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CHAPTER 1 
INTRODUCTION 

1.1 Introduction 

By combining slender precast prestressed concrete girder sections—such as the Florida 
bulb-tee sections—with modern materials and construction processes, economical and 
structurally efficient girder-slab bridge designs (Figure 1.1) may be produced. For example, 
using high strength concrete, girder span lengths of 160 ft and greater are possible. However, 
long span lengths coupled together with slender cross-sectional shapes require an improved 
understanding of girder stability during handling and transportation, placement onto bridge 
bearings, and placement of bridge decks. 

 

 
Figure 1.1 Construction of a girder-slab bridge using Florida bulb-tee girders  

(Vilano Beach Bridge, Florida / Photo credit: Florida DOT) 

A number research studies conducted in the past have focused on the behavior of slender 
concrete girders subjected to handling (Figure 1.2) and transportation processes (Figure 1.3). 
These studies have yielded procedures for quantifying girder buckling capacity not only as a 
function of section properties and span length, but also as a function of geometric imperfections. 
Manufacturing processes can leave horizontal eccentricities (sweep) about the weak vertical axis 
of a concrete girder. Such imperfections accentuate lateral buckling mechanisms and reduce 
girder buckling capacity. 
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Figure 1.2 Lifting Florida bulb-tee girders for placement onto supports 

(Vilano Beach Bridge, Florida / Photo credit: Florida DOT) 

 
Figure 1.3 Transport of Florida bulb-tee girders to bridge construction site 

(State Road 20 Bridge over the Apalachicola River, Florida / Photo credit: Florida DOT) 

 
After a girder has been transported to a construction site and placed onto the bearings 

(Figure 1.4), a number of additional parameters may contribute to reducing buckling capacity. 
Skew between the longitudinal axis of the girder and the principal axes of the bearing pads can 
produce uneven distributions of pressure in the pads. Such distributions have been suspected to 
play a role in reducing buckling capacity. Similarly, girder camber, bridge grade, and 
construction tolerances can all result in mismatches between the slopes of the girder-ends and the 
surfaces of the bearing pads. Slope mismatches of this type, particularly when combined with the 
effects of skew and sweep, have also been suspected to play a role in reducing buckling capacity. 
Additional factors such as bracing stiffness and the possibility of bearing pad creep likewise have 
the potential to affect buckling capacity. 
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Figure 1.4 Florida bulb-tee girders placed on bearings 

(Vilano Beach Bridge, Florida / Photo credit: Florida DOT) 

1.2 Objectives 

Past studies published in the literature have not adequately addressed the combined 
effects that sectional properties, span length, bracing stiffness, sweep, skew, slope, and bearing 
pad creep have on girder stability and buckling capacity. The research presented in this report 
was carried out to study interactions between these parameters, to quantify their combined 
effects on girder stability and buckling capacity, and to offer recommendations for improving 
girder stability during construction. Implicit in these objectives was the need to identify the 
factors that most strongly influence girder capacity. Only by first identifying such parameters 
could appropriate recommendations be made. The identification process was quantitatively 
carried out by individually examining the sensitivity of buckling capacity to each of the system 
parameters considered. After identifying the most influential parameters, simplified equations 
were developed to enable girder buckling capacity to be estimated rapidly and conservatively. 

1.3 Scope of work 

The bulk of this study was carried out using a variety of numerical analysis techniques 
(linear static, nonlinear static, time-dependent, linear buckling, and nonlinear buckling). All 
analyses were conducted using the ADINA finite element code (ADINA 2005). In addition to 
numerical analysis, a limited amount of laboratory testing was also performed. The experimental 
testing consisted of six bearing pad compression tests, each conducted at a different compressive 
stress level. The tests were carried out for the purpose of quantifying the short term elastic 
stiffness and moderate term (72 hour) creep behavior of steel-reinforced elastomeric bearing 
pads. 

Using material parameters computed from the experimental test data, detailed three-
dimensional continuum bearing pad models were analyzed using nonlinear finite element 
analysis techniques. In these models, the three-dimensional geometric layout of steel and rubber 
layers that made up the bearing pads was modeled. By subjecting the continuum bearing pad 
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models to various loading conditions (axial compression, flexure, etc.), overall pad stiffnesses for 
various modes of deformation were computed. 

Pad stiffness data obtained from the three-dimensional models were then used to 
construct simplified bearing pad models that consisted of grids of nonlinear beam and truss 
elements. The simplified pad models were then merged together with girder and bracing models 
to form system-level (bearing+girder+bracing) models. To study interactions between the large 
number of system parameters that were considered in this research (girder type, span length, 
bracing stiffness, skew angle, sweep, slope, bearing pad creep) parametric studies were carried 
out by numerically analyzing the system-level models. In total, 4800 vertical-load buckling 
analyses and 480 lateral wind load analyses were carried out.  

Results from the numerical parametric studies were analyzed to identify factors that had 
the greatest influence on girder capacity. Simplified, and conservative, equations for estimating 
girder capacity were then developed from the results of the parametric studies. 



 

 5

 CHAPTER 2 
BACKGROUND 

2.1 Literature review 

Girder stability during the stages of girder production, handing, and transportation, has 
drawn the interest of a number of researchers in the past. Muller (1962) presented a method for 
computing the critical uniform vertical load for beams with typical types of end section 
conditions: 

 

y
cr 1 23

EI GJ
w = m k k

L
 (2.1)

In this equation, m is a variable coefficient dependent principally upon the end section 
conditions, crw  is the critical buckling uniform load (also referred to as the “buckling capacity” 
in this report), yI  is the moment of inertia about the weak vertical axis of the girder, J is the 
torsional constant, E is the elastic (Young’s) modulus of concrete, G is shear modulus of  
concrete, and L is the span length of the beam. If the ends of the beam are restrained, the 
influence of the shape of the cross section on buckling loads may be considered by introducing 
the coefficient k2 which takes into account additional restraint to lateral deflections of the top 
and bottom flanges. For loads applied at an eccentricity relative to the centroid of the section, the 
buckling load may be corrected by using a factor k1. 

Regarding systems for bracing long span girders against buckling, George Laszlo and 
Richard Imper (1987) pointed out the limitations of a system known as king post bracing system. 
They noted that beyond a certain horizontal deflection of the beam, the system is useless and 
cannot prevent collapse of the beam. During shipping, impact forces and super-elevation may 
cause severe stress conditions due to weak axis bending moments. The combination of stresses 
resulting from prestress and lateral bending moment can lead to compression or cracking failure. 
To reduce the high tensile stresses, Laszlo and Imper suggested using supplementary reinforcing 
bars near the outer edges of the top flange if the induced stresses are below the cracking limit, 
and using temporary post-tensioning at the top flange if the stresses are above the allowable 
cracking limit. These methods, together with the use of higher strength concrete, are shown to be 
effective in preventing section cracking and improving beam stability. Suggested procedures for 
checking the stability of long span prestressed concrete beams against cracking are also given by 
Laszlo and Imper. 

Mast (1993) focused on the stability of beams on elastic supports. Such supports include 
bearing pads and transportation equipment. It was found that rollover of beams supported from 
below is determined primarily by the properties of the support rather than of the beam. Long 
span prestressed concrete beams—when supported from below—were typically found to have 
adequate section stiffness but less roll-angle stiffness as provided by the flexible supports. Due to 
support flexibility, long span beams can roll sideways, resulting in lateral deflections that can 
lead to lateral instability. Because concrete beams normally have torsional stiffnesses that are 
much higher than the roll stiffnesses of the supports, Mast suggested that beams can be assumed 
to be rigid in torsion. This assumption transforms the problem into a bending and equilibrium 
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problem (Figure 2.1). The factor of safety against instability may then be defined as the ratio of 
resisting moment arm to applied overturning moment arm: 

r

a

cFS = 
c

 (2.2) 

( )a o ic  = z  sinθ + e cosθ + ysinθ  
(2.3) 

( )θ
r

Kc = θ - α
w

 (2.4) 

In the equations above, oz  is the deflection of the center of gravity of the beam due to bending 
about the weak axis caused by self-weight over a simple support, θ  is the roll angle of the major 
axis of beam with respect to vertical, α is super-elevation angle or tilt angle of the support, w is 
self-weight of the beam, θK  is the rotational spring constant of the support (roll stiffness), ie  is 
initial eccentricity of the center of gravity of the beam, and y is height of center of gravity of 
beam above the roll axis. Using the small angle approximation, the factor of safety against 
cracking is: 

where maxθ  is the tilt angle at which cracking occurs, and θr = K / w . 
 

y sinθcos θ(zo sinθ +ei)
ca

(zo sinθ +ei)

y

θ

C.G of 
straight 
beam

C.G of  
deflected beam

Roll center

 
Figure 2.1 Deformed equilibrium position of girder 

 
 

 
max

o max i max

r(θ - α)FS = 
z θ + e  + yθ

 (2.5)
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Lateral stiffness decreases attributable to cracking at various tilt angles was also analyzed 
by Mast. Based on analysis results, Mast proposed a simplified relationship for the effective 
lateral stiffness of long prestressed concrete beams of ordinary proportions (e.g., the PCI bulb-tee 

BT-72). When tilt angles θ  produce top flange tensile stresses in excess of '
c7.5 f , the effective 

minor axis cracked section moment of inertia is:  

where θ  is in units of radians. By analyzing the applied moment arm and resisting moment arm 
versus tilt angles for the PCI BT-72 section, on bearing pads having dimensions of 12 x 22 x 11/2 
in., Mast (1993) showed that serious stability problems arise when using plain pads of this 
thickness. However, even with laminated pads, which appear to provide adequate stability, the 
angle required to cause instability is far less than the angle required to cause flange cracking, as 
was confirmed by full-scale testing (Mast 1994). Under wind load, long beams on bearing pads 
are susceptible to rolling sideways even with laminated pads. This emphasizes the effectiveness 
of bracing the ends of beams against rollover as soon as they are erected. When beams are set on 
elastomeric bearing pads, it is important that the weight of the beam be concentric on the pad. 
Eccentricity may cause rollover in extreme circumstances. Mast also suggested that for short-
term activities, bearing pad creep effects can be neglected as long as the beams are not left in a 
tilted position for an extended period duration of time. 

Procedures for evaluating the lateral stability of long prestressed concrete beams 
supported from below by using moment arm versus tilt angle relationships can also applied to the 
analysis of hanging beams (i.e., beams supported from above). The factor of safety against 
cracking for a hanging beam is given by: 

Stratford and Burgoyne (1999) used finite element analysis to investigate the behavior of 
long prestressed concrete beams for three different types of support conditions: 1) simply 
supported at both ends; 2) supported as for transportation with one end supported against 
displacement but not rotation; and 3) hanging from support cables. Buckling analyses were 
performed for geometrically perfect beams (i.e., without sweep imperfections). The buckling 
loads computed agreed well with results reported by Trahair (1977, 1993) who derived 
expressions of the general form: 

In this equation, k is a factor that depends on support conditions, L is the span length of beam, 
yI  is the moment of inertia about the weak axis of the beam, J is the torsional constant, E is 

elastic modulus of concrete, G is shear modulus of concrete, and wC  is the warping constant. 

 
g

eff
I

I =
1 + 2.5θ

 (2.6)

o r i max

1FS  = 
z /y  + θ /θ

 
(2.7)

2

y w 2

cr 3

πEI GJ + EC
L

w  = k π
L

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠  (2.8)
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Variations of computed buckling loads for hanging beams with different support cable angles, 
support heights, and lifting positions were investigated by Stratford and Burgoyne. Comparisons 
of buckling loads for the three different classes of support conditions cited above indicated that 
hanging beams are the most vulnerable to buckling. This is due to lack of torsional restraint 
about the longitudinal axis of the beam, allowing the beam to rotate until it finds an equilibrium 
position. Providing external torsional resistance therefore increases beam stability because the 
torsional rigidity of the beam itself is mobilized in preventing buckling. 

Stratford and Burgoyne also developed nonlinear finite element models to investigate the 
load-deflection behaviors of beams with initial imperfections. Plots of results showed the 
nonlinear finite element analyses to be asymptotic to the line predicted by Allen and Bulson 
(1980): 

In this equation, y is lateral deflection, 0y  is the initial lateral (sweep) imperfection, w is the 
applied vertical uniform load, and crw  is the critical uniform buckling load (i.e., the buckling 
capacity). Once the minor axis deflection has been computed, the twist of the beam at mid-span 
can be determined from: 

where, by  is the distance from the bottom fiber of the beam to the beam centroid, msy  is the 
lateral beam deflection at mid-span, and δθ  is the twist of the beam at mid-span. Twist angles 
can then be used to determine minor axis curvature and minor axis bending stresses as: 

In the equation above, X is the lateral (perpendicular) distance from the weak axis to the point of 
interest. Stratford and Burgoyne (2001) also determined a relationship between the self-weight at 
which the beam would become unstable and the rotational stiffness of the bearing. They showed 
how the effects of initial imperfections in the beam will produce minor-axis curvature and hence 
additional stresses that can cause loss of stiffness due to cracking and subsequent beam failure. 
They proposed a method for computing buckling loads (capacities) of beams on flexible bearings 
under vertical loading. Assuming that the beam rotates as a rigid body—due to the high torsional 
stiffness of the concrete section—and using equilibrium, they proposed that the critical buckling 
load may obtained by solving: 

( )
o

2
cr

yy = 
1 - w/w

 
(2.9)

For simply supported beams: y
ms

E Iπδθ = y
L G J

 (2.10)

For transport supported beams: 
( )
1.68

0.36 /
ms

y b

y
L GJ EI y

δθ =
− −

 
(2.11)

2

ms 
y

wL sin(δθ)κ = 
8EI

 (2.12)

msΔσ = E κ  X  (2.13)
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for crw . In this equation, K is the rotational stiffness of the bearing. For beams with initial 
imperfections, the minor axis curvature of the beam versus the factor of safety ( crw /w ) can be 
found from: 

where, 0v  is initial lateral sweep imperfection. From the curvature at mid-span, msκ , stresses 
due to minor axis bending can be determined. 

Lateral buckling of steel beams and the effectiveness of bracing such beams against 
lateral buckling are additional areas that have been investigated by past researchers. Although 
aspects of long span prestressed concrete beam buckling differ from steel beam behavior in many 
respects, literature dealing with lateral buckling of steel beams still provides useful insights into 
slender-beam behavior in general. 

Flint (1951) studied the effect of intermediate, elastic restraints on the lateral buckling of 
steel beams. Simply supported beams braced at mid-span and loaded by either equal end 
moments or by a central load were analyzed. It was shown that the buckling capacity of a slender 
beam subjected solely to vertical load can be greatly enhanced by providing suitable bracing. 
Even with low stiffness, restraint of intermediate displacements can raise the critical buckling 
load sufficiently that the possibility of failure by elastic buckling is excluded. For the case of a 
beam with mid-span lateral restraint only, Flint proposed a simple design relationship between 
the increase in critical load and the lateral central support stiffness: 

In this equation, c is ratio of critical buckling load with bracing to critical buckling load without 
bracing, and 3

B yλ = K L 48EI  is the ratio of lateral restraint stiffness to lateral bending stiffness 
of the beam. Schmidt (1965) extended the work of Flint by studying the effects of interaction 
between elastic end torsional restraint and elastic central lateral restraint. 
  

( )
32

cr cr b
y

Lw L  + w Ly  - 2K = 0
120EI

 (2.14)

( )
o

ms 2
cr

48v 1κ =
w /w  - 15L

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (2.15)

c = 1+λ  (2.16)
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CHAPTER 3 
DESCRIPTION OF PHYSICAL SYSTEM 

3.1 Introduction 

The physical system considered in this study consisted of a simple-span Florida bulb-tee 
girder supported on steel-reinforced elastomeric bearing pads (Figure 3.1). In most of the cases 
that were analyzed, end-point lateral bracing was considered, although unbraced conditions were 
also studied. Loading conditions for girder capacity calculations consisted of either uniform 
vertical (gravity) load or horizontal wind load. 

Girder

Bracing
Bearing pad

Support

Girder

Bracing

Support

Bearing
pad

Uniform vertical
load

Horizontal wind
pressure

(omitted in unbraced cases)

 
Figure 3.1 Schematic diagram of physical system and loading conditions 

3.2 Terminology relating to geometric parameters 

In Figure 3.1, the girder shown is geometrically perfect (no sweep, no camber, etc.), rests 
uniformly on the underling bearings pads, and is oriented at right angles to the pads. Realistic 
field conditions however, do not generally match such ideal conditions. Instead, girder 
imperfections (e.g., sweep) may exist, and the girder may not rest uniformly on—or at right 
angles to—the bearing pads. The vast majority of the cases considered in this study involved one 
or more of these non-ideal conditions. In order to make clear the types of geometric conditions 
that were considered, the following definitions and conventions are introduced: 
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• Sweep: Sweep is defined as horizontal bowing of a beam that usually occurs as results of 

misaligned forms and/or prestressing with slight lateral eccentricity (Figure 3.2). It can 
also result from improper girder storage, especially for deep beams that are not stored 
plumb. Self-weight of an out-of-plumb beam can induce moments about the weak axis 
that can lead to permanent sweep. Thermal effects such as differences in surface 
temperature due to exposure to sunlight (and radiant heating) on one surface can also 
cause horizontal bowing.  

 
Straight beam configuration

Beam with sweep imperfection

Lateral sweep

 
Figure 3.2 Definition of sweep 

 

• Skew angle: According to the PCI Bridge Design Manual (2003), skew angle is defined 
as the smaller angle between the centerline of a support and a line normal to the roadway 
centerline (Figure 3.3). This is the same angle that exists between the short axis of the 
bearing pad and the roadway centerline. As Figure 3.3 indicates, a small additional 
rotation of the girder end results when sweep imperfections are present. This additional 
rotation angle is small enough in comparison to overall bridge skew angle that it can 
generally be ignored. 

Girder

Skew
angle

End rotation 
due to sweep
(shown 
exagerrated)

Roadway
centerline

Support

Skew
angle

Support 
centerline

Bearing
pad

 
Figure 3.3 Definition of skew angle 
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• Slope angle: Slope angle is defined as the vertical angle between the girder axis at the 
support and a horizontal line level with the surface of the bearing pad. Slope angles may 
be produced by camber—induced by eccentric prestressing of the girder—or by overall 
bridge grade. In this study, slope angle is defined as the slope mismatch (gap) that exists 
between the bottom face of the girder and the top face of the bearing pad.  

 

Support

Slope
angle

Bearing pad

Girder

 
Figure 3.4 Definition of slope angle 

 

3.3 Bearing pads 

Bearings are used to transfer loads from the superstructure to the substructure and to 
allow translational and rotational movements of the superstructure that may arise from vehicle 
loads and environmental loads such as thermal expansion and contraction. Various types of 
bearings are used for bridges including: elastomeric bearings, pot bearings, rocker bearings, 
cylindrical bearings, spherical bearings, and roller bearings. Each type of bearing has different 
translational and rotational stiffnesses, to accommodate appropriate movements of the bridge, 
and therefore creates different boundary conditions for the girders.  

Elastomeric bearings provide an efficient and economical solution to the problem of 
supporting girders vertically while also permitting horizontal thermal movements. Elastomeric 
bearings are generally categorized into one of four main types: plain elastomeric pads, fiberglass 
reinforced elastomeric pads, steel reinforced elastomeric pads, and cotton duck reinforced 
elastomeric pads. Of these types, steel reinforced elastomeric pads are used extensively for 
bridge beam support in the state of Florida and throughout the country. The Florida Department 
of Transportation (FDOT) suggests the use of elastomeric bearings for simple span, prestressed 
concrete beam, simple-span steel girder and some continuous beams. Therefore, steel reinforced 
elastomeric bearings are the only type of bearings considered in this study.  

Steel-reinforced elastomeric bearing pads consist of multiple layers of elastomeric 
material bonded to steel shims in a sandwich form (Figure 3.5). Steel shims enhance the 
compression capacity of the bearing pad by restraining lateral bulging of the elastomeric layers. 
However, the steel shims do not inhibit the shear flexibility of the pad which is needed to 
accommodate bridge movements in the horizontal direction. The various behavioral modes of 
pad deformation that are relevant to the current research are presented in Figure 3.6. 
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Steel reinforcing
layers (shims)

Elastomer cover layer

Internal 
elastomer 
layers

 
Figure 3.5 Steel reinforced elastomeric bearing pad 

 

Compresion load

Δ

Shear loadδ

Moment load
α

Torsional load

Φ

Elevation view Plan view  
 

Figure 3.6 Bearing deformation modes 

In Table 3.1, the types of elastomeric bearing pads specified by the FDOT are listed. In 
this research, focus was primarily on the stability of long-span Florida bulb-tee girders, therefore 
bearing pad type B—with length of 14 in. and width 24 in.—was used throughout (Figure 3.7). 
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Table 3.1 Elastomeric bearing pads specified by FDOT 
 

Pad Type Beam Type Dimension L Dimension W 
  AASHTO II 1 ft - 0 in. 1 ft - 2 in. 
  AASHTO III 10 in. 1 ft - 6 in. 
  AASHTO IV 10 in. 1 ft - 10 in. A 

  AASHTO V and VI and Florida bulb-tees 11 in. 2 ft - 0 in. 
  AASHTO  II 1 ft - 4 in. 1 ft - 2 in. 
  AASHTO III 1 ft - 2 in. 1 ft - 6 in. 
  AASHTO IV 1 ft - 0 in. 1 ft - 10 in. 

B 

  AASHTO V and VI and Florida bulb-tees 1 ft - 2 in. 2 ft - 0 in. 
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Figure 3.7 Typical sections of FDOT bearing pads 

3.4 Lateral bracing 

When a beam is set on bearing pads, it is susceptible to rollover due to lateral torsional 
instability caused by self-weight load and construction loads. During the construction process, 
bracing can be provided to prevent beam instability. In this study, only lateral bracing at the 
girder ends (end-point bracing) has been considered. In Figure 3.8, some typical means of 
providing lateral bracing are illustrated. Bracing systems of these types not only prevent lateral 
beam movements but also restrain rotation (roll). Since concrete beams generally have 
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significant torsional stiffnesses, preventing a beam section from torsional rotation can 
measurably improve its lateral stability.  

Timbers

Steel connection bolt

Steel angles

 
Figure 3.8 Typical bracing configurations 

3.5 Florida bulb-tee girder properties 

Girder types considered in this study were the Florida bulb-tee types FBT54, FBT63, 
FBT72, and FBT78. Section dimensions and properties are summarized in Figure 3.9 and 
Table 3.2 respectively. Basic section parameters such as area, centroidal location, and moments 
of inertia may be determined as accurately as desired using standard hand calculation methods or 
spreadsheet software. However, accurate determination of torsional and warping constants 
requires more sophisticated numerical approaches that generally employ the “pressurized 
membrane analogy” of torsion (Young 1989 article 4.4 and 9.2, Timoshenko and Goodier 1970 
article 107). Such methods require that the shape of the cross-section be carefully discretized 
(meshed) and analyzed—as a pressurized membrane—using finite difference or finite element 
procedures. All of the section properties listed in Table 3.2 were computed in an accurate manner 
using the Shape Designer (MechaTools 2006) software package. Shape Designer internally 
utilizes finite element analysis techniques when computing torsional and warping constants.  

Design equations recommended later in this report will involve both moment of inertia 
and torsional constant. Consequently, in Appendix A, a simplified technique for conservatively 
estimating torsional constants is provided. 
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Figure 3.9 Section dimensions of Florida bulb-tee girders 

 
 

Table 3.2 Section properties of Florida bulb-tee girders 
 

 Section parameter Florida bulb-tee 54 
(FBT54) 

Florida bulb-tee 63
(FBT63) 

Florida bulb-tee 72 
(FBT72) 

Florida bulb-tee 78
(FBT78) 

Area (in2) 803.7 862.2 902.4 1105.5 
Moment of inertia Ix (in4) 319691 470390 638245 934209 
Moment of inertia Iy (in4) 52869 53075 51832 99295 
Torsional constant J (in4) 21441 22931 22096 35270 

Centroid elevation ( y ) (in) 26.23 30.50 34.30 40.36 
Warping Constant Cw (in6) 23674000 34866000 47420000 69765000 

h (in) 54 63 72 78 
hw (in) 35 44 53 —  
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CHAPTER 4 
EXPERIMENTAL TESTING OF BEARING PADS 

4.1 Introduction 

Boundary conditions relating to rotational and translational restraint, effective at the ends 
of a girder, have significant influence on stability against buckling. While idealized boundary 
conditions may be classified as either fixed (full restraint) or free (zero restraint), actual 
boundary conditions in the field lie between the fixed and free limiting conditions. Specific 
levels of rotational and translational fixity are direct functions of the stiffness of the bearing pads 
upon which the ends of a girder rest. Immediately following girder placement, the short term 
elastic stiffness of the bearing pads is of primary importance. However, in this study, it was also 
of interest to determine whether longer term creep effects in bearing pads could have an effect on 
girder stability over a time period of a few days. Rather than relying strictly on bearing pad data 
available in the published literature, experimental tests were carried out to obtain short term 
(elastic) and moderate term (creep) material properties.  

4.2 Description of experimental setup and loading procedures 

Bearing pad compression tests were conducted at the FDOT Structures Research 
Laboratory by FDOT personnel. Overall geometry of the pads tested and the configuration of 
internal steel layers in pads are illustrated in Figure 4.1. Each test involved axially compressing a 
pad between two steel platens of a 550-kip MTS testing machine (see Figure 4.2). Four LVDTs, 
one positioned at each corner of the platens, were used to measure and record the displacement 
of the lower (moving) platen relative to the upper (stationary) platen. Compressive deformations 
in the bearing pad were then computed by averaging the readings from all four of the corner 
LVDTs. Load was applied concentrically at the center of the pad, so as to achieve an 
approximately uniform compressive loading condition. A load cell integrally built into the MTS 
system was used to monitor load applied to the pad during each test. By dividing the applied load 
by the contact area of the bearing pad, average applied compressive bearing stresses during each 
phase of loading were computed.  

10 in.

10
 in

.

Steel plates:

3/16 in.

3/16 in.

3/16 in.

1/4 in.

1/4 in.

1/2 in.

1/2 in.

Rubber layers:

a.) Plan view b.) Partial cross-sectional view  
Figure 4.1 Geometry of bearing pads tested 
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Upper (stationary) platen

Lower (moving) platen
Bearing pad

LVDTs (typical)

 
Figure 4.2 Experimental setup used to test bearing pads 

Each test involved two phases of compressive loading: a short term elastic phase 
followed by a longer term creep phase. The short term elastic phase involved applying 
compressive load to the pad in a generally monotonically increasing manner until a target 
compressive stress level was achieved. This phase of loading was relatively short in length, 
generally lasting less than approximately 10 minutes in duration. Once the target compressive 
stress level on the pad was reached, a longer term creep phase commenced. Using an active 
feedback control system, a load-controlled, constant-stress condition was held on the pad for 
durations of up to approximately three days. During this time frame, constant-stress creep 
deformations in the pad were measured and recorded so that appropriate time-dependent material 
creep parameters could later be computed.  

Tests were conducted at six different target compressive stress levels (see Table 4.1). 
Stresses near the low to middle range corresponded to typical stress levels induced by bridge 
dead loads acting on a bearing pad and making uniform contact across the entire contact area of 
the pad. Stresses near the upper end of the range corresponded to the much higher stresses that 
may occur in localized corners of a pad when combinations of skew and slope result in an 
initially small contact area between the girder and pad. 

 
Table 4.1 Stress levels used in bearing pad tests 

Test Applied compressive stress  
(psi) 

Total test duration  
(hrs) 

1 150 49 
2 450 69 
3 1500 71 
4 3000 71 
5 4000 52 
6 4500  15*  

* Pad failed under applied loading after 15 hrs of testing. 



 

 19

4.3 Test results 

In Figure 4.3, time histories of compressive stresses applied to the bearing pads are 
presented. Compressive stresses were increased in a generally monotonic manner (the exception 
being a short stage of constant stress at 1500 psi during the 3000 psi test). Once the target stress 
level in each test was achieved, that stress level was held constant for the remainder of the test. 
In all cases, the initial elastic loading phases—in which applied stresses were ramped from zero 
to the target levels—lasted less than 10 minutes in duration.  
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Figure 4.3 Time histories of compressive stresses applied to bearing pads 

Axial compressive deformations in the pads are presented as time histories in Figure 4.4. 
In the higher stress tests, time-dependent creep deformation is apparent in that measured 
deformations continued to increase despite the fact that the applied load (and stress) levels were 
held constant. In the 4500 psi test, the rapid increase of deformations at the very end of the test 
corresponds to the point at which the pad failed. 

As the target stress levels increased from one test to the next, so too did the rates at which 
time-dependent creep deformations occurred. In Figure 4.4, this is evident from fact that the 
slopes of the latter parts of the deformation curves—the parts corresponding to creep behavior—
grow steeper with increasing applied stress level. At the lowest stress level tested (150 psi), 
virtually no time-dependent creep deformation is evident. 

In Figure 4.5, applied stress and resulting pad deformation data are plotted against each 
other. In this plot, the initial elastic loading phase and the time-dependent creep phase are clearly 
distinguishable. As applied stresses were initially increased, deformations also increased, 
initially in a linear manner, and later in a slightly nonlinear manner. Upon reaching the target 
applied stress level, no further increase in stress occurred, however deformations continued to 
increase. The greatest amount of constant-stress time-dependent creep deformations occurred in 
the tests with the highest applied stress levels.  
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Figure 4.4 Time histories of compressive deformations resulting from applied load 
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Figure 4.5 Applied stresses and resulting bearing pad deformations  
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4.4 Elastic response of bearing pads to applied load 

In Figure 4.6, applied stress and bearing pad deformation data are plotted for portions of 
loading that occurred before the target stress level for each test was achieved. The curves shown 
therefore illustrate the measured bearing pad responses during the initial elastic phases of 
loading. As will be discussed later in this report, the elastic response data shown in Figure 4.6 
were subsequently used to calibrate rubber material parameters for use in numerical simulations 
of bearing pad response to applied load. 
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Figure 4.6 Elastic bearing pad response to applied load 

 

4.5 Time-dependent creep response of bearing pads to sustained load 

Time-dependent creep deformations in each test were assumed to begin occurring once 
the applied compressive stress level reached the desired target value. The measured elastic 
deformation in the pad was recorded at the point that the target stress level was reached. Creep 
deformations were then determined for all subsequent points by subtracting the elastic 
deformation from the total measured deformations that were recorded for the remainder of the 
multi-day test. In Figure 4.7, creep deformations computed in this manner are plotted as 
functions of time.  

As noted earlier, higher rates of creep deformation are apparent in tests conducted at 
higher applied stress levels. However, the data in Figure 4.7 also reveal long-period fluctuations 
in the measured deformations. These fluctuations—which are most evident in the 150 psi and 
450 psi curves—are the result of daily changes in the air temperature inside the laboratory where 
the tests were conducted. Measured deformations for these cases are seen to vary with a time 
period of approximately 24 hours. 
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Figure 4.7 Time histories of measured creep deformations  

In Figure 4.8, the same data are plotted, except that the time scale has been plotted using 
a logarithmic scale instead of a linear scale. The overall slopes of the curves shown in Figure 4.8 
are direct indicators of the rates at which time-dependent creep deformations occurred during 
each of the tests. 

In order to perform numerical parametric analyses (discussed later in this report) that 
account for creep deformations, a simplified mathematical model of creep behavior was 
developed from the measured experimental data. The form of the creep model chosen for this 
study was the power creep law : 

 
a  a1 2c 0ε (t) = a σ t  (4.1)

where coefficients 0a , 1a , and 2a  are material parameters. 
In order to solve for the coefficients 0a , 1a , and 2a  that best matched the power creep 

law to the measured experimental data, a least squares curve fitting procedure was employed. 
Starting with the approximately 10,000 or so data points that were contained within each creep 
curve from the laboratory testing, a numerical procedure was used to resample the creep 
deformations at 200 quadratically-spaced points. Quadratic spacing—rather than equal (linear) 
spacing—was chosen so as to achieve a higher density of sampling points in the early portion of 
each creep data record where creep deformations changed most rapidly with respect to time. 
Values of creep strain were then computed from each of the resampled creep deformation values. 
The resulting time histories of creep strain are shown in Figure 4.9 
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Figure 4.8 Time histories of measured creep deformations 
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Figure 4.9 Time histories of creep strains  
(Points are have been resampled quadratically along the time-scale) 
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Using data from each of the six (6) experimental tests and the two hundred (200) resampled 
points from each test, the following cumulative error function was formulated: 

 

( ) ( ) ( )
26 200 aa 21

0 1 2 c 0 i jtest i,j
i=1 j=1

tests times

Error(a , a , a ) = ε a σ t⎛ ⎞−⎜ ⎟
⎝ ⎠∑ ∑  (4.2)

where ctestε  were the creep strain values determined from the experimental tests. A numerical 

minimization process was then used to solve for the coefficients 0a , 1a , and 2a  that minimized 
the error function given by Eqn. 4.2. The resulting values of the power creep law coefficients 
were: 

 
0a = 0.00000857, 1a = 0.77924377, and 2a = 0.14772347 

Using these values in Eqn. 4.1, power law creep curves were computed for each of the stress 
levels tested experimentally. Comparisons of the (resampled) experimental data and best-fit 
power law creep model are shown in Figure 4.10. The values of the coefficients 0a , 1a , and 2a  
given above were used throughout the rest of this study whenever creep effects were to be taken 
into account. 

 

0 5 .104 1 .105 1.5 .105 2 .105 2.5 .105 3 .105 3.5 .105 4 .105
0

0.01

0.02

0.03

0.04
150 psi (experimental)
450 psi (experimental)
1500 psi (experimental)
3000 psi (experimental)
4000 psi (experimental)
4500 psi (experimental)
150 psi (power law)
450 psi (power law)
1500 psi (power law)
3000 psi (power law)
4000 psi (power law)
4500 psi (power law)

Time (sec)

C
re

ep
 st

ra
in

 (i
n/

in
)

 
 Figure 4.10 Comparison of experimental creep data and best-fit power creep law 
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CHAPTER 5 
DETAILED 3D BEARING PAD MODELING 

5.1 Bearing pad model 

Assessing the stability of long-span girders supported on bearing pads required that pad 
behavior under various types of loading conditions and deformation patterns be numerically 
characterized. Pad stiffnesses for compression, torsion, shear, and moment (roll) at varying skew 
angles were determined by conducting three-dimensional (3D) finite element analyses. All such 
analyses were carried out using the ADINA nonlinear finite element code. As shown in Figure 
5.1, the bearing pad model developed in this study consisted of multiple alternating layers of 
elastomer and steel and matched the configuration of the FDOT Type B elastomeric bearing pad. 
All materials (elastomer and steel) were modeled using 3D meshes of twenty-seven-node solid 
brick elements.  

Physically, when steel plates are embedded within a pad, the overall compression 
stiffness of the pad is increased by reducing the levels of bulging that occur in the elastomeric 
layers. Achieving this outcome requires that shear stresses be transmitted across the bonded 
surfaces between the steel plates and elastomeric layers. In the finite element model, bond 
between steel and elastomer was assumed to be perfect and was therefore modeled by ensuring 
that the finite element meshes of the elastomeric layers and steel plates shared common nodes at 
their interfaces.  
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Figure 5.1 Three-dimensional finite element model of bearing pad 

Steel plates were modeled using a linear elastic material model with an elastic (Young’s) 
modulus of 29,000 ksi and a Poisson’s ratio of 0.3. Elastomeric layers were modeled using the 
Ogden rubber material model. For this type of material model, ADINA uses a large-displacement 
and large-strain formulation for solid finite elements. For the Ogden material model, ADINA 
permits the user to represent the form of the strain energy density function by specifying up to 19 
material coefficients: nμ  and nα  for n=1,2,…9, and a bulk modulus K. It was determined that 
the standard three-term Ogden material description nμ  and nα  for n=1,2,3, was suitable for use 
in modeling the elastomer elements. As such, six coefficients plus a bulk modulus were 
specified. The procedures used to determine these coefficients are discussed below.  
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5.2 Determination of material properties 

Initially, coefficients of the elastomer (rubber) material model were obtained from 
published literature. The material coefficients presented below were developed from test data 
initially published by Treloar (1944). The tests consisted of a biaxial test, a simple elongation 
test, and a pure shear test. As presented by Gent (2001), the resulting material coefficients, are: 

 
 μ1 = 0.6180 MPa 

μ2 = 0.001177 MPa 
μ3 = -0.009811 MPa 

 α1 = 1.3 
α2 = 5.0 
α3 = -2.0 

 

Determination of whether these values were appropriate for bearing pad modeling was carried 
out by numerically simulating the experimental compression tests presented in the previous 
chapter. A detailed three-dimensional model of the 10 in. x 10 in. x  2-1/16 in. bearing pads (with 
three steel shims) experimentally tested at the FDOT Structures Research Laboratory was 
constructed in a manner similar to that shown in Figure 5.1 for the FDOT Type B bearing pad. 
Using the material coefficients noted above to model the elastomeric layers, a compression test 
was simulated using the three-dimensional model. In Figure 5.2, the simulated (finite element) 
compression test results and the experimentally determined data are compared. It is evident from 
the figure that, using the Treloar/Gent material parameters, the compression stiffness of the 
bearing pad, as predicted by finite element analysis, is approximately one-half of that measured 
during the experiments.  

Therefore, adjustments were made to the material coefficients to bring the compression 
behavior predicted by finite element analysis into agreement with the experimental test data. The 
adjusted material coefficients were: 

 
  μ1 = 0.6180 MPa 

μ2 = 0.001177 MPa 
μ3 = -0.459811 MPa 

 α1 = 1.3 
α2 = 5.0 
α3 = -2.0 

 

As Figure 5.2 indicates, compression behavior predicted using the adjusted coefficients and finite 
element analysis compares favorably to the experimental test data. The bulk modulus (K) used in 
the finite element simulations was set to 165 ksi, which was estimated based on data in the 
literature and using the formula:  

2G(1+ν)K = 
3(1-2ν)

 (5.1)

In this equation, G is the small-strain shear modulus of the material, which can be written in 
terms of the other material coefficients as:  

3

n n
n=1

1G = μ α
2 ∑  (5.2)

In Eqn. 5.1,  Poisson’s ratio ν  was set to 0.49962 to produce the bulk modulus value noted 
above. Also, note that ν  is very close to 0.5 since the rubber used in bearing pads is a nearly 
incompressible material.  
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Figure 5.2 Stress-deformation of tested bearing and FE model 

5.3 Bearing pad stiffness determination 

Using the adjusted rubber material coefficients and bulk modulus discussed in the 
previous section together with the three-dimensional FDOT Type-B bearing pad model shown in 
Figure 5.1, overall pad stiffnesses value were computed. Specifically, the compression stiffness 
(Kz), shear stiffnesses (Kx, Ky), torsional stiffness (Krz), and rotational (roll) stiffnesses (Krx, 
Kry) were computed. To determine these stiffnesses from three-dimensional analyses, rigid 
plates were modeled at the top and bottom surfaces of the bearing pads. The bottom plate was 
fixed against translation and rotation while the top plate was subjected to various prescribed 
loads depending on the stiffness that was of interest.  

In actual bridge structures, friction exists at the locations where the bearing pads contact 
the supports and the girder. Friction coefficients at these interfaces depend on the roughness of 
the contact surfaces and environmental conditions such as the presence of moisture. The effect of 
friction on bearing compression stiffness was investigated by considering two extreme cases: 
frictionless and infinite friction. Results obtained indicated that friction had little effect on the 
overall stiffness of the bearing pads. Based on this result, frictional effects were omitted from all 
subsequent models. The effect of gravity pre-load on bearing pad stiffness was also investigated 
by applying a pre-compression load before applying moment, shear or additional compression 
forces. It was determined that increases of bearing stiffness due to gravity pre-load were not 
significant, therefore, gravity pre-load effects were omitted for the purpose of determining 
overall pad stiffnesses (Kx, Ky, Kz, Krx, Kry, Krz). 

Bearing pad compression stiffness (Kz) was determined by applying an increasing 
vertical load (as a prescribed pressure) to the top rigid plate (Figure 5.3) and monitoring the 
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resulting deformation of the composite elastomer and steel pad. The resulting load-deformation 
curve is shown in Figure 5.4. Linearity of the curve indicates that the compression stiffness was 
constant within this range of load considered. Based on the slope of the curve, the compression 
stiffness was determined to be 7762 kip/in. 
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Figure 5.3 Load application for determination of compression stiffness 
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Figure 5.4 Compression stiffness results 

Shear stiffnesses of the bearing pad (Kx, Ky) were determined by applying lateral loads 
to the top rigid plate in the x-direction and y-direction respectively (Figure 5.5). In Figure 5.6, 



 

 29

the resulting load-deformation curves for the shear loadings are presented. Since the two 
load-deformation curves are nearly identical, it is evident that shear stiffness of the bearing pad 
does not depend on the direction of the shear load. From the results shown, the shear stiffness of 
the bearing pad was determined to be 21 kip/in. 
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Figure 5.5 Load application for determination of shear stiffness 
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Figure 5.6 Shear stiffness results 

To determine rotational (roll) stiffnesses of the bearing pad (Krx, Kry), increasing 
rotational moments (Mx and My) were applied to the top rigid plate (Figure 5.7). At a sufficient 
roll angle, portions of the girder surface may “lift-off” (separate) from the bearing pad surface. 
Since nodes in the rigid plates were merged together with nodes on the bearing pad upper and 
lower surfaces, an infinitely strong bond condition was assumed in the 3D model. As such, the 
phenomenon of “lift-off” was not included. However, this phenomenon was taken into account 
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in the simplified bearing pad modeling technique that is described in the following chapter and 
which was used in subsequent parametric studies.  

In Figure 5.8, load-deformation (moment-rotation) curves are presented for both 
directions of rotation (roll). Evident from the figure is the fact that the curves are only mildly 
nonlinear. Moreover, at small rotation angles—important in terms assessing girder stability—the 
curves are virtually linear, therefore the initial slopes of the curves were used as the rotational 
stiffnesses of the bearing pad for beam stability analysis. The rotational stiffnesses with respect 
to the short axis (Kry) and long axis (Krx) of the bearing pad were determined to be 2.059E+05 
kip-in./rad and 4.589E+04 kip-in./rad respectively. 
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Figure 5.7 Load application for determination of rotational stiffness 
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Figure 5.8 Rotational stiffness results 
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In terms of assessing girder stability under skewed conditions, it is particularly important 
to quantify the rotation (roll) stiffness of the bearing pad at varying angles of skew. To consider 
skew effects, moments were applied to the bearing pad model at various angles of skew (Figure 
5.9) and the resulting rotational responses computed. The moment-rotation curves obtained for 
the skew angles considered were essentially linear at small rotation angles, therefore the 
rotational stiffnesses were based on the initial stiffness data obtained. Rotational stiffnesses of 
the bearing pad for the skew angles analyzed here are presented in Figure 5.10. 
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Figure 5.9 Load application for determination of skewed rotational stiffness 
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Figure 5.10 Rotational stiffness vs. skew angle 

Torsional pad stiffness was determined by applying a torsional moment to the top plate of 
the bearing pad model is shown in Figure 5.11. Since the shell elements use in the finite element 
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model did not possess “drilling degrees of freedom”, a rigid grid of beam elements was attached 
to the top plate and the torsional moment was applied to the rigid beam grid. The torque-rotation 
behavior obtained from the bearing pad analysis is plotted in Figure 5.12. Since pad torsion is 
primarily related shear stresses and strains, and since the previous in-plane shear behaviors were 
found to be linear, it is not surprising that the torque-rotation relationship is also essentially 
linear in form. Based on the data shown in the figure, the torsional stiffness of the bearing pad 
was determined as 1350 kip-in./rad. 
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Figure 5.11 Load application for determination of torsional stiffness 
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Figure 5.12 Torsional stiffness results 
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In Table 5.1, bearing pad stiffness computed from the three-dimensional finite element 

analyses discussed above are summarized. In addition, pad stiffnesses determined by other 
researchers for similar, but not identical, bearing pads are also presented for comparison 
purposes. From the data presented, it is apparent that the values obtained in the present study are 
generally in reasonable agreement with those reported by other researchers.  

 
 

Table 5.1 Bearing pad stiffness characteristics 
 

Data source 
Axial 

Kz 
(kip/in) 

Shear 
Kx 

(kip/in) 

Shear 
Ky 

(kip/in) 

Torsion 
Krz 

(kip-in/rad) 

Roll 
Krx 

(kip-in/rad)

Roll 
Kry 

(kip-in/rad)
  Present study (finite element analysis) 
  356 x 610 x 67 (mm), 4 shims 7.76E+03 2.10E+01 2.10E+01 1.35E+03 4.59E+04 2.06E+05 

  Yazdani  (finite element analysis) 
  254 x 610 x 37.5 (mm), 3 shims 5.95E+03 1.76E+01 1.76E+01 1.57E+00 4.96E+04 2.87E+05 

  Yazdani, (per AASHTO 1996) 
  254 x 610 x 37.5 (mm), 3 shims 7.47E+03 n/a 1.79E+01 n/a 6.23E+04 n/a 

  NCHRP-449 (finite element analysis) 
  229 x 356 x 44.5 (mm), 2 shims, NR100 1.18E+03 5.48E+00 5.48E+00 n/a 1.23E+03 n/a 

  NCHRP-449 (finite element analysis) 
  229 x 356 x 44.5 (mm), 2 shims, NEO100 1.20E+03 5.47E+00 5.47E+00 n/a 1.37E+03 n/a 

  NCHRP-449 (finite element analysis) 
  229 x 356 x 44.5 (mm), 2 shims, NR200 2.17E+03 1.04E+01 1.04E+01 n/a 2.34E+03 n/a 

  NCHRP-449 (finite element analysis) 
  229 x 356 x 44.5 (mm), 2 shims, NEO200 2.51E+03 1.19E+01 1.19E+01 n/a 3.49E+03 n/a 
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CHAPTER 6 
SIMPLIFIED BEARING MODEL 

6.1 Introduction 

Three-dimensional solid modeling and analysis, of the type described in the previous 
chapter, is generally the most accurate computational means available for analyzing bearing pad 
behavior. However, combining such models together with girder and bracing elements for the 
purpose of analyzing girder stability yields a computationally demanding analysis situation. If 
such analyses are to be performed thousands of times as part of an overall parametric study, the 
computational demands of this approach become problematic. Therefore, a simplified bearing 
pad model was devised using data obtained from the previously discussed three-dimensional 
analyses. The simplified bearing pad models were created by using a combination of rigid-beam 
grids, spring elements, gap (zero-tension) elements, and truss elements to simulate pad behavior 
(including creep) and interaction between a pad and the girder (lift-off behavior).  

6.2 Simplified bearing pad model 

A schematic diagram of the simplified bearing pad model and its connection to the girder 
model is given in Figure 6.1. The girder ends (beam elements) were connected to the bearing pad 
model through rigid links that span vertically between the pad and the girder centroid. A 
rectangular 7 x 7 grid of rigid-beam elements was used to transfer forces from the girder to the 
truss elements that represented the pad stiffness. In plan view, the rigid-beam grid had the same 
dimensions as the 14 in. x 24 in. FDOT Type B bearing pad. A total of forty-nine pairs of truss 
and gap elements were then connected to the rigid-beam grid at the grid intersection nodes. The 
compressive stiffness of the bearing pad was evenly distributed to the rectangular grid of truss 
elements so that stress and deformation concentrations arising in the pad from interactions 
between slope, skew, and creep could be modeled. 
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Figure 6.1 Simplified bearing pad model and its connection to the girder 
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However, it must be noted that even under concentric loading conditions without skew or 
slope, the vertical pressure distribution in a bearing pad is non-uniform in nature with maximum 
pressure occurring at the center (due to confinement) and minimum pressures occurring along 
the edges. As a result, a simplified bearing pad model employing evenly-distributed stiffness 
(truss elements) will generally over-predict the rotational stiffnesses of the pad. As will be 
discussed later, appropriate rotational pad stiffnesses were achieved in this study by combining 
additional concentrated rotational springs in series with the grid of equal-stiffness truss elements. 
Series combination of concentrated rotational springs with the grid of truss elements had the 
effect of softening the overall rotational stiffness of the simplified pad model. 

To enable the simplified model to account for the effects of creep, a power creep law of 
the form: 

 
a  a1 2c 0ε (t) = a σ t  (6.1)

was introduced into each truss element in the bearing pad grid. In the equation above, 0a , 1a , 
and 2a  are material constants that control the rate of creep as functions of stress and time. The 
specific values of 0a , 1a , and 2a  were presented earlier in this report.

 
 

In addition to the compression stiffness requirement, to account for the effects of creep, 
the cross-sectional area and length of the truss elements had to be properly characterized. The 
total cross sectional area of each truss element in the grid was set equal to the tributary area of 
bearing pad corresponding to the grid point and the length of each truss element was set equal to 
bearing pad thickness. The area requirement was necessary to properly represent stress levels in 
within the bearing pad, which in turn affect the rate of creep strain. The length requirement was 
needed to correctly calculate creep deformation since the power creep law relates the stress level 
to element strain. Any deviation of truss element length from the actual bearing pad thickness 
would have led to incorrectly computed deformations. Skewed bearing conditions were treated 
by rotating the rigid-beam grid through the appropriate skew angle relative to the longitudinal 
axis of the girder (Figure 6.2). This rotation was carried out for the bearing pads at both ends of 
the girder.  
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Figure 6.2 Skew condition modeling 

As a girder is lowered onto a set of bearing pads, the girder and bearing pads are not 
initially in full contact due to the effects of skew angle and girder end-slope. As the full self-
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weight of the girder is released from the lifting cables and applied to the bearing pads, the 
distribution of stresses and deformations within the pads will not be uniform. Rather, very high 
stresses will be present in areas where initial contact is made. The final distribution of stresses in 
the pad depends on the pad stiffness and on the nature of the initial gap that exists between the 
bearing pad and the sloped girder ends. In the simplified bearing pad model, this behavior was 
modeled by attaching each truss element in the pad grid to a “gap element”. Gap elements are 
spring elements that have zero tension stiffness and zero compression stiffness until a specified 
compressive activation deformation level is reached. Once the activation deformation has been 
reached—i.e., the gap has “closed”—the stiffness of the spring takes on the specified 
compressive stiffness. This behavior is illustrated in Figure 6.3. Since the correct compressive 
stiffness of the bearing pad was already incorporated into the truss elements, it was necessary to 
give the gap elements nearly infinite compressive stiffness so that their presence did not alter the 
overall stiffness of truss-gap combination. This was achieved by specifying gap element 
compressive stiffnesses that were very large relative the bearing pad truss element stiffnesses, 
but not so large as to ill-condition the stiffness matrix of the entire system. 

Compressive gap

Force
(tension)

Deformation
(tension)

kgap

Deformation
(compression)

Force
(compression)

kgap >> k truss

Compressive
activation
deformation
level

( )

Zero stiffness
in tension

 
Figure 6.3 Force-deformation curve for a gap element 

By employing a zero tension stiffness, the use of gap elements also permits modeling of 
girder lift-off from the pad. Lift-off occurs when loading on the girder causes the girder to 
physically lift-off (separate) from a portion of the bearing pads. Such conditions may arise at the 
point of buckling instability under vertical loading and at the point of rollover under lateral wind 
loading. By using zero tension stiffness gap elements, the simplified model is capable of 
correctly representing occurrences of lift-off. 

For each gap element in the pad grid, the gap size (activation deformation) had to be 
specified. At the location where initial contact is made between the girder and pad, the gap size 
was specified as zero. For conditions of combined skew and girder end-slope, initial contact 
occurs at a single grid point located at one corner of the pad. In an unskewed condition with 
girder end-slope, initial contact occurs along a line of grid points that span the width of the pad. 
For gap elements not located at the point of initial contact, the magnitude of activation 
deformation was calculated as the physical size of the vertical gap between the pad and the 
girder. In Figure 6.4 gap element activation deformations are illustrated for a system with end-
rotation but without skew. 
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Figure 6.4 Gap element activation deformations for end-slope case 

When the vertical stiffnesses of all truss elements in the simplified bearing pad model 
were summed together, their total compressive stiffness matched that computed from 
compressive loading of the detailed three-dimensional (solid element) bearing pad models 
discussed in the previous chapter. However, when moment loads were applied to the simplified 
bearing pad model, the rotational stiffnesses obtained were generally larger then the results 
previously obtained from detailed three-dimensional analyses. This is due to the fact that a grid 
of discrete truss elements cannot completely capture the three-dimensional stress states that arise 
in the actual layered bearing pad. In order to correct this problem and ensure that the simplified 
model yielded not only the correct compressive stiffness but also the correct rotational 
stiffnesses, additional concentrated rotational spring elements—connecting the rigid links to the 
rigid grid (Figure 6.4)—were combined with the grid of discrete truss and gap elements. For 
each axis of rotation, the concentrated springs were combined in series with the summed effect 
of the discrete truss elements. Stiffness values for the concentrated rotational springs were 
computed such that the effective series stiffness of the combination of concentrated spring and 
truss grid produced the desired rotational stiffness (as obtained from earlier three-dimensional 
analysis). The concentrated rotational spring stiffnesses for the x- and y-axes (Figure 6.2) were 
computed as follows: 

3D(90- ) truss
r rx

crx truss 3D(90- )
rx r

k  kK  = 
k  - k

φ

φ  (6.2)

3D( ) truss
r ry

cry truss 3D( )
ry r

k  k
K  = 

k - k

φ

φ  (6.3)

In the equations above, φ  is the skew angle of the girder, 3D( )
rk φ and 3D(90- )

rk φ  are the rotational 
stiffnesses obtained from detailed three-dimensional (3D) analyses for skew angles of φ  and 
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(90 )φ−  respectively, and truss
rxk  and truss

ryk  are the rotational stiffnesses contributed by the grid 
of truss elements about the x- and y-axes respectively. 

In addition to representing the compressive axial stiffness (Kz) and rotational stiffnesses 
(Krx, Kry) of the pad, the simplified model also had to represent the torsional stiffness (Krz) and 
shear stiffnesses (Kx and Ky in the x- and y-directions) of the pad. Modeling the latter stiffnesses 
required only that springs (Krz, Kx, Ky) be connected from the rigid grid to the support (Figure 
6.4). The values of Krz, Kx, and Ky used in the simplified model were those obtained directly 
from the detailed three-dimensional analyses discussed in the previous chapter. 

Connection of the vertical link to the simplified bearing pad model involved use of the 
concentrated rotational springs (Kcrx, and Kcry) and additional degree of freedom (DOF) 
constraints. Specifically, the x-, y-, and z-direction translational DOFs and the z-direction 
rotational DOF at the bottom of the vertical link were constrained to match the DOFs 
(displacements and rotation) at the center node of the rigid grid (Figure 6.5).  
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Figure 6.5 Connection of vertical link to rigid grid 
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CHAPTER 7 
BUCKLING ANALYSIS PROCEDURES 

 7.1 Introduction  

The most common approach to numerically computing buckling loads is to solve a 
linearized eigenvalue/eigenvector buckling problem. Most general-purpose finite element 
analysis software packages, including ADINA, offer the ability to solve for buckling loads using 
this approach. However, there are limitations to this method. Time-dependent effects such as 
creep, geometric nonlinearity, and material nonlinearity can only be approximately incorporated 
into the linearized eigen problem.  

An alternative to this approach involves the use of large displacement analysis. In this 
approach, loads are incrementally applied to the structure, and at each level of loading, static 
equilibrium of the structure (stability) is solved for in the deformed configuration of the structure 
(i.e., taking into account the changes of geometry that have occurred as a result of the loads). In 
order to use such an approach to solve buckling problems, member imperfections (e.g., sweep) 
must be introduced into the initial configuration of the structure. There are several advantages to 
this approach. Because imperfections are included as part of the analysis, the sensitivity of 
buckling loads (system stability) to the magnitude of such imperfections, can be quantified 
directly. Also, because loads are incrementally applied, a physical time scale can be attached to 
the analysis so that time-dependent effects, such as creep, can be included. Finally, material non-
linerarities associated with the use of gap elements can also be directly taken into account using 
this approach. For these reasons, large displacement analysis of systems with initial 
imperfections was the primary approach used throughout this study when conducting system 
stability analyses.  

7.2 Girder-buckling system model 

Numerical determination of buckling loads were carried out by conducting large 
displacement analyses on system-level models that combined girder elements, simplified bearing 
pad models, and—in most cases—lateral bracing at the girder ends. Conceptual sketches of the 
finite element model of a girder on bearing pads with geometric sweep, skew, and slope are 
shown in Figure 7.1. For computational efficiency, resultant beam elements were used to model 
the girder. Resultant beam elements are elements in which the resultant cross-sectional properties 
(area, moments of inertia, torsional constant) are specified rather than the specific cross-sectional 
geometry (dimensions) being specified. The girder elements were geometrically located at the 
center of gravity (C.G.) of the girder. A linear elastic material model was used for the concrete 
girder with an elastic (Young’s) modulus of 4930 ksi and Poisson’s ratio of ν = 0.20. Sweep 
imperfection of the girder was introduced by superimposing a sinusoidal shape on the girder in 
the lateral direction with maximum sweep occurring at mid-span. Inclusion of sweep in the 
girder model not only represented the actual manufactured condition of the girder, but also 
initiated triggering of girder instability under the applied loads. 
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Figure 7.1 Girder-buckling system model 

 

Skewed conditions were included in the model by rotating the bearing pad models 
through an angle equal to the skew angle. Girder end-slopes were taken into account by rotating 
the rigid pad grids and rigid links through angles equal to the end-slopes. The angles between the 
rigid links and the girder at the girder ends was kept constant during the rotation. The vertical 
cambered elevation profile of the girder was assumed to be parabolic in shape. For analyses in 
which lateral bracing effects were included, linear spring elements were connected to the 
centroidal locations at both ends of the girder. The bracing springs were oriented in the direction 
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of lateral girder displacement. Thus, bracing stiffnesses considered in this study were effective at 
the centroidal elevation of the girder and in the direction perpendicular to the longitudinal axis of 
the girder. 

7.3 Loading procedure used for buckling analysis  

Loads applied to the girder for the purpose of determining buckling capacities were 
distributed uniformly along girder length (Figure 7.2). For analyses in which creep effects were 
excluded, the loading procedure (Figure 7.3) consisted of two stages: 1) ramping the load to the 
self-weight of the girder and, 2) ramping the load until girder instability occurred. When creep 
effects were included, the loading procedure (Figure 7.4) consisted of three stages: 1) ramping 
the load to the self-weight of the girder, 2) maintaining self-weight load on the girder (and pads) 
for 72 hours, and 3) ramping the load until girder instability occurred. In all cases, prior to 
application of any load, ten (10) stabilizing linear springs were provided at each end of the 
girder. These stabilizing springs were particularly necessary for analyses of unbraced-girders in 
which the combined effects of skew and slope were included. For such cases, initial contact 
between the girder and pad was isolated to a single grid point in the pad model. As a result, the 
bearing pad initially provides no rotational stiffnesses to restrain the girder from rigid-body 
rotation and subsequent rollover. 
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 Figure 7.2 Load application on girder-buckling system 

In reality however, between the point of initial contact and the point at which the full 
self-weight of the girder rests on the bearing pads, the girder is supported and stabilized by the 
upward forces of the lifting cables. The stabilizing effect of the lifting cable forces is at its 
maximum when the girder initially comes into contact with the pads and vanishes at the point 
where the cables go slack and the full self-weight of the beam rests on the pads. The numeric 
approach used to approximately simulate this effect was to add ten stabilization braces to each 
end of the girder. At time zero, all ten braces at each girder end are active. As the loading on the 
girder is ramped up from zero to the full girder self-weight, the stabilization braces are gradually 
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removed—one brace at each end is removed for every 1/10th of the girder self-weight load that is 
applied (Figure 7.3). In this manner, when the full self-weight load is reached, all stabilization 
braces have been removed. If the analysis being performed is an unbraced analysis, then no 
braces will be present as load is ramped up beyond the self-weight load. If a braced case is being 
analyzed, then only the bracing stiffness under consideration will be present for loads that exceed 
the girder self-weight. 
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Figure 7.3 Load procedure used for buckling analysis with creep effects excluded 
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Figure 7.4 Load procedure used for buckling analysis with creep effects included 
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7.4 Validation of large displacement buckling analysis procedure 

To validate the ability of large-displacement analyses (with introduced imperfections) to 
accurately predict girder instability and buckling capacity, analyses of girders with simple 
support conditions were performed using three different methods and the results compared. For 
the girder shown in Figure 7.5, simple support conditions mean that the girder ends may rotate 
about the x-axis, but not about the y-axis. If the geometric effects of skew, slope, and sweep are 
neglected, then for simple support conditions, the following closed-form analytical solution is 
available for the calculation of the critical buckling load: 

 
2

w 2

cr 3

πEI GJ + EC
L

w  = 28.5
L

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠  

(7.1)

In this equation, crw  is the critical buckling load (uniformly distributed along the girder length, 
kip/ft), L is girder span length, I  is the weak-axis moment of inertia, E and G are the Young’s 
modulus and shear modulus of concrete respectively, J is the torsional constant, and wC  is the 
warping constant for the girder cross-section.  

Results from the large-displacement buckling analysis procedure may be compared to the 
closed-form solution for validation purposes. To enable this comparison, modifications were 
made to the large-displacement buckling system model to make its behavior consistent with the 
assumptions built into the closed-form solution. Rather than using flexible bearing pads, the 
simple support boundary conditions were modeled by assigning very large stiffness to springs 
that corresponded to fixed degrees of freedom (DOFs) and very small stiffnesses to springs that 
corresponded to released (free) DOFs (Figure 7.5). In addition, the effects of skew, slope, and 
creep were omitted from the model. In the closed-form analytical solution, sweep imperfections 
are not taken into account. Therefore, in the large-displacement system model, a minimal value 
of 0.1 in. of sweep at midspan was included—enough to initiate (trigger) the lateral instability 
process, but not enough to substantially alter the computed buckling load. 

In addition to performing a large displacement buckling analysis on the modified system 
model, ADINA was also used to perform a linearized buckling analysis (since neither time-
dependent nor nonlinear effects were included in the validation example). Hence, results from 
the closed-form analytical solution, ADINA linearized buckling analysis, and ADINA nonlinear 
large-displacement buckling analysis were computed and compared. Four girders having a span 
length of 140 ft. and Florida bulb-tee cross-sections FBT54, FBT63, FBT72, and FBT78 were 
analyzed. Results obtained from three different analysis procedures for these four girders are 
presented in Figures 7.6 through 7.9. 

Comparisons between the closed-form analytical solution and the ADINA linearized 
buckling analyses are in very close agreement. This observation confirms the fact that the beam 
element formulation employed by ADINA is capable of accurately simulating lateral buckling of 
girders. Equally important, results from the ADINA large-displacement buckling analyses also 
compare well with the closed-form solution data. If the buckling load is defined as the point at 
which the slope of the load-deflection curve drops to below 1/10th of its initial value, then the 
buckling loads predicted by large-displacement analysis and by closed-form analytical solution 
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are in good agreement. It is therefore concluded that the large-displacement analysis procedure is 
an appropriate means of quantifying girder buckling capacities.  
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Figure 7.5 Simple support boundary condition 
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Figure 7.6 Validation buckling analysis (FBT54, 140 ft. span) 
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Figure 7.7. Validation buckling analysis (FBT63, 140 ft. span) 
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Figure 7.8 Validation buckling analysis (FBT72, 140 ft. span) 
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Figure 7.9. Validation buckling analysis (FBT78, 140 ft. span) 
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CHAPTER 8 
BUCKLING ANALYSIS RESULTS 

8.1 Introduction 

Using the girder, simplified bearing pad, and bracing models described in previous 
chapters, a comprehensive parametric study was carried out using numerical simulation to 
quantify girder buckling capacities over a variety of different potential field conditions. System 
parameters that most strongly influenced girder buckling capacity were identified through 
sensitivity studies. Subsequently, simplified equations were developed for conservatively 
estimating girder buckling capacity under varied field conditions.  

8.2 Parameter descriptions 

The characteristic system parameters that were varied in the parametric study were as 
follows: 

• Girder type (cross-sectional properties) 
• Span length 
• Skew angle 
• Bearing slope angle 
• Lateral sweep 
• Bearing pad creep (included or neglected)  
• Bracing stiffness 

For each buckling analysis conducted, a single set of values were selected from those listed in 
Table 8.1. In total, 4800 different buckling analyses were performed. For each of the four Florida 
bulb-tee (FBT) girder types considered, a series of four different span lengths were analyzed. It 
is important to note that the maximum span length considered for each girder may not represent 
feasible situations from a design perspective even though stability analyses could be performed 
(this issue will be discussed in more detail later in this chapter). The maximum span lengths 
considered in this study were included primarily to ensure that abrupt changes in data trends did 
not occur just beyond the practical ranges of interest. 

 
 

Table 8.1 Values used in parametric study 
 

Girder type: Span length:    
FBT54 80 ft 100 ft 120 ft 140 ft 
FBT63 100 ft 120 ft 140 ft 160 ft 
FBT72 120 ft 140 ft 160 ft 180 ft 
FBT78 140 ft 160 ft 180 ft 200 ft 

     
Skew angle: Slope angle: Girder sweep Bearing pad creep Bracing stiffness: 

0 deg. 0.00 rad. 0.5 in. Included 0 kip/in 
15 deg. 0.05 rad.  1.5 in. Neglected 10 kip/in 
30 deg.  2.5 in.  100 kip/in 
45 deg.    1000 kip/in 
60 deg.    10,000 kip/in 
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Multiple skew angles ranging from 0 deg. (unskewed) to 60 deg. were used to quantify 
the effects of skew girder stability. Similar to the comment noted above regarding maximum 
selected span lengths, the maximum considered skew angle of 60 deg. was included to extend the 
range of numerical evaluation beyond the practical range of interest. 

Selection of the maximum considered slope angle was based on examining the combined 
effects of camber (due to girder prestressing), roadway grade, and construction tolerance. Based 
on a review of pertinent design calculations for long-span prestressed concrete girders, an end 
slope (rotation) of 1 deg. (0.0175 rad.) was determined to be a reasonable upper limit on camber 
induced slope. In regard to roadway grade, the FDOT bridge design standards (2006 Index 
No. 20500) require that beveled bearing plates be used whenever the beam grade exceeds a slope 
of 2% (0.0200 rad.). As such, this angle was considered to be the maximum possible grade-
related slope mismatch that would occur between the girder and the bearing pad. Finally, the 
AASHTO LRFD Bridge Design Specifications (AASHTO 2004) stipulate that allowance for a 
rotation angle of 0.0050 rad. be considered to account for construction related tolerances. 
Summing these slopes gives 0.0175 + 0.0200 + 0.0050 = 0.0425 which was conservatively 
rounded up to 0.05 rad. and then selected as the maximum slope angle to be used in the 
parametric study. 

The maximum girder sweep imperfection value was established based on a review of 
several bridge design documents as well as discussions with FDOT engineers. In the 1991 FDOT 
Standard Specifications for Road and Bridge Construction (FDOT 1991), maximum allowable 
girder sweep was limited to 1/8 in. of sweep per 10 ft of girder length, but not to exceed 1.5 in. 
In the 2004 FDOT standard specifications, maximum sweep was limited to 1/8 in. per 10 ft of 
length, but with no upper bound. Most recently, in the 2006 FDOT standard specifications, 
maximum permissible sweep was once again 1/8 in. per 10 ft of length, but with a maximum 
upper limit of 1.5 in. In PCI Manual 116-99: Quality Control for Plants and Production of 
Structural Precast Concrete Products, (PCI 1999), maximum permissible sweep is specified as 
1/8 in. per 10 ft of length, but with no upper limit.  

At the 80 ft minimum span length considered in this study (Table 8.1), the 1/8 in. per 10 
ft criterion yields a maximum allowable sweep of 1.0 in. When applied to the 200 ft maximum 
span length considered, the same criterion yields a sweep of 2.5 in. However, the latter value 
exceeds the current FDOT upper limit of 1.5 in., therefore 1.5 in would control instead. 
According to the current FDOT standards then, the maximum sweep values applicable to the 
span lengths considered here would range from 1.0 to 1.5 in. Slightly wider ranging values—0.5 
in., 1.5 in., and 2.5 in.—were instead selected for this study so that an adequate spread would be 
available for the purpose of evaluating the sensitivity of buckling capacity to sweep 
imperfection. All of the sweep values considered here were, however, conservative in 
comparison to currently applicable FDOT standards.  

As indicated in Table 8.1, moderate term (72 hr) creep effects in the bearing pads were 
either included (taken into account) or excluded (neglected). However, no further refinements to 
the creep characteristics of the bearings were included. The power law creep parameters used in 
the “creep-included” simulations were presented earlier in this report. 

Bracing stiffnesses ranged from zero (an unbraced condition) to 10,000 kip/in. It must be 
clearly noted that the bracing stiffnesses used in this study were stiffnesses effective at the 
centroid of the girder and for a bracing direction that was perpendicular to the longitudinal axis 
(direction of span) of the girder. Due to the increased moment-arm, bracing elements attached to 
the top flange or upper sections of the girder would be more effective than bracing connected at 
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the centroid. Similarly, bracing elements connected perpendicular to the girder axis would be 
more effective than bracing connected at skewed angles. Bracing stiffness values corresponding 
to structural steel cross-frames of the type often used in bridge construction would typically fall 
below 1000 kip/in. in stiffness (effective at the centroidal elevation). From a practical standpoint, 
for the girder types treated in this study, the chosen upper limit bracing stiffness of 10,000 kip/in. 
then approximates a rigidly braced condition. 

8.3 Results 

Buckling capacities computed based on stability analyses of the 4800 cases included in 
the parametric study are presented in summary format in Figure 8.1. Four overall groups are 
evident in the figure, one for each of the girder cross-sections analyzed: FBT54 (cases 1-1200), 
FBT63 (cases 1201-2400), FBT72 (cases 2401-3600), and FBT78 (cases 3601-4800). Contained 
within each of the overall “girder-type” groups are four additional sub-groups corresponding to 
various spans lengths considered. 
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Figure 8.1 Buckling capacities based on stability analysis results 

8.3.1 Stability and stress considerations 

The buckling capacity values shown in Figure 8.1 all correspond to loads at which girder 
instabilities occurred. In these analyses, no consideration was given to the possibility of material 
related failure modes. Since specific patterns and amounts of girder prestressing were not 
included in the scope of this study, it was not possible to determine whether specific sections 
possessed adequate capacity to carry the loads indicated in Figure 8.1. The data presented here is 
not intended replace the need for conducting section strength calculations, but rather to provide 
an indication of whether buckling and stability problems will arise for certain combinations of 
section type, span length, skew angle, etc. 
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However, by assuming conservative (worst-case) conditions, it was possible to consider 
one material related failure mode: the possibility of flange tensile cracking. Due to initial sweep 
in the girder and due to the fact that girder buckling involves lateral deflections, the possibility 
exists for tensile stresses at mid-span being large enough to crack the flange. Specifically of 
interest here was determining whether the loads required to cause flange cracking were less than 
those required to initiate girder instability (i.e., the loads shown Figure 8.1). For any such case, 
girder capacity will be controlled not by stability but by flange cracking. Section 4.3.1 of the  
FDOT Structures Design Guidelines (2006) states that tensile stresses arising at release of the 

prestressing must be limited to less than '
ci6 f  in zones near the center of the girder. In this 

expression, '
cif  is the initial compressive strength of the concrete at the time of prestressing 

release. According to the FDOT guidelines, '
cif  must be the greater of 4.0 ksi or 0.6 '

cf  where '
cf  

is the 28-day design compressive strength of the concrete. 
For purposes of computing flange stresses, it was conservatively assumed here that the 

initial tensile stress in the girder flange (under girder self-weight) for each analysis case was 

equal to the maximum permissible value of '
ci6 f . Subsequently, for each case, the internal 

strong and weak axis midspan moments caused by the load required to initiate instability 
(Figure 8.1) were used to compute the maximum tensile flange stresses. If the stresses computed 

in this manner exceeded '
c6 f , then flange cracking was considered to control. The limiting 

tensile stress of '
c6 f  was chosen for use here because it corresponds to the maximum value 

allowed by the AASHTO LRFD Bridge Design Specifications (AASHTO 2004) for bulb-tee 
girders under moderate or less severe corrosion conditions. In cases where the maximum 

computed flange stress exceeded '
c6 f , load and moment data from the analysis were back-

scanned to determine the load level at which flange cracking was first initiated. The load 
required to initiate flange cracking was then taken to be the controlling buckling capacity of the 
section. For purposes of conducting these crack check calculations, the concrete strength values 
assumed here were '

cif = 4 ksi and '
cf = 6.5 ksi. 

In Figure 8.2, capacities determined based on both stability and flange tensile cracking 
are presented. Flange cracking loads are only presented for cases in which girder capacity was 
controlled by cracking rather than by stability. It is apparent from Figure 8.2 that for the cases in 
which flange cracking controlled, the capacities computed in this manner were only moderately 
less than those corresponding to girder instability. To better illustrate this fact, in Figure 8.3, only 
cases in which flange cracking controlled are shown, along with the corresponding stability 
related capacities (loads). The observed reductions in capacity due to flange cracking are 
relatively minor. In the remainder of this chapter, all girder capacity data presented will 
correspond to the lesser of stability related and flange cracking related capacities. 

It must be noted that during the process of conducting flange stress calculations and 
cracking checks, a very small number of cases (9 out of 4800) were found to sustain flange 
cracking even under the loading condition of girder self-weight. In Figure 8.4, flange stresses 
caused by the loads shown in Figure 8.2 are presented and compared to the maximum 
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permissible tensile stress limit of '
c6 f . As is indicated in Figure 8.4, for a small number of 

cases, the stresses corresponding even to self-weight loading exceeded the permissible limit. In 
Figure 8.5, only the tensile portion of the stress data presented in Figure 8.4 is shown. For nine 
(9) cases, the computed tensile stresses were larger than the permissible limit. An examination of 
the cases that failed to satisfy the flange cracking check revealed that such cracking arose only at 
the maximum span lengths considered for the FBT72 and FBT78 sections. Additionally, only 
when severe skew was combined with these span lengths did flange cracking at self-weight 
occur.  

As was noted earlier, the maximum span lengths used in the parametric study were 
intentionally chosen to exceed the maximum span lengths feasible in practical design situations. 
It is therefore recommended that use of the capacity prediction equations developed later in this 
chapter be limited to the following span lengths: 

 
(FBT54 : L 120 ft≤ ) , (FBT63 : L 140 ft≤ ) , (FBT72 : L 160 ft≤ ) , (FBT78 : L 180 ft≤ ) 

 
A review of the flange stress data in Figure 8.4 also emphasizes the fact that independent 

section strength calculations need to supplement the use of data and equations presented here. 
For many of the short span sections considered in this study, very large loads are required to 
initiate stability failure. Such loads would give rise to very large compressive flange stresses 
(Figure 8.4). However, stability related loads computed for these cases are not achievable from a 
material compression failure standpoint. Hence, appropriate section strength calculations—which 
will require knowledge of the specific prestressing patterns and amounts—must always 
supplement the use of the equations developed herein (which will be based on stability and 
tensile flange cracking). 
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Figure 8.2 Capacities based on girder instability and flange cracking 
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Figure 8.3 Capacities for cases controlled by flange cracking 
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Figure 8.4 Computed flange stresses 
(Positive = tensile stress, negative = compressive stress) 
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Figure 8.5 Computed tensile flange stresses 

8.3.2 General trends 

In Figure 8.6, the relationship between capacity and span length is presented for all 4800 
cases analyzed. As span lengths increase, buckling capacities decrease rapidly (note that the 
vertical capacity axis in Figure 8.6 is a logarithmic scale). Given the nature of lateral buckling, 
this type of trend is generally expected, however, the figure also reveals a significant amount of 
variability (spread) in the capacity data at each span length. Part of this spread is clearly 
attributable to differences of cross-sectional properties across the various types of girders 
(FBT54, FBT63, FBT72, FBT78). However, other factors such as skew, slope, sweep, bearing 
pad creep, and bracing stiffness also contribute to the observed variability. 

In Figure 8.7, an alternative view of capacity variability is given. In this figure, the 
influences of girder cross-section and span length have been removed, thereby revealing the 
combined (aggregate) influences of only skew, slope, sweep, bearing pad creep, and bracing 
stiffness. Each point in Figure 8.7 represents a particular girder type and span length under non-
ideal conditions. Ideal conditions are defined here as zero-skew, zero-slope, minimal sweep, zero 
creep, and maximum bracing stiffness. For each non-ideal case, the corresponding ideal case for 
the same girder cross-section and span length is identified. The percentage change (reduction) in 
capacity resulting from non-ideal conditions is then computed as: 

 

ideal non-ideal

ideal

C CΔC% = 100
C

⎛ ⎞−
⋅⎜ ⎟

⎝ ⎠
 (8.1)

For each such calculation, the girder cross-sectional properties and span length match between 
the ideal and non-ideal cases, thus removing these as factors that might influence capacity. 
Figure 8.7 then illustrates buckling capacity variations attributable only to the effects of skew, 
slope, sweep, creep, and non-rigid bracing. Significant capacity reductions are apparent across 
the entire spectrum of girder types and span lengths considered.  
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Figure 8.6 Variation of buckling capacity with span length 
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 Figure 8.7 Capacity reduction due to the combined effects of skew, slope,  

sweep, creep, and non-rigid bracing  

In Figures 8.8 and 8.9, capacity reductions are plotted according to girder types and span 
lengths. The observed ranges of capacity reduction are roughly uniform across all girder types 
and all span lengths. Therefore, in order to develop a better understanding of the individual 
factors that account for the observed capacity reductions, additional sensitivity studies were 
performed for the factors: skew, slope, sweep, creep, and bracing stiffness.  
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 Figure 8.8 Capacity reduction due to the combined effects of skew, slope,  
sweep, creep, and non-rigid bracing as a function of girder type 
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Figure 8.9 Capacity reduction due to the combined effects of skew, slope,  

sweep, creep, and non-rigid bracing as a function of span length 
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8.4 Parameter sensitivity studies 

8.4.1 Sensitivity to creep 

In the plots shown above in Figures 8.7– 8.9, the majority of data points correspond to 
positive values of capacity reduction. However, it is noted that there are also a smaller number of 
cases for which the computed capacity reductions are negative. A negative capacity “reduction” 
(i.e., a positive capacity increase), arises when the buckling capacity under non-ideal conditions 
exceeds the capacity under the so-called ideal conditions. In such cases, clearly the terms “ideal” 
and “non-ideal” lose their meaning. 

By examining the sensitivity of buckling capacity to bearing pad creep, it is found that 
the cause of the negative capacity reductions in Figures 8.7 – 8.9 is primarily due to the effects of 
creep. Similar to the general capacity reduction Eqn. (8.1), we can define a reduction specifically 
for the effects of creep: 

 

creep-excluded creep-included

creep-excluded

C C
ΔC% = 100

C
⎛ ⎞−

⋅⎜ ⎟⎜ ⎟
⎝ ⎠

 (8.2)

Comparing Eqn. (8.2) to Eqn. (8.1), it is apparent that creep-excluded conditions are assumed to 
be ideal (reference) conditions. In Figure 8.10, capacity reductions associated with creep are 
plotted for a total of 2400 cases. In most cases, inclusion of creep results in a minor (less than 
5%) reduction in buckling capacity. However, in a smaller number of cases, inclusion of creep 
actually results in a negative reduction—i.e., an increase in capacity.  

Under conditions of combined skew and slope, the contact area between the bottom 
flange of the girder and the bearing pad is very small, resulting in very high localized stresses. If 
bearing pad creep is taken into account in such cases, the contact area between the girder and the 
bearing pad grows slightly over time as creep deformations occur. In some situations, this effect 
produces a minor net improvement (less than 5%) in buckling capacity. Overall, however, the 
conclusion to be drawn from Figure 8.10 is that, for the conditions studied here, girder buckling 
capacity is not highly sensitive to the inclusion, or exclusion, of bearing pad creep. 

 
8.4.2 Sensitivity to skew 

To evaluate the sensitivity of buckling capacity to skew angle, the following capacity 
reduction is defined: 

 

zero-skew skewed

zero-skew

C CΔC% = 100
C

⎛ ⎞−
⋅⎜ ⎟⎜ ⎟

⎝ ⎠
 (8.3)

Here, zero-skew conditions are considered to be ideal (reference) conditions and skewed 
conditions are considered to be non-ideal. In Figure 8.11, capacity reductions associated with 
skew angle are plotted for a total of 3840 cases. Sixteen distinct groups are apparent in the plot—
four girder types at four different span lengths each. Maximum capacity reductions within each 
of these sixteen groups occur under the most severely skewed conditions. This fact is more 
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apparent in Figure 8.12 where the same 3840 capacity reductions are plotted as a function of 
skew angle. Plotting the data in this format, a clear linear trend between skew angle and 
reduction of buckling capacity becomes apparent. Later in this chapter, a simplified semi-
empirical buckling capacity estimation equation will be developed based on the results of the 
overall parametric study. An important part of that simplified equation will be a skew correction 
factor that models the relationship between capacity loss and skew angle which is apparent in 
Figure 8.12. 
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 Figure 8.10 Capacity reduction due to creep 
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Figure 8.11 Capacity reduction due to skew 
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Figure 8.12 Capacity reduction due to skew, as a function of skew angle 

 

8.4.3 Sensitivity to slope 

To evaluate the sensitivity of buckling capacity to variations in slope mismatch between 
the girder and bearing pad, the following capacity reduction is defined: 

 

zero-slope non-zero-slope

zero-slope

C C
ΔC% = 100

C

⎛ ⎞−
⎜ ⎟ ⋅
⎜ ⎟
⎝ ⎠

 (8.4)

In Eqn. (8.4), zero slope conditions are considered to be ideal (reference) conditions. In 
Figure 8.13, capacity reductions associated with slope are plotted for a total of 2400 cases. In all 
cases analyzed, slope related capacity reductions ranged between 0% and 30%. Generally, the 
percentage reductions in capacity are shown to grow in magnitude as span lengths increase 
(Figure 8.14). Later in this chapter, when a simplified buckling capacity estimation equation is 
developed, the interaction between slope and span length will be accounted for by introduction 
of a span-dependent field-imperfection correction factor.  
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Figure 8.13 Capacity reduction due to slope 
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Figure 8.14 Capacity reduction due to slope, as a function of span length 
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8.4.4 Sensitivity to sweep 

To evaluate the sensitivity of buckling capacity to sweep imperfections, percentage 
capacity reductions were computed based on changes between minimum sweep (0.5 in.) and 
maximum sweep (2.5 in.) conditions. In this context, 0.5 in. sweep conditions were considered to 
be “ideal” conditions, whereas 2.5 in. sweep conditions were treated as non-ideal. Capacity 
reductions for sweep were then computed as: 

 

0.5in. sweep 2.5 in. sweep

0.5 in. sweep

C C
ΔC% = 100

C

⎛ ⎞−
⎜ ⎟ ⋅
⎜ ⎟
⎝ ⎠

 (8.5)

In Figure 8.15, capacity reductions associated with slope are plotted for a total of 1600 cases. In 
nearly all cases analyzed, capacity reductions range between 0% and 25%. As was the case in 
slope-sensitivity, percentage reductions in capacity due to sweep are generally shown to grow in 
magnitude as span lengths increase (Figure 8.16). As noted above for slope-sensitivity, the 
interaction between sweep and span length will also be accounted for later in this chapter by 
introduction of a span-dependent field-imperfection correction factor. 
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Figure 8.15 Capacity reduction due to sweep 
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 Figure 8.16 Capacity reduction due to sweep 

8.4.5 Sensitivity to bracing stiffness 

For a girder supported and braced only at its ends, ideal (maximum) buckling capacities 
are produced when rigid (infinitely stiff) braces are used. Capacity reductions resulting from 
non-ideal (non-rigid bracing) conditions may then be defined as: 

 

rigid-bracing non-rigid-bracing

rigid-bracing

C C
ΔC% = 100

C

⎛ ⎞−
⎜ ⎟ ⋅
⎜ ⎟
⎝ ⎠

 (8.6)

In the parametric study conducted here, a bracing stiffness of 10,000 kip/in. was used to 
approximate rigid (ideal) bracing conditions. Capacity reductions associated with the use of non-
rigid (non-ideal) bracing conditions were then computed in comparison to the pseudo-rigid 
(10,000 kip/in.) condition for the following bracing stiffness cases:  

• Bracing stiffness case 0 : 0 kip/in. (unbraced) 
• Bracing stiffness case 1 : 10 kip/in. 
• Bracing stiffness case 2 : 100 kip/in. 
• Bracing stiffness case 3 : 1000 kip/in. 

Results are presented in Figure 8.17 for a total of 3840 cases. Sixteen distinct groups are 
apparent in the plot—four girder types at four different span lengths each. Maximum capacity 
reductions within each of these sixteen groups occur under unbraced conditions. In Figure 8.18, 
capacity reductions for the same 3840 cases are grouped according to bracing stiffness case. 
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With the exception of a small number of cases, Figure 8.18 indicates that moving from a rigid 
braced condition to an unbraced condition (bracing stiffness case 0) produced capacity 
reductions of less than 20%. This level of capacity reduction is smaller in magnitude than those 
produced by geometric factors such as skew, slope, and sweep. Consequently, in developing the 
simplified capacity prediction equations discussed below, no specific provisions for including 
bracing stiffnesses have been made. Instead, the equations are developed to conservatively 
envelope both braced and unbraced conditions. 
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 Figure 8.17 Capacity reduction due to finite bracing stiffness 

0 0.5 1 1.5 2 2.5 3
10

0

10

20

30

Bracing stiffness case

C
ap

ac
ity

 re
du

ct
io

n 
(%

)

 
 Figure 8.18 Capacity reduction due to finite bracing stiffness 

(Case 0: 0 kip/in., Case 1: 10 kip/in., Case 2: 100 kip/in., Case 3: 1000 kip/in.) 
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8.5 Development of a simplified buckling capacity estimation equation 

Using analysis results obtained from the parametric study and taking into account the 
parameter sensitivities quantified above, a simplified semi-empirical buckling capacity 
estimation equation was developed. As presented in earlier chapters, girder buckling capacity 
may be expressed in the general form: 

 

3
E IG J

C = 
L

 (8.7)

in which C is the buckling capacity (expressed as a vertical load per unit length of girder), E is 
the elastic modulus, I is the weak axis moment of inertia (Iy), G is the shear modulus, J is the 
torsional moment of inertia, L is the span length. Capacities computed using Eqn. (8.7) must, 
however, also be modified to take into account the effects of boundary conditions, bracing 
stiffness, and other factors. 

Development of a simplified capacity equation began by selecting from the 4800 
parametric analyses only cases that most closely approximated “ideal” conditions: zero-skew, 
zero-slope, minimal sweep, and maximum bracing stiffness. For each such case, the refined 
capacity predicted by finite element analysis was normalized by dividing by the simplified 
capacity predicted by Eqn. (8.7). Normalized data of this form are presented in Figure 8.19. 
Closely positioned pairs of points in the figure represent analyses performed with and without 
creep effects included (recall from earlier discussion that buckling capacities were not found to 
be highly sensitive to creep). 
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Figure 8.19 Refined capacity data normalized by simplified capacity Eqn. (8.7)  

(Ideal conditions: zero skew, min. sweep, zero slope, max. bracing) 
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If the capacities predicted by Eqn. (8.7) agreed with those computed from the refined 
finite element analyses, then the resulting normalized values would all be unity (1.0). The fact 
that the values in Figure 8.19 are not unity indicates that a correction factor for boundary 
conditions must be introduced. Thus, a modified form of the capacity equation is used : 

 

( )3
E IG J

C = B
L

 (8.8)

in which B is a boundary condition correction factor. Examining the data in Figure 8.19, the 
value of B is empirically determined to be B=24. Normalizing the refined analysis capacities for 
ideal cases by capacities computing using Eqn. (8.8) with B=24 yields the data shown in 
Figure 8.20. Note that on average, the normalized data in Figure 8.20 hover around unity.  

In Figure 8.21, the same normalized data points are once again plotted, but now as a 
function of the span length. On average, the values hover around unity. No strongly discernable 
trend relating to span length is apparent. Under ideal conditions then, Eqn. (8.8) is adequate to 
predict buckling capacity. 

To account for non-ideal “field” conditions (or field imperfections), a correction factor 
reflecting the influences of slope, sweep, creep, and non-rigid bracing must be introduced. Skew 
angle, which was shown earlier to strongly influence capacity, will be treated using a separate 
correction factor later. Taking the 960 parametric analysis cases corresponding to zero-skew 
conditions, and normalizing the refined finite element analysis capacities for these cases by 
values computed using Eqn. (8.8) results in the data points shown in Figure 8.22. Due to the 
influences of non-ideal field imperfections, reductions in capacity are clearly evident.  
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Figure 8.20 Refined capacities normalized by simplified capacity Eqn. (8.8) 
(Ideal conditions: zero skew, zero slope, min. sweep, max. bracing) 
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Figure 8.21 Refined capacities normalized by simplified capacity Eqn. (8.8) 

(Ideal conditions: zero skew, zero slope, min. sweep, max. bracing) 
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Figure 8.22 Refined capacities normalized by simplified capacity Eqn. (8.8) 
(Conditions: zero skew) 

Also shown in Figure 8.22 is a linear model of the lower bound capacities that result from 
the combined influences field imperfections. Since the normalized data maximize at unity, the 
linear lower limit line also serves as a correction factor for field imperfections: 

 
F(L) = 1.0-0.0017 L  (8.9)
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where L is the span length in units of feet. Hence an improved buckling capacity prediction 
equation is given by: 

 

( ) ( )( )3
E I G J

C = B F(L)
L

 (8.10)

where B=24 and F(L)=1.0-0.0017 L . Normalizing the refined analysis capacities for the 960 
zero-skew data cases by the corresponding capacities computed using Eqn. (8.10) produces the 
data points shown in Figure 8.23. Note that a refined / simplified capacity ratio of unity or 
greater indicates that the simplified prediction of capacity is conservatively low (i.e., less than 
the “actual” buckling capacity, as determined using refined finite element analysis). Since all 
data points in Figure 8.23 are greater than or equal to unity, Eqn. (8.10) is a conservative means 
of predicting girder buckling capacities for unskewed conditions. 
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Figure 8.23 Refined capacities normalized by simplified capacity Eqn. (8.10) 

(Conditions: zero skew) 
 

The skew sensitivity study presented earlier in this chapter revealed that buckling 
capacities are strongly influenced by skew angle. Hence, a separate capacity correction factor 
specifically for the effects of skew is warranted. For the 3840 skewed conditions that were 
analyzed using refined finite element analysis, the corresponding refined capacities predicted 
under zero-skew conditions were identified. Each skewed capacity was then divided by 
(normalized with respect to) the corresponding unskewed capacity. Data produced by this 
procedure are shown in Figure 8.24.  
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Figure 8.24 Capacities normalized by capacities for unskewed conditions 

Using the data shown the in Figure 8.24, a linear model of skew capacity correction was 
established. In establishing the skew correction equation, data points associated with large skew 
angles (30, 45, 60) were “weighted” more heavily than were points corresponding to small skew 
angles. The resulting capacity correction for skew is plotted in Figure 8.24 and is given by the 
expression:  

 
S(θ)=1.0-0.006θ  (8.11)

where θ  is the skew angle in units of degrees. The final simplified buckling capacity prediction 
equation is then given by: 

 

( ) ( ) ( )( )3
E I G J

C = B F(L) S(θ)
L

 (8.12)

where B=24, F(L)=1.0-0.0017 L , and S(θ)=1.0-0.006θ . In Figure 8.25, ratios of refined 
capacity / simplified capacity are presented for all 4800 cases included in the parametric study. 
Two complete sets of 4800 data points each are presented—one with boundary condition and 
field imperfection corrections applied (Eqn.(8.10)) and one with boundary condition, field 
imperfection, and skew corrections applied (Eqn.(8.12)).  
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Figure 8.25 Refined capacities normalized by simplified capacity Eqn. (8.10) without  

skew correction, and normalized by Eqn. (8.12) with skew correction 

When all three capacity corrections are included—boundary condition, field 
imperfection, and skew—the refined / simplified capacity ratios are greater than or equal to 
unity. Thus,  the equation: 

 

( ) ( )3
E I G J

C = 24 1.0-0.0017 L 1.0-0.006θ
L

 (8.13)

where L is the span length in units of feet and θ  is the skew angle in units of degrees, is found to 
be a conservative predictor of girder buckling capacity for the full range of girder type, span 
length, skew angle, slope, sweep, creep, and bracing conditions studied here. In Figure 8.26, 
girder buckling capacities computed using by simplified Eqn. (8.13) and by refined finite 
element analysis are compared. Evident from the figure is the fact that the simplified equation is 
always conservative, and matches the trends present in the refined analysis data set. This is 
further illustrated in Figure 8.27 where the same data are compared, but only within the range 
from 1 kip/ft to 10 kip/ft and using a logarithmic vertical scale. In this figure, it is clear that the 
simplified equation is conservative for every analysis case considered.  

Eqn. (8.13) is therefore recommended for use in assessing girder buckling capacity for 
Florida  bulb-tee sections, subject to the following, previously discussed, limiting span lengths: 

 
(FBT54 : L 120 ft≤ ) , (FBT63 : L 140 ft≤ ) , (FBT72 : L 160 ft≤ ) , (FBT78 : L 180 ft≤ ) 

 
As was noted earlier, capacities predicted by Eqn. (8.13) are based on the conditions of overall 
girder stability and flange tension cracking. However, the potential for other failure conditions 
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(e.g. flange crushing in compression) may also exist. Therefore, appropriate section strength 
calculations—which will require knowledge of the specific prestressing patterns and amounts—
must always supplement the use of Eqn. (8.13). 
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Figure 8.26 Comparison of capacities computed by refined analysis  
and by simplified capacity Eqn. (8.13) 
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Figure 8.27 Comparison of capacities computed by refined analysis  
and by simplified capacity Eqn. (8.13) 
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CHAPTER 9 
WIND LOAD ANALYSIS PROCEDURES 

 

9.1 Introduction 

By modifying the vertical-load buckling analysis techniques described in previous 
chapters, it was feasible to carry out an investigation into the effects of lateral wind loading on 
long span girders. The wind loading investigation was limited in scope and preliminary in nature, 
but was carried out with the goal of gaining insights into girder behavior and stability under 
lateral loading conditions. It is important to note that material failure limit states (e.g., weak-axis 
flexural failure, flange cracking, etc.) were not included in this investigation, therefore the results 
obtained from this part of the study were not conclusive in nature. Additionally, only unbraced 
conditions were analyzed for wind loading. Hence, the focus was primarily on girder stability 
against rollover in free-standing (no lateral bracing) conditions. 

9.2 Wind loading system model  

Florida bulb-tee girder types FBT54, FBT63, FBT72 and FBT78 were analyzed under 
various combinations of span length, skew angle, slope, and sweep for the purpose of assessing 
girder stability and quantifying wind loading capacities. Bearing pad behavior was represented 
using the simplified bearing pad model described in previous chapters. The ability of the 
simplified pad model to represent girder lift-off—discussed earlier—is particularly important in 
the analysis of girder overturning under lateral wind loading. Wind loads were applied to the 
girder as uniformly distributed line loads that acted in such a manner as to increase girder sweep 
(Figure 9.1). The loading procedure consisted of two stages: 1) ramping the vertical load to the 
self-weight of girder and, 2) while holding the vertical self-weight load constant, ramping the 
lateral wind load up from zero until girder instability occurred (Figure 9.2). 
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Figure 9.1 Wind loading system model 
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Prior to application of any load, ten stabilizing linear springs were provided at each end 

of the girder (as discussed in previous chapters). The stabilization springs were gradually 
removed from the analysis as the vertical load acting on the girder increased. Upon reaching the 
full girder self-weight load, all stabilization braces were removed. From this point in time 
forward, vertical load was held constant while lateral wind load was linearly increased. The 
analysis terminated when girder rollover occurred. 

w selfweight
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Time

Lateral wind load

Time

Number of stabilization 
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end of girder model
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30 sec. self-
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Figure 9.2 Load application procedure used for wind loading analysis 

9.3 Validation of wind loading analysis procedure 

As was the case in the vertical buckling load analyses discussed in previous chapters, 
stability analyses under lateral wind loading conditions were carried out using the large-
displacement analysis procedure. To validate that the simplified bearing pad model and the large 
displacement analysis technique could properly predict girder overturning, the system model was 
modified to represent an infinitely stiff girder sitting on rigid supports. For an infinitely stiff 
girder, flexural deformation of the girder does not occur and the problem reduces to a simple 
static equilibrium problem (Figure 9.3),. The magnitude of wind loading that causes girder 
overturning can then be determined as follows: 
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( ) ( ) ( )( )pivot wind self-weight bM = w y - w L /2 0=∑  

( )( ) ( ) ( )( )pivot wind self-weight bM = p H y - w L /2 0=∑  

( )( )
( ) ( )

self-weight b
wind

w L /2
p

H y
=  

(9.1)

In this equation, windp  is wind loading expressed as a pressure (force/area), self-weightw  is the 
girder self-weight (force/length), H is the girder height, y  is the elevation of the girder centroid, 
and bL  is the width of the rigid bearing pad. 
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Figure 9.3 Rigid-girder wind capacity determination based on equilibrium 

Skew, slope, sweep and creep were excluded from the validation analyses. To 
approximate the rigid girder and rigid bearing conditions, the Young’s modulus of the concrete 
girder and the stiffness of the truss elements representing the bearing pad were increased to 100 
times their normal values. Four Florida bulb-tee girders having varying span lengths were 
analyzed for wind-induced overturning: an 80 ft. FBT54, a 100 ft. FBT63,  a 120 ft. FBT72, and 
a 140 ft. FBT78. Results obtained from Eqn. (9.1) and from ADINA large displacement analyses 
are compared in Figures 9.4 through 9.7.  In each case, the ADINA predictions of wind load 
required to initiate overturning are in good agreement with the value obtained from static 
equilibrium. 
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Figure 9.4 Validation wind loading analysis (FBT54, 80 ft. span) 
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Figure 9.5 Validation wind loading analysis (FBT63, 100 ft. span) 
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Figure 9.6 Validation wind loading analysis (FBT72, 120 ft. span) 

Lateral girder displacement at midspan (ft)

W
in

d 
lo

ad
 (p

sf
)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
0

10

20

30

40

50

60

Girder overturning

ADINA analysis solution
Moment equilibrium solution

 

Figure 9.7 Validation wind loading analysis (FBT78, 140 ft. span) 
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CHAPTER 10 
WIND LOAD ANALYSIS RESULTS 

10.1 Introduction 

Using the girder, bearing pad, and bracing models described in the previous chapter, a 
parametric study was carried out to quantify girder resistance to wind load for a variety of field 
conditions. In this chapter, results from parametric analyses are presented and simplified 
equations are developed for estimating girder resistance to wind load. 

10.2 Parameter descriptions 

System characteristics that were varied in the wind-load parametric study included: 
 

• Girder type (cross-sectional properties) 
• Span length 
• Skew angle 
• Bearing slope angle 
• Sweep 

In comparison to the comprehensive buckling-load parametric study presented in Chapter 8, the 
wind load parametric study presented here is more limited in scope. In particular, the effects of 
bearing pad creep and bracing stiffness have been neglected from the wind load study. In 
Chapter 8, it was demonstrated that over moderate periods of time (a few days), bearing pad 
creep had only a minor effect on girder stability. Thus, neglecting creep from the wind load study 
is of minor consequence. In regard to bracing stiffness, worst-case conditions—in terms of girder 
stability and capacity under wind load—occur under unbraced conditions. As a result, unbraced 
conditions have been considered in the wind load parametric study so that conservative 
estimations of capacity are obtained.  

For each wind load analysis conducted, a single set of values were selected from those 
listed in Table 10.1. The rationale for selection of the specific values shown in the table was 
previously given in Chapter 8. In total, 480 different analyses were performed in the wind load 
parametric study.  

Table 10.1 Values used in parametric study 
 

Girder type: Span length:    
FBT54 80 ft 100 ft 120 ft 140 ft 
FBT63 100 ft 120 ft 140 ft 160 ft 
FBT72 120 ft 140 ft 160 ft 180 ft 
FBT78 140 ft 160 ft 180 ft 200 ft 

     
Skew angle: Slope angle: Girder sweep Bearing pad creep Bracing stiffness: 

0 deg. 0.00 rad. 0.5 in. Neglected 0 kip/in 
15 deg. 0.05 rad.  1.5 in.  (unbraced) 
30 deg.  2.5 in.   
45 deg.     
60 deg.     
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10.3 Results  

Computed wind load capacities for the 480 cases analyzed in the parametric study are 
presented in summary format in Figure 10.1. Four overall groups are evident in the figure, each 
corresponding to one of the girder cross-sections analyzed: FBT54 (cases 1-120), FBT63 (cases 
121-240), FBT72 (cases 241-360), and FBT78 (cases 361-480). Each analysis case involves first 
applying girder self-weight load in the vertical direction, and then applying wind pressures, in 
increasingly greater magnitudes, in the lateral direction. The wind load capacity of the girder is 
then defined as the lateral wind pressure at which the girder becomes unstable.  
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Figure 10.1 Wind load capacities 

The relationship between capacity and span length is presented in Figure 10.2 for the 480 
cases analyzed. Generally, wind load capacities are found to trend linearly downward with 
increasing span length. Due to the influences of cross-sectional properties, skew, slope, and 
sweep, variations arise in the capacities computed at each span length. In Figure 10.3, upper-
bound capacities, and the associated trend lines, are presented for each girder type under 
approximately “ideal” conditions—zero skew, zero slope, and minimum sweep. Again, the 
computed capacities vary approximately linearly with respect to span length. It is noted, 
however, that while the slopes of the trend lines are approximately equal, the vertical offsets of 
each trend line vary by girder type. 

Simplified equations for estimating wind load capacities were empirically determined 
from the results of the parametric wind load study. In Figure 10.4, capacity data are plotted for 
all parametric analysis cases, grouped by girder type. Lower bound capacity estimation lines 
were determined individually using the data for each girder type. In forming the simplified 
capacity equations, the slopes of the capacity lines were assumed to be the same for all girder 
types. This assumption is consistent with the trends exhibited in the parametric data. 
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Figure 10.2 Wind load capacities as a function of span length 
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Figure 10.3 Wind load capacities for zero-skew, zero-slope, and min. sweep conditions 
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Figure 10.4 Simplified wind load capacity estimation curves for each girder type 
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A conservative, lower-bound model of wind load capacity was determined to be of the 
form: 

( )C = 0.4 L0- L  (10.1)

Here C is the wind load capacity (in units of psf), L is the span length (in units of ft), and L0  is 
the span length (in units of ft) at which the wind load capacity reaches zero. Values of L0 vary 
by girder type and are listed in Table 10.2. 

 
Table 10.2 Parameters L0 for each girder type 

 
Girder type: L0 (ft) 

FBT54 190 
FBT63 178 
FBT72 162 
FBT78 182 
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CHAPTER 11 
CONCLUSIONS AND RECOMMENDATIONS 

11.1 Conclusions 

This study was undertaken primarily for the purposes of investigating the lateral stability 
of long-span prestressed concrete girders—specifically Florida bulb-tee girders—during bridge 
construction and offering recommendations for improving such stability. Numerical analysis 
techniques and limited experimental testing were used to quantify girder buckling capacities and 
wind load capacities as functions of girder cross-sectional properties, span length, bridge skew 
angle, bracing stiffness, and factors representing field conditions (sweep imperfections, slope 
mismatches, and bearing pad creep). Based on results obtained from parametric studies the 
following conclusions are drawn: 

 
1. Girder stability and buckling capacity are strongly influenced by cross-sectional properties 

and span length—both well understood factors—and by the interaction of skew and slope at 
the girder bearings. The camber level in prestressed concrete bridge girders is typically set so 
as to offset the effects of deflection due to the dead load of the bridge deck. However, when a 
girder is first placed onto its bearings, only girder self-weight load acts. As a result, the ends 
of the girder may be sloped (vertically rotated) relative to the surface of the bearing pads. 
Factors such as bridge grade and construction tolerances can also add to slope mismatches 
between the girder and bearing pad. When a bearing pad is skewed relative to the 
longitudinal axis of the girder, slope and skew combine to produce a condition in which 
contact between the girder and pad is localized to a single corner of the pad: 
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The resulting asymmetric and non-uniform distribution of bearing pressure significantly 
reduces the rotational (“roll”) resistance that the pad provides to the girder. As a result, girder 
buckling capacities under such conditions are significantly reduced in comparison to 
unskewed conditions. It is noted that once deck dead load is applied to the girder, the slope 
mismatch between the girder and pad will be reduced as the girder deflects and the ends 
rotate. Hence, capacity reductions associated with the effects of skew and slope are at their 
worst when a girder is resting on its bearings and carrying only self-weight load. 
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2. Over moderate durations of time (a few days), bearing pad creep appears to have only a 

minor effect on girder stability and buckling capacity. Buckling capacities computed with 
creep effects included differed only by about 5% in comparison to capacities computed with 
creep effects excluded. In some situations, creep produced a small loss of capacity, while in 
other situations, creep actually increased capacity slightly. On average, however, girder 
buckling capacity was not found to be strongly influenced by moderate term bearing pad 
creep. 

 
3. In bridges with skewed geometry, the use of end-point bracing increases girder buckling 

capacities, however, greater increases in capacity can be achieved by reducing the adverse 
effects of combined skew and slope. Smaller capacity increases can be achieved by moving 
from an unbraced condition to a rigidly braced condition than can be achieved by eliminating 
skew between the girder and pad. 

11.2 Recommendations 

Based on the results obtained from this research, the following recommendations are 
offered: 
 
1. Unless more refined analysis methods are available, it is recommended that the following 

equation be used to evaluate the influence that field conditions and skew angle have on girder 
buckling capacity: 

 ( ) ( )3
E I G J

C = 24 1.0-0.0017 L 1.0-0.006θ
L

 

 
In the equation above, C is the maximum uniform distributed load that a girder can carry (in 
units of kip/ft), E is the elastic modulus of concrete (in units of kip/ft2), I is the weak axis 
moment of inertia of the girder (in units of ft4), G is the shear modulus of concrete (in units 
of kip/ft2), J is the torsional constant for the girder (in units of ft4), L is the span length (in 
units of feet), and θ  is the skew angle between the bearing pads and the longitudinal axis of 
the girder (in units of degrees). Capacities predicted by the above equation are based on limit 
states related to lateral buckling (girder stability) and tensile flange stresses (cracking). 
Additional section capacity calculations based on alternative failures modes (e.g., 
compression failure in the flange, etc.) should always supplement use of the equation given 
above. Based on the results of flange tension cracking checks that were performed, it is 
recommended that use of the equation given above be limited in application to the following 
span lengths: 
 
(FBT54 : L 120 ft≤ ) , (FBT63 : L 140 ft≤ ) , (FBT72 : L 160 ft≤ ) , (FBT78 : L 180 ft≤ ) 
 

2. It is recommended that consideration be given to requiring bearing pads in long span 
prestressed concrete girder bridges to be oriented to match girder alignment and thereby 
eliminate the adverse effects of skew (at least from the perspective of girder stability during 
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the construction process). By aligning the bearing pads with the longitudinal girder axis, 
greater roll resistance is provided to the girder. 
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Given that slope mismatches between girder and pad, due camber and bridge grade, are 
essentially unavoidable, eliminating the adverse effects of skew at the girder-pad contact 
zone is highly desirable and would yield improved girder stability. 

 
3. Further research should be conducted to experimentally verify the analytically-obtained 

results presented in this report. Experimental verification testing should include, at a 
minimum, girder tests performed for the purpose of assessing lateral girder buckling loads. In 
addition, experimental determination of bearing pad roll stiffness under conditions of 
combined skew and slope should be considered for investigation. 

 
4. None of the capacity prediction equations presented in this report include an explicitly 

chosen factor of safety. In addition, the proposed capacity prediction equations have not yet 
been experimentally validated. It is therefore recommended that future research be conducted 
to rationally select appropriate factors of safety. Additionally, until such work is completed, 
it is recommended that factors of safety of not less then 3.0 be used in conjunction with the 
equations presented here. 

 
5. In the present study, the use of bracing only at the girder end-points has been evaluated. 

Additional analytical and/or experimental investigations should be carried out to quantify the 
effectiveness of bracing schemes that use end-point and intermediate braces to tie multiple 
girders together as a system. 

 
6. Further research is needed to adequately address the issue of predicting girder stability and 

strength under lateral wind loading conditions. 
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 APPENDIX A 
APPROXIMATE CALCULATION OF TORSIONAL CONSTANT  

 
Accurate determination of torsional constants requires the use of relatively sophisticated 

numerical approaches that generally employ the “pressurized membrane analogy” of torsion 
(Young 1989 article 4.4 and 9.2, Timoshenko and Goodier 1970 article 107). Such methods 
require that the shape of the cross-section be carefully discretized (meshed) and analyzed using 
computer software.  

In lieu of conducting this type of analysis, a variation on a procedure outlined in 
ACI 318-05 (ACI 2005) may be used to estimate torsional constants for girder cross-sections. In 
Chapter 13 of ACI  318-05, the following expression is given for estimating the torsional 
constant of a section consisting of rectangular shapes: 

In this equation, x  is the shorter overall dimension of each rectangle, and y  is the longer overall 
dimension. To apply Eqn. A.1 to an I-shaped girder, it is recommended that the cross-section be 
divided into three distinct parts: top flange, web, and bottom flange. Note that subdivision of the 
cross-section into a larger number of smaller parts will generally worsen, not improve, the 
estimation of torsional constant when applying Eqn. A.1. The procedure recommended here for 
subdividing a section is illustrated in Figure A.1 for an FBT78 section. The widths of the 
rectangles are set equal to the overall dimensions of the corresponding parts in the actual cross-
section. The vertical heights of the rectangles are then computed to make the part-areas match 
between the true cross-sectional shape, and the piecewise rectangular shape. 

10.5"
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78 in.

3 in.

3 in.
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3 in.
4 in.
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A
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 in

2

A=356 in2

A
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Figure A.1 Actual FBT78 cross-section (left) and recommended  

equivalent piecewise rectangular cross-section (right) 

3x x yJ = 1 - 0.63
y 3

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑  (A.1)
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In Figure A.2, the calculations involved in approximating the torsional constant for an 
FBT78 girder are shown. Results obtained from approximate torsional calculations for the bulb-
tee girders considered in this study are summarized and compared to exact values in Table A.1. 
In each case, the approximated torsional constant is less than the corresponding exact torsional 
constant. Consequently, use of the approximate torsional constants in buckling capacity 
calculations will yield conservative under-predictions of girder strength. 

 

Calculation of approximate torsional constant for an FBT78 girder

Torsional constant estimation equation (ACI 318-05 Chapter 13) ...

J x y,( ) 1 0.63
x
y

⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

x3 y⋅
3

⋅:=

Equivalent rectangle for top flange ...

A1 60 in⋅( ) 3 in⋅( )⋅ 0.5( ) 60 in⋅ 13 in⋅+( )⋅ 4 in⋅( )⋅+ 0.5( ) 13 in⋅ 7 in⋅+( )⋅ 3 in⋅( )⋅+:= A1 356 in2=

y1 60 in⋅:= ... longer dimension of rectangle is width of top flange

x1 A1 y1÷:= x1 5.933 in=

J1 J x1 y1,( ):= J1 3917 in4=

Equivalent rectangle for web ...

A2 7 in⋅( ) 50 in⋅( )⋅:= A2 350 in2=

y2 50 in⋅:= ... longer dimension of rectangle is height of constant-width web

x2 A2 y2÷:= x2 7 in=

J2 J x2 y2,( ):= J2 5212 in4=

Equivalent rectangle for bottom flange ...

A3 0.5( ) 7 in⋅ 28 in⋅+( )⋅ 10 in⋅( )⋅ 28 in⋅( ) 8 in⋅( )⋅+:= A3 399 in2=

y3 28 in⋅:= ... longer dimension of rectangle is width of bottom flange

x3 A3 y3÷:= x3 14.25 in=

J3 J x3 y3,( ):= J3 18348 in4=

Summary ...

Part number Part  name x y J 

1 Top flange x1 5.933 in= y1 60 in= J1 3917 in4=

2 Web x2 7 in= y2 50 in= J2 5212 in4=

3 Bottom flange x3 14.25 in= y3 28 in= J3 18348 in4=

Japprox J1 J2+ J3+:=

Japprox 27478 in4=

Approximation error ...

Jexact 35270 in4⋅:= ... obtained from refined numerical analysis

error
Jexact Japprox−

Jexact
100⋅:=

error 22.1= %
 

Figure A.2 Calculation of approximate torsional constant for an FBT78 girder 



 

 87

Table A.1 Comparison of exact and approximate torsional constants 
 

Girder  
type: 

Exact torsional constant (J)  
(in4) 

Approx. torsional constant (J) 
(in4) 

Approximation 
error (%) 

FBT54 21441 18782 12% 
FBT63 22931 19606 15% 
FBT72 22096 19598 11% 
FBT78 35270 27478 22% 
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APPENDIX B 
EXAMPLE CALCULATIONS - BUCKLING CAPACITY 

 
 

In this appendix, calculations are presented for computing the buckling capacity of a bridge 
girder in accordance with equations proposed earlier in this report. The type of bridge girder 
under consideration in this example is a Florida bulb-tee section. An overview of the geometry of 
the bridge girder and support conditions is given in Figure B.1. Specific values for the girder 
considered in this example are summarized in Table B.1. 
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Figure B.1 Geometric configuration of bridge girder 
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Table B.1 Girder Parameters 
 

Parameter Value Comments 

Girder type  FBT78 Florida bulb-tee girder 78 in. deep 
Span length  L = 160 ft See figure B.1 
Skew angle θ  = 30 deg. See figure B.1 
Section properties  I = 99295 in4 Weak axis moment of inertia (Table 3.2, Chapter 3) 
Section properties  J = 35270 in4 Torsional constant (Table 3.2, Chapter 3) 
Section properties  A = 1105.5 in2 Cross-sectional area (Table 3.2, Chapter 3) 
Concrete   f ’c = 6 ksi Compressive strength  
Concrete γ = 0.155 kip/ft3 Specific weight 

Concrete ν =0.2 Poisson’s ratio 
 

As noted in Sections 8.5 and 11.2 of this report, the following equation may be used to calculate 
the capacity of a girder in terms of resisting buckling due to uniform vertical loading : 
 

( ) ( )3
E I G J

C = 24 1.0-0.0017 L 1.0-0.006θ
L  

In this expression, C is the capacity of the girder (the maximum uniformly distributed vertical 
load that the girder can carry, in units of kip/ft, see Figure B.2), E is the elastic modulus of 
concrete (in units of kip/ft2), I is the weak axis moment of inertia of the girder (in units of ft4), G 
is the shear modulus of concrete (in units of kip/ft2), J is the torsional constant for the girder (in 
units of ft4), L is the span length (in units of feet), and θ  is the skew angle (in units of degrees). 
As noted in Sections 8.5 and 11.2, it is recommended that use of this equation be limited to span 
lengths of 180 ft (or less) for FBT78 girders. Since the span length in this example is L = 160 ft., 
the equation given above may be used. 

C = uniform vertical load

 
Figure B.2 Capacity defined as vertical load that initiates girder buckling 
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In order to use the capacity equation, cross-sectional properties I and J must be converted from 
units of in4 to ft4 : 

 

I = 99295 in4, therefore I = 4
99295
12

 = 4.7885 ft4 

and 

J = 35270 in4, therefore J = 4
35270
12

 = 1.7009 ft4 

In addition, the elastic and shear moduli must be computed and converted into appropriate units. 
The elastic modulus E may be computed as: 

 
E = 1.533000 γ f 'c   

where E is in units of kip/in2, γ  is in units of kip/ft3, and f 'c  is in units of kip/in2. Then E is 
given by : 

 
E = ( )1.533000 0.155 6 = 4933 kip/in2 

and in units of kip/ft2: 
 

E = 
2

2
4933 kip/in

12
 = 710313 kip/ft2 

The shear modulus G of concrete can then be computed according to the mechanics relationship: 
 

G = 
( )

E
2 1+ν

 =  
( )

2710313  kip/ft
2 1+0.2

 = 
2710313 kip/ft

2.4
 = 295964 kip/ft2 

 
Girder buckling capacity C, expressed in units of kip/ft, is then given by : 
 

( ) ( )3
E IG J

C = 24 1.0-0.0017 L 1.0-0.006θ
L

 

 
( ) ( ) ( ) ( )

( )
( )( ) ( )( )3

710313 4.7885 295964 1.7009
C = 24 1.0-0.0017 160 1.0-0.006 30

160
 

 
C = 4.577 kip/ft 

 

Therefore, a maximum uniform vertical load of approximately 4.6 kip/ft may be applied to the 
girder before buckling will occur. If the only load carried by the girder in the unbraced condition 
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is its own self-weight, then the factor of safety against buckling may be computed as follows. 
The cross-sectional area is given by: 

 

A = 1105.5 in2, therefore A = 2
1105.5

12
 = 7.677 ft2 

Volume per unit length of girder is : 
 
V = A (1 ft.) / ft = (7.677 ft2)(1 ft.) / ft = 7.677 ft3 / ft 
 

The structural demand, D, on the girder is given by the self-weight of the girder per unit length, 
expressed in units of kip/ft. The weight of a 1 ft. length of girder is: 

 
W = γV = ( ) ( )0.155 7.677  = 1.190 kip/ft ≈ 1.2 kip/ft 
 

The factor of safety against buckling is then equal to the capacity to demand (C/D) ratio : 
 
FS = C/D = (4.6 kip/ft) / (1.2 kip/ft) = 3.8 

In Section 11.2, it is recommended that the factor of safety not be less than 3.0 for buckling, 
therefore in this example, the girder has adequate capacity against buckling. As noted in 
Sections 8.5 and 11.2, capacities computed using the equation : 

 

( ) ( )3
E IG J

C = 24 1.0-0.0017 L 1.0-0.006θ
L

 

are based on limit states related to lateral buckling (girder stability) and tensile flange stresses 
(cracking). Additional section capacity calculations based on alternative failures modes (e.g., 
compression failure in the flange, etc.) must also be conducted. Such calculations are not 
presented here because specific quantities and locations of prestressing and/or mild reinforcing 
steel have not been included in the example.  

 
It must also be noted that the detrimental effects of horizontal wind loading are not included in 
the buckling capacity calculations presented in this example. The presence of horizontal wind 
pressure on a girder will reduce the magnitude of vertical gravity loading required to initiate 
buckling and instability. Hence, calculations in addition to those shown here must be performed 
in order to assess girder capacity under conditions of combined horizontal (wind) and vertical 
(gravity) loading. 

 


