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EXECUTIVE SUMMARY 

 

Problem Statement 

Composite steel-concrete box girders are commonly used in curved bridges, interchanges, 
and ramps. Curved composite box girders have a number of unique qualities that make them 
suitable for such applications including: 1) their structural efficiency allows designers to 
build long slender bridges that have an aesthetically pleasing appearance, and 2) composite 
box girders are particularly strong in torsion and efficiently resist the large torsional demands 
created by horizontal bridge curvature and vehicle centrifugal forces.   

Analysis and design of curved composite box bridges is complicated by many factors 
including: composite interaction between the concrete deck and steel U-girder, local buckling 
of the thin steel walls making up the box, torsional warping, distortional warping, interaction 
between different kinds of cross-sectional forces, and the effect of horizontal bridge 
curvature on both local and global behavior.  

Current codes pertaining to analysis and design of curved composite girders are mostly based 
on experimental and analytical research conducted over 30 years ago as part of project CURT 
(Consortium of University Research Teams) funded by the Federal Highway Administration 
(FHWA). A new Curved Steel Bridge Research (CSBR) project is currently being conducted 
under the auspices of the FHWA. Although the CSBR project is expected to provide much 
needed information on behavior, analysis and design of curved composite bridges, it focuses 
more on I-girders than on box girders.  

Objectives 

The overall objective of the research reported herein is to provide information that 
complements existing data and that will be useful for formulating comprehensive design 
guidelines for composite curved box girders. Specific objectives include: 

• Investigate and quantify the effect of nonuniform torsion on the behavior and design of 
existing curved box girders. 

• Study the adequacy of existing distribution factors for curved box girder bridges.  

• Provide information that is helpful in identifying suitable locations for placement of 
access hatches in the steel box. Access holes are needed so that maintenance crews can 
periodically inspect the interior of box girders.  
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Summary of Work 

A computer program for simulating the behavior of curved box girders is developed. The 
program is graphically interactive and features a general purpose beam-column element that 
can account for the effect of warping. The developed program is used to conduct a detailed 
investigation of warping related stresses in eighteen existing box girder bridges chosen from 
the Florida Department of Transportation inventory. The bridges are carefully selected to 
cover a wide range of design parameters including horizontal curvature, cross sectional 
properties, and number of spans. They were designed by different firms and were constructed 
at different times and are considered to be representative of current design practice. Forces 
are evaluated from analyses that account for the construction sequence and the effect of 
warping. Loading is considered following the 1998 AASHTO-LRFD provisions. The 
differences between stresses obtained taking into account warping and those calculated by 
ignoring warping are used to evaluate the effect of warping. 

Another study was undertaken to investigate load distribution factors promoted by current 
specifications. Single girder and detailed grillage models were created for a variety of bridges 
and analyzed suing the developed program. The parameters investigated are the number of 
girders, roadway width expressed by number of lanes, girder spacing, span length, and radius 
of horizontal curvature. The distribution factor results were compared with those obtained 
using the equations recommended by AASTHO in the commentary of the guide specification 
for horizontally curved bridges. Results show that the recommended equation overestimates 
the distribution factor by as much as 25% with an average of about 15%. In some cases, 
AASHTO’s equation yielded unconservative results. 

Access hatches (holes) in curved box girder bridges are usually provided in the bottom flange 
immediately before or after an expansion joint. If additional access hatches are required after 
the bridge is built, they must be placed in such a way that 1) they satisfy important practical 
constraints such as feasibility, accessibility, water leakage, traffic impact, and unauthorized 
access; 2) they do not adversely affect the structural behavior of the bridge, i.e. their 
installation should not impair serviceability nor decrease ultimate strength or fatigue life. 
Both issues are discussed and approaches that are suitable for identifying appropriate 
locations for access hole placement are identified.  

Main Findings and Conclusions 

Following are the most important findings and conclusions from this work:  

• By considering differences between stresses obtained taking into account warping and 
those calculated by ignoring warping, it is shown that warping has little effect on both shear 
and normal stresses in the limited sample of bridges considered. These results should not be 
construed to imply that warping is not important. Rather, this work points out that there could 
be a large subset of bridges where the warping effect is small enough to be ignored in 
structural calculations. This is particularly useful to designers because warping calculations 
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are complicated and time consuming. Additional work is needed to define relevant 
parameters that can be used to identify bridges where warping calculations are warranted. 
The authors also believe that there is a need for a validated approximate design method that 
accounts for the effect of warping, without which it is hard to envision designers performing 
detailed analyses such as those presented here. 

• Existing distribution factor equations are in need of substantial improvement. More 
variables should be considered in developing the new expressions including torsional rigidity 
of the box. 

• Access hatches can be installed without additional strengthening in low stress regions in 
the bottom steel flange. Low stress regions can be found using the program developed in this 
research. 
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1  INTRODUCTION 

1.1 Background 

Composite steel-concrete box girders are commonly used in curved bridges, interchanges, 
and ramps (Fig. 1.1).  Curved composite box girders have a number of unique qualities that 
make them suitable for such applications including: 1) their structural efficiency allows 
designers to build long slender bridges that have an aesthetically pleasing appearance, and 2) 
composite box girders are particularly strong in torsion and can be easily designed to resist 
the large torsional demands created by horizontal bridge curvature and vehicle centrifugal 
forces.   

Curved composite box girder bridges are generally comprised of one or more steel U-girders 
attached to a concrete deck through shear connectors. Diaphragms connect individual steel 
U-girders periodically along the length to ensure that the bridge system behaves as a unit 
(Fig. 1.1). The cross-section of a steel box is flexible (i.e. can distort) in the cross-wise 
direction and must be stiffened with cross-frames that are installed in between the 
diaphragms to prevent distortion (Fig. 1.2). Web and bottom plate stiffeners are required to 
improve stability of the relatively thin steel plates that make up the steel box. During 
construction, overall stability and torsional rigidity of the girder are enhanced by using top 
bracing members. These bracing members become unimportant once the concrete decks 
hardens, but are usually left in place anyway (Fig. 1.2).  

Analysis and design of curved composite box bridges is complicated by many factors 
including: composite interaction between the concrete deck and steel U-girder, local buckling 
of the thin steel walls making up the box, torsional warping, distortional warping, interaction 
between different kinds of cross-sectional forces, and the effect of horizontal bridge 
curvature on both local and global behavior. Existing literature contains extensive 
information about the analysis, behavior, and design of horizontally curved composite box 
girder bridges. General theories can be found in textbooks (e.g. Guohao 1987 and Nakai and 
Yoo 1988) and a comprehensive survey of experimental and analytical work on curved steel 
girders (including box girders) can be found in Zureick et al (1994) and Sennah and Kennedy 
(2001 and 2002).  

Current codes pertaining to analysis and design of curved composite girders include 
AASHTO's LRFD Bridge Design Specifications (1998) and Guide Specifications for 
Horizontally Curved Highway Bridges (1997). Provisions in these specifications are mostly 
based on experimental and analytical research conducted over 30 years ago as part of project 
CURT (Consortium of University Research Teams) funded by the Federal Highway 
Administration (FHWA). A new Curved Steel Bridge Research (CSBR) project is currently 
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being conducted under the auspices of the FHWA with the following objectives (Zureik et al 
2000): 1) gain a better understanding of the behavior of curved steel girders through large 
scale tests and numerical modeling, and 2) update existing design provisions. Although the 
CSBR project is expected to provide much needed information on behavior, analysis and 
design of curved composite bridges, it focuses more on I-girders than on box girders.  

 

Intermediate
Diaphragms

 

Figure 1.1: View showing diaphragms connecting two box girders in an interchange 
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Stiffeners
Top Bracing

Cross Frame

 

Figure 1.2: Interior of a box girder. Note the vertical cross-frames (comprised of 
sloping truss members), web stiffeners, bottom flange stiffeners, and top bracing. 

 

1.2 Motivation and Research Objectives 

As stated earlier, current code provisions pertaining to curved box girder bridges are based 
on decades-old studies. As a result, engineers designing curved composite box girder bridges 
are frequently faced with situations where the guidance in these codes is either insufficient or 
nonexistent. There is undoubtedly an immediate need for a code review to address issues that 
are not adequately treated in current specifications.   

A prominent example illustrating the need for new information about curved box girders 
pertains to access holes, which are provided so that maintenance personnel can enter the 
interior of box girders for inspection purposes. Access hatches are usually placed before and 
after an expansion joint where bending moments are minimum. The spans covered by box 
girders are often long spans, and the girders are constructed as continuous girders over two or 
more supports. In many cases, the distance between access hatches exceeds the limit that 
rescue crews can reach in the event of an emergency. Current codes do not address this issue 
and there is little guidance on where and how additional access hatches can be added to new 
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as well as existing structures to improve accessibility.  The results of a study that addresses 
this issue are summarized in Chapter 5. 

Two other topics of significance to the design of curved composite box girder bridges are 
also discussed in this report. First, the issue of warping (non-uniform torsion) is investigated 
in a detailed and comprehensive manner. Warping has been rarely the focus of researchers in 
the recent literature. Code provisions related to warping are based on old studies, which to 
say the least, offer little guidance to designers. Second, live load (LL) distribution factors are 
investigated with the help of a computer program specifically developed for this purpose. 
AASHTO-LRFD (1998) has adopted the LL distribution factor approach in its provisions to 
simplify the design process. This approach, while convenient for designers, has its obvious 
limitations. Since bridges are categorized into groups based on structural systems, each group 
is subject to a set of formulas that provides the LL distribution factor. Within each group, 
several parameters are deemed important and the code attempts to calibrate equations that are 
applicable for a wide range of values for these parameters. While AASHTO-LRFD (1998) 
intends for the distribution factors to be conservative, it is inevitable that in some cases the 
suggested expressions will yield unconservative estimates. Several studies have been recently 
published on the distribution factors for girder bridges, attempting to enhance the available 
expressions. However, very little has been published on distribution factors for composite 
box girder bridges.   

1.3  Report Organization 

This report is organized into five chapters. The first chapter is an introduction to the topic at 
hand providing the reader with the background of the topic and the motivation behind the 
research. In Chapter 2, a description of the computer program that is developed for the 
purpose of investigating composite box girder bridges is described. The study on warping 
stresses is presented in Chapter 3. The results from the live load distribution factor 
investigation are presented in Chapter 4. Chapter 5 presents a study on access hatches in 
composite box girder bridges. Summary and conclusions are given in Chapter 6, which is 
followed by a reference list and two appendices. 
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2  ANALYSIS OF CURVED COMPOSITE BOX GIRDER 
BRIDGES 

2.1 Introduction 

Early on in the project, a decision had to be made about what was the best analysis tool for 
handling the tasks at hand.  The two options available were: 1) to use a commercially 
available package, or 2) to develop a special program tailored to the needs of the project.  
Commercial packages may be categorized into two main groups.  The first group is research-
oriented packages that often provide an abundant array of special feature including providing 
elements with warping capabilities.  These packages are not geared towards design in 
general, and bridge design in particular.  For example, they do not offer a loading module 
according to the latest code provisions.  Using such packages would entail an enormous 
amount of work to provide the details of the bridge loading and special details of connections 
between different elements.  Packages geared towards design are basically finite element 
implementations with strict code interpretations.  The finite element modules are usually 
simpler than those in research packages.  In other words, they follow the latest code 
provisions, but lack the ability to incorporate special effects such as warping.  Some 
packages with warping capabilities implement a simplified approximate method in their 
analyses.  

Based on the limitations stated earlier, a decision was made to develop a computer program 
for the analysis of curved composite box girder bridges.  While this choice involves more 
work than resorting to available commercial packages, it was deemed necessary because of 
the nature of the studies involved. 

This chapter describes the computer program that was developed throughout the course of 
this project.  It is a finite element program that is specifically tailored for the analysis of 
curved composite box girder bridges.  It is developed in the VisualBASIC environment 
which allowed providing it with a graphical user interface (GUI) to facilitate its use.  Several 
issues were encountered while developing the program, all of which have been solved and 
are also described in this chapter. 

2.2 Choice of Analysis Strategy 

Analysis methods for curved box girders can be classified into two broad categories. The first 
is a macro approach, such as the plane grid method or space frame method. In this technique, 
the bridge system is discretized into a number of beam-column or grid elements, which can 
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be straight or curved.  The focus in this type of analysis is on forces rather than on stresses. 
The second category of analysis techniques is the micro model approach, examples of which 
are the finite element method or finite strip method. In these methods, the bridge system is 
discretized into a number of continuum elements, and the emphasis is on stresses and 
corresponding strains. 

Micro models are more rational than macro models, and provide more detailed information. 
However, they are difficult to setup and analyze, and are usually used for research purposes 
or to validate new designs. Macro-modeling techniques on the other hand, are simple to 
implement and since they yield reasonable results, are commonly used by practitioners and 
researchers. In fact, the plane grid method was used to calibrate the load distribution factors 
in the current AASHTO-LRFD specifications (1998). The analysis method adopted in the 
program is the space frame approach and falls under the macro-model category. 

2.3 Program Structure 

The program structure is not different from other finite element programs.  It has five main 
modules; namely, Input (Pre-processor), Automatic Load Generator, Matrix Formation and 
Solution, Internal Force Calculation, Result Presentation (Post-processor).  The details 
involved are numerous to be listed in this document and can be found in any textbook on 
matrix structural analysis.  This chapter will only describe the special features of the program 
that needed to be addressed in developing the program.  A general flow chart can be seen in 
Figs. 2.1 and 2.2. 

2.4 Graphical User Interface 

The purpose of developing a computer program is to be able to conduct special analyses 
needed for achieving the research goals. These goals can only be achieved by obtaining 
results from various parametric studies; i.e. a large number of analyses. A graphical user 
interface serves this effort and would simplify several aspects of the analyses such as 
reviewing results; checking input data, …etc. VisualBASIC, which is the development 
environment chosen for this project, offers a large library of graphical tools. These tools were 
used in developing the pre- and post-processors for the program.   

Figures 2.3 through 2.5 show how a 3-D model can be viewed through the developed GUI.  
A plan view of the model is given in Fig. 2.3. This view is very useful for checking proper 
element connectivity. The user has full control on the viewing angle, which allows him to 
rotate the model about all three axes. This is done with the help of a special tool developed 
for that purpose that requires two angles from the user as can be seen in Fig. 2.4. The 
deformed shape can be viewed with the user’s choice of magnification factor.  For example, 
Fig. 2.5 shows the deformed shape of a bridge model loaded with an AASHTO standard 
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truck using a magnification factor of 200. The model is viewed with a plan angle of o150  and 
an elevation angle of o15 . This view is also useful for checking the model for input errors. 
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Figure 2.1: Flow chart of computer program (part I) 
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Figure 2.2: Flow chart of computer program (part II) 
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Figure 2.3: Plan view of the grid model 

 

 

Figure 2.4: Setting 3-D viewing parameters 
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Figure 2.5: Isometric 3-D view of deformed shape 

2.5 Elements Library 

The program offers two elements suitable for the analysis of curved bridges.  The first 
element is the classical frame element with 6 DOFs per node.  To investigate warping effects, 
another element was implemented in which a seventh DOF is added to each node.  
Formulation for both elements is given next. 

2.5.1 Six DOF Implementation 

This element is the classical three-dimensional frame element with 6 DOFs per node.  The 
DOFs are { }T

zyxwvu θθθ  in the local CS of the element as can be seen in Fig. 2.6. 
The element stiffness matrix has an order of 12x12.  
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Figure 2.6: Local coordinate system for 6-DOF element 

 

Stiffness relations for this element can be derived using the direct method or the virtual work 
principle.  In the direct method, each DOF is released while other DOFs are restrained; one at 
a time.  A unit deformation is then imposed on the released DOF resulting in reactions at the 
restrained DOFs.  The reactions constitute the stiffness terms of the column elements 
corresponding to the released DOF.  This straight forward method is suitable for simple 
elements where the reactions due to the imposed unit deformation can be easily quantified. 

The virtual work principle is based on the concept of energy conservation. It is a well known 
approach, but its essential features will be outlined here for completeness A virtual 
displacement, ∆δ , is imposed on the structure – in this case the element. The external work 
done to impose this virtual displacement has to be equal to the internal strain energy, 

0intext =−= WWW δδδ  (2.1) 

The virtual displacement field imposed on the element follows an assumed displacement 
field characterized by shape functions, [ ]N . The relationship between the displacement, ∆ , at 
any point and nodal displacements for a general element with n  DOFs is given by 

{ }∆=∆=∆++∆+∆=∆ ∑
=

NNNNN
n

i
iinn

1
2211 ...  (2.2) 

where iN  is the shape function corresponding to the thi  DOF. The strain energy is calculated 
with the help of the strain displacement matrix, [ ]B , which contains derivatives of the shape 
functions and relates generalized strains to nodal displacements. For example, the 
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generalized axial strain is obtained using the first derivative of [ ]axialN , where [ ]axialN  
contains the shape functions pertaining to the axial degrees of freedom. 

[ ]{ }∆= '
axialaxial Nε  (2.3) 

which establishes the fact that the strain-displacement matrix for axial deformation DOFs is 

[ ] [ ]'
axialaxial NB =  (2.4) 

A relationship involving the second derivative of [ ]N  yields [ ]B  matrix for flexural terms. In 
general, the strain energy due to the imposed virtual displacement field is given as 

)vol(][]][[
vol

int dDW εδεδ ∫=  (2.5) 

where [ ]D  is the constitutive matrix, which differs based on the DOF under considerations. 
For example, [ ]D  for axial deformations is simply the modulus of elasticity.  The external 
work done to impose the virtual displacement field, { }∆δ , is given by 

{ }FW ∆= δδ ext  (2.6) 

Equating extWδ  and intWδ  leads to 

[ ] [ ][ ] ( ) { } { }FdBDB T ∆∆∆ δδ =







∫
vol

vol  (2.7) 

Comparing Eq. 2.7 to the general stiffness relationship provides the following expression for 
the stiffness matrix. 

[ ] [ ] [ ][ ] ( )







= ∫

vol

voldBDBK T  (2.8) 

The accuracy of the derived stiffness matrix depends on the quality of the assumed shape 
functions representing various displacement fields. Axial deformations are often represented 
by linear shape functions satisfying preliminary strength of materials requirements. The axial 
deformation, u , at any point within the element is given by 
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







=
2

1

u
u

Nu axial  (2.9) 

where for an element of length L, the assumed shape functions pertaining to the axial degrees 
of freedom are 

L
x

L
xLN axial

−
=  (2.10) 

Linear shape functions are also assumed for torsion and the twisting angle DOF. 









=
2

1

x

x
Torsionalx N

θ
θ

θ  (2.11) 

L
x

L
xLN −

=  (2.12) 

where [ ]TorsionalN  has the shape functions pertaining to the torsional degrees of freedom. 
Hermitian cubic polynomials are assumed for flexural related DOFs. 





















=

2

2

1

1

4321

x

x

v

v

NNNNv

θ

θ
 (2.13) 

where 

T

T

L
x

L
xx

L
xx

L
x

L
x

L
x

L
x

N
N
N
N

N
















































−














 −







−














+






−

=





















=

2

2

32

32

4

3

2

1

1

23

231

 (2.14) 
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An identical set of flexural shape functions is also assumed for the other (weak) axis of 
bending. The previous derivation is totally uncoupled; i.e. torsion is not affected by bending 
and axial DOFs are not affected by torsion, and so on. This implies that the derived stiffness 
matrix is formulated for small deformations. Large deformations in which secondary effects 
take place are not accounted for this research. 

2.5.2 Seven DOF Implementation 

One of the goals of this study is to investigate the warping behavior of curved composite box 
girder bridges. This element is developed for that purpose. Warping is accounted for through 
an added seventh DOF. The additional DOF is the first derivative of the twisting angle, xθ ′ .  

At each node, the DOFs for this element become { }Txzyxwvu θθθθ ′  in the local 
coordinate system (CS) of the element as can be seen in Fig. 2.7.  Other implementations of 
warping are possible; however, the formulation presented next captures the essential aspects 
of the behavior. It is well known that the St. Venant torsion, sT , which is often referred to as 
uniform torsion, is normally expressed in terms of the torsion constant, J , and the shear 
modulus, G , and the twisting angle, xθ , as follows 

x
x

s GJ
L

GJT θθ ′==  (2.15) 

The bimoment, ωM , which accompanies torsion and causes out of plane deformations as 
those shown in Fig. 2.8 is a function of the warping constant, ωI , the modulus of elasticity, 
E , and the second derivative of the twisting angle, xθ ′′   

xwEIM θω ′′=  (2.16) 

The total torsion may now be viewed as comprised of two components; the uniform torsion, 
sT , and the non-uniform torsion, ωT .  It can be proven that the non-uniform torsion is the first 

derivative of the bimoment 

xEIM
dx
dT θωωω ′′′−=−=  (2.17) 
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Figure 2.7: Local coordinate system for 7-DOF element 

 

TM

MT

 

Figure 2.8: Warping of a closed thin-walled cross-section 

 

Thus, the total applied torsion can be expressed as 

''''
xwxsx EIGJTTTM θθω −=+==  (2.18) 
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Formulating the element stiffness matrix equations by employing virtual work principles 
leads to the following expressions for the internal and external virtual work 

xx TMW δθθδδ ω ⋅+′⋅=ext  (2.19) 

dxGJdxEIW x

L

x

L

xx θθδθθδδ ω ′′+′′′′= ∫∫
00

int  (2.20) 

the element stiffness for the four DOFs related to torsion, T
xxxx 2121 θθθθ ′′  can now be 

expressed as 

[ ] { } { } 







′′′′+′′= ∫ ∫

L L

dxINENJdxNGNk
0 0

ω  (2.21) 

If the displacement field for the twisting angle is assumed to be a cubic polynomial as 
follows 

3
4

2
321 xaxaxaax +++=θ  (2.22) 

the first derivative of the twisting angle can be expressed as 

2
432 32 xaxaax ++=′θ  (2.23) 

The coefficients, ia , in the previous expressions can be found using the appropriate boundary 
conditions, which leads to the same expressions as those obtained previously for bending 
(Eqs. 2.13 and 2.14).  Substituting for the coefficients in the previous equations yields the 
following submatrix for torsion related DOFs. 

[ ]























−−

−

+



























−

−−

−

=

4
24

6612

661212

15
2
3015

2
10
1

10
1

5
6

10
1

10
1

5
6

5
6

2

22

sym

LLL

LLLL

L
EI

Lsym

LL
L

LL

GJk ω  (2.24) 
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By introducing a new parameter, 2GJL
EIωα = , both terms in Eq. 2.24 can be lumped into the 

following matrix 

[ ]



































 +







 +−






 +







 +−






 +−






 +







 +






 +






 +−






 +

=

α

αα

ααα

αααα

4
15
2

2
30
14

15
2

6
10
16

10
112

5
6

6
10
16

10
112

5
612

5
6

2

22

Lsym

LL

LL

LL

L
GJk  (2.25) 

This submatrix is added to the other uncoupled DOFs to obtain the full 14x14 stiffness 
matrix. The assumption of uncoupled DOFs does not always hold and special treatments are 
necessary. The following sections illustrate some of the special treatments implemented in 
the program. 

2.6 Special Features 

2.6.1 Shear Deformations 

Shear deformations are quite small in most civil engineering applications and they are 
therefore often ignored with no impact on the quality of results. However, shear deformations 
may be dominant in some situations where bending moments are small compared to shear 
forces acting on the member. This is normally true for short span beams. In a structural 
system such as a curved box girder bridge, this is also true for diaphragms connecting box 
girders in the transverse directions. To account for shear deformations, the concept of 
equivalent shear area, SA , is used. According to this concept, the applied shear force, yF , is 
equal to the equivalent shear area multiplied by the shear stress at the centroid of the cross 
section. The component of complementary internal virtual work due to shear can be 
expressed as 

GA
LFF

dxA
A
F

GA
F

W
S

yy
S

S

y
l

S

y
S

⋅
=
















= ∫

δδ
δ 1

0
)int(  (2.26) 

The total strain energy is equal to the summation of the bending and shear components 
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




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EI
L

MFWWW

2

23
2

23

)int()int(int δδδδδ  (2.27) 

The middle term of the above expression is the flexibility matrix taking into account shear 
deformations.  The stiffness matrix is then obtained by transforming the flexibility matrix 
which leads to the following (McGuire et al. 2000) 






















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
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
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
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
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22
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1
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623

2
1
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1

12 θ
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η

ηη

η
v

v
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EI
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F
M
F

z

y

y

z

y

 (2.28) 

where a new term, η , is introduced to account for shear deformations.  η  is given as 

GA
EI

S

z
z ==ηη  (2.29) 

Satisfactory results were obtained when SA  was taken equal to the area of the webs in the 
appropriate direction.  The resulting stiffness matrix for the 6-DOF implementation is now 
given as 












= 0

)4)((
0

)3)((

0
)2)((

0
)1)((0

)(
ee

ee
e KK

KK
K  (2.30) 

where the four submatrices of 0
)(eK  are given next 
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in the previous expressions 

J  is the torsional constant 

yI  and zI  are the moments of inertia about the y and z direction, respectively 

E and G are the modulus of elasticity and shear modulus, respectively 

GA
EI

Sz

y
y =η  is the shear deformation term in the z direction of the local CS based on the 

shear area SzA  

GA
EI

Sy

z
z =η  is the shear deformation term in the z direction of the local CS based on the 

shear area SyA  

The corresponding matrix for the 7-DOF implementation is  
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2.6.2 Eccentricity between Shear Center and Centroid 

The previous derivation of the stiffness matrix is based on the assumption that the centroid 
and the shear center of the cross section coincide.  This assumption is true for many 
engineering shapes, however, it is not the case for box girder cross sections.  The eccentricity 
between the centroid and shear center is relatively small for closed cross sections.  But as 
will be seen later, the cross section is not fully closed (quasi-closed) during construction.  At 
this stage, the shear center often falls below the bottom flange while the centroid is usually 
within the plates (flanges and webs).  Hence, a large eccentricity is created.  Not accounting 
for this eccentricity is inaccurate modeling.  Therefore, the derived stiffness matrix is treated 
by a special transformation for that purpose.  For a general cross section with non-coincident 
shear center and centroid as in Fig. 2.9 

 

 

Figure 2.9: A general element showing non-coincident shear center and centroid 

 

The eccentricity between the shear center and centroid leads to a coupling between torsion 
and bending DOFs. It is assumed that the local coordinate system x passes through the 
centroid line of the straight beam, and that the y and z represent the weak and strong bending 
axes, respectively. A shear force acting at the centroid of the cross section, but not the shear 
center, generates extra torsion because of the eccentricity. The effect of the eccentricity (0, 
dy, dz) is accounted for using the following transformation 

T
SCSCSC TKTK **=  (2.40) 

where the transformation matrix is given as (Dubigeon and Kim 1982) 
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corresponding to the 14 degree of freedom in the following order 
T

xzyxxzyx wvuwvu '
2222222

'
1111111 ,,,,,,,,,,,,, θθθθθθθθ . 

2.6.3 Support Boundary Conditions 

Due to the nature of curved bridges, it was necessary to handle support DOFs in a special 
manner. Supports of curved girders restrain movement in the vertical and horizontal 
directions. The vertical movement does not require special handling because the local y-axis 
is normally chosen to be parallel to the global y-axis. Horizontally, the x- and z-axes usually 
coincide with global axes at one support only, and in most other some cases they do not as 
can be seen in Fig. 2.10.  Therefore, special handling of these boundary conditions through 
constraints was necessary. 

This is done using a transformation matrix that relates the DOFs in the local yx − and the 
global coordinate systems YX − .  The relationship for the 6-DOF implementation is given 
by Equation 2.42.  

The transformation for the 7-DOF element is similar except for the additional warping DOF.  
Since the physical meaning of warping is two bending moments with same magnitude and 
opposite directions as illustrated for example in Fig. 2.11 for an I-section beam, bimoment 
has no direction. Therefore, the bimoment in the local coordinate system and that in global 
coordinate system are the same. 
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Figure 2.10: Local and global CS for handling of restrained DOFs 

 

 

Figure 2.11: Normal stress distribution under warping for a I-section beam 
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This means that the transformation matrix for the 7-DOF implementation is  
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It is clear that both transformation matrices contain many zero terms. The full transformation 
matrix (14x14) has more zeros than shown in Eq. 2.43 because more DOFs are completely 
uncoupled. Direct execution of the transformation resulted in unnecessary computation and 
increased runtime. A sparse-matrix implementation was therefore adopted to reduce running 
time and storage requirements. 

2.6.4 Implementation using Sparse Matrices 

The nature of grillage models for curved bridges requires handling many sparse matrices. A 
sparse matrix is a matrix with all but few cells holding zero values. The existence of some 
sparse matrices does not affect the overall computational time or memory requirements in 
small programs that handle all matrices the same way. However, preliminary runs with this 
general implementation showed that more than 90% of the computational time is consumed 
by transformations that involve large sparse matrices. To overcome this obstacle, a sparse 
matrix implementation was needed. 

Since most of the matrix multiplication operations are of zero terms, it is possible to skip 
most of these operations by just focusing on the nonzero matrix terms.  The best approach is 
to use algorithms that handle these matrices as reduced sparse matrices.  In addition to the 
savings in execution time, sparse implementations also save storage requirements.  Following 
the work of Horowitz et al. (1993), these sparse matrices were compressed into special data 
structures.  The following example is chosen to better illustrate the method.  In the example 
an 8x8 sparse matrix [ ]A  is given as: 
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The first step in handling this sparse matrix is to convert it into a data structure, [ ]A , with a 
number of elements equal to the number of non-zero cells in [ ]A ; i.e. eight elements. Each of 
the elements in the new data structure holds three pieces of information; namely row number, 
column number and value. The resulting data structure is stored in a sequential manner as in 
Eq. 2.45 

[ ]

2836
9115

643
332

1122
1561

2241
1511

value# col# row

−

−
=A  (2.45) 

The total number of cells in [ ]A  is 24 compared to 36 in original matrix, [ ]A .  Matrix 
manipulation (e.g. transpose, multiplication, …etc.) is executed for [ ]A  with the help of 
several subroutines written for that purpose.  Timesavings in this example may not seem 
worthwhile the effort.  However, the savings are quite substantial when dealing with much 
larger matrices with fewer active cells (non-zero terms), as is the case with many of the 
matrices in this program.  It should also be noted that such matrices are an integral part of the 
calculation and that the transformation and multiplication operations are repeated 
extensively.  The amount of timesavings was immediately felt by reducing the run time from 
tens of minutes to less than a few seconds. 

2.7 Program Verification 

Before embarking on any intensive analyses, a thorough verification study was needed.  In 
this section three verification problems are described. Each problem is designed to check a 
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specific feature in the program. Results obtained from the program were compared to those 
obtained from commercially available packages. Also comparisons with closed-formed 
solutions were performed for one of the problems. The verification study showed that the 
program is capable of capturing the general behavior of curved box girder bridges. It is also 
capable of capturing the most important aspects of warping behavior. 

2.7.1 Comparison with closed-form solution 

This verification problem is for a simply-supported curved beam with span length, 04 ′′=L , 
radius, 010 ′′=R .  A single concentrated load is applied at midspan, P  =10 lb. A total of 160 
elements are used to model the problem.  Results obtained from the program were compared 
to closed-form solution proposed by Konishi and Komatsu (Nakai et al. 1982).  In their 
solution, a parameter κ  is defined 

ω

κ
EI
GJL=  (2.46) 

For κ  values larger than 9.0, bimoment values can be accurately estimated using the 
following expression 

2
tan**

2 2

φ
α

RPRM w =  (2.47) 

in which L  is the span length, R  is the radius of curvature, and P  is the concentrated load 
acting at mid-span.  The central angle is calculated as RL  in radians and the parameter α  is 
given as 

ω

α
EI
GJR=  (2.48) 

Table 2.1 lists the results as obtained from Eq. 2.47 and from the developed program.  Three 
cross sectional properties were attempted to test the validity of the program over a wide 
range of κ .  It can be seen that the difference between both methods is relatively low, 
especially for high values of κ . The larger difference at lower values of κ  should not be 
considered a deficiency because 1) the closed-form solution is not an exact solution but 
rather a solution based on several assumptions that are often made to simplify the derivation, 
2) it will be seen later that κ  values of existing bridges fall in a higher range than the case 
considered in this verification study. The conclusion of this study is that the program is 
capable of capturing the warping behavior by accurately estimating the bimoment values for 
a curved simply supported girder. 
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Table 2.1: wM  verification results – Program vs. closed form solutions 

κ  Eq. 2.47 Program Difference

122 0.1082 0.1118 3.30% 

70 0.321 0.325 1.20% 

23 2.921 2.682 8.20% 

 

2.7.2 Comparison with beam element models (ABAQUS) 

In this verification example, results obtained from the developed program are compared with 
ABAQUS results reported in Okeil et al. (2000). The reported results are for the bimoment 
distribution of an existing curved box-girder bridge (Bridge 521 of the FDOT inventory – see 
Chapter 3) under dead loads.  They are obtained using the computer program ABAQUS 
(1997) which offers a beam element with warping capabilities (Element Type BO31S).  
Identical models were built using ABAQUS and the developed program, in which 816 
elements where used.   

Figures 2.12 and 2.13 show the bimoment distribution along the bridge as obtained from the 
program and from ABAQUS, respectively.  The figures show that the results are identical 
except at the interior supports. At these positions, the bimoment results from the program are 
larger that those obtained using ABAQUS. Doubling the element number (using 1632 
elements) showed that results were converging, though convergence is not rapid. 

2.7.3 Comparison with full shell element models (SAP2000) 

A thin-walled cantilever-beam verification exercise was also conducted by comparing 
between program results and response data from the SAP2000 software package. Due to the 
presence of bimoment, which complicates the total normal stress distribution, several 
different models are set up and analyzed. 

The cross section of the cantilever beam is square with different flange and web plate 
thickness to allow for warping to develop (see Fig. 2.14).   Cross-sectional properties were 
computed and used in the analysis done by the computer program. The cantilever beam is 
curved with total length 40 inches and radius 100 inches from the center of curvature to 
centroid line of the beam. The beam is discretized into a 160-element model.  Uniform 
meshing was used leading to equal element lengths of 0.25 inch. A single concentrated 
torque, T = 10 lb-in acting at the free end (see Fig. 2.15).  To make sure that the results given 
by the 160-element model are accurate, different models with different element number were 
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also studied.  Twenty, forty, and eighty element models were considered.  Convergence of 
the results was observed for models using less than 80 elements. The results showed that 
there is almost no difference between results given by 80-element model and 160-element 
model. 

-3E+09

-2E+09

-1E+09

0E+00

1E+09

2E+09

3E+09

Position along span length

B
im

om
en

t (
N

.m
m

2 )

 

Figure 2.12: Bimoment distribution along the entire length of Bridge 521 (program 
results) 
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Figure 2.13: Bimoment distribution along the entire length of Bridge 521 (ABAQUS 
results) 
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Figure 2.14: Dimensions of the cross section for verification example (in inches) 

 

 

 

Figure 2.15: Loading of verification example 
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Figure 2.16: 3D-view of Model A in SAP 2000 

 

The same example was modeled using SAP 2000.  Full shell elements with six DOF per node 
were used to model the walls of the box as seen in Fig. 2.16.  In addition to the fixity of the 
supported end of the cantilever, additional intermediate constraints were added to simulate 
diaphragms and cross frames to help the cross section maintain its preloading shape.  The 
lack of these additional constraints would introduce distortion which is not the focus of this 
study.  Other straining actions (bimoment, bending moment, …etc.) are not affected by the 
additional constraints if the deformation is small.  This measure was necessary since the 
element implemented in the program does not account for any distortional deformations.  It is 
also known that current code provisions require the use of cross frames, which if provided 
appropriately, will drop any distortional effects to negligible levels. The positions of 
diaphragms are shown in Fig. 2.17. The spacing between adjacent diaphragms is 4.0 inches, 
but in the area close to the fixed end, where the normal stress caused by bimoment is more 
significant than the normal stress caused by bending moment, more diaphragms are added to 
resist distortion, the spacing of diaphragms is reduced to 0.5 inch. Between adjacent 
diaphragms which has spacing 4.0 inches, the wall is discretized transversely into 8 elements 
and longitudinally into 8 elements. So the element size is 0.25”x0.5”. Where the spacing of 
diaphragms is 0.5 inch, the wall is discretized transversly into 8 elements and longitudinally 
into 2 elements, 4 elements, 8 elements respectively. The corresponding element sizes are 
0.25”x0.25”, 0.25”x0.125”, 0.25”x0.0625”, respectively. No more refined mesh is discussed 
here because of the tolerance in SAP2000 and also, when aspect ratio of shell element is 
larger than 4, the accuracy of results will be an issue. The 3 models are designated A, B, and 
C respectively. Table 2.2 lists the element size and element number for the three models. 
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Table 2.2: Summary of SAP2000 shell models 

Model Element Size Total Element 
Number 

A 
0.25”x0.25” 

0.25”x0.5” 
2816 

B 
0.25”x0.125” 

0.25”x0.5” 
3328 

C 
0.25”x0.0625” 

0.25”x0.5” 
4352 

 

 

 

Figure 2.17: Layout of diaphragms 
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Figures 2.18 and 2.19 show that the developed program yields deformation results that are 
almost identical to those obtained from all 3 shell models.   

For a square section subjected to both bending moment and bimoment, the maximum normal 
stress happens at the corner. The normal stress is calculated from the bimoment and bending 
moment extracted from the computer program as follows: 

ωσ
ω

ω

I
M

x
I

M
y

I
M

y

y

x

x ++=  (2.49) 

Results from the SAP2000 model are processed as follows. The top and bottom nodal 
stresses are averaged to obtain the membrane nodal stress. The final nodal stress considered 
in the verification study is the mean of the average nodal stresses obtained from each element 
attached to the node in question. Table 2.3 lists the mean normal stresses at different 
positions along the length of models A, B, C, and the results are plotted in Figs. 2.20 and 
2.21.  Figure 2.21 is an enlarged plot of the same distribution shown in Fig. 2.20 for the last 5 
inches of the beam. 

The results show that the normal stresses from the developed program and from SAP2000 
models are in good agreement in most locations except for the region in the vicinity of the 
fixed end of the cantilever beam. In this small region (about 1/20 of the total length), stress 
gradient are very high, and Models A, B, and C are not sufficiently refined to pick up the 
severe stress changes that occur. The large stress gradient is largely due to the sudden spike 
in bimoment near the fixed end, where the bimoment reaches its maximum value.   

In summary, the comparisons between SAP2000 and the program indicate that the program is 
quite accurate in predicting the behavior of curved box girders. The quality of the results is 
naturally dependent on how fine the used mesh is. However, it is obvious that the finite 
element is more sensitive to the element size than is the proposed model because of the 
spikes in the bimoment distribution that are harder to capture with a shell model. Based on 
this verification studies described, it is believed that the program is acceptable and deemed 
accurate for the purpose of investigating box girder bridges. 
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Figure 2.18: Comparison of vertical displacement 
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Figure 2.19: Comparison of twisting angle 
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Table 2.3: Maximum normal stress from program and Models A, B, and C 

Distance to fixed end
(inch) Program Model A Model B Model C 

0.000 245.0 100.0 110.0 122.0 

0.125 181.0 N/A 94.2 93.0 

0.250 116.0 75.0 73.0 71.0 

0.500 54.0 52.5 51.9 51.3 

0.750 26.0 35.0 35.0 35.5 

1.000 14.0 31.0 31.0 31.7 

1.250 8.0 23.0 21.6 22.0 

1.500 5.4 19.5 20.0 20.0 

1.750 4.0 14.5 14.0 13.9 

2.000 3.0 13.7 14.6 15.0 

4.000 6.0 8.0 8.0 8.5 

6.000 9.0 10.0 10.3 10.3 

8.000 12.0 13.4 13.4 13.1 

10.000 15.0 15.5 15.5 15.6 

12.000 18.0 20.5 20.2 20.1 

14.000 21.0 21.7 22.0 22.0 

16.000 24.0 26.7 26.7 26.8 

18.000 27.0 28.0 56.4 24.0 

20.000 30.0 33.5 33.4 33.4 

22.000 33.0 34.3 34.2 34.2 

24.000 36.0 40.0 40.0 40.1 

26.000 39.0 40.5 40.3 40.3 

28.000 42.0 47.3 46.6 46.6 

30.000 45.0 46.5 46.4 46.4 

32.000 47.0 53.0 53.0 52.7 

34.000 52.0 52.3 52.3 52.2 

36.000 53.0 59.3 59.2 59.3 

38.000 56.0 55.2 55.2 55.2 
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Figure 2.20: Maximum normal stress comparison along entire beam length 

 

0

50

100

150

200

250

300

0 1 2 3 4 5

distance to fixed end (in)

no
rm

al
 s

tre
ss

 (p
si

)

Program
Model A
Model B
Model C

 

Figure 2.21: Maximum normal stress comparison in the vicinity of fixed end 
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3  WARPING STRESSES IN COMPOSITE CURVED BOX 
GIRDER BRIDGES 

3.1 Background 

This chapter presents a detailed investigation of warping related stresses in eighteen existing 
box girder bridges chosen from the Florida Department of Transportation inventory.  The 
bridges are carefully selected to cover a wide range of design parameters including horizontal 
curvature, cross sectional properties, and number of spans.  They were designed by different 
firms and were constructed at different times and are considered to be representative of 
current design practice.  Forces are evaluated from analyses that account for the construction 
sequence and the effect of warping. Loading is considered following the 1998 AASHTO-
LRFD provisions.  The differences between stresses obtained taking into account warping 
and those calculated by ignoring warping are used to evaluate the effect of warping.  
Analysis results show that warping has little effect on both shear and normal stresses in all 
bridges. Current design provisions are discussed in light of the analysis results. 

3.2 Non-uniform Torsion 

A complicated state of forces develops in curved girders when they are loaded. The forces 
that are developed include bending moments, shear forces, pure (i.e. St. Venant) torsion, 
warping (i.e. nonuniform) torsional moments, and bimoments.  Torsional moments and 
bimoments due to cross-section distortion also develop.  However, distortion-related effects 
can be easily reduced to insignificant levels by providing an adequate number of cross frames 
(Oleinik and Heins 1975). 

The out of plane deformation of cross sections subjected to torsion (see Fig. 3.8) violate the 
main assumption of the Bernoulli’s Beam Theory: plane sections remain plane. If restrained, 
these out of plane deformations create additional normal and shear stresses, which when 
integrated over the cross-section yield the bimoment and warping torsional moment 
respectively. In general, the torsional moments acting on curved girders are larger than those 
encountered in straight girders. 

Calculating warping related stresses is not a straightforward process. The current curved box 
bridge specification (AASHTO Curved 1997) insists that the effects of nonuniform torsion 
must be considered in design, but does not provide any assistance or guidance on how to do 
so. The only guidance given to determine when warping stresses could be important falls 
under a section in the commentary dealing with top bracing and appears to pertain to this 
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particular section only (i.e. during construction). This guidance is adapted from the work of 
Nakai and Heins (1977), who investigated a variety of curved bridge types and proposed 
criteria based on cross-section properties, bridge length, and subtended angle that would 
allow engineers to determine when warping is significant. The study by Nakai and Heins 
(1977) has several limitations including: 1) idealized loading and boundary conditions were 
assumed; 2) although, normal stresses due to warping were considered, shear stresses due to 
warping were ignored; and 3) the effects of centrifugal forces were not accounted for. 
Centrifugal forces always occur in curved bridges and can be substantial. 

Other researchers have also tried to quantify the significance of warping in curved box 
girders.  Trukstra and Fam (1978) investigated the effect of diaphragms on the behavior of 
curved box girder bridges. They conducted a parametric study using finite element models 
and investigated for simple load cases the ratio between stresses calculated from the finite 
element model and corresponding stresses obtained from idealized beam models. Both 
concrete and composite single box girders were considered. As expected, the results showed 
that diaphragms improve load distribution and positively influence stress ratios. A wide 
range of radii was covered in the study. Girders that showed large stress ratios belong to a 
group with small radii, which fall into an impractical range (R<30.48m [100 ft]).  Shear 
stresses were also not investigated in this study. 

More recently, Waldron (1988) investigated the effect of warping on normal stresses in 
single box girders. Forces were calculated by deriving closed form solutions of the 
fundamental equation governing torsion and warping for special loading cases.  Using 
concrete box examples, it was shown that warping could increase normal stresses by as much 
as 29%.  This high stress ratio corresponds to a theoretical loading condition where a single 
concentrated load acts on one of the webs at midspan.  For truck loads (following the British 
code), stress ratios drop to around 5%.  Based on the study, it was concluded that the width-
to-depth ratio significantly impacts the normal warping stress ratio.   

The studies summarized above all suffer from a number of common drawbacks. They did not 
address warping shear stresses and were based on idealized loading and boundary conditions. 
They also did not address the construction sequence of composite box girders. This study 
addresses all of these issues and presents a detailed investigation of warping stresses in 
curved composite box girders. The study is conducted on 18 bridges from the Florida 
Department of Transportation (FDOT) inventory. The bridges are carefully selected to cover 
a wide range of design parameters including horizontal curvature, cross sectional properties, 
and number of spans. The bridges were designed by different firms and were constructed at 
different times and are considered to be representative of current design practice. A summary 
of the main properties of the bridges is given in Table 3.1 and further information can be 
found in Okeil et al. (2000) and Okeil and El-Tawil (2002).  The 1998 AASHTO-LRFD load 
provisions are considered in the study and the effect of warping on both normal and shear 
stresses is quantified. The implications of the analysis results with respect to current design 
provisions are then discussed. 
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Table 3.1: Summary data for analyzed existing bridges 

Span lengths Radius of 
curvature 

Bridge Spans Lanes 
Min 
(m) 

Max 
(m) 

Min 
(m) 

Max 
(m) 

Finite 
element 
length 
(mm) 

Number 
of finite 
elements 

Number 
of load 
cases 

390 5 1 54.86 71.17  188.98  188.98 152.4 1923 74 

521 3 1 23.16 36.58  1758.90 1758.90 101.6 816 35 

525 2 1 41.54 49.59 Straight Straight 101.6 897 37 

528 5 1 48.16 58.52  1746.38 1746.38 152.4 1658 68 

537 5 1 30.48 64.92  218.30  218.30 152.4 1390 58 

538a 5 2 37.19 52.43  436.60 3033.17 152.4 1585 65 

538b 5 2 46.33 64.31  436.60  873.19 152.4 1762 69 

538c 4 2 50.90 64.01  873.19  873.19 152.4 1508 61 

538d 7 2 36.88 64.01  436.60  873.19 152.4 2486 100 

539 5 1 39.62 55.93  218.60  218.60 152.4 1539 63 

540 6 1 23.77 54.25  290.76  290.76 152.4 1661 69 

541a 5 1 38.25 63.09  250.40  431.51 152.4 1686 69 

541b 5 1 32.16 61.26  250.40  645.52 152.4 1604 60 

542a 6 1 43.89 62.18  349.58  349.03 152.4 2096 84 

542b 6 1 34.75 59.13  349.58 8732.18 152.4 1834 74 

598 4 1 44.35 52.27  107.56  211.68 152.4 1895 51 

606 3 2 56.08 80.37  438.88  875.00 101.6 1310 69 

607 3 2 46.94 66.85  870.91 Straight 101.6 1582 60 
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3.3 Analysis of Existing Bridges 

3.3.1 Geometric properties of closed cross sections 

Accurate cross-sectional properties are essential for conducting a successful analysis. 
Expressions for these properties can be found in textbooks (e.g. Guohao 1987 and Nakai and 
Yoo 1988).  A summary of relevant expressions can be found in Appendix I. Two conditions 
are considered for each box girder. The first condition represents the cross section during 
construction; i.e. before the concrete deck hardens.  At this stage, diagonal bracing between 
the top steel flanges is provided to ensure stability.  The cross-section cannot be considered 
as an open cross-section because of the top bracing. Since the section is not a closed section 
either, it is considered as quasi-closed, i.e. with a fictitious top plate to represent the effect of 
the top bracing. Several expressions for the thickness of the equivalent plate have been 
proposed in the past, of which the one proposed by Kohlbrunner and Basler (1969) is used in 
this study: 

t
E
G

ab
d
F

a
F

eq

d o

=
+

3 32
3

 (3.1) 

where E  is the modulus of elasticity, G  is the shear modulus, a  the spacing between cross 
frames, b  is the distance between flanges, d  is the length of bracing member, oF  is the area 
of top flange, and dF  is the area of bracing member. 

After hardening, the concrete deck becomes an integral part of the cross section and its 
contribution is accounted for.  The equivalent plate’s contribution becomes small compared 
to the deck, and is ignored.  In accounting for the concrete deck, it is first transformed into an 
equivalent steel plate using an appropriate modular ratio; sc EE . This transformation is 
justified when the deck is completely in compression, but is approximate when the deck or 
parts of it are under tension. Since 1) it is not clear when the deck will be completely in 
tension because of the combined effect of moment and torsion, and 2) the contribution of the 
top bracing is being ignored, the use of the uncracked properties is deemed reasonable in this 
work. Other researchers have also made use of this approximation in the past including 
Johnson and Mattock (1967), whose work forms the basis of several provisions in AASHTO 
LRFD (1998). Figures 3.1 and 3.2 show a few of the geometric functions for one of the 
bridges considered before and after integration of the deck in the cross section. 
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(a) quasi-closed cross section 

  

(b) xS  (c) yS  

 

 

(d) ω  (e) ωS  

Figure 3.1: Geometric properties of quasi-closed cross section (Dimensions in mm, ω  in 
mm2, xS yS  in mm3, ωS  in mm4) 
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(a) closed cross section 
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Figure 3.2: Geometric properties of closed cross section (Dimensions in mm, ω  in mm2, 
xS yS  in mm3, ωS  in mm4) 
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For simple geometries (regular spans, curvatures, …etc.) and loadings (uniform torque, 
single concentrated torque), girder forces are a function of a dimensionless parameter, κ , 
which is given as (Nakai and Yoo 1988) 

ω

κ
EI
GKL=  (3.2) 

where L  is the span length, G  is the shear modulus, K  is the torsional constant, E  is the 
modulus of elasticity, and ωI  is the warping constant.  A large κ  implies that the 
contribution of warping to stiffness is small and that warping related stresses are therefore 
low. On the other hand, a small κ  implies that the warping contribution to stiffness is large 
and that warping related stresses could be high. 

The reliance of member forces on κ  is true only for certain idealized loading, geometric, and 
boundary conditions. In real bridges, the cross-section and radius of horizontal curvature both 
vary along each span as well as from span to span, which renders the use of Eq. 3.2 
impossible. To account for these variations, a weighted κ  (calculated for each span) is used 
as follows. The relationship between this weighted κ  parameter and warping stresses is 
discussed later on. 

∫=
L

dL
EI
GK

ω

κ  (3.3) 

Two κ  values are computed for each span of each bridge corresponding to quasi-closed and 
closed conditions. Figures 3.3 show a plot of these κ  values versus the average RL /  ratio 
for corresponding spans.  The κ  values are calculated for spans where the critical normal 
stresses (Fig. 3.3a) and shear stresses (Fig. 3.3b) take place as described later. As expected, 
Fig. 3.3 clearly shows that closed cross-sections possess better torsional qualities than open 
cross-sections, i.e. higher κ  values.  Although there is some scatter, it is clear that current 
design practices yield κ  values with an average of about 38 for quasi-closed cross sections 
and 114 for closed cross sections.  A slight increase in the trend of κ  is also observed with 
higher RL / , which reflects the more efficient designs for spans with a sharper radius of 
curvature. 
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Figure 3.3: Geometric properties of closed cross section (Dimensions in mm, ω  in mm2, 
xS yS  in mm3, ωS  in mm4) 
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3.3.2 Bridge models 

Detailed descriptions of the 18 bridges considered in this study can be found in Okeil et al. 
(2000).  For completeness, a summary of the modeling details is provided next. 

The analyses are conducted using the computer program ABAQUS (1997). All 18 girders 
considered in this study are modeled using a three-dimensional beam-column element 
(BO31S) that accounts for warping . The element has 7 degrees of freedom per node, and is  
similar to the element described in Chapter 2.  Although several of the bridges have more 
than one box, only one box girder is modeled per bridge to reduce the modeling and 
computational effort. Each box girder is assumed to support a slab that is wide enough to 
accommodate at least one traffic lane. This implies a load distribution factor of at least 1.0 
lane per girder, which is conservative when compared to distribution factors from AASHTO-
LRFD specifications (1998) for straight girders. 

Small elements (101.6mm [4in] or 152.4mm [6in]) are used to model the bridges resulting in 
hundreds of elements per girder. This is necessary in order to accurately calculate the 
warping related forces. For example, the bimoment experiences large spikes at supports, 
which are difficult to capture unless small elements are used. Verification studies confirmed 
that the chosen element sizes are sufficient to provide reasonable accuracy. Intermediate 
support locations are restrained against vertical and transverse translations, and twisting 
rotations.  The warping degree of freedom is not restrained anywhere because diaphragms are 
not capable of providing significant resistance to out of plane deformations. However, 
continuity over intermediate supports leads to the development of bimoments and torsional 
warping moments, which is not the case at end supports where the developed bimoment is 
zero. Table 3.1 lists the number elements used for each bridge, which ranged from 816 to 
2486.  The table also lists other details for the bridges covered in this study.   

3.3.3 Bridge loading and resulting forces 

Dead loads are estimated based on the dimensions and material properties given in blueprints 
provided by FDOT.  Live loads are considered according to AASHTO-LRFD (1998). 
Following the HL-93 loading, a uniform lane load of 9.3 N/mm, uniformly distributed load 
over a 3000 mm width, is considered in addition to a tandem load (two 110kN axles). 
Transversely, the loads are positioned at the outermost possible location to generate the 
maximum torsional effects (see Fig. 3.4). The centrifugal force (CF) is taken into account for 
curved segments of the bridges. From these loads, the dead load force distributions and 
envelopes for the live load force distributions are generated. Each set included, xM , yM , 

ωM , xV , yV , T , sT , and ωT , which are described in the next section.  Figure 3.5 shows an 
example of the live load factored (Strength I limit state) envelopes for warping related forces 
obtained from the analysis of an idealized 3-span pilot bridge. 
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Figure 3.4: Positioning of live loads for a single lane bridge (dimension in mm) 

 

Since ABAQUS does not provide results for the warping torsional moment, ωT , the fact that 
it is the derivative of the bimoment (i.e. ωω MT ′= ) is used to obtain these results.  A 
numerical differentiation scheme (Greenspan and Casulli 1988) of the bimoment, ωM , is 
utilized.  To enhance the quality of the numerical results, three points are used to numerically 
differentiate ωM  at any point; the point under consideration and the points before and after.  
For example, determining the warping torsional moment at node i  involves the values of the 
warping moment at the nodes 1−i  and 1+i  as well as the elements’ length, elemL  

( ) ( ) ( )
elem
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2L
MM

T ii
i

+− +−
= ωω

ω  (3.4) 
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At points where abrupt changes take place such as supports, a forward (point under 
consideration and two following points), or a backward (point under consideration and two 
previous points), differentiation scheme are used so that the spikes can be accurately 
captured.  Equations 3.5 and 3.6 Give the expressions for the forward and backward 
numerical differentiation, respectively. 

( ) ( ) ( ) ( )
elem

21

2
43
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MMM

T iii
i

++ ++−
= ωωω

ω  (3.5) 
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Figure 3.5: Envelope of warping-related straining actions due to live loads for idealized 
bridge 
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3.3.4 Stress Calculations 

Normal stresses – including the effect of warping - are calculated as follows (Nakai and Yoo 
1988): 

ωσωσ
ω

ω

ω

ω

I
M

I
Mx

I
M

y
I

M

y

y

x

x +=++= approxexact  (3.7) 

where xI  and yI  are the moments of inertia about the x- and y-axes, and x  and y  are the 
distances from the centroid of the cross section. Equation 3.7 shows that the exact normal 
stress, exactσ , is generated by the bending moments ( xM , yM ) and bimoment ( ωM ) which 
causes warping. The sum of the first two terms is from classical beam theory, which does not 
account for warping, and will be referred to as approxσ .  The third term is a function of the 
warping constant, ωI , and the warping function, ω .   

The approximate shear stress, approxτ , is calculated from classical beam theory (i.e. by 
ignoring the effects of warping) using the following equation: 
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where xV  and yV  are the shear forces and T  is the torsional moment acting on the cross 
section.  The other terms in the expression represent the geometric properties of the closed 
cross section; namely, wall thickness ( t ), moments of area ( ( )sS x  and ( )sS y ), and enclosed 
cross-sectional area ( cA ).  The third term assumes that the entire torsional moment is St. 
Venant torsion. If warping is considered, the torsional moment must be split into its two 
constituent terms (pure torsion, sT , and warping torsion, ωT ), and the shear stresses can be 
calculated as follows: 
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The geometric properties ωI  (warping constant) and ( )sSω  (sectoral area) are used to 
calculate the shear stress due to warping torsional moments (last term in Eq. 3.6). 
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3.4 Warping Stress Ratio 

One of the main goals of this research is to determine the effect of warping on both shear and 
normal stresses. This is achieved by investigating the ratio between approximate stresses 
calculated using classical beam theory (i.e. ignoring warping) and exact stresses which 
include the effect of warping. For each bridge, ratios pertaining to both normal and shear 
stresses are calculated at selected key points in critical sections with the highest exact stresses 
(calculated according to Eqs. 3.7 and 3.9). The key points considered in each cross-section 
are shown in Fig. 3.6. The warping stress ratios for both normal stresses ( NWSR − ) and 
shear stresses ( SWSR − ) are then calculated as follows. The results are given in Table 3.2. 

approx

approxexact

σ
σσ −

=− NWSR  (3.10) 

approx

approxexact

τ
ττ −

=− SWSR  (3.11) 

 

 

Figure 3.6: Keypoints considered for stress calculations 
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Table 3.2: Definitions of Warping Stress Ratio (WSR ) 
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3.5 Results 

The WSR  for all cases summarized in Table 3.2 are calculated using the procedures 
described earlier. Two sets of plots are generated in an attempt to identify trends in the 
results.  Figures 3.7 and 3.8 show the WSR  for normal and shear stresses plotted versus the 
average L/R ratios for corresponding spans. The WSR  are also plotted versus κ , as shown in 
Figs. 3.9 and 3.10.  Each of the four figures provides three plots corresponding to the ratios 
due to dead, live and total (combined dead and live) loads.  The dashed line in each plot 
represents the average level. In spite of significant scatter in some of the plots, several 
observations are evident from Figures 3.7 through 3.10. These observations are discussed 
next. 

3.5.1 Normal stresses 

During construction (i.e. quasi-closed cross-section under dead load), ignoring warping 
implies that normal stresses are underestimated by an average of 0.84%.  The most critical 
case is underestimated by 1.90%.  In designing for live loads (closed section), the average 
effect of warping is an additional 0.25% with the most severe case being 1.88%.  The 
average WSR  for total stress effect (closed section subjected to dead and live loads) is 0.34% 
with a maximum of 3.16%.  In evaluating these numbers, readers should keep in mind that 
the locations at which the maximum WSR  for dead, live, and combined loading are different. 
Although the plots in Figs. 10 and 12 do not show any conclusive trends because of scatter in 
the data, it is clear that the magnitude of the WSR  are quite small (less than 3.16% for all 
cases). 

3.5.2 Shear stresses 

Although the WSR ’s pertaining to shear are somewhat higher than those corresponding to 
normal stresses, the ratios are still relatively low. The calculations show that the average dead 
load shear stresses are underestimated by 1.57% with a maximum of 7.42%.  After casting 
the concrete deck, the cross section’s properties are greatly enhanced, and ignoring warping 
is actually on the conservative side with a tendency to overestimate stresses by an average of 
1.52%.  For combined loading (Fig. 3.10 (c)), total stresses are underestimated if warping is 
not taken into account by an average of 1.37%. 

3.5.3 Effect of κ  

As previously discussed, Fig. 3.3 indicates that κ  improves slightly as RL /  increases, 
reflecting the greater torsional resistance provided by designers for spans with a sharper 
radius of curvature. Figures 3.9 and 3.10 show the relationship between κ  and NWSR −  as 
well as SWSR −  respectively. Since κ  is a measure of the contribution of warping to 
stiffness, it is logical to see some correlation in Figs. 3.9 and 3.10. However, the data in both 



 

 53

figures is scattered and does not appear to have a specific trend. There are several reasons 
that can be put forward to explain this: 1) although spans with a larger κ  are torsionally 
stronger, they are probably subjected to larger demands; 2) the bridges were designed by 
different firms and hence the level of conservatism in design as well as the design models 
and tools vary from one bridge to another; 3) κ  calculated according to Eq. 3.3 is a weighted 
value that may not accurately reflect the vulnerability of a critical cross-section to warping as 
well as κ  calculated from Eq. 3.2 would for idealized conditions. 

3.6 Design Implications 

Although no trends are evident in Figs. 3.7 and 3.8, one important observation can be made; 
i.e. the effect of warping on both normal and shear stresses in all 18 bridges is quite small. 
Since each point plotted in the figures represents the largest ratio at the most critical point of 
the most critical span of each bridge, it appears that the effect of warping on overall behavior 
is rather insignificant. 

The vertical lines in Figures 3.7 and 3.8 indicate the critical RL /  ratio as defined by 
AASHTO-LRFD (1998) below which bridges may be analyzed and designed as straight. 
Bridge designers prefer to deal with straight bridges because they are easier to analyze and 
design. Straight bridges must still be designed to resist some torsional forces, which result 
from eccentrically placed loading. However, torsional demands – and corresponding warping 
effects – in straight box girder bridges are quite small and are negligible in many cases. 
There are two limits permitted by AASHTO-LRFD (1998). For open cross-sections (defined 
as quasi-closed in this research because of the top bracing), three span bridges with a 
subtended angle less than 5o ( RL / =0.087) can be treated as straight.  For closed cross-
sections the critical RL /  is 0.21. 

It is clear that a significant portion of the bridges fall outside these limits. For these bridges, 
AASHTO Curved (1997) becomes the applicable design code. This implies that the effect of 
horizontal curvature and the resulting torsional demands could be significant and should be 
taken into consideration. Although AASHTO Curved (1997) clearly states that non-uniform 
torsion should be explicitly considered, this study shows that the effect of warping is still 
small in all these bridges. This is true even in bridges where RL /  is greater than twice the 
limit permitted by AASHTO-LRFD for closed cross-sections, and more than 4 times for 
quasi-closed sections. 
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Figure 3.7: Normal Warping Stress Ratios vs. RL /
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Figure 3.8: Shear Warping Stress Ratios vs. RL /
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Figure 3.9: Normal Warping Stress Ratios vs. κ  
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Figure 3.10: Shear Warping Stress Ratios vs. κ  
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3.7 Summary and Conclusions 

This chapter presents a detailed investigation on the effects of warping on the stress levels in 
eighteen existing box girder bridges chosen from the Florida Department of Transportation 
inventory. The bridges cover a wide range of design parameters including horizontal 
curvature, cross sectional properties, and number of spans. Forces are evaluated from 
analyses that account for the construction sequence and the effect of warping. Loading is 
considered following the 1998 AASHTO-LRFD provisions. By considering the differences 
between stresses obtained taking into account warping and those calculated by ignoring 
warping, its is shown that shown that warping has little effect on both shear and normal 
stresses in the limited sample of bridges considered. 

The results presented herein should not be construed to imply that warping is not important. 
Rather, this work points out that there could be a large subset of bridges where the warping 
effect is small enough to be ignored in structural calculations. This is particularly useful to 
designers because warping calculations are complicated and time consuming. Additional 
work is needed to define relevant parameters that can be used to identify bridges where 
warping calculations are warranted. The authors also believe that there is a need for a 
validated approximate design method that accounts for the effect of warping, without which 
it is hard to envision designers performing detailed analyses such as those presented here. 
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4  LIVE LOAD DISTRIBUTION FACTORS FOR COMPOSITE 
CURVED BOX GIRDERS 

4.1 Introduction 

This chapter describes an investigation of the live load distribution factor (DF).  The live load 
distribution factor is an integral part of current AASHTO design codes.  AASHTO LRFD 
(1998) provides distribution factors for several structural systems including composite box 
girder bridges.  The suggested DFs are limited to straight bridges and bridges with slight 
curvatures and are based on the work of Ho (1972).  The AASHTO Curved (1997) does not 
provide specifications regarding DF’s for composite curved box girder bridges.  However, 
the commentary of AASHTO Curved (1997) provides alternate expressions for DF’s that can 
be used for composite curved box girder bridges.  The provided expressions are based on the 
work of Ho and Reilly (1971) and Heins (1972).  The expressions in the commentary 
consider three variables only in determining the DF’s; namely number of girders, G , girder 
spacing, S , and the number of lanes, N .  Equations 4.1 and 4.2 show these expressions for 
bending and torsional moments. 

N
GS

SgM

6.06.2 +−
=  (4.1) 

N
GS

SgT

5.13.15 +−
=  (4.2) 

Since the previous expressions are derived based on analyses of straight girder, curvature still 
needs to be accounted for. This is done through modifiers following Eq. 4.3 and 4.4 for 
bending and torsional moments, respectively: 

20.1
R
B

R
A

M ++=ξ  (4.3) 

2R
DCT +=ξ  (4.4) 
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This simplification of a very complex behavior leads to ignoring other parameters such as the 
ratio between the lateral and longitudinal stiffness of the system.  Furthermore, the torsional 
stiffness of each box is not accounted for.  It should also be noted that the studies based on 
which the current DF’s were derived, were conducted decades ago with the available tools at 
the time. Current advancements allow more in-depth studies with more sophisticated models 
than were available before.  Such shortcomings led to a call by the National Cooperative 
Highway Research Program (NCHRP) to revisit the current expressions for live-load DF’s 
for all types of bridges.  This part of the study serves as a good preliminary investigation to 
the research program announced by NCHRP. 

4.2 Concept of Distribution Factor 

The concept of live load distribution is appealing to practicing engineers.  Regardless of 
advancements in available design tools, DF’s remain popular because of they are easily 
comprehended, easy to use, and have gained acceptance over the years.  In this method, a 
simplified single-girder system is analyzed for a single lane of loading regardless of the 
transverse dimensions and properties of the bridge.  The forces developed in this simplified 
system are determined using basic structural analysis methods.  Forces in specific girders of 
the real system are obtained by multiplying the results of the simplified system by the 
distribution factor.  For example, the shear force in a certain girder, girderV , is obtained 
according to Eq. 4.5 through the use of the appropriate DF for shear, Vg , and the shear force 
obtained from analyzing the simplified single girder system, simplifiedV . 

simplifiedgirder VgV V=  (4.5) 

The expressions for DF’s are usually obtained through analyses similar to those described 
here, except that they are done in reverse order; i.e. the distribution factor is obtained by 
dividing results obtained from analyzing the real system by those of the simplified system.  A 
regression of results leads to the expression of the DF’s.  The main benefit of using the DF is 
that it is possible to determine internal forces in a three-dimensional (3-D) system such as a 
bridge by analyzing a simplified single girder system. 

4.3 Analysis Procedure and Model Verification 

Obtaining a reliable distribution factor depends on several factors including the quality of 
modeling the entire bridge system, the number of cases used in the development of the DF 
expression, and the accuracy of the regression analysis used in deriving these expressions.  
Each of these factors is essential to the success of any proposed DF.  Many DF studies 
utilized grillage models to obtain forces in the actual bridge systems.  Other researchers 
adopt a more sophisticated analysis scheme by modeling the entire system using shell 
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element.  In choosing for the study at hand, the advantages and disadvantages of both 
approaches were weighed in.  The findings are summarized next 

4.3.1 Shell Models vs. Grillage Models 

Modeling the entire system using shell elements is undoubtedly more involved and provides 
additional information that other models are not capable of providing.  However, shell 
elements provide results on a stress or stress resultant level, which introduces the following 
shortcomings.  First, current codes focus more on the member level rather than on the 
material level.  This is because the LRFD approach requires determining the strength of the 
member being designed in contrast with the allowable stress design method (ASD), which 
sets an allowable stress at the material level.  Converting stresses obtained from shell model 
analyses to section forces is possible by integration of the appropriate stresses over the 
desired cross section.  The integration process is tedious and time consuming.  Second, the 
quality of stresses or stress resultants obtained from shell models are sensitive to various 
factors such as stress concentrations due to shear lag or any other sort of disruptions in the 
cross section such as stiffeners.  Stresses are also affected by the type of element being used 
in the analysis, which in the opinion of the authors has an effect on how reliable the resulting 
DF’s are. 

Grillage models are more straightforward and provide direct results in the form of internal 
forces and moments.  The simplicity of grillage models comes at the cost of losing some of 
the details in modeling three-dimensional objects, especially box girders systems.  This could 
lead to inaccurate estimates of the DF’s.  However, many of the details that cause such 
discrepancies can be adequately modeled using grillage models.  For example, an analysis of 
a box girder bridge using linear elements to model girders as well as the concrete deck leads 
to inaccurate results because the span of the deck is exaggerated as can be seen in Fig. 4.1.  
In the figure, the deck spans the distance between the box upper flanges.  However, linear 
elements passing through the centroid implies a deck system as shown in the lower system. 

 

centroid

 

Figure 4.1: Grillage modeling and its effect on deck span length 



 

 62

As will be seen later, it is possible to overcome such drawbacks of grillage models through 
modeling adjustments.  Accordingly, the choice of a shell model was deemed not necessary 
and a sophisticated grillage model was used for the DF study. 

4.3.2 Determination of Distribution Factors 

For each bridge configuration, two bridge models were built.  The first model is a single 
girder model, which represents what the designer would normally use in every day design. 
For engineers, the analysis of such a model is quite simple and straightforward with readily 
available analysis tools.  Figure 4.2 shows a schematic of one of the single girder models 
loaded with a group of concentrated loads representing a standard truck (HS-20) loading.   

 

Figure 4.2: Schematic of single girder models used in determining the distribution 
factor 

The second model is a detailed grillage model of the bridge system.  Linear elements were 
used to model the bridge components such as girders, deck, and diaphragms.  Figure 4.3 
shows a schematic of the node and element arrangements for one of these models having 
three box girders.  As it appears from the figure, girder elements (bold lines) connect nodes 
that are not shared with deck elements.  Deck elements connect nodes according to deck 
dimensions, however avoiding direct contact with girder nodes.  The connectivity of the deck 
and the girders is achieved through rigid links that apply constraints between nodes at their 
ends.  The constraints are imposed in a master/slave type of relationship in such a way that 
achieves a continuity condition similar to that of the real structure.  This arrangement avoids 
overestimating deck span lengths as described earlier.   

The grillage model is verified by comparing results to those obtained using folded plate 
theory for a straight three-cell box-girder bridge (Johnson et al. 1967). The verification 
example is provided with only two diaphragms at the supports, thus the combined torsional 
rigidity method is used to model distortional behavior. The combined torsional rigidity 
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method is based on Beam-on-Elastic-Foundation analogy (BEF).  A summary of the 
procedure is given next based on the cross sectional dimensions in Fig. 4.4. 

deck
node girder

node
girder
element

deck
elements

rigid
links

 

Figure 4.3: Schematic of grillage models used in determining the distribution factor 
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c
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Figure 4.4: Dimensions for calculation of total torsional constant based on BEF 
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- The flexural rigidity of the top flange Da, bottom flange Db, web Dc is first 
determined: 

( )2

3

112 ν−
=

EtD  (4.6) 

- The out-of-plane shear in the bottom flange per unit torsional load is then 
calculated: 
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- The vertical deflection of one web per unit torsional load can now be calculated 
as: 
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 (4.8) 

- A parameter β  is then determined: 

25.0
1
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δ

β
cEI

 (4.9) 

- The reduced torsional rigidity is then calculated according to: 

( )
w
lI

l
aC c

6.1

3

2

2 β
=  (4.10) 

in which l  is the unbraced length between two adjacent diaphragms; c  is the 
reduced torsional rigidity due to distortion and cI  is the moment of inertia for 
vertical bending.  It should be noted that this expression is only valid for simply 
supported bridges.  Similar expressions can be derived for curved bridges using 
space frame models. 

- Finally, the combined torsional rigidity is calculated: 
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JCJt

111
+=  (4.11) 

in which J  is the classic torsional constant for closed cross sections (see 
Appendix A). 

The three-girder bridge example reported in Johnson et al. (1967) was modeled using the 
suggested grillage model after obtaining the torsional constant following the above 
procedure.  Figure 4.5 Show a comparison between results obtained from the suggested 
model and those reported by Johnson et al.  The results are for the deflections of the deck at 
mid-span of the bridge due to an eccentrically positioned standard truck acting at midspan.  
As expected, the lateral flexibility leads to unequal deflections.  Figure 4.5 shows that 
deflections under the loads are about 2.5 times the average deflection.  It can be seen that the 
grillage model predicts deflections that are in good agreement with those reported by 
Johnson et al. (1967).  Experimental results obtained from a 1:50 scale model were in good 
agreement with the same results. 
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Figure 4.5: Verification results for proposed grillage model 

The single girder and grillage models are used in the subsequent analyses which are 
performed in three stages:  

- Stage I: A single girder model is built for each of the bridges in the parametric 
study.  The model is then analyzed by loading it with AASHTO-LRFD (1998) 
loads for a full lane width (HL-93) by sweeping the truck along the longitudinal 
axis of the model.  These analyses will yield the maximum force effects (bending 
moments, shear forces, and torsional moments) in the single girder bridge model, 
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singleΡ .  The maximum forces are recorded for later use in determining the 
distribution factor.  Truck locations causing these maximum forces are also 
stored.  These locations serve as a starting point for Stage II analyses. 

- Stage II: A grillage model is built for each of the bridges.  Analyses of the 
grillage model are conducted for the same loading (HL-93) as linear models, 
however, the number of lanes loaded is based on the actual roadway width. The 
truck positioning in the longitudinal direction is predetermined from the single 
girder analyses in Stage I.  The transverse location causing the maximum force 
effects is determined by sweeping the whole loading of the lane (truck + lane) 
laterally.  The maximum forces caused by the most severe positioning of loads 
are recorded for all girders (exterior and interior), girderΡ . 

- Stage III: The distribution factors are determined according to Eq. 4.12 based on 
the results obtained in Stages I and II. 

single

girder

Ρ
Ρ

=Ρg  (4.12) 

4.4 Parametric Study 

As stated earlier, a distribution factor is as reliable as the models used in producing it.  This is 
not only pertinent to the quality of the structural analysis model, but also to the number and 
range of variables used in producing the distribution factor expression.  In this study, several 
variables were identified as important to the load distribution capability of a curved box 
girder bridge system.  Some these parameters are the same as those considered in earlier 
studies focusing on straight bridges, while others pertain only to curved bridges.  The 
parameters considered are the number of girders, N , roadway width expressed by number of 
lanes, LN , girder spacing, S , span length, L , and radius of curvature, R .  Each bridge was 
analyzed for three possible numbers of continuous spans.  Table 4.1 shows the details of the 
parameters included in this study.  The cross-dimensional dimensions (plate thicknesses, 
…etc.) were determined based on comparable existing designs in the FDOT inventory 
(eighteen bridges used in Chapter 3).  The concrete deck was assumed to have a thickness of 
205 mm (8 inches) for all cases considered.  A total of 265 bridges were generated for this 
range of parameters. 
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Table 4.1: Details of variables considered in parametric study 

Number of 
Lanes, LN  

Number of 
Girders, N  

Girder 
Spacing, S  

(m) 

Span Length, 
L  

(m) 

Radius of 
Curvature, R  

(m) 

Number of 
Spans 

2 2 4.10 

2 3 2.74 

3 2 5.90 

3 3 3.94 

3 4 2.95 

4 3 5.14 

4 4 3.85 

4 5 3.08 

25 

50 

100 

100 

250 

500 

2 

3 

4 

4.5 Results and Conclusions 

Models for all bridges were created based on the grillage model described in Section 4.3.2 
and analyses following the procedure described earlier were conducted. The analyses 
generated a huge database of distribution factors for several types of internal forces (positive 
and negative bending moments, shear forces, and torsional moments).  The distribution factor 
is extracted for each girder and the maximum values for all interior girders as well as the two 
exterior girders are chosen.  Tables 4.2 through 4.4 list some of the data generated by this 
process.  The tables show the distribution factors as obtained from this study and from Eq. 
4.1, and the difference between both values.  The tables provide the data organized by span 
length; L =25m, 50m, and 100m, respectively.  While research is currently ongoing to 
process this data and propose new LL distribution factors, it is disturbing to observe that 
errors of up to 25% can occur when current DF expressions are used for the limited pool of 
bridges studied herein. 
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Table 4.2: Comparison of distribution factor results (L=25 m) 

Mg  e
Mg +  i

Mg +  e
Mg −  i

Mg −  
R  Spans LN  N  S  

Eq. 4.1 Prog Diff. (%) Prog Diff. (%) Prog Diff. (%) Prog Diff. (%) 
100 2 2 3 3.60 0.735 0.942 -21.9 0.777 -5.3 0.970 -24.2 0.759 -3.1 
100 2 3 3 3.60 1.316 1.149 14.6 1.064 23.8 1.167 12.8 1.051 25.2 
100 2 3 4 3.60 0.862 1.093 -21.1 0.952 -9.4 1.125 -23.4 0.963 -10.5 
100 2 4 3 5.14 1.690 1.562 8.2 1.509 12.0 1.575 7.3 1.516 11.5 
100 2 4 4 3.60 1.316 1.200 9.7 1.119 17.6 1.217 8.1 1.128 16.7 
100 2 4 5 3.08 1.015 0.937 8.3 0.942 7.8 0.942 7.7 0.947 7.1 
100 3 4 3 5.14 1.690 1.563 8.1 1.511 11.9 1.571 7.6 1.523 11.0 
100 3 4 4 3.60 1.316 1.202 9.5 1.121 17.5 1.216 8.3 1.129 16.6 
100 3 4 5 3.08 1.015 0.938 8.2 0.943 7.6 0.939 8.1 0.948 7.1 
100 4 3 3 3.60 1.316 1.151 14.4 1.064 23.7 1.167 12.8 1.055 24.8 
100 4 4 3 5.14 1.690 1.563 8.1 1.511 11.9 1.571 7.6 1.523 11.0 
100 4 4 4 3.60 1.316 1.202 9.5 1.121 17.5 1.216 8.3 1.129 16.6 
100 4 4 5 3.08 1.015 0.938 8.2 0.943 7.6 0.939 8.1 0.948 7.0 
250 2 2 3 3.60 0.735 0.933 -21.2 0.776 -5.3 0.969 -24.1 0.759 -3.2 
250 2 3 4 3.60 0.862 1.074 -19.7 0.950 -9.2 1.116 -22.8 0.964 -10.5 
250 2 4 3 5.14 1.690 1.532 10.3 1.508 12.1 1.551 9.0 1.516 11.5 
250 2 4 4 3.60 1.316 1.173 12.2 1.110 18.5 1.194 10.3 1.124 17.1 
250 2 4 5 3.08 1.015 0.907 11.9 0.928 9.3 0.920 10.3 0.941 7.9 
250 3 3 3 3.6 1.316 1.133 16.2 1.065 23.6 1.153 14.1 1.055 24.8 
250 3 4 3 5.14 1.690 1.534 10.2 1.510 11.9 1.548 9.2 1.522 11.1 
250 3 4 4 3.6 1.316 1.175 12.1 1.112 18.4 1.193 10.4 1.125 17.0 
250 3 4 5 3.08 1.015 0.908 11.8 0.929 9.2 0.917 10.7 0.941 7.8 
250 4 3 3 3.6 1.316 1.133 16.2 1.065 23.6 1.154 14.1 1.055 24.7 
250 4 4 3 5.14 1.690 1.534 10.2 1.510 11.9 1.549 9.1 1.523 11.0 
250 4 4 4 3.6 1.316 1.175 12.1 1.112 18.4 1.193 10.3 1.125 17.0 
250 4 4 5 3.08 1.015 0.908 11.8 0.930 9.2 0.917 10.6 0.942 7.7 
500 2 2 3 3.6 0.735 0.929 -20.8 0.776 -5.2 0.968 -24.0 0.759 -3.1 
500 2 3 3 3.6 1.316 1.125 17.0 1.064 23.7 1.147 14.7 1.052 25.2 
500 2 3 4 3.6 0.862 1.067 -19.2 0.948 -9.1 1.113 -22.5 0.964 -10.5 
500 2 4 4 3.6 1.316 1.163 13.1 1.107 18.9 1.185 11.0 1.122 17.3 
500 2 4 5 3.08 1.015 0.897 13.2 0.923 9.9 0.912 11.3 0.938 8.2 
500 3 3 3 3.6 1.316 1.126 16.9 1.065 23.6 1.148 14.6 1.055 24.7 
500 3 4 4 3.6 1.316 1.165 13.0 1.108 18.8 1.185 11.1 1.123 17.2 
500 3 4 5 3.08 1.015 0.898 13.1 0.925 9.8 0.910 11.6 0.939 8.1 
500 4 3 3 3.6 1.316 1.027 28.2 1.065 23.6 1.149 14.5 1.056 24.7 
500 4 4 3 5.14 1.690 1.524 10.9 1.510 11.9 1.541 9.7 1.523 11.0 
500 4 4 4 3.6 1.316 1.165 13.0 1.109 18.7 1.185 11.0 1.124 17.1 
500 4 4 5 3.08 1.015 0.898 13.1 0.925 9.7 0.910 11.5 0.940 8.0 
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Table 4.3: Comparison of distribution factor results (L=50 m) 

Mg  e
Mg +  i

Mg +  e
Mg −  i

Mg −  
R  Spans LN  N  S  

Eq. 4.1 Prog Diff. (%) Prog Diff. (%) Prog Diff. (%) Prog Diff. (%) 
100 2 2 3 2.74 0.819 0.734 11.47 0.695 17.84 0.738 10.99 0.685 19.44 
100 2 3 3 3.94 1.254 1.120 11.95 1.060 18.31 1.121 11.85 1.046 19.88 
100 2 3 4 2.95 0.941 0.860 9.38 0.818 14.98 0.863 9.10 0.823 14.38 
100 2 4 3 5.14 1.690 1.508 12.12 1.424 18.69 1.521 11.15 1.422 18.89 
100 2 4 4 3.85 1.269 1.165 8.90 1.101 15.17 1.164 9.02 1.114 13.89 
100 2 4 5 3.08 1.015 0.949 6.94 0.920 10.37 0.945 7.39 0.920 10.35 
100 3 2 3 2.74 0.819 0.735 11.45 0.695 17.82 0.739 10.85 0.686 19.26 
100 3 3 3 3.94 1.254 1.120 11.90 1.060 18.26 1.123 11.60 1.049 19.46 
100 3 3 4 2.95 0.941 0.861 9.34 0.819 14.94 0.863 9.02 0.825 14.10 
100 3 4 3 5.14 1.690 1.509 12.03 1.425 18.63 1.524 10.90 1.429 18.30 
100 3 4 4 3.85 1.269 1.166 8.84 1.102 15.12 1.165 8.89 1.117 13.55 
100 3 4 5 3.08 1.015 0.949 6.90 0.916 10.76 0.945 7.42 0.921 10.14 
100 4 2 3 2.74 0.819 0.735 11.45 0.695 17.82 0.740 10.69 0.688 18.97 
100 4 3 3 3.94 1.254 1.120 11.89 1.060 18.26 1.121 11.87 1.054 18.89 
100 4 3 4 2.95 0.941 0.861 9.34 0.819 14.94 0.864 8.92 0.827 13.75 
100 4 4 3 5.14 1.690 1.509 12.03 1.425 18.63 1.527 10.70 1.436 17.70 
100 4 4 4 3.85 1.269 1.166 8.84 1.102 15.11 1.167 8.72 1.120 13.22 
100 4 4 5 3.08 1.015 0.949 6.90 0.916 10.76 0.945 7.41 0.924 9.88 
250 2 2 3 2.74 0.819 0.711 15.20 0.694 17.98 0.725 12.98 0.686 19.28 
250 2 3 3 3.94 1.254 1.091 14.93 1.059 18.33 1.104 13.54 1.047 19.73 
250 2 3 4 2.95 0.941 0.824 14.17 0.808 16.43 0.841 11.86 0.818 14.99 
250 2 4 3 5.14 1.690 1.472 14.81 1.423 18.80 1.499 12.79 1.423 18.77 
250 2 4 4 3.85 1.269 1.123 13.00 1.088 16.65 1.137 11.56 1.109 14.38 
250 2 4 5 3.08 1.015 0.901 12.61 0.894 13.46 0.915 10.90 0.909 11.60 
250 3 2 3 2.74 0.819 0.710 15.35 0.694 17.94 0.728 12.51 0.690 18.69 
250 3 3 3 3.94 1.254 1.091 14.95 1.060 18.28 1.111 12.86 1.057 18.61 
250 3 3 4 2.95 0.941 0.823 14.33 0.808 16.53 0.844 11.52 0.825 14.13 
250 3 4 3 5.14 1.690 1.472 14.80 1.423 18.74 1.506 12.26 1.439 17.50 
250 3 4 4 3.85 1.269 1.122 13.04 1.088 16.65 1.142 11.12 1.118 13.50 
250 3 4 5 3.08 1.015 0.900 12.76 0.893 13.62 0.916 10.80 0.915 10.86 
250 4 2 3 2.74 0.819 0.710 15.35 0.694 17.94 0.728 12.50 0.690 18.68 
250 4 3 3 3.94 1.254 1.091 14.94 1.060 18.27 1.111 12.83 1.057 18.60 
250 4 3 4 2.95 0.941 0.823 14.33 0.808 16.53 0.844 11.50 0.825 14.10 
250 4 4 3 5.14 1.690 1.472 14.79 1.423 18.74 1.506 12.23 1.439 17.47 
250 4 4 4 3.85 1.269 1.122 13.03 1.088 16.65 1.142 11.09 1.118 13.47 
250 4 4 5 3.08 1.015 0.900 12.76 0.893 13.60 0.916 10.78 0.916 10.84 
500 2 2 3 2.74 0.819 0.700 16.95 0.693 18.16 0.718 13.97 0.686 19.26 
500 2 3 3 3.94 1.254 1.078 16.26 1.058 18.46 1.097 14.28 1.047 19.71 
500 2 3 4 2.95 0.941 0.809 16.36 0.802 17.27 0.832 13.11 0.816 15.30 
500 2 4 3 5.14 1.690 1.457 16.00 1.421 18.94 1.489 13.48 1.423 18.74 
500 2 4 4 3.85 1.269 1.105 14.82 1.081 17.38 1.126 12.62 1.107 14.60 
500 2 4 5 3.08 1.015 0.881 15.15 0.884 14.85 0.903 12.39 0.905 12.12 
500 3 2 3 2.74 0.819 0.700 16.95 0.694 17.96 0.722 13.43 0.690 18.64 
500 3 3 3 3.94 1.254 1.079 16.19 1.060 18.28 1.104 13.55 1.057 18.56 
500 3 3 4 2.95 0.941 0.809 16.37 0.803 17.17 0.835 12.69 0.823 14.36 
500 3 4 3 5.14 1.690 1.458 15.92 1.423 18.80 1.497 12.91 1.439 17.46 
500 3 4 4 3.85 1.269 1.106 14.75 1.082 17.24 1.131 12.12 1.116 13.67 
500 3 4 5 3.08 1.015 0.881 15.16 0.884 14.77 0.904 12.23 0.912 11.32 
500 4 2 3 2.74 0.819 0.700 16.95 0.694 17.96 0.722 13.42 0.690 18.64 
500 4 3 3 3.94 1.254 1.079 16.18 1.060 18.28 1.104 13.52 1.058 18.54 
500 4 3 4 2.95 0.941 0.809 16.37 0.803 17.17 0.835 12.66 0.823 14.33 
500 4 4 3 5.14 1.690 1.458 15.91 1.423 18.79 1.498 12.87 1.439 17.44 
500 4 4 4 3.85 1.269 1.106 14.74 1.082 17.24 1.132 12.08 1.116 13.64 
500 4 4 5 3.08 1.015 0.881 15.16 0.884 14.76 0.905 12.20 0.912 11.27 
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Table 4.4: Comparison of distribution factor results (L=100 m) 

Mg  e
Mg +  i

Mg +  e
Mg −  i

Mg −  
R  Spans LN  N  S  

Eq. 4.1 Prog Diff. (%) Prog Diff. (%) Prog Diff. (%) Prog Diff. (%) 
100 2 2 3 2.73 0.819 0.758 8.11 0.694 18.10 0.729 12.35 0.676 21.28 
100 2 3 3 3.93 1.255 1.148 9.27 1.054 19.05 1.118 12.17 1.022 22.72 
100 2 3 4 2.95 0.941 0.891 5.66 0.823 14.33 0.860 9.45 0.809 16.36 
100 2 4 3 5.13 1.691 1.541 9.77 1.416 19.42 1.524 10.95 1.384 22.20 
100 2 4 4 3.85 1.269 1.188 6.79 1.106 14.73 1.159 9.50 1.091 16.31 
100 2 4 5 3.08 1.015 0.986 2.92 0.926 9.59 0.950 6.83 0.907 11.91 
100 3 2 3 2.73 0.819 0.758 8.11 0.693 18.29 0.716 14.49 0.690 18.80 
100 3 3 3 3.93 1.255 1.148 9.27 1.052 19.23 1.113 12.71 1.010 24.17 
100 3 3 4 2.95 0.941 0.891 5.60 0.823 14.40 0.858 9.73 0.789 19.26 
100 3 4 3 5.13 1.691 1.542 9.68 1.415 19.56 1.509 12.11 1.371 23.40 
100 3 4 4 3.85 1.269 1.189 6.72 1.105 14.84 1.152 10.08 1.069 18.70 
100 3 4 5 3.08 1.015 0.987 2.84 0.926 9.63 0.948 7.05 0.883 14.89 
100 4 2 3 2.73 0.819 0.758 8.11 0.693 18.29 0.716 14.49 0.690 18.80 
100 4 3 3 3.93 1.255 1.148 9.27 1.052 19.23 1.113 12.71 1.010 24.17 
100 4 3 4 2.95 0.941 0.891 5.60 0.823 14.40 0.858 9.73 0.789 19.26 
100 4 4 3 5.13 1.691 1.542 9.68 1.415 19.56 1.509 12.11 1.371 23.40 
100 4 4 4 3.85 1.269 1.189 6.72 1.105 14.84 1.152 10.08 1.069 18.70 
100 4 4 5 3.08 1.015 0.987 2.84 0.926 9.63 0.948 7.05 0.883 14.89 
250 2 2 3 2.73 0.819 0.721 13.66 0.692 18.46 0.727 12.68 0.679 20.62 
250 2 3 3 3.93 1.255 1.100 14.01 1.051 19.35 1.103 13.77 1.027 22.14 
250 2 3 4 2.95 0.941 0.838 12.34 0.807 16.56 0.846 11.20 0.807 16.54 
250 2 4 3 5.13 1.691 1.481 14.20 1.410 19.97 1.496 13.09 1.389 21.80 
250 2 4 4 3.85 1.269 1.128 12.42 1.084 17.07 1.133 11.95 1.088 16.65 
250 2 4 5 3.08 1.015 0.918 10.56 0.897 13.08 0.925 9.72 0.899 12.92 
250 3 2 3 2.73 0.819 0.721 13.63 0.691 18.53 0.729 12.37 0.681 20.39 
250 3 3 3 3.93 1.255 1.101 13.94 1.051 19.38 1.107 13.32 1.031 21.66 
250 3 3 4 2.95 0.941 0.838 12.28 0.807 16.54 0.848 10.93 0.811 16.04 
250 3 4 3 5.13 1.691 1.483 14.04 1.410 19.95 1.502 12.64 1.397 21.06 
250 3 4 4 3.85 1.269 1.130 12.29 1.084 17.05 1.137 11.59 1.093 16.04 
250 3 4 5 3.08 1.015 0.919 10.45 0.895 13.36 0.926 9.58 0.903 12.43 
250 4 2 3 2.73 0.819 0.721 13.63 0.691 18.53 0.727 12.74 0.679 20.65 
250 4 3 3 3.93 1.255 1.101 13.94 1.051 19.38 1.102 13.88 1.033 21.45 
250 4 3 4 2.95 0.941 0.838 12.28 0.807 16.54 0.844 11.54 0.806 16.69 
250 4 4 3 5.13 1.691 1.483 14.03 1.410 19.95 1.489 13.59 1.394 21.31 
250 4 4 4 3.85 1.269 1.130 12.29 1.084 17.05 1.129 12.33 1.085 16.92 
250 4 4 5 3.08 1.015 0.919 10.44 0.895 13.36 0.921 10.23 0.895 13.40 
500 2 2 3 2.73 0.819 0.705 16.31 0.692 18.51 0.717 14.25 0.680 20.58 
500 2 3 3 3.93 1.255 1.079 16.29 1.051 19.39 1.089 15.19 1.028 22.06 
500 2 3 4 2.95 0.941 0.813 15.77 0.800 17.65 0.831 13.23 0.804 17.08 
500 2 4 3 5.13 1.691 1.453 16.39 1.408 20.12 1.478 14.43 1.390 21.72 
500 2 4 4 3.85 1.269 1.101 15.23 1.074 18.11 1.116 13.69 1.084 17.01 
500 2 4 5 3.08 1.015 0.886 14.58 0.880 15.39 0.905 12.15 0.892 13.83 
500 3 2 3 2.73 0.819 0.705 16.26 0.691 18.56 0.720 13.86 0.681 20.32 
500 3 3 3 3.93 1.255 1.079 16.22 1.051 19.41 1.094 14.65 1.032 21.54 
500 3 3 4 2.95 0.941 0.813 15.68 0.800 17.62 0.834 12.85 0.808 16.49 
500 3 4 3 5.13 1.691 1.455 16.23 1.408 20.08 1.485 13.90 1.398 20.95 
500 3 4 4 3.85 1.269 1.102 15.09 1.074 18.09 1.120 13.23 1.091 16.32 
500 3 4 5 3.08 1.015 0.887 14.44 0.880 15.29 0.907 11.90 0.896 13.24 
500 4 2 3 2.73 0.819 0.705 16.26 0.691 18.56 0.717 14.37 0.682 20.21 
500 4 3 3 3.93 1.255 1.079 16.22 1.051 19.40 1.088 15.34 1.036 21.12 
500 4 3 4 2.95 0.941 0.813 15.68 0.800 17.62 0.828 13.71 0.805 16.94 
500 4 4 3 5.13 1.691 1.455 16.22 1.408 20.08 1.471 14.98 1.397 21.06 
500 4 4 4 3.85 1.269 1.102 15.08 1.074 18.09 1.111 14.16 1.083 17.10 
500 4 4 5 3.08 1.015 0.887 14.44 0.880 15.29 0.899 12.84 0.889 14.10 
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5  ACCESS HATCHES IN CONTINUOUS CURVED 
COMPOSITE BOX GIRDER BRIDGES 

5.1 Introduction 

Bridge officials are required to inspect all bridges periodically (biannually) to detect any 
deficiencies or deterioration.  The task of bridge inspection is especially difficult to perform 
in box girder bridges.  Almost half the inspection task is performed from inside the box due 
to its tunnel-like nature.  Other types of bridges (I-girders) do not require such extra effort as 
all inspections are exterior in nature.  The interior of the box, which can be dangerous 
because of high temperatures and poor ventilation, is reached through access hatches that are 
usually provided in the bottom flange immediately before or after an expansion joint. These 
locations are chosen because: 1) bending moments are small close to the expansion joint, and 
2) the abutment/pier over which the expansion joint is located facilitates access; inspection 
crews can climb up the abutment or use simple tools such as a ladder to reach the access 
hole. Since the spans covered by box girders are often long and the girders are constructed as 
continuous segments over three or more supports, the distance between access hatches 
frequently exceeds the limit that rescue crews can reach in the event of an emergency. The 
addition of new access holes to an exiting bridge should satisfy certain practical constraints 
(discussed shortly) and should not adversely affect the structural behavior of the bridge, i.e. it 
should not impair serviceability nor decrease the ultimate strength and fatigue life. If the 
access hole is placed in a critical location the bridge may need to be strengthened, which is 
generally costly. Alternatively, access holes could be placed in low stress regions where 
strengthening is not necessary thereby significantly reducing the cost of rehabilitation. 

5.2 Practical Constraints for Choosing Access Hole Location 

In addition to the bottom flange location, which is already used in existing bridges, new 
access holes may also be provided in the webs of the steel girder or in the concrete deck.  
Figure 5.1 shows possible access hole locations. The advantages and disadvantages of each 
of these alternatives are discussed with respect to their impact on the following issues: 

5.2.1 Strength 

Holes in the bottom flange can significantly reduce the flexural strength of the cross section 
and the entire structure, especially if they are placed in the vicinity of continuous supports 
where high negative moments develop or in high positive moment regions.  Away from high 
moment regions, normal stresses due to flexure are small and adding a hole in the bottom 
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flange may be possible without strengthening. Web access holes can greatly reduce the shear 
resistance of the web, which is made of relatively thin steel plates. Therefore, this alternative 
should only be considered around midspan where low shear forces and torsional moments 
exist. Since concrete deck dimensions are usually predetermined by traffic considerations 
(road width) rather than by structural need, the effect of opening an access hole in the 
concrete deck has the least impact on strength of all three alternatives. 

Deck access

Reinforced
concrete deck

Bottom flange access

Web access

Steel plates  

Figure 5.1: Alternative access hole locations 

 

5.2.2 Feasibility 

Access holes that will interfere with structural elements such as stiffeners and cross frames 
should be avoided.  Longitudinal bottom flange stiffeners are provided to stiffen the plate and 
prevent buckling in the negative moment region over supports. These stiffeners are 
discontinued in regions where the negative moment drops to zero. Narrow boxes are 
provided with one stiffener in the middle of the plate, which creates an obstacle to adding 
access holes in the bottom flange near a support. Boxes with two bottom flange stiffeners can 
be provided with an access hole between the stiffeners if the distance in between the 
stiffeners is sufficient. Web access holes can be added in the space between web stiffeners. 
Top flange bracing may block access through reinforced concrete deck hatches.  Since, 
braces are provided to stabilize the steel cross-section before casting the concrete deck they 
can be taken out if needed since they are not essential for the behavior of the steel/concrete 
composite closed cross section. Cross frame locations should be avoided since these 
structural components are important for the global behavior of the bridge. 

5.2.3 Accessibility 

Accessibility of access holes is an important issue since they are added for use in the event of 
an emergency. Holes in the concrete deck are easily accessible from the roadway and do not 
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need special equipment. Bottom flange and web alternatives that are away from the supports 
require special equipment such a snooper (truck with an arm that reaches over the side and 
below the bridge) or a bucket (which reaches from below). In the vicinity of the supports, 
piers and abutments facilitate access to the holes. In the case of multi cell bridges, web 
openings in inner cells will be hard to reach if they are located away from the piers. 

5.2.4 Water Leakage 

Any modifications in the bridge that would increase the potential for corrosion should be 
avoided.  Access holes in bottom flanges and webs (except for outer webs where water may 
run down the sides) do not increase the chances of water getting into the steel box.  The 
concrete deck alternative is the most critical of all three alternatives since imperfect hatch 
doors may cause water leakage into the box. 

5.2.5 Impact on Traffic 

Access holes that are accessed from the topside of the bridge (concrete deck, or web and 
bottom flange holes accessed with the help of a snooper) will impede traffic flow and need 
special arrangements to use the access hatch.  No such arrangements are needed for bottom 
flange and web openings that will be accessed from beneath the bridge using a bucket or 
directly using the piers. 

5.2.6 Unauthorized Access 

Unauthorized people can easily reach access holes in the vicinity of the supports and in the 
concrete deck.  Away from the supports, web or bottom flange access is not possible without 
the use of special equipment. In all cases, precautions should be taken to prevent 
unauthorized people from getting into the cells. Figure 1.2 shows the belongings of an 
individual who made the bridge cell his home. 

Based on the previous discussions it is clear that the concrete deck option is the least 
attractive alternative because of the potential for water leakage to the inside of the girder and 
the possibility of interference with traffic flow when in use. The most appealing option is 
bottom flange access, which is practical and, as will be discussed later on in the report, does 
not have an impact on bridge strength if the location is chosen appropriately.  The web option 
has a greater number of limitations, which makes it a last resort if the bottom flange option is 
not possible. Table 5.1 summarizes the advantages and disadvantages of each of the 
alternatives. 
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Table 5.1: Summary of advantages and disadvantages of access hole alternatives 
Alternative Bottom Flange Web Concrete Deck 

Strength Reduces flexural 
strength. 

Reduces shear and 
torsional strength. 

Less effect on strength 
than other two alternatives.

Stiffeners should be 
avoided.  May be an 
obstacle if one stiffener 
is used. 

Stiffeners must be 
avoided. 

No stiffener limitations, 
but construction bracing 
may be an obstacle. 

Feasibility 

Cross frames must be avoided. 
Access at supports Easy Easy 

Access between 
supports 

Possible with the help 
of a snooper or a 
bucket. 

Possible with the help of a 
snooper or a bucket, 
except for intermediate 
cells in multicell bridges. 

Easy access at any location.

Water leakage Not a concern. Concern for outer cells. Watertight doors will be 
needed. 

Impact on traffic No effect. No effect. Special arrangements will 
be needed for access. 

Unlawful Access Possible at supports. Possible at supports. Possible at any location. 

 

5.3 Stresses in Curved Box Girder Bridges 

The different types of forces acting on a curved box girder are calculated using a linear 
elastic finite element model. The model is based on a three-dimensional two-node beam 
element that accounts for warping behavior (see Chapter 2).  The analyses are conducted 
using the commercial computer program ABAQUS (1997). 

A computer program was written to determine the cross-sectional geometric properties (area, 
moments of inertia, warping constant, …etc.) for composite cross sections with an 
overhanging deck.  The program is run to determine the properties of the quasi-closed, and 
closed cross-sectional properties to be used in the appropriate loading stage (dead load and 
live load respectively). The geometric properties of the quasi-closed noncomposite girder 
were determined assuming a fictitious plate (representing the construction bracing) connects 
the top flanges of the box girder.  The fictitious member is given an equivalent thickness, teq, 
that has the same effect on the girder as that of the construction bracing connecting the top 
flanges as described in Chapter 3. 

Seven of the FDOT bridge girders described in Chapter 3 were also analyzed to determine 
the feasibility of increasing the number of access hatches.  The methodology by which 
additional access hole locations are identified is based on identifying low stress regions 
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whose capacity would still exceed the demand even with the new hole.  The following 
sections describe the details of the approaches followed in this research. 

5.4 Low Stress Regions 

Normal and shear stresses are first determined at key points in the cross section (see Fig. 3.6) 
using Eqs. 3.7 and 3.9.  The stresses are calculated at all locations in the longitudinal 
direction.  Two different approaches are then used to determine low stress regions. In the first 
approach (Approach I), which is suitable for identifying bottom flange openings, regions are 
located where the maximum normal stress, σ, is less than a specific threshold, σ < 33% σmax.  
The 33% limit is important since the stress concentration factor around circular holes is 3. 
For comparison purposes, appropriate regions are calculated for two other thresholds σ < 
20% σmax and σ < 45% σmax. Fatigue is then incorporated in this approach by limiting 
suitable locations to regions where the live load stress range is less than the AASHTO-LRFD 
(1998) limit. The live load stress range is determined by finding the difference between the 
maximum and minimum stresses generated as the design vehicle crosses the bridge. In the 
second approach (Approach II), which is suitable for web openings, regions are located 
where the shear stress, τ, is less than 33% of τmax. As with the first approach, other regions 
are calculated for τ < 20% τmax and τ < 45% τmax. 

5.4.1 Results for Idealized Bridge 

The previous approaches are applied to the results obtained from the analysis of an idealized 
bridge model for the sake of demonstration.  The idealized bridge is a three span continuous 
box girder.  The length of each span is 75 ft.  Each approach yields regions of low stresses in 
accordance with the assumptions made in the scheme.  Figure 5.2-a shows the regions that 
satisfy the normal stress thresholds discussed in Approach I (without considering fatigue 
limitations).  As expected, minimally stressed regions exist around the points of contraflexure 
and close to exterior supports.  Approach II results in the regions seen in Fig. 5.2-b, which 
are located around mid-spans where low shear forces and torsional moments exist.  The 
fatigue stress distribution for the idealized bridge is given in Fig. 5.3-a. The empty regions 
represent areas where stresses are compressive and are therefore not affected by fatigue.  It 
turns out that for this particular bridge fatigue stresses are not critical anywhere along the 
bridge and therefore do not limit where access holes can be placed (Fig. 5.3-b). The regions 
suitable for access hole placement, i.e. that satisfy both strength and fatigue criteria, are 
obtained by imposing the regions in Figures 5.2-a and 5.3-b and are shown in Figure 5.4. 
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Figure 5.2: Low stress regions for idealized bridge (a - Approach I, b - Approach II). 
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Figure 5.3: (a) Distribution of fatigue stresses. Empty regions are areas in compression 
and therefore not affected by fatigue. (b) Regions not critical for fatigue considerations 

(entire bridge). 
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Figure 5.4: Regions that satisfy both normal stress criteria (<33% regions in Figure 5.2-
a and fatigue stress criteria in Fig. 5.3-b). Shaded regions are suitable for access hole 

placement. 

 

5.4.2 Study of Existing Bridges 

The chosen bridges are studied using the above-described approaches to investigate whether 
low stress regions as defined earlier can be identified. The bridges are located in District IV 
of the Florida Department of Transportation and vary in dimensions covering a range of 
curvatures and cross sections.  All bridge segments are studied.  Based on the analyses 
conducted in this study the following results are obtained. Details for each individual bridge 
can be found in Okeil et al (2000). 

Approach I: For spans that are continuous at both ends, the location of minimally stressed 
points is at a distance ranging from 20% to 42% of the span length measured from the 
continuous support.  Corresponding values for first/last spans are 20% to 54% measured from 
the continuous support.  The length of the minimally stressed region varies substantially.  On 
average, the length of the region is 5.6% of the span length, L.  Spans that are continuous on 
both sides have an average length of 6.0%L, and spans that are continuous from one side 
have an average region length equal to 4.7%L.  Examination of the results showed that there 
was no clear correlation between horizontal curvature and location or size of the minimally 
stressed regions. The lack of a definite trend is attributed to 1) the limited number of case 
studies considered; 2) the complexity of the structural problem; and 3) the fact that the 
bridges were designed by different design firms. Different design practices can lead to some 
variations in design, which can substantially affect the position and size of the minimally 
stressed regions. 

Approach II: Locations with minimal shear stress exist mainly around the middle of each 
span where low shear forces and torsional moments act on the girder.  It is observed that for 
first/last spans appropriate regions are at an average distance of 37%L measured from the end 
support, and for spans continuous on both ends, the average distance is 50%L.  The average 
region length for first/last spans and spans continuous on both sides is found to be 40%L and 
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28%L, respectively. As in Approach I, there was no clear correlation between horizontal 
curvature and location or size of the minimally stressed regions. 

5.5 Effect of Hole Location on Strength of an Existing Bridge 

A detailed finite element model of an existing bridge is created to confirm the methodology 
discussed above and to further investigate the effect of adding access holes at various 
locations on the strength of the bridge.  The developed model incorporates important 
structural details.  Shell elements are used to model the webs, bottom flange, and deck. Deck 
reinforcement is smeared within the concrete deck elements. Web stiffeners and cross frames 
are modeled using beam elements while constraint conditions simulating rigid shear 
connectors link the top flange of the steel box to the plane of the concrete deck.  Smaller 
elements are used in regions of interest.  Appropriate constraints connect the coarse mesh 
with the fine mesh. The mesh has approximately 7000 elements.  Figure 5.5 shows a general 
view of the finite element mesh used in the analysis. A bilinear stress-strain relationship is 
assumed for both steel and concrete as shown in Fig. 5.6.  Concrete tension stiffening is 
taken into account as shown in Fig. 5.6.  Further details regarding the nonlinear model can be 
found in Okeil et al (2000). 

The model is loaded with a tandem load acting at the center of the second span of the bridge 
and an uninterrupted lane load covers the entire second span. The model is used to study two 
configurations of the bridge.  The first configuration is analyzed for the original condition 
with no holes and serves as a benchmark.  The second configuration has an access hole in the 
low stress region identified using Approach I.  The access hole is placed at a distance of 
30%L from the support, just beyond the end of the bottom flange stiffeners that extended 
from the continuous support. The access hole is 600-mm in diameter. Figure 5.7 shows a 
bottom view of the model with a hole in a low stress region.  Dark areas represent highly 
stressed regions. 

Analysis of the developed model showed that introduction of the access hole in the low stress 
region resulted in a negligible reduction in strength.  As expected, the stresses at the hole 
periphery are approximately 3 times the stresses that existed prior to the hole. The new 
stresses are still significantly lower that those in other highly stressed regions and are not 
expected to adversely affect the structural behavior of the bridge. 
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Figure 5.5: General view of finite element mesh. 
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Figure 5.6: Idealized stress-strain relationships for steel and concrete. 
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Figure 5.7: Bottom view of bridge model showing hole location in a minimally stressed 
region. 

 

5.6 Summary and Conclusions 

This chapter discusses practical and structural issues affecting the choice of where new 
access holes can be cut in existing horizontally curved box girder bridges. A methodology is 
presented for identifying low stress regions where access hatches can be installed without 
additional strengthening. Low stress regions are found using a linear elastic finite element 
model comprised of special beam elements that account for warping behavior of the box 
cross-section. The model is used to analyze 7 existing bridges that have a wide range of 
geometric properties and that are representative of the State of Florida inventory. For the 
bridges studied, it is found that an access hole can be placed in the bottom flange at a 
distance measured from the support ranging from 20% to 42% of the span length for spans 
continuous at both ends. Corresponding values for first spans are 20% to 54% measured from 
the continuous support.  The length of the minimally stressed region varies substantially.  
Spans that are continuous on both sides have an average length of 6.0% of the span length, 
while spans that are continuous from one side have an average region length equal to 4.7% of 
the span length.  No clear correlation was observed between horizontal curvature and 
position or size of the minimally stressed regions. Detailed nonlinear finite element analyses 
of one of the bridges confirm the methodology chosen for locating the access holes. 
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6  SUMMARY AND CONCLUSIONS 

Current codes pertaining to analysis and design of curved composite girders are mostly based 
on experimental and analytical research conducted over 30 years ago as part of project CURT 
(Consortium of University Research Teams) funded by the Federal Highway Administration 
(FHWA). A new Curved Steel Bridge Research (CSBR) project is currently being conducted 
under the auspices of the FHWA. Although the CSBR project is expected to provide much 
needed information on behavior, analysis and design of curved composite bridges, it focuses 
more on I-girders than on box girders. The overall objective of the research reported herein is 
to provide information that complements existing data and that will be useful for formulating 
comprehensive design guidelines for composite curved box girders. Specific objectives 
include: 1) investigate and quantify the effect of nonuniform torsion on the behavior and 
design of existing curved box girders; 2) investigate existing distribution factors for curved 
box girder bridges; and 3) provide information that is helpful in identifying suitable locations 
for placement of access hatches in the steel box. 

A computer program for simulating the behavior of curved box girders was developed. The 
program is graphically interactive and features a general purpose beam-column element that 
can account for the effect of warping. The developed program is used to conduct a detailed 
investigation of warping related stresses in eighteen existing box girder bridges chosen from 
the Florida Department of Transportation inventory. The bridges are carefully selected to 
cover a wide range of design parameters including horizontal curvature, cross sectional 
properties, and number of spans. They were designed by different firms and were constructed 
at different times and are considered to be representative of current design practice. Forces 
are evaluated from analyses that account for the construction sequence and the effect of 
warping. Loading is considered following the 1998 AASHTO-LRFD provisions. 

By considering differences between stresses obtained taking into account warping and those 
calculated by ignoring warping, it is shown that warping has little effect on both shear and 
normal stresses in the limited sample of bridges considered. These results should not be 
construed to imply that warping is not important. Rather, this work points out that there could 
be a large subset of bridges where the warping effect is small enough to be ignored in 
structural calculations. This is particularly useful to designers because warping calculations 
are complicated and time consuming. 

Another study was undertaken to investigate load distribution factors promoted by current 
specifications.  Single girder and detailed grillage models were created for a variety of 
bridges and analyzed. The parameters investigated are the number of girders, roadway width 
expressed by number of lanes, girder spacing, span length, and radius of horizontal curvature. 
For the limited pool of bridges studied, it was observed that errors of up to 25% can occur 
when current DF expressions are used. 
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Access hatches (holes) in curved box girder bridges are usually provided in the bottom flange 
immediately before or after an expansion joint. If additional access hatches are required after 
the bridge is built, they must be placed in such a way that 1) they satisfy important practical 
constraints such as feasibility, accessibility, water leakage, traffic impact, and unauthorized 
access; 2) they do not adversely affect the structural behavior of the bridge, i.e. their 
installation should not impair serviceability nor decrease ultimate strength or fatigue life. 
Both issues are discussed and approaches that are suitable for identifying appropriate 
locations for access hole placement are identified. Access hatches can be installed without 
additional strengthening in low stress regions in the bottom steel flange. Low stress regions 
can be found using the computer program developed in this research. 
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8  APPENDIX A: Summary of Expressions used in 
Computing Geometric Properties 

For a thin-walled open section, the shear center, S , and the centroid, O , of the cross section 
may not coincide.  The first step of finding the geometric properties is to find the coordinates 
of the shear center using the following relationships: 

∫
∫=

dAy

dAy
x

o
S 2

ω
 (8.1a) 

∫
∫=

dAy

dAy
x o

S 2

ω
 (8.1b) 

where oω  is an initially assumed warping function obtained with the centroid of the cross 
section as an origin using the following expression 

)0()()( 11 ωωω += ss  (8.2) 

The first term of the previous expression is an integral of the perpendicular distance, ρ , from 
the point under consideration (centroid in the initial attempt) to the tangent to the point on the 
cross section. 

∫=
s

dss
0

1 )( ρω  (8.3) 

The constant )0(1ω  is obtained from the following expression 

dAs
A ∫−= )(1)0( 11 ωω  (8.4) 

After determining the shear center, the warping function is computed, considering the shear 
center this time, following Eq. 8.2.  The warping constant, ωI , is then obtained using the 
following integral 

( ) ( )dAssI ∫= ωωω  (8.5) 
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In the case of a closed cross section as the one shown in Fig. 8.1, Eq. 8.2 becomes 

)0()( 1
0

ωψρω +





 −= ∫

s

ds
t

s  (8.6) 

which may be viewed as two warping functions superimposed together (see Fig. 8.2).  Once 
)(sω  is determined, Eq. 8.5 is used to obtain ωI . 

The sectoral area for a closed section is obtained using the following expression 

∫−=
t

dssS
tds

sSsS oo )(
)(

1)()( ωωω  (8.7) 

In which )(sS o
ω is the sectoral area for the same cross section assuming a slit that converts it 

into an open cross section. Though other tools are available for determining xS  and yS , an 
approach similar to the one described for ωS  was followed. 

The torsional constant used in all analyses was determined based on the following 
expression: 

∫
=

t
ds
A

J c
24

 (8.8) 

which estimates torsional rigidity for closed cross sections and ignores the negligible 
contributions of elements not enclosing an are such as the deck overhangs. 
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Figure 8.1: A general closed thin-walled cross-section 

 

closed section part open section part
 

Figure 8.2: ω  diagrams of closed and open section parts 
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