wheel-load distribution factors acquired for the study is defined the same as in

Chapter III (Eq. 3-16). The impact factor is defined the same as in Chapter III (Eq. 3-17).

The results illustrated in Table 4-3 were determined on the basis of 55 mph (88.5 km/hr) vehicle
speed and good road surface. From Table 4-3, we can observe that: (1) For most section, the loading
position affects the impact of each frame greatly. With symmetric loading, the larger the static wheel-
load distribution factor is, the smaller the impact factor will be. Under asymmetric loading, most impact
factors of exterior frame are larger than those of Frame 2. This is due to the influence of torsion. (2).

The influence of loading position on the impact of axial force of girders is comparatively small.
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4.4.5. Effect of Vehicle Speed and Road Surface Roughness

Figs. 4-46 to 4-49 gives the variation of impact factors of exterior frame with vehicle
speed and road surface roughness for asymmetric loading of two trucks. This figure presents
some information about the effect of vehicle speed and road profile. With variation of vehicle
speed, one or more peak values of impact appear. The speeds at which the peak value of impact
occurs change with different sections and different types of internal forces. The primary reason
for that is the different sections and types of internal forces have different shapes of static
influence lines and their dynamic responses will be dominated by different vibration modes.
However, under the situation of very good and good road surface, the impact factors of each
section are slightly affected by the variation of vehicle speeds. With increasing the road surface

roughness, the impact factors of each section increase tremendously.

4.4.6. Effect of Static Axial Force

The effect of axial force caused by dead load was demonstrated in Table 4-4. The results
shown in the table were calculated under the conditions of 55 MPH (88.5 km/hr) vehicle speed
and good surface roughness. From Table 4-4, the following conclusion can be drawn. The
present of axial force induced by dead load will increase the dynamic moment and deflection at
Sections 3 and 6. But the increase is limited for the slant-legged rigid frame bridges with short

to medium span length.

4.4.7. Effect of Damping Ratio

Table 4-5 gives the variation of impact factors of exterior frame with the damping ratios changing

from 0 to 3 % . The results shown in Table 4-5 were computed according to good road
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surface and 55 MPH (88.5 km/hr) vehicle sped. From Table 4-5, it can be seen that the
dynamic response decreases with increasing damping ratios. However, the influence of damping ratio on
the impact of bending moment at mid-span and axial force at Section 3 is comparatively smaller, while

that of the others are relatively larger.

4.4.8. Maximum Impact Factors

According to the foregoing analysis, the impact is greatly affected by lateral load position,
vehicle speed, and different sections. Therefore, it has more practical significance to obtain the maximum

impact factors at several control sections.

Table 4-6 gives the maximum impact factors of some typical sections. Only the larger
responses of the symmetric sections were listed in the table. The maximum responses were obtained
through changing vehicle speeds from', 15 MPH (24.14 km/hr) to 75 MPH (120.68 km/hr) and the
transverse loading positions of vehicles, which were found that the Loading No.2 (see Fig. 4-16) will
induce the maximum static response of Frames 1 and 2 as well as Loading No. 1 (see Fig. 4-16) will
produce that of center frame. From Table 4-6, the following results can be obtained. The maximum
impact factors f interior frame, for bending moment of side span and middle span as well as for axial
force of slant legs, are much less than those of exterior frames; while the maximum impact factors of
each frame for axial force of middle span and moment of slant legs are comparatively uniform. It is
worth noting .that: the dynamic characteristics of moment for side span and middle span appear to be
similar to those of axial force for slant legs; the dynamic behavior of ax~al force for middle span is
similar to those of bending moment for slant legs. It can also be found from Table 4-6 that the maximum

impact
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factors for axial force and moment are quite different, especially at Sections 3, 5 and 6. The impact of
axial force at Sections 5 and 6 is extremely larger than that of moment at the same sections. On the
contrary, the impact of momen' at Section 3 is greatly larger than that of axial force. In this situation,

giving the same impact 'actor to different kinds of internal forces seems to be unreasonable.

I

Table 4-6 also gives the impact factors calculated by Eq. (3-18). From the table, it can be seen
that, provided with very good road surface, the maximum impact factors obtained by the present theory
at most sections are less or close to the values determined by Eq. (3-18). It should be mentioned that
the impact factors for Moment at Sections 5 and 6 are distinctly smaller than the value evaluated by Eq.
(3-18), while the impact factors of axial force are a little larger than the value. On the whole, based on
AASHTtO specifications, the design for sections 5 and 6 may seem to conservative if bridges have very'
good surface roughness. With increasing road surface roughness, the maximum impact factors", can

reach high values.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

In this study, according to the Type 3, Type 3S2, and Type 3-3 truck rating vehicles specified
in the AASHTO Guide Specifications for Strength Evaluation of Existing Steel and Concrete Bridges

[8], three nonlinear vehicle modes with nine, sixteen, and eighteen degrees of freedom are developed.

Then, six continuous multigirder bridges with different span lengths are designed based on the
Standard Plans to Highway Bridge Superstructures of U. S. Bureau of Public Roads. The continuous
multigirder bridges are modeled as grillage bea nm systems. The effects of transverse stiffness, road

surface roughness, vehicle speed, span length, spacing of girders and damping ratio are analyzed.

Finally, the slant-legged rigid frame bridge is modeled as a space bar system. The effect of
axial force, caused by dead load, on the dynamic response of the bridge is considered. The free and

force vibration characteristics, including parametric study, are studied.

Maximum dynamic responses of continuous bridges I and slant-legged rigid frame bridges are
determined for two trucks (side by side) through changing their transverse positions with different
speeds and road surface roughness. The conclusions of the research for continuous beam bridges are

summarized as follows:
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1. Impact factors of each girder of continuous multigirder bridges are closely related to its

wheel-load distribution factors. The larger the load carried by a girder, the smaller the impact factors

will be.

2. Impact factors of exterior girder are affected by both vertical (z-direction) and torsional
accelerations of the bridges. Generally, the static and dynamic wheel-load distributions of girders are
different and the impact factors of exterior girders of the steel girder bridges are greatly larger than
those of interior girders. For this reason, it is not suitable to assign same value of impact factor to all

girders in the steel I, bridge design practice.

3. Because of the influence of higher natural frequencies, the impact factors of sections over
interior supports are larger than the other sections and the impact of side span is generally larger than

the impact of middle span.

4. Under the conditions of very good road surface roughness, the impact factors of most
sections of exterior girders of six continuous bridges are less than 30 %. The impact factors of most
sections of interior girders are less than 25 %. However, the impact factors increase tremendously with

increasing road surface roughness and very high impact will occur for poor road surface roughness.

5. Most impact factors of the six bridges at Section 3 (middle span) with average or better road
surface, at Section 1 or 5 (side span) with good or better road surface and at Sections over interior

supports with very good road surface are less than those calculated by AASHTO

190



impact equation. Nevertheless, the impact factors over interior supports for bridges with spans of
56-70-56 ft. and 48-60-48 ft. may exceed the value evaluated according to AASHTO impact factor
equation. It seems more suitable to take the sum o~ 0.3 side span length and 0.25 middle span
length, instead of the average of side and middle sp~ lengths, as L defined in AASHTO impact

formula. Nevertheless, more reasonable impact formula needs to be developed.

6. With the increase of transverse stiffness, the static and dynamic wheel-load distribution
factors of exterior girders increase and those of interior girders decrease. However, this variation of
the factors at most sections is insignificant. Based on this situation, too large transverse stiffness in

this kind of steel multigirder bridges seems to be unnecessary.

7. With changing the spacing of girders from 6.5 ft. to 8 ft., the static wheel-load factors of
each girder increase and the impact factors decrease, except that at Sections 1 and 3 of exterior
girder. Basically, the variation of maximum impact factors with the spacing of girders is not

significant.

8. The existence of damping decreases the response of the bridges, but the influence of
damping ratio on the impact of each component is different. The response of sections over interior
supports was affected significantly by damping ratio, while the influence of damping ratio on

Section 3 (middle span) is comparatively small.

The conclusions of the investigation for the slant-legged rigid frame bridge are:
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1. The existence of the static axial force increases the dynamic response of mid span and legs,

but the increase is small for the bridges with short to middle span lengths.

2. The number of vibration modes used in the proposed numerical procedure is very
important. It depends on different sections and (,different types of responses. Generally, thirty modes

are quite enough for all responses of slat-legged rigid frame bridges.

3. Lateral loading position greatly influences the impact of bending moment of girders and the
impact of axial force of legs.. Generally, the larger the wheel-load distribution factor is, the smaller
the impact will be. The dynamic behavior of this bridge is similar to that of beam/girder bridges [12,
31]. The effect of lateral loading position on the impact of axial force of each girder is comparatively

smaller.

4. With changing vehicle speed from 15 MPH (24.14 km/hr) to 75 MPH (120.68 km/hr),
impact factors of each section will appear one or more peak values. However, on the basis of very
good or good road surface roughness, the variation of impact factors with vehicle speeds is relatively

small. With increasing road roughness, the impact of the bridge increases significantly.

5. Increasing damping ratio will decrease', the dynamic response. Nevertheless, the effect of
damping ratio varies with different sections and different types of internal forces. The impact of
bending moment at mid-span is slightly affected by changing damping ratios from 0 % to 3 and the

effect of damping ratio on the others ar6 comparatively larger.
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6.The maximum impact factors of the slant-legged', rigid frame bridge vary with different
frames, sections, and different types of responses. Owing to the effect of torsion, the maximum impact
factors of exterior frame for moment of side span and middle span as well as for axial force of slant legs
are greatly larger than that of interior frames. The maximum impact factors of each frame for axial force

of middle span and for moment of slant legs do not have much difference.

7. The maximum impact factors of moment and axial force at most sections are quite different.
For middle span, the maximum impact factors, of axial force are significantly larger than those of
bending moment. Oppositely, for legs, the maximum impact factors of axial force are greatly smaller
than those of moment. Under this situation, it seems to be unreasonable to give same impact value to
different types of responses in the bridge design practice. Moreover, the impact factors of deflection at
Section 6 are distinctly, larger than those of moment. It is not suitable to take the impact factor of

deflection as that of ,internal forces.

8. Provided with very good road surface, the maximum impact factors at most sections are less
than or close to the values determined by AASHTO specifications. Although, the maximum impact
factors of axial force at Sections 5 to 7 are a little larger than the value specified by AASHTO, those of
moment are greatly smaller than the value. On the whole, the design for Sections 5 to 7 may seem
conservative. However, with increasing road surface roughness, the maximum impact factors will

distinctively exceed the impact values specified by AASHTO.
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The study in this phase is devoted to the impact analysis of straight girder/beam bridge;

In Phase III, the dynamic investigation of curved bridges will be carried out.
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APPENDIX

EQUATIONS OF MOTION OF VEHICLE MODELS

A.1 Type 3 with 9-DOF’s Vehicle Model

I. Degrees of Freedom and Masses of Each Rigid Body:
1. y4, my: Truck vertical displacement and mass
2. ¢y, Iy Truck roll displacement and mass moment of inertia
3. 0,, Iyy:  Truck pitch displacement and mass moment of inérti;
4. y., m,: The first axle vertical displacement and mass
5. @u» Ly:  The first axle roll displacement and mass moment.of inertia
6. y.2, m,:  The second axle vertical displacement and mass
7. ¢, Las:  The second axle roll displacement and mass moment of inertia
8. ya, M3t The third axle vertical displacement and mass

9. ¢, L The third axle roll displacement and mass moment of inertia

II. Relative Displacement at Spring Locations:
1. Suspension Springs:
Ut = (Yu - Ya) + (8/2)(@y - b)) + L6y
Uz = (u - Ya) - (8/2)(bu - b)) + Liby
Uys = (Yu - Yo) + (5/2)(dy - 6) - Ly

Usy4 = (Yu - Ya2) - (5/2)(dy - b)) - Ly
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Ugys = (Yu - V) + (85/2)(dy - 93) - (1L +1,)0,

Uys = (Vu - Yo) = (5/2) (b - b) - (16,

2. Tire Springs:
Uy = Yu + (@/2)by - (usny)
Uy = Yur - @/ - (Us0)
Uys = Yo + (/2 - (usps)
Ups = Yoo - ([@/Dbss - (Uspa)
Uys = Yoo + (05/2)bys - (-Usps)
Uys = Yo - (@5/2)s - (Use)

in which: ug; = road surface roughness under the ith wheel (positive upwards), i = 1 to 6.

III. Equations of Motion:
1. Vertical Displacement of the Truck, y,:
m,y, + (Fy1 + Fyp + Fy3 + Fyy + Fy5 + Fyg) + (Fugyy + Faypp + Fyyys + Fygpq +
| Fyys + Fuye) = myg
2. Roll Displacement of the Truck, ¢,: ‘
Labu + (8/2)Fr - By + (5/2)(Foys- Fy) + (53/2)(F,;; - Fyye) + (81/2)(Fasys - Fap2)
+ (s,/ 2)(Fday3 - Fyya) + (ss/ 2)(Fd|y$ - Fuye) = 0
3. Pitch Displacement of the Truck, 6,,:
Iy, + Li(Fy1 + Fp) - 14(Fyys + Fo) - (I + 1)(Fys + Fye) + L(Fay + Fag) -
L(Fays + Fupya) - (I + L)(Fasys + Faye) = 0

4. Vertical Displacement of the First Axle, y,,:
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m, Y, - (Fg1 + Fypp) + (Fyy + Fyp) - (Fuyr + Fugo) + (Fayn + Faya) = my8
5. Roll Displacement of the First Axle, ¢,;:
Lubu - G/ (Fy1 - Fpp) + (di/2)(Eyy - Fy) - (31/2)(Fagyt - Faays) + (d1/2)(Fayy
-Fy4) =0
6. Vertfcal Displacement of the Second Axle, y,,:
Mo - B + Fa) + s + Fy) = Fays + Fa) + Faps + Fu) = g
7. Roll Displacement of the Second Axle, ¢,,:
Lagbia = (5/2)(Fuys - Fya) + (d/D(Fys - Fua) - (5/2)(Fieys - Faga) + (d/2)(Fuys
-Fuye) =0
8. Vertical Displacement of the Third Axle, y,,:
MuY .3 - (Bys + Fye) + (Fys + Fue) - (Fays + Fage) + (Fays + Fuye) = Mg
9. Roll Displacement of the Third Axle, ¢,,:
L = (53/2)Fuys - Fye) + (d3/2)(Fys - Fye) - (85/2)(Fugys - Faye) + (d5/2)(Fuays
- Faye) =0
in which: F,; = K, Uy; + Ey;, Fa = DU
Fy; = KUy, Fayi = DUy, i = 110 6, and

F,; = the friction force at the ith suspension.

A.2 Type 352 (FDOT Truck) with 16-DOF’s Vehicle Model

I. Degrees of Freedom and Masses of Each Rigid Body:

1. yy, my: Tractor vertical displacement and mass -
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10.
11.
12.
13.
14.
15.

16.

- Pus Ixuf
. 0y, Ly:

. Yo, My:
. o, Lot
.0, Ly:

« Yar, My
. ats Lt
« Va2, Myt

¢32) Ixn2:

Yas» m,s:

b5y L

YA3’ m.s:
¢a3’ Ixﬁ:
Yaar Myt

qsa«t, IxM:

Tractor roll displacement and mass rrioment of inertia

Tractor pitch displacement and mass moment of inertia

Trailer vertical displacement and mass

Trailer roll displacement and mass moment of inertia

Trailer pitch displacement and mass moment of inertia

Steer axle vertical displacement and mass

Steer axle roll displacément and mass momént of inertia

Vertical displacement and mass of forward axle of tractor tandem

Roll displacement and mass moment of inertia of forward axle of tractor tandem
Vertical displacement and mass of aft axle of tractor tandem

Roil displacement and mass moment of inertia of aft axle of tractor tandem
Vertical displacement and mass of forward axle of trailer tandem

Roll displacement and mass moment of inertia of forward axle of trailer tandem
Vertical displacement and mass of aft axle of trailer tandem

Roll displacement and mass moment of inertia of aft axle of trailer tandem

II. Relative Displacement at Spring Locations:

1. Suspension Springs:

U, =
Uy, =
Uy =
Uy, =

UsyS =

(Yu - Ya) + (8/2)($u - da) + Lsby
Yu = Ya) = (8/2)(by - d) + 16y
(Yu - Ya) + (%/2)(¢u - $2) - 1eu
(Y - Yo - (8/2)(bu - b22) - LBy

(Yu - Yu) + (8/2)(@y - ¢u3) - (L1160,
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Uys = (Yu - Vo) - (55/2)(u - dw) - (b +1e)0y

Uyr = (Yo - Yas) T (54/2)(dg - du) - Libo.

Ugs = (Yo - Yas) = (54/2)(be - Su) - Lb

Uns = (o - Yes) + (/22 - 69) - (4F1s)00

Upio = (e - Yos) - (55/2)(ba - $19) - (ut1)6g
2. Tire Springs:

Uyt = Yu + ([d1/2)¢y - (-Usp1)

Uy = Yar - (@21 - (Usra)

Uys = Yo + @D - ()

Uys = Ya2 - (6:/2)90 - (-Uspa)

Uys = Yo + (d3/2)¢y - (-Usrs)

Uys = Yus - (d5/2)93 - (-Usrs)

Uyr = Yu + (d/2)dy - (-Usw)

Uys = Yt = (de/2)dbps - (-Uspe)

Uys = Yas + (ds/2)dys - (-Uspo)

Uyto = Yas = (d5/2),s - (-Usrio)

in which: ug = road surface roughness under the ith wheel (positive upwards), i = 1 to 10.

III. Equations of Motion:
1. Vertical Displacement of the Tractor, yy:
My¥y + (Fyy + Fyy + Fys + Fou + Fys + Fye) - (W/lg)(Fyy + Fy8) - (/1) +
I)(Fys + Fyo) + (Fagi + Fayz + Fays + Fuaya + Fagys + Fage) - (Is/1g)(F4y7 +

Fuys) - (1/15)(14 + L)(Fayyo + Fasyro) = myg
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. Roll Displacement of the Tractor, ¢,:

Im.¢'>u_ + (8/2)(Fy1 - Fya) + (8/2)(Foy3 - Fpp) + (85/2)(Fyys - Fyy) + (81/2)(Fasy1 - Fugy)
+ (8/2)(Fayy3 = Fagya) + (835/2)(Fagys - Fagye) = 0

. Pitch Displacement of the Tractor, 0,:

Inby + L(Fyyy + Fyp) - L(Fys + Fo) - (b + L)(Fys + Fuye) + Lils/l)(F,y7 +Fys)
+ (/1) + L)(Fos +Fp10) + L(Fagr + Fuya) - 16(Fuys + Faga) - (1 + 16)(Fuyys
+Fuye) + 11(lo/1g)(Fusyr +Fagys) + /1)1y + 15)(Fugys +Fugyr0) = O,

. Vertical Displacement of the Trailer, yy,:

MyuYp - (/L) (Fyr + Fyp) + (e/1)(Fys + Foa) + (1)1, + 1)(Fys + Fye) + (Fyy
+ Fys + Fyo + Fyuo) - (s/l)Fygn + Fd;yz) + (/1) (Fayys + Fagya) + (/1)1 +
16)(Fdsy5 + Fd.yé) + (Fdsy7 + Fyys + Fagyo + Fyyi0 = mpg

. Roll Displacement of the Trailer, ¢,,:

Lobe + (84/2)(Fy7 - Fyg) + (sslz)iF,yg - Fy10) + (54/2)(Fayy7 - Fagys) + (55/2)(Fyeys -
Fyy10) = 0

. Pitch Displacement of the Trailer, 0,:

Loh o - (1s/1)(Fy + Fyp) + L(1/1)(Fyys + Fype) + (/)1 + 1)(Fyys + Fpe) - L(Fyyy
+ F,5) - (1, + 19)(F,y9v + Fy10) - ls/l)(Fagy1 + Fogp) + 15(06/1)(Fogys + Fuga) +
('113/17)(12 + 16)(Fasys + Fuyye) - Io(Fagy7 + Fags) - (4 + 1) (Fyyy9 + Fygpp0) = 0

. Vertical Displacement of the Steer Axle, y,:

MY - Fyr + Fpy)) + (Fyr + Fyp) = (Fagt + Fay) + (Fan + Fayd) = my8

. Roll Displacement of the Steer Axle, ¢,;:

Lu®u - 5/2)(Fpyy - Fup) + (d/2)(Fys - Fy) - (51/2)(Fagyr - Fayyd) + (d1/2)(Fayy

- thyz) = O
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9.

Vertical Displacement of the Forward Axle of the Tractor Tandem, y,,:

mﬂ-);ﬂ - (Fys + Fy) + (Ftyl + Fyq) - (Fuyys + Fyga) + (Fays + Faye) = myg

10. Roll Displacement of the Forward Axle of the Tractor Tandem, ¢,;:

11.

12.

13.

14,

15.

16.

in WhiCh: F,yi = K,yi

Lot - (/2)(Fys - Fue) + ([@/2)(Fys - Fua) - (5/2)(Fasys - Faa) + (4/2)(Fays
- Faya) =0
Vertical Displacement of the Aft Axle of the Tractor Tandem, y,;:
Mgy - (Fys + Fys) + Fys + Fye) = Fays + Fayys) + (Fays + Faye) = Mg
Roll Displacement of the Aft Axle of the T}actor Tandem, ¢,;:
Lt - (/2)([Fys - Fue) + (d/2)(Fys - Fyg) - (53/2)(Fagys - Fags) + (d5/2)(Fuys
- Fuye) =0
Vertical Displacement of the Fon&a:d Axle of the Trailer Tandem, y,:
My - Fuyr + Fys) + Fyr + Fyg) - Fay7 + Fag) + Fayr + Fay) = Myeg
Roll Displacement of the Forward Axle of the Trailer Tandem, ¢,,: |
Labu - (/2)(Fy7 - Fyg) + (d/2)(Fys - Fys) - (5/2)(Farys - Fags) + (d4/2)(Fuyy
- Fuys) = 0
Vertical Displacement of the Aft Axle of the Trailer Tandem, y,:
MsY,s - (Fyo + Fyyio) + (Bys + Fyi0) - Fays + Fagyro) + (Fays + Fayio) = Mysg
Roll Displacement of the Aft Axle of the Trailer Tandem, ¢,s:
Lus$as = (35/2)(Fays - Fyio) + (ds/2)Fr - Fyio) - (55/2)(Fanys - Furyio) + (ds/2)(Fuyo
- Fiyi0) = 0

+ Fyi’ Fdsyl =D

syi syi“ syi»

Ftyi = KtyiUtyi9 Fdlyi = Dtyiillyi: i=1to 10, and
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II. Relative Diéplacement at Spring Locations:
1. Suspension Springs:

Uyt = (Yu = Ya) + (8/2)(by = bu1) + leby
Ugz = (Yu = Ya) = (81/2)(bu - 1) + LBy

Ugys = (Yu - Yu) + (5/2)(by - b22) - 1By
Uss = (Yu - ¥ad) - (8/2)(bu - $u2) - Ly

Ugys = (Yu - Yu) + (5/2)(@y - $u3) - (L+1)0y
Ugs = (Yu - Ya3) - (53/2)(du - b3) - (L+1)6y
syv = (Yo - V) + (/b0 - 6.0) + Lb,
Uys = (Yo - Ya) - (8/2)(d2 - $u) + Lo
Uys = (Y2 - Yus) + (55/2)(dg - bus) - 1116,
Ui = (Ve - Yas) - (55/2)(dg - $us) - 1100
Uy = (Yo - Yae) T (8/2)(be2 - b1e) - (5+1;)0
Uyiz = (Yo - Vi) - (8/2)(dg - $4) - (s+111)00

2. Tire Springs:

Uyt = Yu + (d/2)¢y - (Uspy)

Uyz = Yu - (d/2)d,; - (-usp)

Uys = Yu + (/)¢ - (-Usgs)

Uys = a2 - (do/2)db,3 - (-Usra)

Uys = Y3 + (ds/2)dy3 - (-usps)

Uys = Y - (d3/2)d,3 - (-Usgo)

Uyr = Yu + (d/2) 9y - (-Usgr)

Uys = Yas - (d4/2)d,4 - (-Usgg)
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Uy = Yus + (d5/2)ss - (isgo)
Uyio = Yas - (ds/2)bss - (-Uspro)
Uyt = Yas + (de/D)bas = (-Usmp)
Uyiz = Yas - (46/2)bus - (-Usmro)

in which: ugy = road surface roughness under the ith wheel (positive upwards), i = 1 to 12.

II1. Equations of Motion:
1. Vertical Displacement of the Tractor, y,:
my¥y + (Fy1 + Fyo + Fys + Fyy + Fys + Fye) + (e/l)(Fyy + Fope) - (11,/‘110)(13,y9
+ Foi0) - (Uo)(s + L) (Fyyy + Foi) + (Fagt + Fayz + Fags + Faga + Fays
+ Fuye) + (s/110)(Fasyr + Fagys) = (is/lio)(Fasys + Fagio) - (1/i)(ls + L) Foyrs +
Fyy1)) = myg
2. Roll Displacement of the Tractor, ¢,:
Luba + (5/2)Fuyr - Fup) + (52/2)(Fays - Fya) + (85/2)(Foys - Fuys) + (51/2)(Fagyt - Fa)
+ (52/2)(Faeys - Fagya) + (83/2)(Fogys - Faye) = 0
3. Pitch Displacement of the Tractor, 6,:
Ly + 1eFor + Fup) - b(Fs + Fu) - (o + 1) (Fys + Fue) - Lillg/Lio)(Fyy +Fy) +
Lyl (Frye +F10) + Ao/li)(s + L) (Fyry +Fy12) + 16(Fasyr + Faypo) - 1h(Fagys
+ Faga) - (2 + 1) (Fagys + Fagye) - 1(1s/110)(Fagyr +Fags) + 15(111/110)(Fasys +Fugyr0)
+ (ls/1;0)(s + 1;3)(Fagn1 +Fuyi) = 0
4, Vertical Displacement of the Trailer, y,!
mMyyg - (/L) (Fyyr + Fyp) + (/1) (Fys + Fp) + (V) + 1)(Fys + Fye) + (Fyy

+ Fsys + Fsy9 + Fsle + Fsyll + F:yl2) - (16/19)(Fdsyl + Fdsy2) + (17/ 19)(Fdsy3 + Fdsy4)
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+ (1/19)(4; + L) (Fays + Fuye) + (Fays + Fagys + Fuyo + Fagyio + Fagur + Fugyrd)
= Mpg
5. Roll Displacement of the Trailer, ¢y,:
Lobe + (84/2)(Fyy7 - Fyys) + (85/2)(Fyyo - Fyy10) + (86/2)(Fy11 - Fyyia) + (84/2)(Fagy7 -
Fays) + (Ss/2)(Fygyo - Fagyi0) + (36/2)(qu11 = Fay) =0
6. Pitch Displacement of the Trailer, 6,:
Lof o - Lo(g/l)(Fyy + Fy) + Lo(W/L)(Fys + Fup) + (i/lo)(l; + L)(Fys + Fue) +
3(Fy7 + Fye) - 1u(Fye + Fypi0) - (Is + L)(Fyii + Fya) - 1Lio(le/l)(Fagyr + Fagpa)
+ 1io(1/19)(Fyyys + Fagya) + (Lio/l)(, + l})(Fd,,s + Fays) + Li(Fayy7 + Faye) -
111(Fasys + Fagro) = (s + 1;))(Fagyr1 + Fapyin) = 0
7. Vertical Displacement of the Steer Axle, y,;:
MY - Fyr + Fyo) + By + Fys) - (Fayr + Fugp) + (Fyyy + Fuyp) = m, g
8. Roll Displacement of- the Steer Axle, ¢,,:
Luiba - (51/2)(Fy1 - Foyp) + (d/2)(Fyy - Fy) - (51/2)Fagt - Faya) + (d1/2)(Fayr
-Fap) =0
9. Vertical Displacement of the Forward Axle of the Tractor Tandem, y,;:
MY = (Fys + Fyg) + (Fys + Fy) - (Fags + Faga) + (Fays + Fuge) = myg
10. Roll Displacement of the Forward Axle of the Tractor Tandem, ¢,,:
Luba - (8212)(F.,3 - Fyyo) + (dy/2)(Fy3 - Fya) - (52/2)(Fasys - Fagya) + (d2/2)(Fas
- Fuye) =0
11. Vertical Displacement of the Aft Axle of the Tractor Tandem, y,;:
MY - (Fys + Fye) + (Fys + Fye) - (Fays + Fagye) + (Fays + Faye) = Mg

12. Roll Displacement of the Aft Axle of the Tractor Tandem, ¢ :
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13.

14.

15.

-16.

17.

18.

in which: F,; = K

) Y .
" 3 - (8/ 2)(Fsy5 - Fy) + (ds/ 2)(Fty5 - Fye) - (84/ 2)(Fyyys - Fuye) + (dy/ 2)(thy5

- Faye) = 0
Vertical Displacement of the Fourth Axle, y,:
mnl.y.a‘t - (Fsy7 + F,5) + (Fty7 + Fys) - (Fdsy7 + Fyye) + (Fayy + Fyys) = myg
Roll Displacement of the Fourth Axle, Pua
Labu - (s4/f)(F,y7 - Fys) + (d/2)(Fy7 - Fyyg) - (84/2)(Fugy - Fus) + (d4/2)(Fayr
- Fau) =0
Vergical Displacement of the Forward Axle of the Trailer Tandem, y,:
M,sYss - (Fys + Fyyi0) + (Fys + Fyyy) - (1=d,,l9 + Fiyi0) + (Fayo + Fagro) = mysg
Roll Displacement of the Forward Axle of the Trailer Tandem, ¢,s:
Ian;b.nS - (ss/ 2)(Fsy9 - Fyy10) + (ds/ 2)(Fty9 - Fy10) - (ss/ 2)(Fdsy9 - Fagio) + (ds/ 2)(thy9
- Fayi0) = 0
Vertical Displacement of the Aft Axle of the Trailer Tandem, Yas:
MasYes = Fyynn + Fyia) + Eyuy + Fyr) - Fuagnr + Fagid) + Faguy + Fain) = myeg

Roll Displacement of the Aft Axle of the Trailer Tandem, ¢,

In6$a6 - (86/2)(Fsyll - FsylZ) + (d6/2)(Ftyll - tylZ) - (86/2)(Fdsy11 - Fdsy12) + (d6/2)(thyll

- Fyy1)) =0

syiUsyi + Fyi’ Fdsyi = DayiUsyi)

Ftyi = KtyiUtyi’ thyi = Dtyi[.]tyi) i=1 to 12, and

F,; = the friction force at the ith suspension.
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