FINAL REPORT

DEVELOPMENT OF AGENCY MAINTENANCE, REPAIR & REHABILITATION (MR&R) COST DATA FOR FLORIDA'S BRIDGE MANAGEMENT SYSTEM

十四

16

Contract No. BB-879

John O. Sobanjo Florida State University Department of Civil Engineering 2525 Pottsdamer St. Tallahassee, FL 32310

> Paul D. Thompson Consultant 2425 Hawken Drive Castle Rock, CO 80104

> > Prepared for:

State Maintenance Office Florida Department of Transportation Tallahassee, FL 32309

July 2001

Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. 5. Report Date 4. Title and Subtitle Development Of Agency Maintenance, Repair & Rehabilitation (MR&R) July 2001 Cost Data For Florida's Bridge Management System 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. John O. Sobanjo and Paul D. Thompson 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Florida State University Paul D. Thompson Department of Civil Engineering 11. Contract or Grant No. Consultant 2525 Pottsdamer St. 2425 Hawken Drive, **BB-879** Tallahassee, FL 32310 Castle Rock, CO 80104 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Florida Department of Transportation Final Report Research Center, MS 30 September 1998 - July 2001 605 Suwannee Street 14. Sponsoring Agency Code Tallahassee, FL 32310 15. Supplementary Notes Prepared in cooperation with the Federal Highway Administration 16. Abstract Florida State University and Paul D. Thompson were engaged by the Florida Department of Transportation (FDOT) to develop agency cost models and deterioration models for Florida's implementation of the AASHTOWare Pontis[®] Bridge Management System. The two-year study analyzed three existing information systems on maintenance and construction history, and supplemented it with the judgment of a panel of experts from the districts and head office. The results were delivered in electronic form for import into the Pontis database.

The expert panel proved essential to the completion of the study. Although the panel found the computerized data to be useful for 70% of the actions considered, only 50% of them had a statistically significant sample, and only 15% were usable directly from a statistical analysis. The main issues concerning usability of the automated data were differences in data collection units, and differences or uncertainties in the scope of recorded actions. The report includes recommendations for improvements in the automated systems to enhance the usability of the data in future updates of the agency cost model.

Like most state DOTs, FDOT lacked historical data for development of Pontis transition probabilities. Therefore, an expert elicitation process was used. A panel of district and head office engineers was asked a series of structured questions about deterioration, and their answers were converted to transition probabilities using a statistical process recommended in the Pontis Technical Manual.

17. Key Words		18. Distribution Statement		
Bridges, network level, agency costs, de maintenance, rehabilitation, statistical ar opinion.			available to the public th al Information Service, S	U
19. Security Classif. (of this report) Unclassified	20. Security Classif. Unclassified	(of this page)	21. No. of Pages 287	22. Price

Form DOT F 1700.7 (8-72)

METRIC CONVERSIONS

DISCLAIMER

The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the Florida Department of Transportation (FDOT) or the U.S. Department of Transportation (USDOT).

ACKNOWLEDGEMENTS

The authors wish to express their sincere appreciation to the Florida Department of Transportation (FDOT) for funding this research. Special thanks are also extended to the following people: Mr. Richard Kerr, State Bridge Management Inspection Engineer at the State Maintenance Office; various FDOT District Structures and Facilities Engineers; and other FDOT personnel from the State and District Maintenance Offices, for their valuable advice, suggestions, and comments during the course of this study.

TABLE OF CONTENTS

 List of Figures Executive Summary 1. Research Background	xiii 1 1 19 23 23 25 26
 Research Background	1 1 19 23 25 26
 1.1 Introduction	1 19 23 23 25 26
 1.2 Literature Search and Review	1 19 23 23 25 26
 1.3 Questionnaire Results Agency Cost Requirements of Pontis 2.1 Preservation Cost Analysis 	19 23 23 25 26
 Agency Cost Requirements of Pontis	23 23 25 26
2.1 Preservation Cost Analysis	23 25 26
•	25 26
2.2 Data Preparation and Preliminary Analysis	26
2.3 Sensitivity Analysis	
2.4 Comments and Conclusions on BMS Requirements	64
3. Determination of Existing Agency Cost Data	67
3.1 Departmental Contact and Interviews	67
3.2 Gathering of Documentation	68
3.3 Linkages to Florida BMS Requirements	
4. Development of Agency Unit Costs	75
4.1 Gathering of Data	75
4.1.1 FDOT's Historical Data	75
4.1.2 Relationship Among Historical Data Files	77
4.1.3 Sub-Categories: Transition from FDOT Data to Pontis Tables	
4.1.4 Size of Available Data	
4.1.5 Problems Encountered and Solutions	81
4.1.6 Overhead and Indirect Costs	82
4.1.7 Unit Compatibility	82
4.1.8 Statewide Cost Index (Inflation) Adjustments	84
4.2 Statistical Analysis And Results	86
4.2.1 Basic Data Analysis	86
4.2.2 District Location Factors	88
4.2.3 Regression Analysis: Modeling Bridge Characteristics	90
4.2.4 Statistical Sample Size	91
4.2.5 Analysis of Variance (ANOVA)	92
4.2.6 Discussion on Statistical Results	
4.2.7 Consistency Among Results (MMS, CES, and DCP)	99
4.3 Missing Data and Expert Review	
4.3.1 Description of Expert Interviews	101
4.3.2 Consistency Between Data Analysis and Expert Judgment	102
5. Deterioration Model Results	
5.1 How Deterioration is Modeled in Pontis	
5.2 Processing of Expert Elicitation Data	100
5.3 Summary of FDOT Results	109

	5.4 Importing the Results into a Pontis Database	113
6.	Implementation Report	115
	6.1 Technical Summary	115
	6.2 Technology Transfer Plan	118
	6.3 Implementation Test Plan	118
7.	References	119
Ap	ppendix A. Detailed Rationale and Final Cost Results	121
Ap	pendix B. Estimate of District Location Factors	185
Ap	pendix C. Preliminary Pontis Unit Costs from FDOT Data	199
Ap	ppendix D. Summary of Detailed Analysis on FDOT Data (Basic Statistics and ANOVA).	267
Ap	pendix E: Deterioration and Action Effectiveness Questionnaire	281
Ap	pendix F: Element-Level Summary of Deterioration Model Results	283

LIST OF TABLES

Table 1.1.	Summary of Survey Responses	21
Table 2.1.	List of Representative Bridge Elements (35) in Sensitivity Analysis	27
Table 2.2.	Change in Action Recommended Due to Variation in All Initial Unit Costs	
	(Selected Element-Environment-Condition State Indices)	30
Table 2.3.	Expected Long-Term Unit Costs for Varied Element Replacement Unit Costs	33
Table 2.4.	Summary of Bridge Elements' Sensitivity to Element Replacement Unit Cost	36
Table 2.5.	Network Total MR&R Costs Vs. Change In Element Replacement Unit Cost	37
Table 2.6.	Summary of Bridge Elements' Sensitivity to Element Rehabilitation Unit Cost	41
Table 2.7.	Network Total MR&R Costs Vs. Change In Element Rehabilitation Unit Cost	42
Table 2.8.	Summary of Bridge Elements' Sensitivity to Element Repair Unit Cost	44
Table 2.9.	Network Total MR&R Cost Vs. Change In Element Repair Unit Cost	46
Table 2.10.	Summary of Bridge Elements' Sensitivity to Element Maintenance Unit Cost	
	Network Total MR&R Costs Vs. Change In Element Maintenance Unit Cost	
	Summary of Bridge Elements' Sensitivity to Element Failure Agency Unit Cost	
	Network Total MR&R Costs Vs. Element Failure Agency Unit Costs	
Table 2.14.	Summary of Bridge Elements' Sensitivity to Discount Rate Factor (α)	61
Table 2.15.	Network Total MR&R Costs Vs. Change In Discount Rate Factor (α)	63
Table 2.16.	Summary of Network Total MR&R Costs' Sensitivity	65
Table 2.17.	General Summary of Bridge Elements' Sensitivity to MR&R Decision Variables	66
Table 3.1.	Preliminary Action Sub-Categories	73
Table 3.2.	Coverage of Sub-Categories in MMS and Akbar	74
Table 4.1.	Action Subcategories Matrix	
Table 4.2.	MMS Data Showing Various Activity Codes w/Action Sub-categories	81
Table 4.3.	Summary of Data Manipulation	
Table 4.4.	Estimated Values of Overhead And Fringe Values	82
Table 4.5.	Sample Man-Hour/Unit Values for Pertinent Maintenance Costs	
Table 4.6.	Cost Index Listing from 1993 to 2000	
Table 4.7.	District Location Cost Indices for Action Sub-Category 112LF Replace Joint Seal.	89
Table 4.8.	Minimum Sample Size Determination Activity 111LF - Replace Joint	
Table 4.9.	Action Sub-Category-Unit 114LF (Replace Railing) Model for Pontis Elements	94
Table 4.10.	Action Sub-Category-Unit 112LF (Replace Joint Seal) Model for Pontis Elements.	95
Table 4.11.	Action Sub-Category-Unit 221MH (Rehab Slope Protection) Model for	
	Pontis Elements	96
Table 4.12.	Action Sub-Category-Unit 403MH (Patch Minor Spalls) Model for	
	Pontis Elements	97
Table C.1.	Akbar Refined Data Summary	99
Table C.2.	DCP Refined Data Summary	00
Table C.3.	MMS Refined Data Summary	02
Table C.4.	Action Subcategory-Unit 112LF (Replace Joint Seal) Model for	
	Pontis Elements CES Data	05

Table C.5.	Action Subcategory-Unit 114LF (Replace Railing) Model for	
	Pontis Elements CES Data	
Table C.6.	Action Subcategory-Unit 131EA (Replace Machinery) Model	
	Pontis Elements CES Data	
Table C.7.	Action Subcategory-Unit 131LS (Replace Machinery) Model for	
	Pontis Elements CES Data	
Table C.8.	Action Subcategory-Unit 403SF (Patch Minor Spalls) Model	
	Pontis Elements CES Data	
Table C.9.	Action Subcategory-Unit 112LF (Replace Joint Seal) Model	
	Pontis Elements DCP Data	
Table C.10.	Action Subcategory-Unit 112M1 (Replace Joint Seal) Model	
	Pontis Elements DCP Data	
Table C.11.	Action Subcategory-Unit 114LF (Replace Railing) Model	
	Pontis Elements DCP Data	
Table C.12.	Action Subcategory-Unit 121M2 (Replace Slope Protection) Model	
	Pontis Elements DCP Data	
Table C.13.	Action Subcategory-Unit 121SY (Replace Slope Protection) Model for	
	Pontis Elements DCP Data	
Table C.14.	Action Subcategory-Unit 123M1 (Replace Drainage System) Model for	
	Pontis Elements DCP Data	
Table C.15.	Action Subcategory-Unit 131AS (Replace Machinery) Model for	
	Pontis Elements DCP Data	
Table C.16.	Action Subcategory-Unit 131EA (Replace Machinery) Model for	
	Pontis Elements DCP Data	
Table C.17.	Action Subcategory-Unit 131LF (Replace Machinery) Model for	
	Pontis Elements DCP Data	
Table C.18.	Action Subcategory-Unit 131LS (Replace Machinery) Model for	
	Pontis Elements DCP Data	
Table C.19.	Action Subcategory-Unit 131M1 (Replace Machinery) Model for	
	Pontis Elements DCP Data	
Table C.20.	Action Subcategory-Unit 221SY (Rehab Slope Protection) Model for	
	Pontis Elements DCP Data	
Table C.21.	Action Subcategory-Unit 111LF (Replace Joint) Model for	
	Pontis Elements MMS Data	
Table C.22.	Action Subcategory-Unit 112LF (Replace Joint Seal) Model for	
	Pontis Elements MMS Data	
Table C.23.	Action Subcategory-Unit 114LF (Replace Railing) Model for	
	Pontis Elements MMS Data	
Table C.24.	Action Subcategory-Unit 114MH (Replace Railing) Model for	
	Pontis Elements MMS Data	
Table C.25.	Action Subcategory-Unit 121MH (Replace Slope Protection) Model for	
	Pontis Elements MMS Data	
Table C.26.	Action Subcategory-Unit 131MH (Replace Machinery) Model for	
	Pontis Elements MMS Data	

Table C.27	Action Subcategory-Unit 144MH (Replace Substructure) for	
	Pontis Elements MMS Data	230
Table C.28	Action Subcategory-Unit 211LF (Rehab Joint) Model for	
	Pontis Elements MMS Data	
Table C.29	Action Subcategory-Unit 211MH (Rehab Joint) Model for	
	Pontis Elements MMS Data	
Table C.30	Action Subcategory-Unit 213MH (Rehab Bearing) Model for	
	Pontis Elements MMS Data	
Table C.31	Action Subcategory-Unit 221SF (Rehab Slope Protection) Model for	
	Pontis Elements MMS Data	
Table C.32	Action Subcategory-Unit 221MH (Rehab Slope Protection) Model for	
	Pontis Elements MMS Data	
Table C.33	Action Subcategory-Unit 231MH (Rehab Machinery) Model for	
	Pontis Elements MMS Data	
Table C.34	Action Subcategory-Unit 331MH (Repair/Lubricate Machinery) Model for	
	Pontis Elements MMS Data	
Table C.35	Action Subcategory-Unit 301SF (Repair Deck & Substrate) Model for	
	Pontis Elements MMS Data	240
Table C.36	Action Subcategory-Unit 302LF (Spot Paint) for	
	Pontis Elements MMS Data	241
Table C.37	Action Subcategory-Unit 302MH (Spot Paint) for	
	Pontis Elements MMS Data	243
Table C.38	Action Subcategory-Unit 302SF (Spot Paint) for	
	Pontis Elements MMS Data	245
Table C.39	Action Subcategory-Unit 303LF (Clean Rebar & Patch) for	
	Pontis Elements MMS Data	247
Table C.40	Action Subcategory-Unit 303MH (Clean Rebar & Patch) for	
	Pontis Elements MMS Data	248
Table C.41	Action Subcategory-Unit 311LF (Repair Joint) Model for	
	Pontis Elements MMS Data	250
Table C.42	Action Subcategory-Unit 400LF (Wash Structure) Model for	
	Pontis Elements MMS Data	251
Table C.43	Action Subcategory-Unit 400MH (Wash Structure) Model for	
	Pontis Elements MMS Data	252
Table C.44	Action Subcategory-Unit 400SF (Wash Structure) Model for	
	Pontis Elements MMS Data	253
Table C.45	Action Subcategory-Unit 401MH (Repair Potholes) Model for	
	Pontis Elements MMS Data	254
Table C.46	Action Subcategory-Unit 401SF (Repair Potholes) Model for	
	Pontis Elements MMS Data	255
Table C.47	Action Subcategory-Unit 402MH (Restore Top Coat) Model for	
	Pontis Elements MMS Data	256
Table C.48	Action Subcategory-Unit 403LF (Patch Minor Spalls) Model for	
	Pontis Elements MMS Data	257

Pontis Elements MMS Data
Tonus Lienents wivis Data
Table C.50. Action Subcategory-Unit 403SF (Patch Minor Spalls) Model for
Pontis Elements MMS Data
Table C.51. Action Subcategory-Unit 431MH (Maintain Machinery) for
Pontis Elements MMS Data
Table C.52. Action Subcategory-Unit 446MH (Maintain Approach Slab) Model for
Pontis Elements MMS Data
Table C.53. Action Subcategory-Unit 446SF (Maintain Approach Slab) Model for
Pontis Elements MMS Data
Table D.1. Summary of Detailed Analysis On FDOT Data (Basic Statistics and ANOVA) 267

LIST OF FIGURES

Figure 2.1.	Variation of Long Term Unit Cost with % Changes in Unit Costs	
C	(Elem # 12 - Concrete Deck - Bare: Environment 3 Condition State 5)	29
Figure 2.2.	Infomaker SQL Commands for Element Replacement Unit Costs Analysis	32
Figure 2.3.	Long-Term Unit Cost Vs % Change in Element Replacement Unit Cost	
C	(Elem # 12 Concrete Deck - Bare Env. 4 - State 5)	34
Figure 2.4.	Long-Term Unit Cost Vs % Change in Element Replacement Unit Cost	
	(Elem # 28 Steel Deck - Open Grid, Env. 4 - State 5)	35
Figure 2.5.	Summary of Bridge Elements' Sensitivity To Element Replacement Unit Cost	37
Figure 2.6.	Sensitivity of Network Total MR&R Costs To Element Replacement Unit Cost	38
Figure 2.7.	Summary of Bridge Elements' Sensitivity To Element Rehabilitation Unit Cost	40
Figure 2.8.	Sensitivity of Network Total MR&R Costs To Element Rehabilitation Unit Cost	42
Figure 2.9.	Summary of Bridge Elements' Sensitivity To Element Repair Unit Cost	45
Figure 2.10.	Sensitivity of Network Total MR&R Costs To Element Repair Unit Cost	46
Figure 2.11.	Summary of Bridge Elements' Sensitivity To Element Maintenance Unit Cost	49
Figure 2.12.	Sensitivity of Network Total MR&R Costs To Element Maintenance Unit Cost	50
Figure 2.13.	Long-term Unit Cost vs. % Change in Default Failure Agency Unit Cost	
C	(Element #12 - Concrete Deck - Bare: Environment 4 Condition State 5,	
	Failure Probability = 29.29%)	52
Figure 2.14.	Long-term Unit Cost vs. % Change in Default Failure Agency Unit Cost	
C	(Element #301- Pourable Joint Seal: Environment 4 Condition State 3,	
	Failure Probability = 50.00%)	53
Figure 2.15.	Summary of Bridge Elements' Sensitivity To Element Failure Agency Unit Cost	55
Figure 2.16.	Sensitivity of Network Total MR&R Costs To Element Failure Agency Unit Cost	56
Figure 2.17.	Long-Term Unit Cost vs. Discount Rate Factor	
-	(Element #12 - Concrete Deck - Bare: Environment 1 Condition State 5,	
	Failure Probability = 3.56%)	58
Figure 2.18.	Long-Term Unit Cost vs. Discount Rate Factor	
	(Element #12 - Concrete Deck - Bare: Environment 2 Condition State 4,	
	Failure Probability = 7.26%)	59
Figure 2.19.	Long-Term Unit Cost vs. Discount Rate Factor	
	(Element #311 - Moveable Bearing (roller, sliding, etc.):	
	Environment 4 Condition State 3, Failure Probability = 27.89%)	60
Figure 2.20.	Summary of Bridge Elements' Sensitivity To Discount Rate Factor (α)	62
Figure 2.21.	Sensitivity of Network Total MR&R Costs To Discount Rate Factor (α)	63
Figure 3.1	Linkages to BMS Requirements	70
Figure 4.1.	Joining of brscop and brcost Tables	77
Figure 4.2.	Merging of Florida Inventory Data and MMS Data	78
Figure 4.3.	Cost Indices for FDOT, FHWA and ENR	
Figure 4.4.	MMS Data Plot with Statistical Outliers	
Figure 4.5.	MMS Data Plot Without Statistical Outliers	88
Figure 4.6.	Cost Variation by District for Action Sub-Category 112LF - Replace Joint Seal	89

Figure 4.7.	Regression Plot – Unit Cost vs. Total Quantity	90
Figure 4.8.	Flow chart illustrating the data collection and expert reviews	101
Figure 5.1.	Example Transition Probability Matrix	
Figure 5.2.	Example of Action Effectiveness Model	107
Figure 5.3.	Example of Long-Term Prediction	107
Figure 5.4.	Summary of Results by Element Category	110
Figure 5.5.	Summary of Results by Material Type	111
Figure 5.6.	Number of Questions Having Each Level of C.V.	111
Figure 5.7.	Coefficient of Variation by Category and Material	111
Figure 5.8.	Typical Survival Probability Curves	112
Figure B.1.	Variation by District: Action Type-Unit 112LF (Replace Joint Seal)	186
Figure B.2.	Variation by District: Action Type-Unit 114LF (Replace Railing)	186
Figure B.3.	Variation by District: Action Type-Unit 114MH (Replace Railing)	187
Figure B.4.	Variation by District: Action Type-Unit 211MH (Rehab Joint)	187
Figure B.5.	Variation by District: Action Type-Unit 213MH (Rehab Bearing)	188
Figure B.6.	Variation by District: Action Type-Unit 221CY (Rehab Slope Protection)	
Figure B.7.	Variation by District: Action Type-Unit 221LF (Rehab Slope Protection)	189
Figure B.8.	Variation by District: Action Type-Unit 221MH (Rehab Slope Protection)	189
Figure B.9.	Variation by District: Action Type-Unit 221SY (Rehab Slope Protection)	190
Figure B.10.	Variation by District: Action Type-Unit 222MH (Rehab Channel)	190
Figure B.11.	Variation by District: Action Type-Unit 231MH (Rehab Machinery)	191
Figure B.12.	Variation by District: Action Type-Unit 246SF (Mudjacking)	191
Figure B.13.	Variation by District: Action Type-Unit 301SF (Repair Joint)	192
Figure B.14.	Variation by District: Action Type-Unit 302MH (Spot Paint)	192
Figure B.15.	Variation by District: Action Type-Unit 303CY (Clean Rebar and Patch)	193
Figure B.16.	Variation by District: Action Type-Unit 303MH (Clean Rebar and Patch)	193
Figure B.17.	Variation by District: Action Type-Unit 303SF (Clean Rebar and Patch)	194
Figure B.18.	Variation by District: Action Type-Unit 311LF (Repair Joint)	194
Figure B.19.	Variation by District: Action Type-Unit 331MH (Repair Machinery)	195
Figure B.20.	Variation by District: Action Type-Unit 401SF (Repair Potholes)	195
Figure B.21.	Variation by District: Action Type-Unit 403LF (Patch Minor Spalls)	196
Figure B.22.	Variation by District: Action Type-Unit 403MH (Patch Minor Spalls)	196
Figure B.23.	Variation by District: Action Type-Unit 403SF (Patch Minor Spalls)	197
Figure B.24.	Variation by District: Action Type-Unit 411MH (Maintain Joint)	197

EXECUTIVE SUMMARY

The Florida Department of Transportation (FDOT) is implementing the AASHTOWare Pontis® Bridge Management System (BMS) as a decision support tool for planning and programming maintenance, repairs, rehabilitation, improvements, and replacement for more than 6,000 bridges on the state highway network. A BMS stores inventory and inspection data in a database, and uses engineering and economic models to predict the possible outcomes of policy and program decisions.

Agency cost data are necessary for a functional BMS. Agency, or FDOT costs typically include direct costs of construction and maintenance, such as labor, materials, and equipment usage; and indirect costs such as maintenance of traffic and engineering. This study has provided the agency cost input, and the methodology to routinely determine the agency cost input, required for the use of Pontis. In addition, the project developed Pontis deterioration models based on the judgment of district and head office bridge engineers.

FDOT selected Florida State University (FSU), with subcontract support from Paul D. Thompson, to analyze the applicability of the Pontis model to Florida and to customize it as needed so it will work effectively in support of FDOT decision-making. The two-year project included a detailed analysis of the Pontis model, an extensive review of literature on agency costs for bridges and related topics, a search of Florida-specific data to quantify the model, and the development of a new agency cost model for Florida bridges. With Pontis, there is a finite number of combinations of bridge element, environment, condition, and feasible action. A numeric index (MR&R Action Subcategory) was used to group those unique combinations in a way that simplified the process of determining unit costs. This study focused on providing the agency cost data for the selected MR&R Indices that were applicable to Florida's BMS.

FDOT has three excellent sources of historical project data that were relied upon for preliminary unit cost estimates. A rather elaborate statistical analysis was required in order to extract useful numbers from the available data sources. An expert review process proved essential to the successful development of final costs. The panel of experts identified weaknesses in the available data, reconciled conflicting results from the several data sources, and provided insights that filled in the many data gaps that were found. Only 50 percent of the Pontis actions were covered with a statistically significant number of data points in any of the three FDOT information systems, and only 15 percent of the Pontis actions ended up using the results from one of the information systems directly. About 70 percent of the Pontis actions had relevant data from FDOT systems, in terms of being helpful in the considerations of the panel experts, including data that were adjusted, or used directly for the final results. These also included some relevant data that were recorded in units incompatible with those of the Pontis actions. This does not reflect on the quality of the existing FDOT systems, since it was impossible to judge the quality of data collection and processing from this perspective. One of the biggest problems was the inability to match the scope of activities in the FDOT databases, to Pontis elements, condition states, and actions.

This problem also influences the recommended strategy for keeping unit cost numbers up-to-date over time. Other than periodic use of Pontis' built-in inflation feature, it is clear that it will not soon be possible to substantially automate major updates to the unit cost models. Certain enhancements to the three FDOT project information systems may lead to the possibility of partial automation in the future, but it is likely that an expert review will still be required. The implementation strategy in this report addresses possible approaches to improving the ability to update agency unit costs. The final costs are included.

The deterioration model was added to the project scope during the course of the study. An expert elicitation process was used to generate the source data, following the recommended Pontis procedure. An Excel spreadsheet model was used to prepare questionnaires and to process the results into Pontis transition probabilities. These were then delivered to FDOT for import into the Florida Pontis database.

1. Research Background

1.1. Introduction

This section of the report presents a brief introduction to the research project and the results of the initial task: literature review and questionnaire, to document the current status of knowledge both in terms of research activities and industry practice in the area of agency cost study for bridge management systems.

The aging and decay of the nation's transportation facilities led to the recent development of management systems for bridge maintenance and rehabilitation, or simply BMS. A BMS allows transportation agencies to perform economic analyses on a large number of bridges in order to establish priorities and to make preliminary selection of maintenance and rehabilitation options. A BMS includes a database and active program for collecting and maintaining bridge element and condition data, along with tools to analyze network-level target funding levels, to identify and describe bridge maintenance needs, and to provide information needed for the development of cost-effective programs for bridge maintenance, rehabilitation, and repair (MR&R).

The Florida Department of Transportation (FDOT) is implementing the AASHTOWare Pontis[®] BMS as a decision support tool for planning and programming maintenance, repairs, rehabilitation, improvements, and replacement for more than 6,000 bridges on the state highway network. Pontis resulted from an FHWA-sponsored study to develop a BMS flexible enough to be usable by most transportation agencies in the United States.

Pontis considers bridges as being composed of elements. Elements are bridge components that are essential from the standpoint of structural performance and cost. Examples of elements are decks, girders, bearings, and joints. Pontis uses condition states to identify the type and extent of deterioration. Based on the bridge element's condition state and environment, a set of feasible MR&R actions are considered. Pontis estimates the cost of these actions by use of network-level unit costs, expressed according to the same unit quantities as are used in bridge inspection.

1.2. Literature Search and Review

The literature review was started with a computerized search of the university libraries' catalogs including databases such as the Applied Science and Engineering, Compendex and Engineering Index, and the Elsevier Science Journals. Also utilized in the search was the Online Computer Library Center (OCLC) through First Search services (Dissertation Abstracts). Various search engines were also utilized to search the Internet for related documents, including Internet-based libraries maintained by the Federal Highway Administration (FHWA) and the United States Department of Transportation (USDOT), i.e., the National Transportation Library and the Transportation Research Information Service (TRIS). In addition to the literature sources mentioned above, individuals were also contacted by telephone and email at various universities

and government agencies, to inquire about their experience regarding collection and analysis of agency cost data on bridge MR&R actions.

Many of the identified works in the area of bridge maintenance or rehabilitation costs were found to be related to the formulation of economic models, particularly, life-cycle cost models for bridges. A significant number of literature sources were found, related to bridge cost data collection and analysis, but only relatively few sources were identified as being related directly to the collection and analysis of agency unit cost data compatible with the Pontis BMS software requirements.

Despite being about five years old, perhaps the most revealing and reliable document about the status of efforts by the various agencies towards the collection and analysis of agency cost data for BMS is NCHRP Synthesis 227 [Thompson and Markow 1996]. This report is based on an extensive literature review and results of a set of questionnaires distributed to U.S. transportation agencies.

Prior to the NCHRP Synthesis 227, notable efforts on the collection and analysis of general bridge costs are mentioned in NCHRP Synthesis 227, including Wipf et al. [1987], James et al. [1993], Saito and Sinha [1980, 1989]. About the same time (1994 - 1996) as the NCHRP 227 project, the following concurrent documented efforts were identified: Gannon et al. [1995], Abed-Al-Rahim and Johnston [1995], and Van Lund [1995]. After the NCHRP 227, pertinent documented efforts on the collection and analysis of bridge cost data include: Elzarka et al. [1996], Chengalur-Smith et al. [1997], Appleman [1997], Adams and Sianipar [1998], and Adams and Barut [1998]. Chengalur-Smith et al. [1997] and Appleman [1997] were relevant but not particularly on cost data compatible with Pontis. Elzarka et al. [1996] documents a study by Clemson University to develop a national database of bridge management system unit costs for maintenance, repair, and rehabilitation. Also identified during the literature search were unpublished efforts including Ph.D. dissertations and information obtained through telephone conversations with US-based experts familiar with the agency costs of bridge MR&R.

One recent documented effort directly related to developing agency unit costs of bridge MR&R actions which are compatible with the Pontis software, is the Wisconsin DOT study (Principal Investigator: Teresa Adams, University of Wisconsin) as partially reported by Adams and Sianipar [1998], and Adams and Barut [1998].

Another relevant ongoing study is underway at the Iowa Department of Transportation. The methodology was presented in a poster session at the 8th International Bridge Management Conference in Denver, April 1999, but no paper was published.

Related efforts are currently underway in Ontario and Switzerland to develop agency cost information for BMS. The Swiss effort is only at the conceptual stage so far, as described in Ludescher and Hajdin [1999]. The Ontario study uses element-level condition data to define a project scope of work, but develops cost estimates based on a list of "tender items" (bid or pay items) for each project, not broken out at the element level. By performing this analysis for one or more "typical" projects involving just one element, then dividing by element quantities, Ontario

develops an element-level "benchmark cost." The methodology is described in Thompson et.al. [1999]. Ontario's project-level cost estimation methodology, because of its focus on tender items, would not fit the network-level orientation of Pontis. However, the source data in Ontario is organized in a manner very similar to the available sources in Florida. Ontario's system is very good in its accounting for indirect costs such as maintenance of traffic and environmental protection. A similar methodology would be quite appropriate for FDOT's project-level modeling system.

Agency cost data reported in the various studies, can generally be classified as follows: contract bid tabulations; contract bid tabulations supplemented with expert opinions; actual cost data (historical); actual cost data (historical) supplemented with expert opinions; and cost data based entirely on expert opinions. These agency cost studies have been either for state-level or national-level cost data collection. Most agencies have difficulty utilizing their historical cost data as-is because of many factors including its incompatibility with the direct requirements of the Pontis BMS. There is also a need to adjust cost estimates for geographic location and time factors.

Information about the most relevant studies is presented in the following sections. First the NCHRP 227 Synthesis is discussed, followed by a mention of some selected efforts prior to or going on at the time of the effort reported in the Synthesis. Finally, recent efforts after the Synthesis are presented in terms of both published and unpublished (dissertations and telephone conversations) documents.

NCHRP 227 Synthesis [Thompson and Markow 1996]

With the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) as a background for justification, this report presented the state of current practice on cost data collection and management for bridge management systems. Despite the recent National Highway System Act of 1997, which removed the mandate on the states to develop BMS, most states are still going ahead with their efforts to develop and maintain a BMS.

This synthesis of the current state of practice was based primarily on a literature review and a comprehensive survey of state transportation agencies through a set of questionnaires. The main conclusion in this report was that:

"Few state departments of transportation (DOTs) have adequate data on which to base their bridge management system cost estimates, few monitor actual expenditures in order to validate their estimation procedures at the system wide level, and many DOTs have no organizational mechanisms or systems in place to uncover and solve problems in cost estimation."

It was revealed that at the time of this study (1994 - 1996):

• Cost data issues of a BMS were not a focus or priority of most researchers or agencies.

- Quality of cost data is now the greatest determining factor in improving bridge management.
- Cost data management practices vary widely among the states.
- Most of the agencies were dissatisfied with their ability to provide unit costs to their BMS, with the least satisfied states being those with already established cost-related planning models on a system wide basis.
- Only a few states collect unit cost data on maintenance, repair, and rehabilitation (MR&R) at the bridge element and action level, especially as required by the Pontis software. Though many state agencies have reliable data on bridge replacement costs, only a few have reliable data on bridge maintenance costs. The existing maintenance management systems and contract management systems, though with good quality data, did not specifically cover bridge work.

NCHRP 227 addresses cost data requirements, data collection, cost-estimation, and the development of network-level models for bridge management systems. The synthesis establishes a context for the application of cost models and the strict definitions of terms and assumptions inherent in economic quantities. The report starts by describing the structure of BMS cost data and requirements in terms of network-level agency unit costs, project-level- agency unit costs, agency cost components, user costs, user cost components, and the desired attributes of cost models. A literature review was presented with short descriptions of each of twelve examples of previous efforts done to develop agency cost data for bridge maintenance or construction, and user costs data. A survey was prepared in the form of a 20-page questionnaire, and distributed to 50 states, the District of Columbia, and Puerto Rico. The response to the survey was reasonable; 35 respondents (including 33 state DOTs) out of 52 agencies.

The synthesis considered the use of project-level estimation as a source of cost models for BMSs. Most cost estimation capabilities at DOTs are at the project level, rather than at the desired network level for a BMS. The availability of cost data management procedures in the various states were presented in terms of work done by contract or by the agency's own forces. For contract work, there was no state responding to the survey that indicated availability of cost data at the bridge Element/Condition State/Action level. Less than one-quarter of the states indicated cost availability linking each action to a specific project, bridge, element, or element condition state. For the work done by state forces, the availability of compatible cost data was similarly low.

The survey also revealed that from the 33 reporting state DOTs, eight states have contract maintenance cost data on all (100%) of the state-owned bridges while eight also have similar data from force account or day labor sources, on almost all (90% to 100%) of their state-owned bridges. Element-level data were available in 10 states for contract maintenance costs and available in 12 states for force account or day labor maintenance costs. The cost was available in a computerized form for most of the states responding, for contract maintenance but only in a third of the states, for force account or day labor cost of maintenance.

Network-level analyses of costs, according to the NCHRP 227, are useful for comparing predicted policy outcomes against actual results, hence helping managers with their decision process for bridge investments. The unit costs of agency actions for new bridge construction,

rehabilitation, maintenance, and replacement should be consistent with the objective, scope, and use of network-level analyses. Unit costs should represent, as closely as possible, the full costs of an activity or a project. Furthermore, they should reflect accurately the relative costs among a set of competing activities to address a problem or deficiency. Unit costs need to be sufficiently accurate for investigating management and investment options. A comprehensive set of unit costs also contributes to a management system's ability to provide feedback on the effectiveness of policy decisions. The trends in unit cost among different bridge activities can capture the effects of changes in local economic conditions, resources available, engineering standards, regulatory requirements and advances in technology. Since the network-level analyses often presume a lifecycle analysis, preventive as well as corrective treatments can be included in the definition of unit costs.

The synthesis indicated that network-level unit costs of bridge MR&R need to be broad in scope but how they satisfy this criterion depends on how bridge management or investment policies are represented. One approach defines separate unit costs for activities to prevent or correct particular types of deficiencies and materials-related problems, such as corrosion. Unit costs can be developed for activities as listed in the following examples:

Sealing a deck or applying corrosion inhibitor, \$/sq. m; Replacing bridge railing, \$/m; Lubricating bearings, \$/bearing.

A BMS predicated on this approach would need not only the unit costs of MR&R activities and projects to address individual deficiencies, but also corresponding decision rules and models of impacts or consequences of these actions. For each of the MR&R activities, decision rules govern when the activity should take place, and the degree of repair. While this approach requires work to develop the unit cost data and models for each activity, it is advantageous in its ability to evaluate a wide range of options and tradeoffs.

A second approach is to choose one or two categories of deficiencies as the dominant ones, and develop unit costs only for relevant preventive or corrective activities. This approach depends on an agency's design and construction practices, and on historical observations of the performance of its bridges. This approach identifies the most common and dominant source of deterioration on its bridges, and then defines the unit cost for the activity. This approach is advantageous in its simplicity, but fewer tradeoffs can be analyzed.

A third approach is to develop composite costs that represent a combined set of activities based on historical experience with particular combinations of bridge structure materials. An example of this approach is the unit cost of deck work that includes patching, overlaying, and corrosion prevention or repair in a single, composite cost. While this approach is simpler, reflective of current practices, technology, and factors affecting bridge performance, it limits the tradeoffs that can be studied.

Project-level analyses explore in detail the alternatives in performing major maintenance, repairs, rehabilitation, or reconstruction of a particular bridge. These analyses are site specific, targeting

individual bridges rather than groups of bridges or bridge elements. Project-level analyses also contribute to technical studies such as, predictions of remaining service life, data supporting structural capacity analyses, or development of concepts or data to be used in project design. Project-level unit costs generally must consider dis-aggregation of unit costs, site-specific information, coordination of work, and consistency with project-level review. Since the projectlevel analysis deals with an individual bridge as an entity, it is able to deal with various components and elements in an integrated, coordinated way.

Agency cost components encompass the total costs of performing bridge maintenance activities or construction projects, whether analyzed at the network or project levels. Force account work is work performed by the agency's own crew. This includes crew labor, materials and supplies consumed in work performance, equipment operating costs, and other costs such as administration, travel time to and from the site, special equipment purchases, and overhead activities. Contract work generally includes the same costs as performed by the private sector, but the information available through contracting is different from that of force account work. Agency costs also include site costs (land acquisition for right-of-way, any mobilization and demobilization to be borne by the agency, traffic control, and environmental mitigation costs) and project support costs (project planning and design, construction supervision, and inspection).

Project-level cost estimation capabilities of some kind exist in every state DOT, so they are the most obvious source of models for bridge management systems. Cost estimates follow a continuum of detail, ranging from long-range estimates used for resource planning, to planning, design, and construction budget estimates, to engineer's estimates used for contracting, and cash flow estimates for tactical management of in-house forces. The synthesis authors noted, from the survey results, that most states are not satisfied with their bridge management system's cost estimation capability. They believe that it would be cost-effective to increase the level of detail in their data gathering. Most of the states have capabilities to estimate cost components of projects, but very few have ongoing procedures to track and update cost factors that might be used for network-level or project-level cost estimates. Accuracy in cost estimation is central to the credibility of project programming and network-level bridge management systems analyses. It is also conclusive that most agencies are not capable of measuring the accuracy of their cost data. Even though costs tend to vary from one agency to another, the development of cost models for MR&R activities is usually beyond the resources of individual states.

As a result of this study, suggestions for future research included:

- Development of user cost models, MR&R unit cost models (especially for unusual elements), project-level fixed costs (such as traffic control and mobilization), and local bridge costs.
- A national scope project as an effort to collect relevant data and analyze them in network-level and project-level cost models.
- With the Clemson University's FHWA's project as a starting example, the establishment of a national clearinghouse to serve individuals and agencies involved in cost data collection and management for BMS.

- The preparation of a handbook, narrating an overview for top managers and covering enough details on the implementation of the procedure.
- Extension of the concepts developed to an integrated management approach.
- Quality guidance for managers and cost estimators on the acceptable degree of accuracy in cost estimation.

Concrete Bridge Rehabilitation Costs (SHRP Project) [Gannon et al.1995]

As results of a Strategic Highway Research Program (SHRP) project, Gannon et al. [1995] presented cost models based on statistical regression analysis, relating cost of protection and rehabilitation techniques of concrete bridges to various factors. The following seven feasible activities were considered: deck patching, deck protection systems, experimental deck protection systems, structural patching, structural protection systems, "new" deck protection systems, and "new" structural patching. The main source of data was bid tabulations from state highway and toll road agencies (12 agencies). It was proposed that appropriate components of a total cost estimate such as: engineering costs, installation costs, user costs, effects on regional economy, and environmental impact, be consistent for all the MR&R activities before a valid comparison can be made based on life-cycle cost analysis.

Variations in cost estimates were identified as due to traffic control (traffic volume related), contractor-related costs (work volume and regional business climate), and time-related change in costs (inflation or deflation). The authors mentioned the difficulty of finding an exact match of the desired cost data system both by structure and the data contents. Historical data utilized for the research was contract bid tabulations, indicating contractor's unit costs without any details on the cost components. Visiting the transportation agencies, attempts were made to collect cost data from records of contract work (cost components -- preliminary engineering costs, maintenance and protection of traffic costs, inspection, testing and construction engineering costs, and salvage values) and work by department maintenance forces (cost components -- materials, equipment, labor and supervision, preliminary engineering, inspection, testing, construction engineering, and salvage values).

The data obtained from the transportation agencies were 829 bid tabulations for the period 1981 to 1991. Relevant standard specifications and contract special provisions were also obtained along with the data, to ensure similarities of the activities being analyzed. Attempts to collect data from maintenance records were futile, either because of unspecific cost centers established in the existing systems at the agencies, or that the information was not enough to identify the exact maintenance activity.

Engineering cost and salvage were ignored in the data collection effort for the life cycle cost model for the following reasons. First, the engineering costs were considered to be small on bridge deck repairs (a standardized operation), when compared to MR&R actions on the superstructure or substructure. Second, there were insufficient historical data on engineering costs. Third, engineering cost affects all activities in the same way (life cycle cost comparisons). Except for more experimental and new treatment techniques; the costs for the latter were

estimated. Salvage was also not considered as a cost component because the disposal or resale of bridge components is usually included in contractor's bids.

The data analysis involved an adjustment of the national data estimates for geographic and inflation factors. It was necessary to convert archival cost data from different locations and times, into mid-1991 national average values. This was done using cost indexes. Cost indexes are factors utilized in cost estimating procedures to establish functional relationships between average cost (national, state), cost in a particular location (state, city), and cost for a given time (year, month). For example, in this SHRP study, a general relationship for determining national average cost is

$$N_{n} = [C_{a,m}] [L_{a}] [T_{m}/T_{n}]$$
(1.1)

where

N = national average cost, C = cost in a particular city (or state), L = geographical conversion factor for particular city (or state), T = time conversion factor to convert to mod-1991 value, a,b = particular cities (or states), and m,n = particular years.

To estimate the cost $C_{a,m}$, in a particular city (or state) a and a particular year m, given the cost data $C_{b,n}$, for another city b and year n, the following relationship is used

$$C_{a,m} = [C_{,b,n}] [L_b / L_a] [T_n / T_m]$$
(1.2)

If the national average N is known, the cost C_{a,m} can be estimated as

$$\mathbf{C}_{\mathrm{a},\mathrm{m}} = [\mathrm{N}/\mathrm{L}_{\mathrm{a}}] [\mathrm{T}_{\mathrm{m}}] \tag{1.3}$$

The location factor (L) and time factor (T), as illustrated above, were derived from R.S. Means City and Historical Cost Indexes.

Cost indexes are typically compiled by construction-related organizations to indicate variations in the cost of goods or services due to time (inflation or deflation) or geographical location. The sources of such indexes considered by this SHRP study included the following:

FHWA Federal-Aid Highway Construction Price Index, FHWA Highway Maintenance and Operating Cost Index, Engineering News Record (ENR) Construction Cost Index, and R.S. Means City Construction Cost Index. After a consideration of the various indexes, the R.S. Means Index was adopted to adjust costs for both location and time factors when applied in the various states and times (years). The FHWA indexes were found to be too highly influenced by costs of activities outside the scope of bridge MR&R. The ENR index was also determined to be less comprehensive and less complete than the R.S. Means index.

Based on literature review and expert opinions of the transportation agencies' maintenance engineers, the original seven activities were broken down into 44 more specific work items. Total data observations for all the activities were 10,820, i.e. each observation represented one bid price on each activity from one contract by one bidder. Data were then normalized by modifying pay units and adjusting for inflation and location.

An understanding of the source of data (bidding) was utilized in formulating four variables (quantity of work, number of bids, total contract costs, and maintenance and protection of traffic costs) which might influence the adjusted national cost. It was suggested that:

- As quantity increases, the unit cost decreases -- a basic relationship.
- As the ratio of traffic control costs to total contract amount increases, the unit cost increases. The cost of traffic control (in contractors' bids) is a good measure of the difficulty of a bridge repair project, especially difficulties due to poor access or remoteness of the job location. The ratio indicates how much effort is being expended on the project site activities rather than the bridge repair.
- As the number of bids increases, the unit cost decreases
- As the total contract amount increases, the unit cost decreases. Increase in contract size allows the contractor to spread the overhead and profit over more items and quantities.

These assumptions were then used to develop eight factors, which that could be responsible for variations in a cost estimate:

Factor 1 = quantity Factor 2 = (quantity * contract amount)/Traffic Control Amount Factor 3 = quantity * contract amount Factor 4 = quantity * number of bidders Factor 5 = [quantity) * (contract amount)²]/Traffic Control Amount Factor 6 = (quantity * number of bidders * contract amount)/Traffic Control Amount Factor 7 = quantity * number of bidders * contract amount Factor 8 = (quantity * number of bidders)/Traffic Control Amount

Statistical analysis of the data was done to produce regression models (recommended price equations) in the form of inverse power models, relating the estimated cost to these eight factors. For example, Item 210, Latex Modified Concrete Overlay, a Deck Protection System, has a cost model ($R^2 = 0.899$):

$$C = 38 - 0.0012 * (Factor 8) + 0.028/[(Factor 8)^{1.44}]$$
(1.4)

The equation implies that the average cost of latex-modified concrete overlay is 38/SY minus a variable cost which is a function of factor 8 or quantity of the item, number of bidders, and traffic control costs. The high value of R^2 indicates a good data fit to the model. Location factors were also established for activities with unit costs varying significantly with location on the bridge, i.e. beams, piers, wingwalls, etc. For example on item 421 Shallow repairs with quick-set hydraulic mortar/concrete patches, the price equation on a bridge beam will be

[1,226/Quantity] + 65 \$/SY

but the same Item 421 on pier cap will be estimated to cost

[1,398/Quantity] + 112 \$/SY.

North Carolina DOT BMS Study (Abed-Al-Rahim and Johnston 1995)

This paper looks into the allocation of funding needs among the three bridge improvement alternatives of maintenance, rehabilitation, and replacement by developing new analytical procedures for estimating the costs of the bridge structure, and engineering for budgeting purposes. Methodologies were developed for predicting the new length, width, and maximum span length, which were found to affect the total cost of bridge replacement, on the basis of existing bridge and roadway characteristics. Cost indexes were used for factoring costs to the latest year.

To develop a model for bridge replacement costs, this study used data compiled by the state of North Carolina on overall bridge replacement and related costs of bridge construction. These costs on items ranging from the bridge structure to design to surveying served as the basis for establishing unit cost estimates for new bridges. The pattern for developing a comprehensive replacement cost model is to include factors such as roadway, engineering, and structure costs plus the miscellaneous costs such as right-of-way acquisition and field operations. These costs were adjusted for inflation using a linear regression model based on a ratio of the cost index for the year in which the bridge was constructed, to the cost index for the present year. The roadway approach characteristic used for developing the unit cost of the bridge structure was based on the total length, width, and maximum span of the new structure.

To develop a reasonable model for bridge replacement, it was suggested that characteristics of the new bridge that differ from the one being replaced should be predicted because they will affect the total cost of replacement.

Using NCDOT-provided cost data for 32 bridge replacement projects, unit structure cost was first computed for each bridge based on the present value of the structure construction cost, the total length, and the out-to-out width of the new bridge. Unit costs were converted to 1990 values

using cost indexes. Regression models were then formulated to relate unit costs to the maximum span of the new bridge, resulting in the following equation

$$UNITSTR = 919 - 40.6[MAXSPAN] + [MAXSPAN]^{2}$$
(1.5)

where

UNITSTR = the structure unit cost ($^{m^2}$ of deck area), and MAXSPAN = the maximum span length of the new bridge (m)

The lowest structure unit cost was found to occur at a maximum span of about 25 m (75 ft). The model established for the roadway construction cost was as follows:

$$ROADCOST = [177,900(NBWID)] - 1,198,500$$
(1.6)

where

ROADCOST = the total roadway construction cost (\$), and NBWID = the new bridge's width (m).

Regression models were also formulated to relate miscellaneous costs, total roadway improvement costs, and total engineering costs, to other variables such as the total bridge structure construction costs, the new bridge's width, and the new bridge's length. The R^2 values, indicating how the model fits the data, ranged from 0.60 to 0.7 on these models. Statistically, an R^2 value of 1.0 is considered a perfect fit while $R^2 = 0$ indicates no fit. Also using regression analyses, variable factors were developed for predicting the new length, width, and maximum span of new bridges based on the original bridge parameters, both for North Carolina and the United States

Abed-Al-Rahim and Johnston [1995] indicate that the ratio for roadway costs and miscellaneous costs as compared to the structure costs were 2.6 to 1.0 respectively. This shows that bridge replacement costs are being inflated by the costs of roadway improvements. The authors suggested that for funding purposes, a BMS should consider funding roadway improvements separately.

Clemson Study [Elzarka et al. 1996]

An FHWA-sponsored study was conducted at Clemson University to create and test a standardized cost database that would provide Pontis users with preliminary cost data [Elzarka et al. 1996]. The first phase of the research determined that some cost data have large variability (standard deviation) because of the limited amount of available data and other contributing factors. It was recommended therefore that the various states implementing BMS use the results

of the first phase as a guide or starting point, instead of the data being adopted as the only cost estimate.

Each state was advised to implement a Pontis-compatible cost data collection effort. Phase II of the study developed a Data Analysis and Generation System (DAGS) for Pontis. In response to the problems identified in phase I of the study, DAGS has the capability of accounting for the factors affecting unit costs and generating Pontis-compatible unit cost data files. DAGS operates with two databases: a national database containing data collected by Clemson University; and the state database which is empty, created to accept the particular state's own cost data.

At the current state of the practice, the Clemson study is widely regarded as the only quantitative source of unit costs directly applicable to Pontis on a large scale. In fact, unit costs derived from the Clemson study are included as the default cost model in Pontis. Care should be exercised in the application of the Clemson data to Florida, however. Most actions addressed in the study have uncomfortably low sample sizes and high coefficients of variation. The Clemson report discusses these issues in detail. Also, a large number of elements are left unaddressed in the study. The DAGS methodology requires that historical or judgmental data be available in the Pontis element-level form, which in general is not the case for historical data in FDOT.

One way in which the Clemson results can be quite useful in the current study is to contribute to the validation of Florida-specific cost models. After the development of an initial set of Florida-specific unit costs, these results can be compared with the Clemson results. Where the two sets of unit costs differ significantly, an analysis of the reasons for the differences may help to clarify or improve the Florida models.

Lead-Based Paint Removal for Steel Highway Bridges [Appleman 1997]

As an update to a previous NCHRP Synthesis 176: Bridge Paint: Removal, Containment, and Disposal, this report, NCHRP Synthesis 251: Lead-Based Paint Removal for Steel Highway Bridges, assesses the state of the technology and practice for removal of lead-containing paint from highway bridges. According to this report, major efforts by transportation agencies to maintain and protect lead-coated bridges, have resulted in the following:

- New alternative strategies and materials,
- Innovative and variable approaches for contracts and specifications, and
- Increased levels of expenditure for paint removal under maintenance painting and deck rehabilitation.

A survey was conducted among agencies to estimate costs associated with lead paint removal. The unit costs (per area) varied enormously, by a factor of 10 or more, for nominally similar work. This variation is due to uncertainty factors such as the degree of containment, extent of worker protection, quality of work, degree of inspection, and overall compliance with regulations. For full removal, the unit cost ranges from less than $32/m^2$ ($3.00/ft^2$) to $247/m^2$ ($23.00/ft^2$),

with a median of $115/m^2$ ($10.70/ft^2$). For overcoating, the cost range is $12/m^2$ ($1.12/ft^2$) to $138/m^2$ ($12.80/ft^2$), with a median of $49/m^2$ ($4.56/ft^2$).

Targeting 51 agencies, including state DOTs, four Canadian provinces, and seven other bridge agencies, a survey was developed and distributed to identify practices and costs for lead paint removal from bridges for the period 1993 to 1996. Responses were received from 38 agencies. The cost information was elicited in three categories: overall agency costs for bridge painting over four years; specific case histories representative of full removal, overcoating, and steel replacement; and the agency's contracting process. The detailed response to this survey and its analysis were presented in the form of tables and charts, showing variations by type of bridge structure and state DOT/agency.

In addition, this study identified the key issues regarding the strong impact of contracting practices on the quality and cost of lead paint removal. Some of the issues are listed as follows:

- Bid prices are extremely variable.
- Variability in cost and contractor's performance may be due to the excessive risk borne by the contractors for bridge painting.
- The newly competitive nature of bridge painting can affect quality as costs decrease.
- Vulnerability of contractors to claims because most of them do not have pollution liability coverage.
- Bridge agencies have shown willingness to try new alternative approaches to contracting in an innovative way, to save money.

An especially relevant conclusion from this work is a caveat on the applicability of the Clemson study or other non-Florida unit costs. Lead paint removal might not be the only repair action whose cost is extremely sensitive to agency standards and practices.

New York DOT Bridge Rehabilitation Costs [Chengalur-Smith et al. 1997]

Chengalur-Smith et al. [1997] reported an effort to model the costs of bridge rehabilitation, including activities of maintenance and replacement, on New York State bridges. The New York Department of Transportation (NYSDOT) component condition index (CCI) is used to rate the inspected or deteriorated condition of the bridge component. The scale used — 1 for worst and 7 for new — is significantly different from the Pontis or NBI scales of condition rating. This paper identified some problems associated with collection and analysis of MR&R costs for a BMS. First it was indicated that there were no historical cost data available at the NYSDOT, creating problems that could only be avoided with a system designed to collect actual cost data.

Contractors' lowest responsible bids were collected and analyzed with statistical multiple regression models and expert opinions from NYSDOT personnel. Normally, the bids are very randomly distributed even for similar bridges. The authors attempted to model the randomness or effects of using the low bids. Bid items are not usually designated by bridge component. For example, concrete for deck, superstructure, and substructure are combined into one bid item

"Concrete." Expert opinions were used to assign such costs to the various components. The approach was considered imprecise, time-consuming, and costly. The integrity of the data utilized was questionable. Three classes of data quality were defined as follows:

Reliability 1 — very reliable: measured data Reliability 2 — qualitative judgment of trained inspectors Reliability 3 — estimated value using best judgment available

Only the bridge inventory data qualified for Reliability category 1. Condition state data were the only records in category 2 while the important cost data qualified for the relatively most unreliable, category 3. Regression models, patterned after Indiana's models described in Saito et al. [1991], were used to relate total costs and unit costs (Deck, Superstructure, and Substructure) to the following variables: type of work (monolithic deck work, other deck work, superstructure and deck work); high cost region; medium cost region; minimum previous deck rating; minimum previous superstructure rating; minimum previous substructure rating; difference in minimum substructure rating; difference in minimum superstructure rating; difference in minimum condition to trigger rehabilitation. Some of the other variables are indicator variables (0 or 1). With coefficients of determination (R-squared) being very high, ranging from 0.94 to 0.95, the regression models (nonlinear) were developed as predictive tools for costs associated with bridge deck, superstructure, and substructure. With an adjustment using the area as a unit of measure, corresponding unit cost models were also developed for the NYSDOT.

Wisconsin DOT BMS [Adams and Sianipar 1998, Adams and Barut 1998]

A telephone conversation with Wisconsin DOT (Stan Woods 1999) indicated that a Pontis BMS implementation project is still ongoing but with no finalized cost database yet available to share. The cost data are based on expert opinions elicited by Teresa Adams of the University of Wisconsin (Principal Investigator). Since the release of the NCHRP Synthesis 227 and the Clemson study in 1996, this study is the most important documented effort identified so far on this type of work, i.e., specifically, to collect and analyze MR&R costs directly compatible with Pontis requirements at the element, condition state, and action levels of detail. The following discussion about the Wisconsin study is based primarily on the paper by Adams and Barut [1998].

As observed in most of the states [Thompson and Markow 1996], and also mentioned in the Wisconsin DOT study, there is no historical data available in a standardized format compatible with Pontis. The Wisconsin DOT study emphasized that despite the need to develop a reliable MR&R cost database for a network-level BMS, the reliable data are difficult to obtain. Wisconsin DOT developed a set of questionnaires to elicit expert opinions on the required unit costs. Starting with the ordinary costs (an average cost), direct and indirect factors were identified and organized into scenarios leading to two extreme costs (minimum and maximum) estimates. Simple statistical analyses were then done to the collected cost data, to assess its variability.

The objectives of the questionnaire developed were to: assess the validity of an existing cost database; recommend base costs for MR&R actions; and to assess variability of cost estimates for MR&R actions. In Wisconsin, maintenance activities in historically maintained records were found to be too generalized or unspecific, and therefore incompatible with Pontis' unique MR&R actions for network-level analyses in a BMS.

In developing questionnaires for the MR&R costs, the following tasks were done: selection of 25 bridge elements; development of standard definitions for the selected bridge elements; assembling the list of applicable MR&R actions for the selected elements; and identifying scenarios for direct and indirect factors that affect the total cost of each MR&R action. In addition, the selection of 25 elements satisfied the following criteria: maximize the scope of the MR&R actions; include deck, superstructure, and substructure element types; and maximize the number of elements with alternative MR&R actions for a single condition state.

In eliciting the cost estimates from experts on bridge maintenance and construction, cost ranges were asked for each MR&R action, accounting for the variations in project characteristics, element materials, and extent of deterioration within a condition state. Scenarios were developed based on a combination of direct and indirect factors. Direct factors relate to the element characteristics, e.g., material type, depth of deterioration, etc. Indirect factors are due to project characteristics, e.g., traffic volume, traffic control, project size, site preparation, and mobilization. The scenarios corresponded to extreme high and low cost of each action. For example, the MR&R action "Replace overlay" has a high cost scenario under the following conditions: when the traffic volume is high, the project is small, and the material used is exotic and quick setting. For the low cost scenario the following conditions were defined for the same MR&R action: use of asphaltic or conventional material, low traffic volume, and large project.

As a starting point, the questionnaire presented the respondents with an initial list of ordinary costs for each MR&R action, i.e., an acceptable or average situation cost. This initial list of costs was generated by adopting the unit costs of MR&R actions of Minnesota DOT, and then modifying the costs as found necessary by Wisconsin DOT maintenance engineers. Based on the ordinary costs, the respondents provided low and high cost estimates for each action. In addition, the respondents were given the option to modify the ordinary cost. A sample of the questionnaire was presented for an MR&R action. Scenarios were also illustrated in a table.

The 75% response rate to the questionnaire can be considered reasonable. The collected data were analyzed to estimate the relative variability of the cost estimates, determine whether the variations in the cost estimates among the different elements and MR&R actions are significantly greater than the variations expected; and identify the elements and MR&R actions with the greatest and least variations in cost. The results presented include estimates of cost ranges, and one-way analysis of variance (ANOVA) to estimate the mean coefficient of variance (COV). Multiple Comparisons with the Best (MCB) analysis was also used to identify elements and MR&R actions with greatest and least variations in cost. The various results obtained and obstacles encountered in estimating MR&R actions were listed. Recommended costs were given for the MR&R actions on the 25 bridge elements in the Wisconsin Pontis BMS.

Another publication identified from this Wisconsin DOT study was on the sensitivity analysis of the MR&R actions to the variations in cost estimate, transition probability, and discount factor [Adams and Sianipar 1998]. The objectives of this analysis were to identify and evaluate the sensitivity of the optimal actions and policies due to variation in maintenance costs and transition probabilities, and to compare the BMS optimal policies to current practices. In the analysis, MR&R costs and transition probabilities were the uncertain input data sets. The sensitivity analysis is based on values of cost and transition probability for three scenarios. The ordinary scenario reflects engineering judgment on the expected maintenance costs and deterioration rates of bridge elements. The optimistic and pessimistic transition probability scenarios represent slow and fast deterioration rates, respectively. The low and high cost project scenarios represent maintenance costs for extreme low and high cost project circumstances due to construction environment and materials. The analysis identified the elements with optimal MR&R policies that are sensitive to changes in the discount factor by identifying the critical discount factor for each element's optimal policy.

Ontario Bridge Management System [Thompson et.al. 1999]

The Ontario Ministry of Transportation (MTO) is in the process of developing a new BMS that will have a particularly strong project-level costing capability. Since development is still underway, no results have been published other than a general description in Thompson et.al. [1999]. A distinctive aspect of the system is that the entire life cycle of cost data has been taken into account. Almost all work considered by the BMS is performed by contractors in Ontario, but similar considerations apply to force account work. The main processes and subsystems addressed in the Ontario system are:

Tendering (bidding) process. MTO requires all bidders to submit cost data in a standardized way, organized according to a master catalog of "tender items," which are basically line items of labor, materials, equipment, and other identifiable cost factors. In most cases, bidders must provide estimated quantities and unit costs. This information is used immediately to detect unbalanced bids, but is also entered in a Ministry database as described in the next step.

Estimating Office. All bids are forwarded to the MTO Estimating Office, a group of five people who maintain the Ministry's cost estimation capability. The three lowest bids from each procurement are entered into an analytical process consisting of a set of spreadsheet models and other computer programs to analyze the bid data. These models detect outliers and impute certain adjustment factors for market conditions, difficult locations, and other special project attributes. An adjusted unit cost for each bid item is then entered into a database accessible to all design engineers. The database uses averaging to make it impossible to determine the bids of specific firms, in order to protect confidentiality of bids. In many cases, unit costs are separately developed for each of the 20 Districts in the province.

Bridge Management System – project level costs. The Ontario BMS accesses the Estimating Office database to keep an up-to-date list of unit costs for each of about 90 tender items relevant to bridge work. User-customizable formulas and decision trees examine each project in the BMS to map the element-level treatment recommendations onto tender items. For example, a deck overlay might include tender items for asphalt removal, concrete patching, application of a waterproofing membrane, application of a binder course, and application of a wearing surface. The quantities and unit costs for each of these tender items is computed separately based on bridge attributes and element inspection data. Certain tender items may apply to multiple elements: for example, concrete patching may apply to the deck surface, soffit, railings, girders, and substructure elements. Also, certain tender items apply to the project as a whole, such as traffic control. The total cost of all tender items is the estimated project cost. This process roughly approximates the estimating method used by MTO's project engineers.

Bridge Management System – network-level costs. Although the Ontario BMS uses project-level cost estimates for most network-level purposes as well, it does use a network-level cost factor, called a "benchmark cost," to estimate the long-term life-cycle costs of each element on a bridge after the 10th year (the end of MTO's programming horizon). This benchmark cost is quite similar to a Pontis unit cost. The Ministry developed estimated benchmark costs by use of a worksheet process that estimates the costs of "typical" projects involving only one main element. This typical project cost is divided by an element quantity to yield a cost per unit of deteriorated element.

The first two steps of the above process apply to all MTO capital projects, not just bridges. This is an important feature of the process, as it keeps the staff cost of the estimating process reasonable. It does, however, make implementation more difficult since more groups within MTO must be willing to accept the new process. It should be pointed out that MTO is a decentralized agency with an allocation of responsibilities very similar to that of FDOT.

Unpublished Doctoral Dissertations [Various 1991-1998]

A review (based on the abstracts) of unpublished work related to bridge costs included the following recent doctoral dissertations:

(I) A Life-cycle Cost Model For Use in The Optimization of Concrete Bridge Deck Repair And Rehabilitation, Author: Gannon, Edward John, Degree: Ph.D., Year: 1998 Institution: The Pennsylvania State University, Adviser: Philip D. Cady; 176 Pages. This study presented the formulation of a life-cycle cost model, including the development of a cost model of bridge repair alternatives using data from state highway agencies. The data were corrected for time and location.

(II) Pavement And Bridge Cost Allocation Analysis of The Ontario Intercity Highway Network, Author: Ghaeli, Mohammad Reza Degree: Ph.D., Year: 1998, Institution: University of Waterloo (Canada); Advisers: Bruce Hutchinson and Ralph Haas; 225 Pages. The objectives of this research were primarily to build an economic analysis model for pavement and bridges. Some cost data were collected and analyzed. For example, the initial capital cost of construction was identified as the major element of a bridge life-cycle cost, with maintenance costs less than 0.2% of the initial construction costs. Bridge construction costs were estimated at about $1000/m^2$ (present worth) on average for most of the Ontario bridges.

(III) A Methodology For Modeling The Cost And Duration of Concrete Highway Bridges, Author: Panzeter, Andrea Angela Degree: Ph.D., Year: 1993, Institution: Purdue University; Major Professor: Luh Maan Chang, 180 Pages.

The study developed a detailed project-level model for estimating the cost and construction time duration of concrete highway bridge projects in terms of five categories of work packages — Substructure, Superstructure, Road Approach, Traffic, and "Other." The cost of each category was modeled with multiple regression statistical techniques, considering the physical aspects of the projects and the material quantities.

(IV) Allocation of Bridge Construction Costs in Kentucky, Author: Saad, Charles Georges Degree: Ph.D., Year: 1991, Institution: University of Kentucky; Adviser: Jack A. Deacon, 276 Pages.

This is not a cost data collection study. The research developed a cost allocation methodology for legislative actions on raising revenues for bridge construction in the state of Kentucky.

Telephone Conversations [Various 1999]

Telephone conversation with Iowa DOT (Ms. Marlee Walton) indicated that most of the cost data used to populated Pontis for the first time use, were based on expert opinion elicitation. Iowa DOT has been collecting the data (Pontis-structured) but also has a general database of maintenance costs (highways and bridges).

Telephone discussion with Mr. George Romack of the FHWA provided information on the status of the Clemson Study and the IOWA DOT efforts. A computer program and report resulting from the Clemson Study was sent.

Dr. Carl Kurt was also contacted at Kansas University to discuss his experience with Pontis. He sent a report (inspection manual) presenting the Pontis bridge element definition and condition states, for Kansas local government bridges.

1.3. Questionnaire Preparation and Execution

In order to obtain an awareness of the current status of the national practice of cost data collection and analysis for bridge management systems (BMS), a survey was developed by the research team for the Florida Department of Transportation (FDOT) BMS study. The survey was prepared initially as a draft questionnaire to solicit information from the state Departments of Transportation (DOT), on recent work they may have performed to develop agency cost factors for a BMS. Following the receipt of feedback and approval from FDOT, the final questionnaires were prepared. A mailing list was then generated for one person in each DOT of the 50 states, to receive the questionnaire. The simple one-page questionnaire was distributed in December 1998 by U.S. mail, with FDOT's Richard Kerr providing a cover letter indicating FDOT's sponsorship of the questionnaire and promising respondents a copy of the results.

The questionnaire responses were received by the research team, tabulated, and analyzed. The summary of the results are shown in Table 1.1. The basic issues covered in the questionnaire were the following:

- Identification of the agency, the survey respondent, and the agency's current status or progress in terms of undertaking agency cost model development for its BMS. This inquiry included the status (or future plan) of any study or work already undertaken to develop the cost model, the completion date of the study, and also the availability of any report on such work.
- Information about the agency's cost data in terms of specific cost factors quantified or planned for its BMS. The following nine options were provided as possible specific cost factors: Preservation (MR&R) unit costs; Pontis element failure costs; Bridge replacement unit costs; Bridge widening, raising, or strengthening unit costs; Demolition and approach road work; Project engineering and administration; Mobilization and demobilization; Approach road work; and Other.
- General comments on the agency's cost research or plans.

Responses to the survey were received from 27 state DOTs, indicating about a 55% response rate. The responses varied regarding the types of agency cost model/factors developed, but most states do have specific cost factors quantified or to be quantified for their BMS. Most states were not specific on their BMS software. But New York and Maine indicated use of non-Pontis BMS; Maine uses BRIDGIT.

Six states (Alaska, Connecticut, Indiana, Utah, Virginia, and Wyoming) indicated their agency was currently working towards developing cost models or factors for a BMS. Five states (Alabama, California, Maine, Montana, and New York) responded that they have completed such as study. The state DOTs at Georgia, Hawaii, Mississippi, New Hampshire, and South Dakota (five states) indicated no current effort at the time, but that they intend to do so in the near future. Eleven states (Arizona, Idaho, Kansas, Missouri, Nevada, Rhode Island, Tennessee, Vermont, and West Virginia) responded that they were currently not doing such a study, and do not intend to do so in the near future. This implies that 16 states (60%) of the responding 27 states,

translating to about 30% of the 50 state DOTs in the country, either have a cost model/factor in place, currently developing it, or plan to do it in the near future.

Preservation (MR&R) unit cost was indicated as a factor quantified or to be quantified by 15 out these 16 state DOTs. Quantification of bridge replacement unit costs and widening, raising, or strengthening unit costs was also very popular among the responding states. About half of these 16 states also indicate quantification of project engineering and administration costs, mobilization and demobilization costs, approach road work costs, and Pontis element failure costs, as factors in their BMS. As shown in Table 1.1, the general comments from the various responding states also indicate various approaches taken by the agencies in developing the cost models or factors for their BMS.

	Agency's Work Towards De	eveloping	Sr	beci	ific	A	gen	cy (Co	st		
	Agency Cost Models/ Facto	~ -		Factors Quantified/ Plan							n	
	BMS		to	Qı	ian	tify	' in	BN	AS	*		
	Status: Undertaken any	Available	а	b	с	d	e	f	g	h	i	
State	work? Completion Date?	Reports?										Additional Comments
AK	Yes, work underway	Ν			х	х		х	х	х		Not a research study
AL	Yes, work completed	Y	х		х	х		Х		Х		
AZ	No, no work planned											
CA	Yes, work completed (1996)	N	х	х								Reports available upon request. See AASHTO's Pontis Forum
СТ	Yes, work underway	Ν	х	х								Initial element level cost elicitation developed.
GA	No, planned in near future	N	Х		х	х						
HI	No, planned in near future	N	Х	х	х	х	х	х	х			
ID	No, no work planned											
IN	Yes, work underway	Y	Х		x	x				x		Report on Indiana BMS cost module. BMS manual not final.
KS	No, no work planned											
ME	Yes, work completed (1998)	N	X	Х	Х	х		Х	х			BMS used is BRIDGIT. Expert opinions used to adjust default values of costs. Field visits used in cost calibration
MN	Yes, work completed (1994)	Ν	х		х	х						Future work planned (12/99)
MS	No, planned in near future	Ν	х		х	х						
MO	No, no work planned											
NC		Y										Cover letter advises to contact Dr. David Johnston (NC State Univ.). 1987 Report attached.
NE	No, no work planned											Comparison done of costs for Overlay vs. Redecking based on condition of bridge deck. Previous year's average unit costs utilized.
NH	No, planned in near future	Ν	Х	х	х	х	х	х	х	х		Hopefully work starts 1999
NV	No, no work planned											
NY	Yes, work completed	Y	X		х			X		х		BMS used is not Pontis. Replacement costs estimated from contract bid "bare" cost + "add-ons." Rehabilitation costs estimated

Table 1.1. Summary of Survey Responses

												from deck area unit cost models based on type of rehab. Costs based on regions (11 total). Sample preliminary cost worksheet attached.
RI	No, no work planned											
SD	No, planned in near future	N	Х	Х	х	х	х	Х	х	х		
TN	No, no work planned											
UT	Yes, work underway (2000)	Ν	х	х	X	х	х	х	x	х	х	Other specific factor: scour / foundation work. Materials ready in Spring 2000.
VT	No, no work planned											
VA	Yes, work underway	N	х		х	Х	Х	х	Х	х		
WV	No, no work planned											
WY	Yes, work underway	N	x	x	X	x		x	X	x		For preservation unit costs, previous two years rehab. projects had bid item costs converted to element costs, and applied to four environments. Currently trying to automate this conversion process — appears to be a large undertaking.

* Specific factors:

a. Preservation (MR&R) unit costs

b. Pontis element failure costs

c. Bridge replacement unit costs

d. Bridge widening, raising, or strengthening unit costs

e. Demolition and approach road work

f. Project engineering and administration

g. Mobilization and demobilization

h. Approach road work

i. Other:

2. Agency Cost Requirements of Pontis

This section summarizes the agency cost requirements of Pontis and the results of a sensitivity analysis conducted to determine the priorities for agency cost research. Pontis contains two main types of agency cost inputs:

- Preservation unit costs, which are given for each feasible action of each condition state of each element.
- Functional improvement and replacement unit costs, for each type of improvement.

The current research effort focuses on preservation costs. Pontis provides a user interface for entering preservation unit costs in the form of an expert elicitation. This allows multiple engineers to independently provide judgmental estimates of the unit costs, in the manner of a delphi process. Pontis then computes a weighted average of the experts' estimates. When historical element-level data are available, Pontis also has a means of including this information in the weighting scheme. The sensitivity analysis focuses on the resulting unit costs, without regard to how they are derived. Pontis does not have a user interface for entering unit costs directly, but this is easily done by means of InfoMaker.

Functional improvement and replacement costs are entered directly into Pontis by means of the Cost Matrix. This can be done at any time, and does not depend on any other data in the database. At the time of the analysis, Florida's Pontis database lacked some of the element-level bridge data, deterioration models, and cost models. Element-level data collection began in November, 1998, and deterioration models were developed in Task 6 of the current study. Therefore, the analysis was performed with the default data provided with Pontis release 3.4. Pontis is packaged with a set of deterioration models developed in California, and a set of preservation cost models developed by Clemson University as an average of several states' data. The functional improvement unit costs are based on California experience.

After completing a network optimization, Pontis applies the optimal maintenance, repair, and rehabilitation (MR&R) actions to each bridge. The network-level unit costs are then used to develop project-level cost estimates. Since this analysis requires element-level bridge data, it is not possible to carry the preservation cost sensitivity analysis to the project level at this time. The analysis will therefore focus on network-level long-term cost and recommended action as the outputs to be investigated for preservation. The Pontis software itself was used to perform the sensitivity analysis.

2.1 Preservation Cost Analysis

The network-level preservation cost analysis is performed as an integral part of the Pontis network optimization. Every possible action that can be chosen for each observed condition state has a long-term cost, calculated as follows:

Final Report

Long-term cost

$$LTC_{ia} = C_{ia} + \mathbf{a} \sum_{j} P_{aij} LTC_{jA_j}$$
(2.1)

Where:
$$C_{ia}$$
 is the unit cost of action *a* when the element is in state *i* (Pontis preservation cost model)

- *a* is a discount rate for costs incurred one year in the future (calculated below)
- P_{aij} is the transition probability of an element to be in state *j* in one year given state *i* and action *a* this year (Pontis deterioration model)
- A_i is the optimal action for state j (determined as described below)

$$LTC_{jA_j}$$
 is the long-term cost which would be calculated next year if state *j* occurs and the optimal action for that state is selected (calculated again by equation 1)

The discount rate is based on the forecast real interest rate, i.e. the interest rate with inflation removed. It is calculated as follows:

Discount rate
$$a = \frac{1}{1 + \text{int}}$$
 (2.2)

Where: int is the real interest rate

The real interest rate is usually based on agency policy and is the same for all capital project analyses. The optimal action for a given condition state is the action that results in the lowest long-term cost according to equation (2.1).

Equation (2.1) is recursive, because it depends on a term which itself is calculated according to the same equation. It is not circular, however, because the long-term cost term on the right-hand side is for one year later than the left-hand side. When fully expanded, the equation is potentially an infinite series, because the time horizon of the analysis is not strictly limited. However, because of discounting, the contribution of each subsequent term is less than the previous one, approaching zero.

Pontis simplifies the problem by assuming that in the long-term, the equation reaches a steadystate, where the conditions and actions remain in the same proportions from one year to the next. The probability of any given state in year t is equal to the probability of the same state in year t+1. In other words, for each meter of girder moving out of a particular condition state, another meter from the same bridge or another bridge moves in to replace it. This allows the equation to be restated as a linear program, which can be solved efficiently. The linear program formulation, however, remains consistent with Equation (2.1) and thus does not affect the long-term cost calculation.

Equation (2.1) is not in itself sufficient to create a bounded model, because the cost-minimizing solution to the equation is to choose the do-nothing action, whose cost is zero. If this policy were

to be followed, bridges would not merely gather in the worst condition state defined by the CoRe elements or the Florida Elements, but would, in fact, proceed to an even worse state, denoted as the failure state. The failure state is defined as a condition even worse than any that would be observed in an inspection, where the element no longer satisfies its intended purpose. Equation (2.1) can be applied to this concept if the state indexes *i* and *j* include the failure state, and if the only action allowed in the failure state has a very high penalty cost making it economically unattractive to allow the element to deteriorate to that level. Because if its role in the optimization model, the failure cost has three requirements:

- It must prevent the optimization from recommending a do-nothing action in the worst defined condition state;
- It should reflect the relative importance of each element to the continuing functionality of the bridge, or the relative level of damage that would be caused if the element were to fail.
- It should reflect the impact of element failure on the road users.

For the purposes of a network-level sensitivity analysis, only the first of these points can be investigated.

Pontis displays all the inputs and outputs of this analysis on the Preservation screen. When any of the inputs are changed in the database, the user has only to press the Optimize button to develop new long-term costs and a new optimal solution.

2.2 Data Preparation and Preliminary Analysis

The particular elements and data utilized for the sensitivity analysis were restricted to a representative sample, since it would be excessive to analyze every possible element in the Florida bridge inventory. This representative sample of elements were chosen based on some important bridge-related criteria: element deterioration rate; quantity of bridge element in the Florida inventory; and inclusion of major material types for bridge elements.

Based on the optimization algorithm as shown in equation 2.1, the selected optimal MR&R action under the preservation model, and the overall result of the sensitivity analysis is expected to depend very much on the bridge element deterioration rate, in terms of the transition probabilities. Therefore, a great effort was made in the data preparation stage to include elements with varied rates of deterioration.

Generating an MR&R optimization run under an "ordinary" scenario, using the Pontis sample database, a report was produced listing the relevant input and output variables. The failure probabilities of all elements were first considered, for the worst environment (4), under "Do Nothing" actions. The fastest deteriorating elements such as Nos. 301 Pourable Joint Seal, 12 Concrete Deck - Bare, 111 Timber Open Girder/Beam, 300 Strip Seal Expansion Joint, 302 Compression Joint Seal, 303 Assembly Joint /Seal (modular), etc., were selected for the sensitivity analysis. On the other extreme, using the same criterion (failure probability) slow-deteriorating elements such as Nos. 204 P/S Conc. Column or Pile extension, 205 reinforced Conc. Column or

Pile Extension, 206 Timber Column or Pile Extension, 210 Reinforced Conc. Pier Wall, 215 Reinforced Conc. Abutment, etc., were also included. Other deterioration-related considerations include initial slow deterioration rates (transition probability out of state 1), and moderately deteriorating elements at the middle states (2 and 3), both for "Do Nothing" actions on the elements. This evaluation identified some elements in the potential list, being representative of the variety of deterioration rates.

Secondly, the quantities of the bridge elements were considered, based on Florida's inventory of highway bridges. From a combination of the Florida inventory listing and the California Cost Database, an initial list of 164 elements were generated and then reduced to 50 significant elements. In addition to including major bridge elements (deck, superstructures, substructures), it was also ensured that the major material types were included in the selected list of elements, i.e., concrete, steel, timber, etc. Finally, incorporating the elements identified in the deterioration rate evaluation above, the 50 elements were reduced to the 35 elements to be utilized in the sensitivity analysis (Table 2.1).

2.3 Sensitivity Analysis

The main objective of the sensitivity analysis was to observe and explain the effects of varying the values of model input variables such as overall agency costs (maintenance, repair, and replacement (MR&R) costs, failure agency costs), and discount factor (α), on the preservation model output. The focus on the model output was on the optimal MR&R actions recommended, and their respective calculated long term costs. Differences in long-term cost affect the relative priorities given to competing elements and bridges.

It should be noted that one additional type of model sensitivity is the linear proportional relationship between unit agency costs and project-level cost estimates, as evidenced in equation (2.1) above. Because of this proportionality, project-level and program-level budgetary requirements are directly sensitive to errors in unit costs.

Several issues in terms of variations were investigated for each of the 35 representative bridge elements, with the analysis being conducted for the "ordinary" scenario in Pontis MR&R optimization, under the various environments and condition states. The sensitivity analysis was carried out under seven categories of input variation: (1) Variation in all MR&R Unit Costs; (2) Variation in only element replacement unit costs; (3) Variation in only element rehabilitation unit costs; (4) Variation in only element repair unit costs; (5) Variation in only element minor maintenance unit costs; (6) Variation in only Failure Agency Unit Costs; and (7) Variation in only Discount Rate Factors. The procedures and results from each of the variation categories of the study are discussed in each of the following sections.

Elem ID#	Element Long Name	FDOT Total Quantity ^a	Units of Meas.
12	Concrete Deck - Bare	6,966,853	sq.m.
13	Concrete Deck - Unprotected w/ AC Overlay	3,140,288	sq.m.
28	Steel Deck - Open Grid	93,656	sq.m.
31	Timber Deck - Bare	42,871	sq.m.
38	Concrete Slab - Bare	418,725	sq.m.
39	Concrete Slab - Unprotected w/ AC Overlay	267,473	sq.m.
102	Painted Steel Closed Web/Box Girder	29,570	m.
104	P/S Conc. Closed Web/Box Girder	2,162,405	m.
107	Painted Steel Open Girder/Beam	1,420,963	m.
109	P/S Conc. Open Girder/Beam	3,835,152	m.
110	Reinforced Conc. Open Girder/Beam	304,191	m.
111	Timber Open Girder/Beam	129,287	m.
113	Painted Steel Stringer	193,255	m.
116	Reinforced Conc. Stringer	21,013	m.
121	Painted Steel Bottom Chord Thru Truss	8,088	m.
152	Painted Steel Floor Beam	57,561	m.
161	Painted Steel Pin and/or Pin and Hanger Assembly	8	ea.
202	Painted Steel Column or Pile Extension	3,188	ea.
204	P/S Conc. Column or Pile Extension	84,413	ea.
205	Reinforced Conc. Column or Pile Extension	14,666	ea.
206	Timber Column or Pile Extension	8,743	ea.
210	Reinforced Conc. Pier Wall	17,359	m.
215	Reinforced Conc. Abutment	228,089	m.
234	Reinforced Conc. Cap	489,493	m.
235	Timber Cap	24,263	m.
241	Reinforced Concrete Culvert	146,251	m.
300	Strip Seal Expansion Joint	17,011	m.
301	Pourable Joint Seal	314,769	m.
302	Compression Joint Seal	240,365	m.
303	Assembly Joint/Seal (modular)	10,670	m.
304	Open Expansion Joint	51,554	ea.
310	Elastomeric Bearing	361,016	ea.
311	Moveable Bearing (roller, sliding, etc.)	140,205	ea.
313	Fixed Bearing	33,926	ea.
331	Reinforced Conc. Bridge Railing	1,491,165	m.

Table 2.1. List of Representative Bridge Elements (35) in Sensitivity Analysis

^a Based on 1998 FDOT Pontis-Format Bridge Inventory

2.3.1 Variation in all MR&R Unit Costs

Using the Pontis 3.4 Preservation Model screen, through the Cost Adj(ustment) Button, all MR&R costs (except the failure user costs) were varied from 25% to 300% of the default unit costs in the database. With the discount rate set as the default 0.9525 (an equivalent of about 5.0% annual discount rate), optimization results were calculated by using the Pontis Optimize Button. The results of the optimization run, in a report, included the recommended action for each element-environment-state combination, and calculated long term unit costs for each feasible action. Table 2.2 summarizes, for a set of selected elements, the sensitivity of actions recommended to a variation in these input variables. It was observed that there was no change in action recommended regardless of the increase or decrease in the unit costs.

Element deterioration rates were also observed as being non-influential on the results. Graphs were also constructed to show the percentage change in the long-term unit cost relative to the percentage change in default initial unit costs. Figure 2.1 shows a sample of such graph for Element No. 12 Concrete deck - Bare in Environment 3, Condition State 5. As observed in the various graphs, there is a linear relationship between the long-term unit costs and the initial unit costs. So, since the optimal actions were selected based on the lowest long-term costs, the recommended actions remained the same despite global proportional changes in all the initial costs. As evident from equation 1, upon which the Pontis preservation model is based, this linear relationship is not unexpected. The calculated long term cost (LTC) is linearly related to the direct unit cost (C), and the second term of the equation mathematically converges to a steady value.

It is important to recognize that this result does not in any way imply that the Pontis models are insensitive to costs. It only confirms that the results depend on the ratios among the costs of competing actions. When the unit costs of all actions are changed by the same multiplier, there is no change in the ratios among actions, so there is no change in the action recommendations. The following sections investigate the effect of changing any one category of actions while holding the others constant.

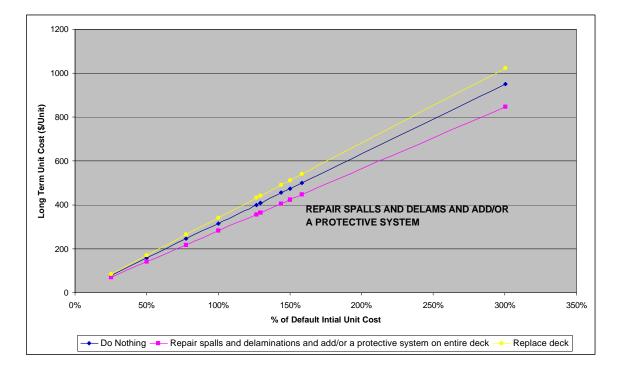


Figure 2.1. Variation of Long Term Unit Cost with % Changes in Unit Costs (Elem # 12 - Concrete Deck - Bare: Environment 3 Condition State 5)

ELEMENT	MR&R INDEX	ACTION RECOMMENDED (SENSITIVITY)
Elem # 12 - Concrete Deck - Bare	Environment 1 Condition State 1	Do Nothing (SAME)
	Environment 3 Condition State 5	Repair spalls and delaminations and add/or a prot (SAME)
	Environment 4 Condition State 5	Repair spalls and delaminations and add/or a prot (SAME)
Elem # 31 - Timber Deck - Bare	Environment 1 Condition State 3	Do Nothing (SAME)
	Environment 4 Condition State 4	Replace deck (SAME)
Elem # 38 - Concrete Slab - Bare	Environment 2 Condition State 5	Repair spalls and delaminations and add/or a prot (SAME)
	Environment 4 Condition State 5	Repair spalls and delaminations and add/or a prot (SAME)
Elem # 152 - Painted Steel Floor Beam	Environment 2 Condition State 4	Spot blast, clean, and paint (SAME)
	Environment 4 Condition State 5	Rehab unit (SAME)
Elem # 300 - Strip Seal Expansion Joint	Environment 3 Condition State 3	Replace gland and/or patch concrete (SAME)
	Environment 4 Condition State 3	Replace gland and/or patch concrete (SAME)
Elem # 310 - Elastometric Bearing	Environment 3 Condition State 3	Reset bearings (SAME)
	Environment 4 Condition State 3	Reset bearings (SAME)

 Table 2.2. Change in Action Recommended Due To Variation in All Initial Unit Costs (Selected Element-Environment-Condition State Indices)

2.3.2 Variation in Only Element Replacement Unit Costs

To perform this particular sensitivity analysis, a set of Structured Query Language (SQL) commands (sample shown in Figure 2.2) were executed inside the Infomaker v 5.0 Database Administration module, to adjust only the element replacement unit costs in the Pontis 3.4 cost database, while leaving maintenance, rehabilitation, repair costs, and other input variables fixed. Variation was introduced in the range of 50% to 150% of the original default replacement unit cost. The optimization was then run in the Pontis preservation model, at the default discount factor of 0.9525, to obtain results of the calculated long term unit costs for each element-environment-state-action combination, and the recommended actions.

Sample results are presented in Table 2.3 and Figure 2.3 to show the variation in long term unit costs relative to changes in the element replacement unit costs, and also the changes in recommended actions as the costs are adjusted from the default unit cost values. Generally, the "replace element" option is the least-cost and recommended action when the replacement unit cost is reduced to below about 75% of its original cost. The observation from the graph in figure 2.3 is that for Element No. 12 Concrete Deck -- Bare in Environment 4 State 5, the recommended optimal MR&R action is sensitive to cost reduction to about 80% of the original cost. In other words, if the replacement unit cost is reduced enough (by about 20%), it is better to replace the deck than to repair spalls and delaminations, or to add a protective system. As also shown in Table 2.3 and Figure 2.4, if replacement unit cost is reduced to just below 75% of its original value, it is optimally justified to replace a Steel Deck- Open Grid element in Environment 4 Condition State 5.

In addition to results at the element-environment-state-action levels, summary results are also presented at the network level for the selected elements, in Table 2.4 and Figure 2.5. The table and graph show that action recommendations are sensitive to element replacement costs in a large number of cases.

Table 2.5 and Figure 2.6 show estimated costs of preservation for all the 35 sample elements (shown in Table 2.1) on all bridges on the Florida state highway network. The network level results were computed using the Florida bridge inventory data (1998). Utilizing the optfrac (optimum fraction values among the states in any one element/environment, computed as an optimization output in the Pontis MR&R preservation model), the total network preservation agency costs for Florida bridges were calculated for the various environments. Two scenarios were considered in the network sensitivity study: Case I — assuming all bridge elements in environment 1; and Case 2 — assuming all bridge elements in environment 4. Deterioration rates (which differ dramatically between environments 1 and 4) obviously make a very large difference in long-term costs.

```
UPDATE actmodls
SET
       varunitco=varunitco*0.75
FROM actmodls,
  mrractdf
WHERE actmodls.varunitco > 0 AND
actmodls.elemkey = mrractdf.elemkey and
   actmodls.skey = mrractdf.skey and
   actmodls.akey = mrractdf.akey and
   (mrractdf.acttype = 31 or
   mrractdf.acttype = 35);
SELECT mrractdf.elemkey,
     actmodls.envkey,
     mrractdf.skey,
     mrractdf.akey,
     mrractdf.actshort,
     mrractdf.actlong,
     mrractdf.acttype,
     actmodls.varunitco
FROM actmodls,
  mrractdf
WHERE
actmodls.elemkey = mrractdf.elemkey and
   actmodls.skey = mrractdf.skey and
   actmodls.akey = mrractdf.akey and
   (mrractdf.acttype = 31 or
   mrractdf.acttype = 35);
```

Figure 2.2. Infomaker SQL Commands for Element Replacement Unit Costs Analysis

			EXPECTE	D LONG-TERM UNIT	COST AT VARIED		JNIT COSTS
	Element	Element Replacement Unit Cost Variation:	50%	75%	100%	125%	150%
12	Concrete Deck - Bare,	Element Replacement Unit (First) Cost:	\$150.75	\$226.13	\$301.50	\$376.88	\$452.25
	Env. 1 - State 5	Do Nothing	\$159.91	\$229.69	\$244.56	\$244.56	\$244.56
		Repair spalls and delaminations and add/or a prot	\$243.37	\$243.96	\$244.09	\$244.09	\$244.09
		Replace deck	\$151.93	\$227.90	\$303.40	\$378.78	\$454.15
		Action Recommended:	Replace deck	Replace deck	Repair spalls and d	Repair spalls and d	Repair spalls and del
12	Concrete Deck - Bare,	Element Replacement Unit (First) Cost:	\$150.75	\$226.13	\$301.50	\$376.88	\$452.25
		Do Nothing	\$313.92	\$382.47	\$393.28	\$393.28	\$393.28
		Repair spalls and delaminations and add/or a prot	\$309.00	\$335.39	\$335.39	\$335.39	\$335.39
		Replace deck	\$217.56	\$319.33	\$394.70	\$470.08	\$545.45
		Action Recommended:	Replace deck	Replace deck	Repair spalls and d	Repair spalls and d	Repair spalls and del
28	Steel Deck - Open Grid,	Element Replacement Unit (First) Cost:	\$172.23	\$258.34	\$344.45	\$430.58	\$516.68
		Do Nothing	\$327.79	\$394.19	\$394.19	\$394.19	\$394.19
		Rehab connectors and replace paint system	\$262.61	\$262.61	\$262.61	\$262.61	\$262.61
		Replace unit	\$185.62	\$271.73	\$357.84	\$443.97	\$530.07
		Action Recommended:	Replace unit	Rehab conn. & repl	Rehab conn. & repl	Rehab conn. & repl	Rehab conn. & repl p
31	Timber Deck - Bare,	Element Replacement Unit (First) Cost:	\$5.19	\$7.79	\$10.38	\$12.98	\$15.57
		Do Nothing	\$5.75	\$8.19	\$10.63	\$12.12	\$12.12
		Replace deck	\$5.26	\$7.89	\$10.51	\$13.13	\$15.72
		Action Recommended:	Replace deck	Replace deck	Replace deck	Do Nothing	Do Nothing
31	Timber Deck - Bare,	Element Replacement Unit (First) Cost:	\$5.19	\$7.79	\$10.38	\$12.98	\$15.57
		Do Nothing	\$6.57	\$9.86	\$13.14	\$16.43	\$17.99
		Rehab deck	\$8.93	\$11.52	\$14.11	\$16.70	\$17.69
		Replace deck	\$8.21	\$12.32	\$16.42	\$20.53	\$23.70
		Action Recommended:	Do Nothing	Do Nothing	Do Nothing	Do Nothing	Rehab deck
107	Painted Steel Open Girder/Beam	Element Replacement Unit (First) Cost:	\$598.71	\$898.06	\$1,197.41	\$1,496.76	\$1,796.12
	Env. 4 - State 5	Do Nothing	\$1,252.91	\$1,460.37	\$1,460.37	\$1,460.37	\$1,460.37
		Rehab unit	\$956.63	\$1,021.98	\$1,021.98	\$1,021.98	\$1,021.98
		Replace unit	\$747.56	\$1,046.91	\$1,346.26	\$1,645.61	\$1,944.97
		Action Recommended:	Replace unit	Rehab unit	Rehab unit	Rehab unit	Rehab unit
215	Reinforced Conc Abutment,	Element Replacement Unit Cost: (First Cost)	\$1,280.09	\$1,920.13	\$2,560.17	\$3,200.21	\$3,840.26
	Env. 4 - State 4	Do Nothing	\$2,544.66	\$3,167.08	\$3,167.08	\$3,167.08	\$3,167.08
		Rehab unit	\$2,273.36	\$2,407.11	\$2,407.11	\$2,407.11	\$2,407.11
		Replace unit	\$1,694.12	\$2,428.49	\$3,068.53	\$3,708.57	\$4,348.62
		Action Recommended:	Replace unit	Rehab unit	Rehab unit	Rehab unit	Rehab unit
234	Reinforced Conc Cap,	Element Replacement Unit Cost: (First Cost)	\$788.75	\$1,183.12	\$1,577.49	\$1,971.86	\$2,366.24
	Env. 4 - State 4	Do Nothing	\$1,548.26	\$1,904.58	\$2,136.86	\$2,136.86	\$2,136.86
		Rehab unit	\$1,597.94	\$1,693.16	\$1,741.90	\$1,741.90	\$1,741.90
		Replace unit	\$1,059.46	\$1,472.58	\$1,866.95	\$2,261.32	\$2,655.70
		Action Recommended:	Replace unit	Replace unit	Rehab unit		Rehab unit
302	Compression Joint Seal,	Element Replacement Unit Cost:	\$175.00	\$262.50	\$350.00	\$437.50	\$525.00
		Do Nothing	\$648.99	\$820.05	\$875.63	\$875.63	\$875.63
		Replace gland and/or patch spalls	\$607.88	\$786.43	\$844.44	\$844.44	\$844.44
		Replace joint	\$507.95	\$761.92	\$903.51	\$991.01	\$1,078.51
			Replace joint	Replace joint	Replace gland and	Replace gland and	Replace gland and/or

Table 2.3. Expected Long-Term Unit Costs For Varied Element Replacement Unit Costs

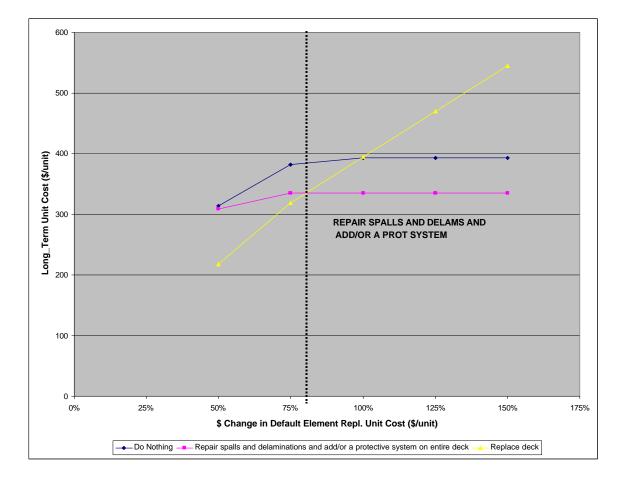


Figure 2.3. Long-Term Unit Cost Vs % Change in Element Replacement Unit Cost (Elem # 12 Concrete Deck - Bare Env. 4 - State 5)

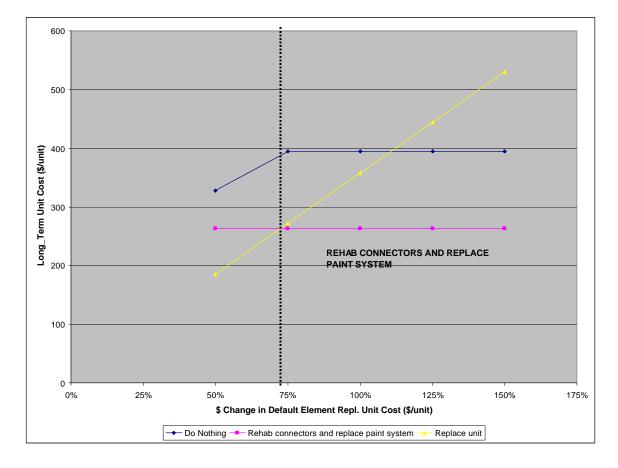


Figure 2.4. Long-Term Unit Cost Vs % Change in Element Replacement Unit Cost (Elem # 28 Steel Deck - Open Grid, Env. 4 - State 5)

Elem ID#	Element Long Name		HANGE IN RECOMME % OF DEFA	NDED?	T)
		50%	75%	125%	150%
12	Concrete Deck - Bare	YES	YES	NO	NO
13	Concrete Deck - Unprotected w/ AC Overlay	NO	NO	NO	NO
28	Steel Deck - Open Grid	YES	YES	YES	YES
31	Timber Deck - Bare	NO	NO	YES	YES
38	Concrete Slab - Bare	NO	NO	NO	NO
39	Concrete Slab - Unprotected w/ AC Overlay	NO	NO	NO	NO
102	Painted Steel Closed Web/Box Girder	NO	NO	NO	NO
104	P/S Conc Closed Web/Box Girder	NO	NO	NO	NO
107	Painted Steel Open Girder/Beam	YES	YES	NO	NO
109	P/S Conc Open Girder/Beam	YES	YES	YES	YES
110	Reinforced Conc Open Girder/Beam	YES	NO	NO	NO
111	Timber Open Girder/Beam	NO	NO	YES	YES
113	Painted Steel Stringer	YES	YES	YES	YES
116	Reinforced Conc Stringer	NO	NO	NO	NO
121	Painted Steel Bottom Chord Thru Truss	YES	NO	NO	NO
152	Painted Steel Floor Beam	YES	YES	NO	NO
161	Painted Steel Pin and/or Pin and Hanger Assembly	NO	NO	NO	NO
202	Painted Steel Column or Pile Extension	YES	NO	NO	NO
204	P/S Conc Column or Pile Extension	NO	NO	NO	NO
205	Reinforced Conc Column or Pile Extension	NO	NO	NO	NO
206	Timber Column or Pile Extension	YES	YES	NO	NO
210	Reinforced Conc Pier Wall	NO	NO	NO	NO
215	Reinforced Conc Abutment	YES	NO	NO	NO
234	Reinforced Conc Cap	YES	YES	NO	NO
235	Timber Cap	YES	YES	YES	YES
241	Reinforced Concrete Culvert	YES	YES	YES	YES
300	Strip Seal Expansion Joint	NO	NO	NO	NO
301	Pourable Joint Seal	YES	NO	YES	YES
302	Compression Joint Seal	YES	YES	NO	NO
303	Assembly Joint/Seal (modular)	NO	NO	NO	NO
304	Open Expansion Joint	YES	NO	NO	NO
310	Elastomeric Bearing	NO	NO	NO	NO
311	Moveable Bearing (roller, sliding, etc.)	YES	NO	NO	NO
313	Fixed Bearing	YES	YES	NO	NO
331	Reinforced Conc Bridge Railing	YES	YES	NO	NO
	TOTAL ELEMENTS SENSITIVE (YES COUNT)	20	13	8	8
	% OF ALL ELEMENTS (35)	57%	37%	23%	23%

Table 2.4. Summary Of Bridge Elements' Sensitivity To Element Replacement Unit Cost

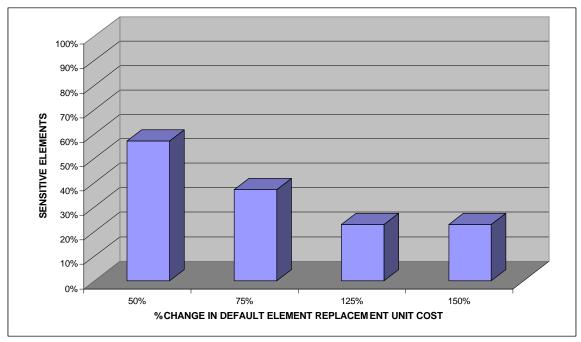


Figure 2.5. Summary Of Bridge Elements' Sensitivity To Element Replacement Unit Cost

	VARIATION IN	N ELEMENT RI	EPLACEMENT	UNIT COST	
	50%	75%	100%	125%	150%
TOTAL FIRST COSTS:					
ALL BRIDGES IN	\$7,893,391	\$12,946,994	\$12,097,900	\$8,533,068	\$8,549,228
ENVIRONMENT 1					
ALL BRIDGES IN	\$6,519,787,950	\$7,184,430,128	\$7,292,750,302	\$7,292,013,619	\$7,292,041,402
ENVIRONMENT 4					
TOTAL LONG TERM COSTS:					
ALL BRIDGES IN	\$374,577,328	\$440,207,612	\$431,541,536	\$405,534,666	\$406,763,765
ENVIRONMENT 1					
ALL BRIDGES IN	\$7,115,639,120	\$7,292,624,133	\$7,292,750,302	\$7,292,750,302	\$7,292,750,302
ENVIRONMENT 4					

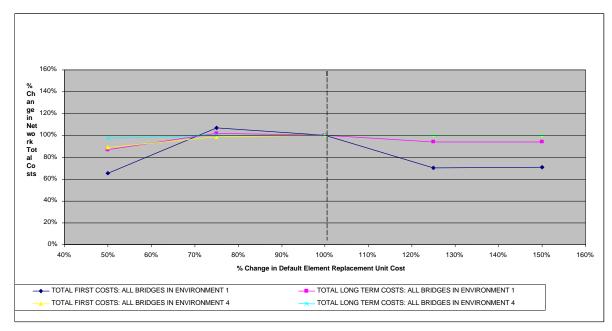


Figure 2.6. Sensitivity of Network Total MR&R Costs To Element Replacement Unit Cost

As mentioned earlier, bridge elements' sensitivity can be defined in terms of change in action recommended by the MR&R preservation model, relative to that action recommended at a default unit cost. Looking at Table 2.4, the following five bridge elements were observed to be individually sensitive to element replacement unit costs at all ranges of increase and decrease to the original default cost (sensitive to both high and low costs) increases: Element Nos. 28 Steel Deck - Open Grid, 109 P/S Conc Open Girder/Beam, 113 Painted Steel Stringer, 235 Timber Cap, and Reinforced Concrete Culvert. More of the sensitive bridge elements were sensitive to low costs (decrease from default cost), than to high costs (increase in default cost). Table 2.4 and Figure 2.5 show that 20 of the 35, or about 60% of the sample elements became sensitive when the replacement cost is reduced to 50% of the original cost, while only about 8 of the 35 sample elements are sensitive to all forms of increase in the cost.

As shown in Figure 2.6, the network total long-term cost was observed to remain in an approximately constant ratio to the network long-term total cost at the default replacement unit cost. It can be concluded that the network total long-term costs are relatively insensitive to variation in element replacement unit costs. The first costs, however, showed sensitivity at low cost and high cost values. The reduction in first costs at lower unit cost levels is to be expected. The reduction at higher replacement cost levels can be attributed to the shift in action recommendations toward less expensive element rehabilitation, rather than replacement.

2.3.3 Variation in Only Element Rehabilitation Unit Costs

Using SQL commands very similar to those utilized above for the element replacement unit costs study, agency unit costs were adjusted for only actions of element rehabilitation in the Pontis 3.4 cost database, while leaving maintenance, repair, and replacement costs fixed. Variation of the input was also in the same range (50% to 150%). The optimization was then run in the Pontis preservation model, at the default discount factor of 0.9525, to obtain results of the calculated long term unit costs for each element-environment-state-action combination, and the recommended action. The variation in long term costs relative to changes in the element rehabilitation unit costs, are shown in Tables 2.6 and 2.7 and graphs in Figures 2.7 - 2.8. The results include the changes in recommended actions as the costs are adjusted from the default cost values. The summary results at the network level also show costs and variations for the two environment scenarios described above for the study of element replacement unit costs.

It was observed that 14 of the 35 elements (40%) are individually sensitive to both very low and very high variations in rehabilitation cost (Table2.6). Bridge elements such as Nos. 12 Concrete Bare, 116 Reinforced Conc. Stringer, and 161 Painted Steel Pin were sensitive to high costs while Element Nos. 31 Timber Deck Bare, 311 Moveable Bearing (roller, sliding, etc.), and 313 Fixed Bearing, are sensitive to low cost values. Figure 2.7 also shows that the selection of optimal action for significant numbers of the bridge elements (50% to 60% of sample elements) is sensitive to all forms of variation in cost: from large decrease to large increase in cost values.

On the network level, the total first costs demonstrate high sensitivity at lower cost variations, but more importantly, the total long term costs were observed to be somewhat sensitive to both increase and decrease in cost (see Figure 2.8). As rehabilitation unit costs are decreased, the first costs and long-term costs are reduced, just as would be expected. As rehabilitation unit costs are increased, many elements switch to replacement, which is more expensive. A smaller number of elements switch to less expensive repairs. In the Pontis CoRe elements, the competition between rehabilitation and replacement is much more significant to the analysis, than the competition between repair and rehabilitation. Therefore, the overall effect is an increase in first costs and long-term costs as rehabilitation costs increase.

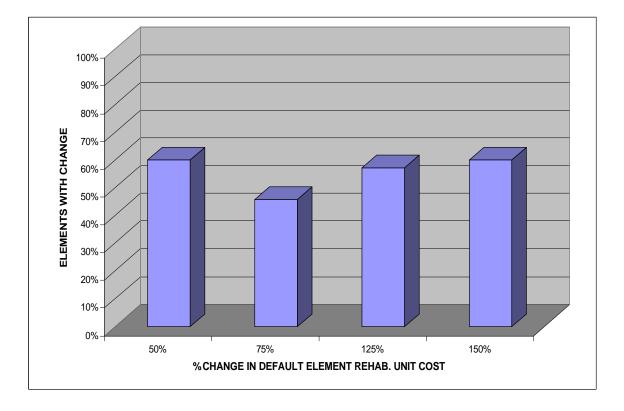


Figure 2.7. Summary Of Bridge Elements' Sensitivity To Element Rehabilitation Unit Cost

Elem ID#	Element Long Name	(A	RECOM	IN ACTION MENDED? EFAULT C)
		50%	75%	125%	150%
12	Concrete Deck - Bare	NO	NO	YES	YES
13	Concrete Deck - Unprotected w/ AC Overlay	NO	NO	NO	NO
28	Steel Deck - Open Grid	YES	YES	YES	YES
31	Timber Deck - Bare	YES	NO	NO	NO
38	Concrete Slab - Bare	NO	NO	YES	YES
39	Concrete Slab - Unprotected w/ AC Overlay	YES	YES	YES	YES
102	Painted Steel Closed Web/Box Girder	YES	YES	YES	YES
104	P/S Conc Closed Web/Box Girder	YES	YES	YES	YES
107	Painted Steel Open Girder/Beam	YES	NO	YES	YES
109	P/S Conc Open Girder/Beam	YES	NO	NO	NO
110	Reinforced Conc Open Girder/Beam	YES	YES	YES	YES
111	Timber Open Girder/Beam	YES	YES	NO	NO
113	Painted Steel Stringer	NO	NO	NO	NO
116	Reinforced Conc Stringer	NO	NO	YES	YES
121	Painted Steel Bottom Chord Thru Truss	NO	NO	YES	YES
152	Painted Steel Floor Beam	YES	YES	YES	YES
161	Painted Steel Pin and/or Pin and Hanger Assembly	NO	NO	YES	YES
202	Painted Steel Column or Pile Extension	YES	YES	NO	YES
204	P/S Conc Column or Pile Extension	YES	YES	YES	YES
205	Reinforced Conc Column or Pile Extension	YES	YES	YES	YES
206	Timber Column or Pile Extension	YES	NO	YES	YES
210	Reinforced Conc Pier Wall	YES	YES	YES	YES
215	Reinforced Conc Abutment	YES	YES	YES	YES
234	Reinforced Conc Cap	YES	YES	YES	YES
235	Timber Cap	YES	YES	YES	YES
241	Reinforced Concrete Culvert	YES	YES	YES	YES
300	Strip Seal Expansion Joint	NO	NO	NO	NO
301	Pourable Joint Seal	NO	NO	NO	NO
302	Compression Joint Seal	NO	NO	NO	NO
303	Assembly Joint/Seal (modular)	NO	NO	NO	NO
304	Open Expansion Joint	NO	NO	NO	NO
310	Elastomeric Bearing	NO	NO	NO	NO
311	Moveable Bearing (roller, sliding, etc.)	YES	NO	NO	NO
313	Fixed Bearing	YES	YES	NO	NO
331	Reinforced Conc Bridge Railing	NO	NO	NO	NO
	TOTAL ELEMENT SENSITIVE (YES COUNT)	21	16	20	21
	% OF ALL ELEMENTS (35)	60%	46%	57%	60%

Table 2.6. Summary Of Bridge Elements' Sensitivity To Element Rehabilitation Unit Cost

	VARL	ATION IN ELEM	IENT REHABIL	ITATION UNIT	COST
	50%	75%	100%	125%	150%
TOTAL FIRST COSTS:					
ALL BRIDGES IN	\$8,016,149	\$10,634,805	\$12,097,900	\$12,314,867	\$12,816,654
ENVIRONMENT 1					
ALL BRIDGES IN	\$135,028,101	\$269,644,928	\$285,840,740	\$290,369,056	\$356,205,372
ENVIRONMENT 4					
TOTAL LONG TERM COSTS:					
ALL BRIDGES IN	\$351,670,643	\$388,247,684	\$431,541,536	\$444,939,678	\$456,394,746
ENVIRONMENT 1					
ALL BRIDGES IN	\$5,952,498,607	\$6,940,132,197	\$7,292,750,302	\$7,566,686,005	\$8,022,748,278
ENVIRONMENT 4					

Table 2.7. Network Total MR&R Costs Vs. Change In Element Rehabilitation Unit Cost

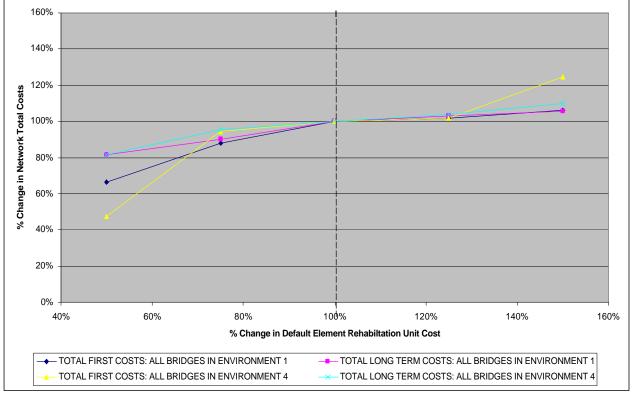


Figure 2.8. Sensitivity of Network Total MR&R Costs To Element Rehabilitation Unit Cost

2.3.4 Variation in Only Element Repair Unit Costs

Similar to the previous cases, the data were manipulated using SQL commands, adjusting only the element repair unit costs in the Pontis 3.4 cost database, while leaving maintenance, rehabilitation, and replacement costs fixed. The optimization was run in the Pontis preservation model, at the default discount factor of 0.9525, to obtain results of the calculated long term unit costs for each element-environment-state-action combination, and the recommended action. These results are presented in Tables 2.8 and 2.9 and Figures 2.9 - 2.10 to show the variation in action recommended based on the long term costs, relative to changes in the element repair unit costs.

On average, about 50% of the sample bridge elements show some form of sensitivity to all possible cost variations (see Table 2.8 and Figure 2.9). Most of the bridge elements are very sensitive to both very high costs (54% of elements) and very low costs (63% of elements). Ten elements were observed to be individually sensitive to all ranges of cost variations, i.e., both increase and decrease in cost. Element Nos. 12 Concrete Deck - Bare, 28 Steel Deck - Open Grid, 116 Reinforced Conc. Stringer, 205 Reinforced Conc. Column or Pile Extension, 331 Reinforced Conc. Bridge Railing, are individually sensitive to all forms of cost reductions while Element Nos. 152 Painted Steel Floor Beam, 301 Pourable Joint Seal, 302 Compression Joint Seal, 304 Open Expansion Joint, and 313 Fixed Bearing, are individually sensitive to any increase in costs. Element Nos. 13 Concrete Deck - Unprotected w/ AC Overlay, 31 Timber Deck - Bare, 206 Timber Column or Pile Extension, 235 Timber Cap, 241 Reinforced Concrete Culvert, and 303 Assembly Joint/Seal (modular), are observed to be insensitive to all variations in repair unit cost.

In addition to results at the element-environment-state-action levels, summary results are also presented at the network level. On the network level, the total long-term costs were observed to be reasonably sensitive to both increase and decrease in cost (see Figure 2.8). Decrease and increase in repair unit cost was found to be proportionately related to a resulting decrease and increase in network total long term costs respectively.

Elem ID#	Element Long Name			ENDED?	
		50%	75%	MENDED? FAULT CO I25% NO NO NO NO NO YES YES YES YES NO NO YES NO NO NO YES YES YES YES YES	150%
12	Concrete Deck – Bare	YES	YES	NO	NO
13	Concrete Deck - Unprotected w/ AC Overlay	NO	NO	NO	NO
28	Steel Deck – Open Grid	YES	YES	NO	NO
31	Timber Deck - Bare	NO	NO	NO	NO
38	Concrete Slab - Bare	YES	NO	NO	NO
39	Concrete Slab - Unprotected w/ AC Overlay	YES	YES	YES	YES
102	Painted Steel Closed Web/Box Girder	YES	YES	YES	YES
104	P/S Conc Closed Web/Box Girder	YES	YES	YES	YES
107	Painted Steel Open Girder/Beam	YES	NO	NO	NO
109	P/S Conc Open Girder/Beam	YES	YES	YES	YES
110	Reinforced Conc Open Girder/Beam	YES	YES	YES	YES
111	Timber Open Girder/Beam	NO	NO	NO	NO
113	Painted Steel Stringer	YES	YES	YES	YES
116	Reinforced Conc Stringer	YES	YES	NO	NO
121	Painted Steel Bottom Chord Thru Truss	YES	YES	NO	NO
152	Painted Steel Floor Beam	NO	NO	YES	YES
161	Painted Steel Pin and/or Pin and Hanger Assembly	YES	NO	NO	NO
202	Painted Steel Column or Pile Extension	YES	YES	YES	YES
204	P/S Conc Column or Pile Extension	YES	YES		YES
205	Reinforced Conc Column or Pile Extension	YES	YES		NO
206	Timber Column or Pile Extension	NO	NO		NO
210	Reinforced Conc Pier Wall	YES	YES		YES
215	Reinforced Conc Abutment	YES	YES		YES
234	Reinforced Conc Cap	YES	YES	1	YES
235	Timber Cap	NO	NO		NO
241	Reinforced Concrete Culvert	NO	NO		NO
300	Strip Seal Expansion Joint	YES	YES		YES
301	Pourable Joint Seal	NO	NO		YES
302	Compression Joint Seal	NO	NO		YES
303	Assembly Joint/Seal (modular)	NO	NO		NO
304	Open Expansion Joint	NO	NO		YES
310	Elastomeric Bearing	YES	NO		YES
311	Moveable Bearing (roller, sliding, etc.)	NO	NO		YES
313	Fixed Bearing	NO	NO		YES
331	Reinforced Conc Bridge Railing	YES	YES		NO
-	TOTAL ELEMENTS SENSITIVE (YES COUNT)	22	18		19
	% OF ALL ELEMENTS (35)	63%	51%	46%	54%

Table 2.8. Summary Of Bridge Elements' Sensitivity To Element Repair Unit Cost

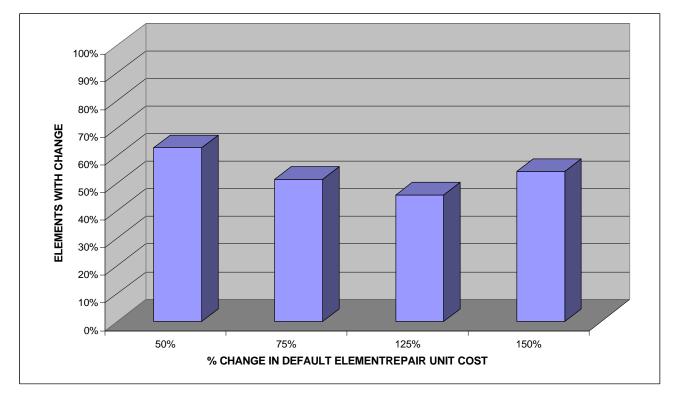


Figure 2.9. Summary Of Bridge Elements' Sensitivity To Element Repair Unit Cost

F										
		VARIATION IN ELEMENT REPAIR UNIT COST								
	50%	75%	100%	125%	150%					
TOTAL FIRST COSTS:										
ALL BRIDGES IN	\$7,638,206	\$8,656,911	\$12,097,900	\$16,050,886	\$14,830,400					
ENVIRONMENT 1										
ALL BRIDGES IN	\$192,872,923	\$227,244,938	\$285,842,638	\$319,226,421	\$337,669,917					
ENVIRONMENT 4										
TOTAL LONG TERM										
COSTS:										
ALL BRIDGES IN	\$376,694,598	\$355,629,618	\$431,541,536	\$510,690,906	\$500,467,266					
ENVIRONMENT 1										
ALL BRIDGES IN	\$4,357,342,673	\$5,881,397,512	\$7,292,787,286	\$8,492,616,502	\$9,545,044,032					
ENVIRONMENT 4										

Table 2.9. Network Total MR&R Cost Vs. Change In Element Repair Unit Cost

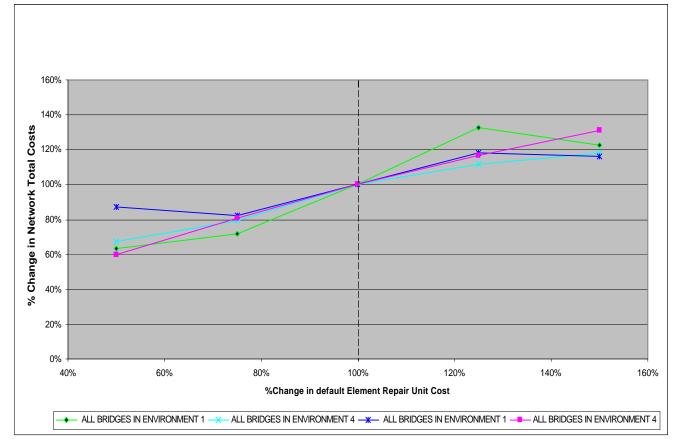


Figure 2.10. Sensitivity of Network Total MR&R Costs To Element Repair Unit Cost

2.3.5 Variation in only Element Minor Maintenance Unit Costs

Finally, for this subcategory, using SQL commands very similar to those utilized above for the element replacement unit costs, agency unit costs were adjusted for only actions of element minor maintenance in the Pontis 3.4 cost database, while leaving rehabilitation, repair, and replacement costs fixed. The optimization was run in the Pontis preservation model, at the default discount rate of 0.9525, to obtain results of the calculated long-term unit costs for each element-environment-state-action combination, and the recommended action. The variation in long term costs relative to changes in the element replacement unit costs, are shown in Tables 2.9 and 2.10 and graphs in Figures 2.11 and 2.12. The results include the changes in recommended actions as the costs are adjusted from the default cost values, in addition to summary results at the network level.

Less than 20% of the bridge elements showed any sensitivity to variation in minor maintenance unit costs. Element Nos. 102, and 202 were observed to be sensitive to all ranges of cost variation. Element Nos. 113, 152, 161, and 311 were sensitive to cost reductions while only Element No. 28 was found to be sensitive to cost increases.

Often in the Florida customization of the Pontis CoRe elements, minor maintenance actions are considered feasible in condition state 1, where they compete against the zero-cost alternative of do-nothing and thus are never selected at any non-zero unit cost. In other cases where minor maintenance is considered in state 2, the action is given very little effect on deterioration, and therefore also is not selected. It is not surprising, then, that minor maintenance actions have little effect on the Pontis results.

The network level results also show costs and variations for the two environment scenarios described above. Figure 2.11 indicates that network total long-term costs are relatively insensitive to variations in minor maintenance unit costs.

Elem ID#	Element Long Name	CHANGE IN ACTION RECOMMENDED? (AT % OF DEFAULT COST)				
		50%	75%	125%	150%	
12	Concrete Deck – Bare	NO	NO	NO	NO	
13	Concrete Deck - Unprotected w/ AC Overlay	NO	NO	NO	NO	
28	Steel Deck - Open Grid	NO	NO	NO	YES	
31	Timber Deck - Bare	NO	NO	NO	NO	
38	Concrete Slab - Bare	NO	NO	NO	NO	
39	Concrete Slab - Unprotected w/ AC Overlay	NO	NO	NO	NO	
102	Painted Steel Closed Web/Box Girder	YES	YES	YES	YES	
104	P/S Conc Closed Web/Box Girder	NO	NO	NO	NO	
107	Painted Steel Open Girder/Beam	NO	NO	NO	YES	
109	P/S Conc Open Girder/Beam	NO	NO	NO	NO	
110	Reinforced Conc Open Girder/Beam	NO	NO	NO	NO	
111	Timber Open Girder/Beam	NO	NO	NO	NO	
113	Painted Steel Stringer	YES	YES	NO	NO	
116	Reinforced Conc Stringer	NO	NO	NO	NO	
152	Painted Steel Floor Beam	YES	YES	NO	NO	
161	Painted Steel Pin and/or Pin and Hanger Assembly	YES	YES	NO	NO	
121	Painted Steel Bottom Chord Thru Truss	NO	NO	NO	NO	
202	Painted Steel Column or Pile Extension	YES	YES	YES	YES	
204	P/S Conc Column or Pile Extension	NO	NO	NO	NO	
205	Reinforced Conc Column or Pile Extension	NO	NO	NO	NO	
206	Timber Column or Pile Extension	NO	NO	NO	NO	
210	Reinforced Conc Pier Wall	NO	NO	NO	NO	
215	Reinforced Conc Abutment	NO	NO	NO	NO	
234	Reinforced Conc Cap	NO	NO	NO	NO	
235	Timber Cap	NO	NO	NO	NO	
241	Reinforced Concrete Culvert	NO	NO	NO	NO	
300	Strip Seal Expansion Joint	NO	NO	NO	NO	
301	Pourable Joint Seal	NO	NO	NO	NO	
302	Compression Joint Seal	NO	NO	NO	NO	
303	Assembly Joint/Seal (modular)	NO	NO	NO	NO	
304	Open Expansion Joint	NO	NO	NO	NO	
310	Elastomeric Bearing	NO	NO	NO	NO	
311	Moveable Bearing (roller, sliding, etc.)	YES	YES	NO	NO	
313	Fixed Bearing	NO	NO	NO	NO	
331	Reinforced Conc Bridge Railing	NO	NO	NO	NO	
	TOTAL ELEMENTS SENSITIVE (YES COUNT)	6	6	2	4	
	% OF ALL ELEMENTS (35)	17%	17%	6%	11%	

Table 2.10. Summary Of Bridge Elements' Sensitivity To Element Maintenance Unit Cost

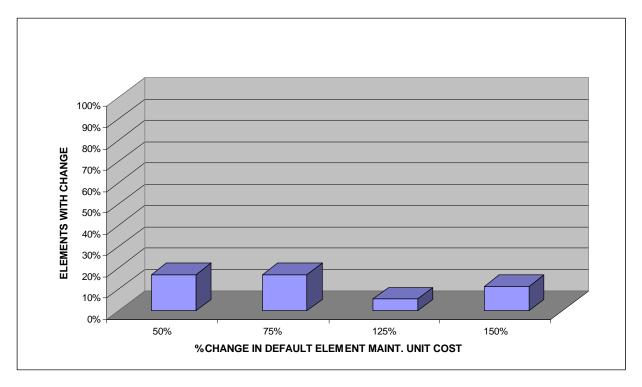


Figure 2.11. Summary of Bridge Elements' Sensitivity To Element Maintenance Unit Cost

VARIATION IN ELEMENT MAINTENANCE UNIT COST							
	50%	75%	100%	125%	150%		
TOTAL FIRST COSTS:							
ALL BRIDGES IN	\$9,745,841	\$10,310,203	\$12,097,900	\$9,875,958	\$9,875,958		
ENVIRONMENT 1							
ALL BRIDGES IN	\$274,463,957	\$280,536,503	\$285,842,638	\$271,393,754	\$271,393,754		
ENVIRONMENT 4							
TOTAL LONG TERM							
COSTS:							
ALL BRIDGES IN	\$393,039,443	\$404,871,348	\$431,541,536	\$398,728,980	\$402,709,992		
ENVIRONMENT 1							
ALL BRIDGES IN	\$7,025,437,177	\$7,177,773,465	\$7,292,787,286	\$7,278,527,180	\$7,327,497,281		
ENVIRONMENT 4							

Table 2.11. Network Total MR&R Costs Vs. Change In Element Maintenance Unit Cost

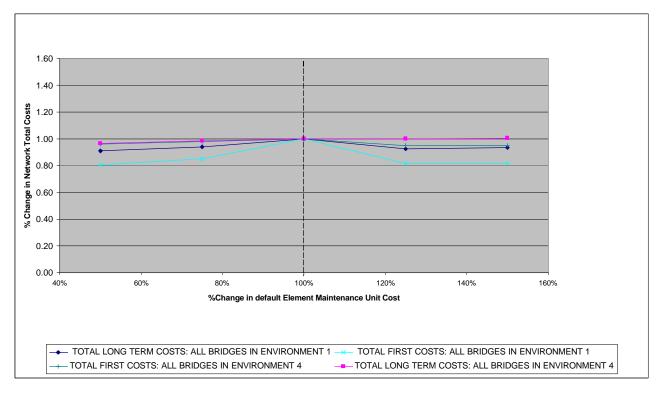


Figure 2.12. Sensitivity Of Network Total MR&R Costs To Element Maintenance Unit Cost

2.3.6 Variation in only Failure Agency Unit Costs

As mentioned earlier in this report, failure agency costs play a major role in the optimal selection of MR&R actions in the Pontis preservation model. To perform the sensitivity analysis, a set of SQL commands were utilized to adjust only the element failure agency unit costs in the Pontis 3.4 cost database, while leaving all MR&R costs fixed. With variation the range of 50% to 150% of the default cost, the optimization was run in the Pontis preservation model, at the default discount factor of 0.9525, to obtain results of the calculated long term unit costs for each element-environment-state-action combination, and the recommended action. Table 2.12 shows the sensitivity of each element considered, while figures 2.13 and 2.14 show, for selected elements, the variation in long-term costs relative to changes in the element replacement unit costs. Also indicated in graphs (Figures 2.13 and 2.14) are the changes in recommended actions as the costs are adjusted from the default cost values.

This study of the failure agency costs showed the most sensitivity of all the variables considered so far, with about 90% of the bridge elements in the sample showing some form of sensitivity, mostly because lower failure costs allow the failure state to occur. The only insensitive elements are Nos. 13 Concrete Deck - Unprotected w/ AC Overlay, 116 Reinforced Conc Stringer, 121 Painted Steel Bottom Chord Thru Truss, and 303 Assembly Joint/Seal (modular). As expected, almost all the sensitivities observed were due to cost reduction; only element No. 300 Strip Seal Expansion Joint in environment 1 State 3, showed sensitivity to cost increase. (This case was the only one that had a do-nothing recommendation for its worst condition state in the base-case model.)

In addition to results at the element-environment-state-action levels, summary results are also presented at the network level. The network total costs are only sensitive at low cost values, specifically, at costs lower than about 90% of the default original cost. Above this threshold, the network total costs are insensitive to failure agency costs.

Element Failure Agency Cost is technically defined as the cost to restore the element to serviceable condition after failure as well as to restore any other element that might be affected by failure. This cost is generally very high relative to element replacement, thus causing the Pontis network optimization to find replacement to be a more cost-effective alternative. The effect of lowering the failure cost is to cause the models to select failure. Since this is considered undesirable, it is important to make sure the failure costs are large enough to prevent failure of all elements. The lower long-term costs shown in the graph for lower failure costs, result from the fact that Pontis does not model element behavior following failure, and therefore does not have any life cycle cost allowance for future work following the failure.

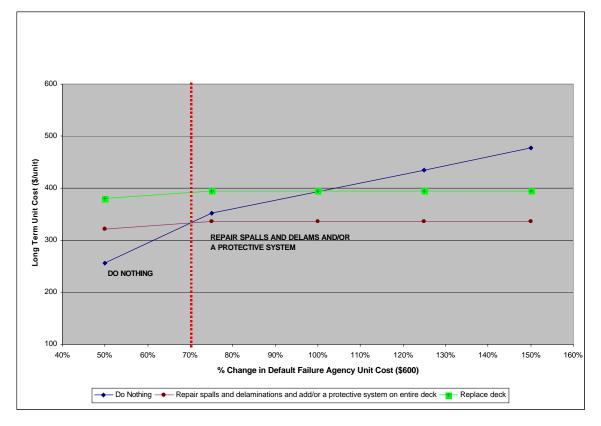


Figure 2.13. Long-term Unit Cost Vs. % Change in Default Failure Agency Unit Cost (Element #12 - Concrete Deck - Bare: Environment 4 Condition State 5, Failure Probability = 29.29%)

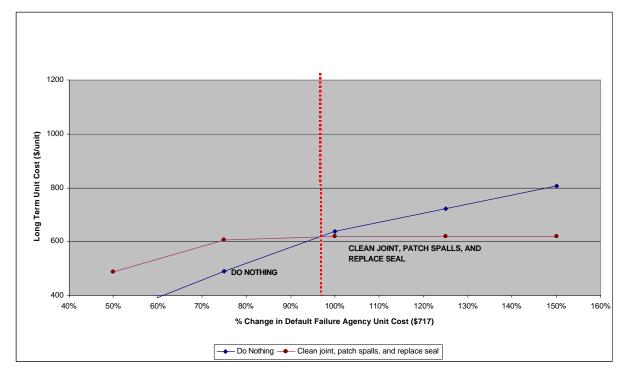


Figure 2.14. Long-term Unit Cost Vs. % Change in Default Failure Agency Unit Cost (Element #301- Pourable Joint Seal: Environment 4 Condition State 3, Failure Probability = 50.00%)

Elem ID#	Element Long Name	CHANGE IN ACTIONS RECOMMENDED? (AT % OF DEFAULT COST)				
		50%	75%	125%	150%	
12	Concrete Deck - Bare	YES	YES	NO	NO	
13	Concrete Deck - Unprotected w/ AC Overlay	NO	NO	NO	NO	
28	Steel Deck - Open Grid	YES	YES	NO	NO	
31	Timber Deck - Bare	YES	YES	NO	NO	
38	Concrete Slab - Bare	YES	YES	NO	NO	
39	Concrete Slab - Unprotected w/ AC Overlay	YES	YES	NO	NO	
102	Painted Steel Closed Web/Box Girder	YES	YES	NO	NO	
104	P/S Conc Closed Web/Box Girder	YES	YES	NO	NO	
107	Painted Steel Open Girder/Beam	YES	YES	NO	NO	
109	P/S Conc Open Girder/Beam	YES	YES	NO	NO	
110	Reinforced Conc Open Girder/Beam	YES	YES	NO	NO	
111	Timber Open Girder/Beam	YES	YES	NO	NO	
113	Painted Steel Stringer	YES	YES	NO	NO	
116	Reinforced Conc Stringer	NO	NO	NO	NO	
152	Painted Steel Floor Beam	YES	NO	NO	NO	
161	Painted Steel Pin and/or Pin and Hanger Assembly	YES	YES	NO	NO	
121	Painted Steel Bottom Chord Thru Truss	NO	NO	NO	NO	
202	Painted Steel Column or Pile Extension	YES	YES	NO	NO	
204	P/S Conc Column or Pile Extension	YES	YES	NO	NO	
205	Reinforced Conc Column or Pile Extension	YES	YES	NO	NO	
206	Timber Column or Pile Extension	YES	YES	NO	NO	
210	Reinforced Conc Pier Wall	YES	YES	NO	NO	
215	Reinforced Conc Abutment	YES	YES	NO	NO	
234	Reinforced Conc Cap	YES	YES	NO	NO	
235	Timber Cap	YES	YES	NO	NO	
241	Reinforced Concrete Culvert	YES	YES	NO	NO	
300	Strip Seal Expansion Joint	YES	YES	YES	YES	
301	Pourable Joint Seal	YES	YES	NO	NO	
302	Compression Joint Seal	YES	YES	NO	NO	
303	Assembly Joint/Seal (modular)	NO	NO	NO	NO	
304	Open Expansion Joint	YES	YES	NO	NO	
310	Elastomeric Bearing	YES	YES	NO	NO	
311	Moveable Bearing (roller, sliding, etc.)	YES	NO	NO	NO	
313	Fixed Bearing	YES	YES	NO	NO	
331	Reinforced Conc Bridge Railing	YES	YES	NO	NO	
	TOTAL ELEMENTS SENSITIVE (YES COUNT)	31	29	1	1	
	% OF ALL ELEMENTS (35)	89%	83%	3%	3%	

Table 2.12. Summary Of Bridge Elements' Sensitivity To Element Failure Agency Unit Cost

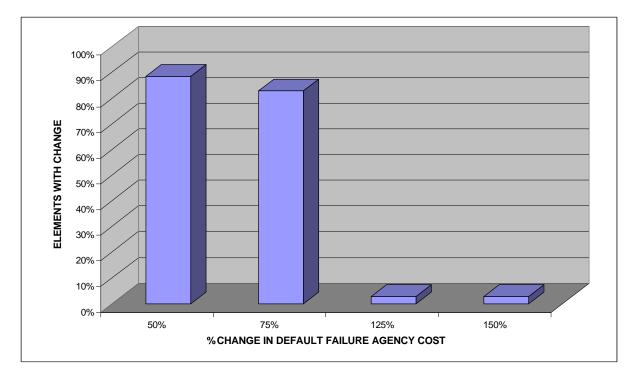


Figure 2.15. Summary Of Bridge Elements' Sensitivity To Element Failure Agency Unit Cost

	VARIATION IN ELEMENT FAILURE AGENCY UNIT COST						
	50%	75%	100%	125%	150%		
TOTAL FIRST COSTS:							
ALL BRIDGES IN	\$2,091,435	\$8,206,750	\$12,097,900	\$12,125,426	\$12,125,426		
ENVIRONMENT 1							
ALL BRIDGES IN	\$209,872,598	\$222,078,178	\$285,840,740	\$285,840,740	\$289,511,009		
ENVIRONMENT 4							
TOTAL LONG TERM							
COSTS:							
ALL BRIDGES IN	\$305,352,070	\$394,515,025	\$431,541,536	\$431,571,582	\$431,571,582		
ENVIRONMENT 1							
ALL BRIDGES IN	\$6,437,552,058	\$7,115,639,120	\$7,292,750,302	\$7,292,750,302	\$7,292,750,302		
ENVIRONMENT 4							

Table 2.13. Network Total MR&R Costs Vs. Element Failure Agency Unit Costs

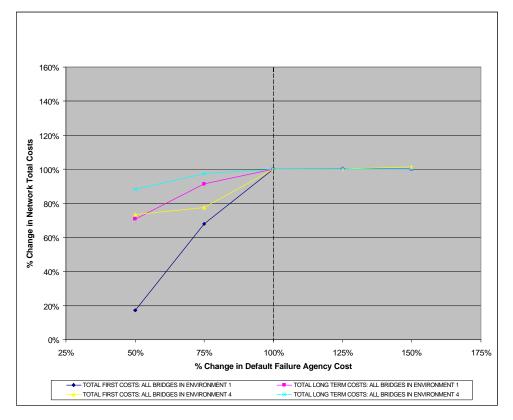


Figure 2.16. Sensitivity Of Network Total MR&R Costs To Element Failure Agency Unit Cost

2.3.7 Variation in only Discount Rate Factors

The data manipulation for the last category of sensitivity analysis considered (effect of the discount rate factor) was easily carried out by using the Configuration button of the Pontis 3.4 main screen. All costs were left at their default values while the discount rate was varied from 0.925 to 0.990, representing a range of interest rate between 1.0% and about 8.0%. Again, an optimization of the preservation model was done by using the Pontis Optimize button. At each discount rate, the results of the optimization run, in a report, included the calculated long-term unit costs for each element-environment-state-action combination, and the recommended action.

As observed in the various graphs in Figures 2.17 to 2.19, there is an expected increasing nonlinear relationship between the long-term costs and discount rate factors. The sensitivity is shown for sample elements, indicating change of action recommended for both cases of lower and higher discount rates. In addition to results at the element-environment-state-action levels, summary results are also presented at the network level.

As indicated in equation 1 presented earlier in this report, any increase in the discount rate factor α will increase the long-term Cost (LTC) of each bridge element. The effect of the discount rate factor α is predictable, based on the nonlinear increase expected in a typical discounting function. Table 2.14 shows that almost all the elements were sensitive to discount rates except for Element No. 13, which was insensitive to all changes in discount rates. Element nos. 38, 107, 202, 205, and 302 were barely sensitive. The least sensitivity (about 30% of the elements) was observed at discount rates close to the default value of 0.95252. The sensitivity was observed to be predominant at extreme low and high α values, with over 80% of the bridge elements being sensitive to very high and very low values of the discount rate factor.

At the network level, the sensitivity demonstrated in Figure 2.21 is as expected, particularly for the total long-term costs.

When the discount rate is increased (moving closer to 1.0), the effect of long-term costs becomes more important in the optimization. As a result, the model is more likely to recommend actions that reduce long-term costs, even if they are initially more expensive. When the discount rate is decreased, the future implications of decisions become less important, and the model is more likely to recommend doing nothing. It was also observed that the total network MR&R first cost is slightly sensitive to increase in the discount rate factor. Being the initial costs of actions recommended based on their optimal long-term unit costs, this sensitivity is not unexpected. However, for bridge elements in environment 4 (worst), the model tends to recommend cheaper actions (including do-nothing) at high discount rates.

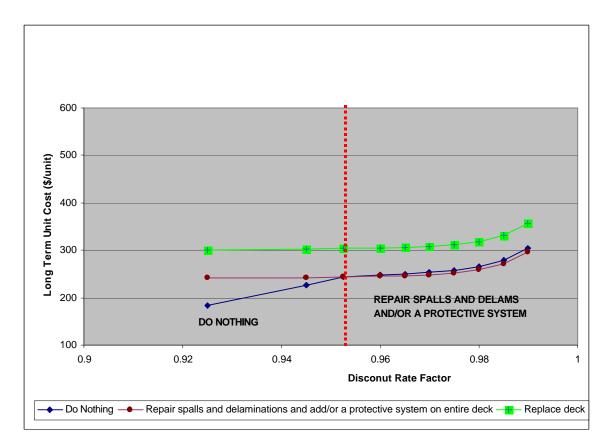


Figure 2.17. Long-Term Unit Cost Vs. Discount Rate Factor (Element #12 - Concrete Deck - Bare: Environment 1 Condition State 5, Failure Probability = 3.56%)

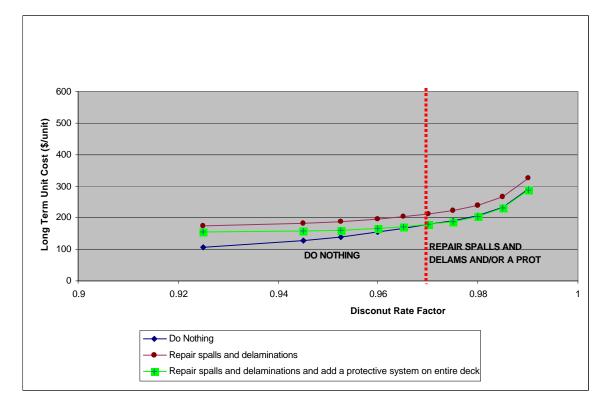


Figure 2.18. Long-Term Unit Cost Vs. Discount Rate Factor (Element #12 - Concrete Deck - Bare: Environment 2 Condition State 4, Failure Probability = 7.26%)

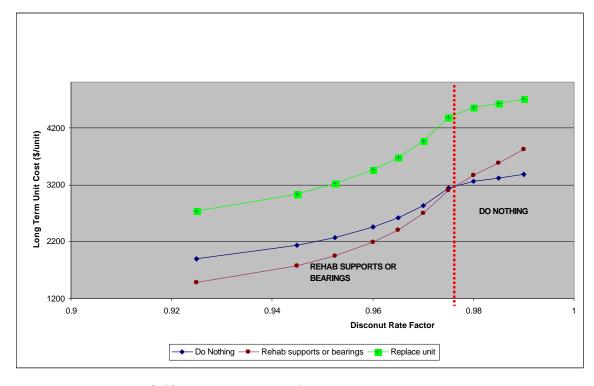


Figure 2.19. Long-Term Unit Cost Vs. Discount Rate Factor

(Element #311 - Moveable Bearing (roller, sliding, etc.): Environment 4 Condition State 3, Failure Probability = 27.89%)

Elem										525)
ID#	Element Long Name	0.925	0.945	0.960	0.965	0.970	0.975	0.980	0.985	0.990
12	Concrete Deck - Bare	YES	YES	NO	NO	YES	YES	YES	YES	YES
13	Concrete Deck - Unprotected w/ AC Overlay	NO								
28	Steel Deck - Open Grid	YES								
31	Timber Deck - Bare	YES	NO	NO	NO	NO	NO	NO	YES	YES
38	Concrete Slab - Bare	YES	NO							
39	Concrete Slab - Unprotected w/ AC Overlay	YES	YES	NO	YES	YES	YES	YES	YES	YES
102	Painted Steel Closed Web/Box Girder	YES	NO	NO	YES	YES	YES	YES	YES	YES
104	P/S Conc Closed Web/Box Girder	YES	YES	NO	YES	YES	YES	YES	YES	YES
107	Painted Steel Open Girder/Beam	YES	YES	NO						
109	P/S Conc Open Girder/Beam	YES	YES	NO	YES	YES	YES	YES	YES	YES
110	Reinforced Conc Open Girder/Beam	YES	NO	YES						
111	Timber Open Girder/Beam	YES	NO	NO	YES	YES	YES	YES	YES	YES
113	Painted Steel Stringer	YES	NO	NO	NO	NO	YES	YES	YES	YES
116	Reinforced Conc Stringer	YES	NO	YES						
121	Painted Steel Bottom Chord Thru Truss	YES	NO	YES						
152	Painted Steel Floor Beam	YES	NO	NO	NO	NO	YES	YES	YES	YES
161	Painted Steel Pin and/or Pin and Hanger Assembly	YES	NO	NO	NO	NO	NO	YES	YES	YES
202	Painted Steel Column or Pile Extension	YES	NO							
204	P/S Conc Column or Pile Extension	YES	NO	YES						
205	Reinforced Conc Column or Pile Extension	YES	NO	NO	YES	YES	YES	YES	YES	YES
206	Timber Column or Pile Extension	YES	NO	YES						
210	Reinforced Conc Pier Wall	YES	YES	NO	NO	NO	YES	YES	YES	YES
215	Reinforced Conc Abutment	YES	NO	YES						
234	Reinforced Conc Cap	YES								
235	Timber Cap	YES	NO	NO	YES	YES	YES	YES	YES	YES
241	Reinforced Concrete Culvert	YES	NO	NO	NO	NO	YES	YES	YES	YES
300	Strip Seal Expansion Joint	NO	NO	YES						
301	Pourable Joint Seal	NO	NO	YES						
302	Compression Joint Seal	NO	NO	YES						
303	Assembly Joint/Seal (modular)	NO	YES							
304	Open Expansion Joint	YES	YES	NO	YES	YES	YES	YES	YES	YES
310	Elastomeric Bearing	YES		NO	NO	YES	YES	YES	YES	YES
311	Moveable Bearing (roller, sliding, etc.)	NO	NO	NO	NO	NO	NO	YES	YES	YES
313	Fixed Bearing	YES	YES	NO	NO	NO	YES	YES	YES	YES
331	Reinforced Conc Bridge Railing	YES	YES	NO	YES	YES	YES	YES	YES	YES
	TOTAL ELEMENTS SENSITIVE (YES COUNT)	29	12	10	19	21	26	28	29	31
	% OF ALL ELEMENTS (35)	83%	34%	29%	54%	60%	74%	80%	83%	89%

Table 2.14. Summary Of Bridge Elements' Sensitivity To Discount Rate Factor (a)

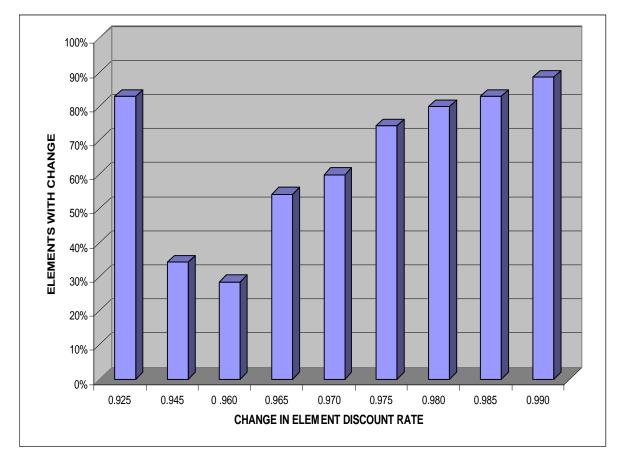


Figure 2.20. Summary Of Bridge Elements' Sensitivity To Discount Rate Factor (a)

	VA	ARIATION IN DI	SCOUNT RATE (DEFAULT a = 0.9	525)
	0.925	0.9525	0.965	0.975	0.985
TOTAL FIRST COSTS:					
ALL BRIDGES IN	\$5,956,911	\$12,097,900	\$12,195,079	\$12,209,192	\$12,416,869
ENVIRONMENT 1					
ALL BRIDGES IN	\$268,092,008	\$285,840,740	\$267,365,160	\$232,491,628	\$220,364,927
ENVIRONMENT 4					
TOTAL LONG TERM					
COSTS:					
ALL BRIDGES IN	\$205,816,123	\$431,541,536	\$691,466,457	\$1,177,407,639	\$2,490,013,403
ENVIRONMENT 1					
ALL BRIDGES IN	\$4,465,215,172	\$7,292,750,302	\$9,969,220,031	\$13,623,598,477	\$21,213,565,245
ENVIRONMENT 4					

Table 2.15. Network Total MR&R Costs Vs. Change In Discount Rate Factor (a)

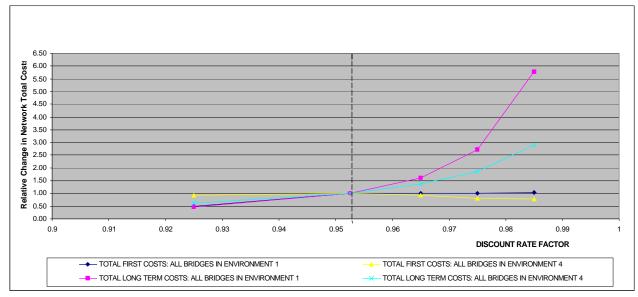


Figure 2.21. Sensitivity Of Network Total MR&R Costs To Discount Rate Factor (a)

2.4 Comments and Conclusions on BMS Requirements

Table 2.16 summarizes the sensitivity analysis, identifying the parts of the preservation cost model that are most sensitive to input data. The table shows that rehabilitation and repair unit costs are of greatest importance, demanding the highest level of precision. Element replacement costs can suffice with somewhat less precision, and minor maintenance costs even less.

Failure costs are not significant in the network-level model as long as the cost is high enough to prevent the recommendation of do-nothing in the worst condition state. However, failure costs do contribute to the long-term cost calculation and thus they do affect the relative priorities among elements at the program level of Pontis.

Discount rates are very significant to the analysis. The evident sensitivity of this variable underscores the importance of having a standard policy discount rate that is applied to all types of assets.

All of the agency unit costs directly affect project-level cost estimates. Through this relationship, all Pontis results at the project and program levels are linearly sensitive to unit costs.

The sensitivity of each of the 35 sample elements is summarized in Table 2.17. While some elements are insensitive to any variation in the input parameters, other elements were sensitive to all forms of variations (low or high). Also, some elements are sensitive to only low values and some to only high values. These results can be utilized as guide in expert judgment adjustment of original cost values utilized in running the Pontis preservation model . The level of precision needed, and the effect of increasing or decreasing default cost values, is indicated by the summarized sensitivity indicated in Table 2.17.

Varied MR&R Parameter	SENSITIVITY OF TOTAL LONG-TERM COSTS	SENSITIVITY OF TOTAL FIRST (INITIAL) COSTS
Element MR&R Unit Costs (All varied)	Not Sensitive	Not Sensitive
Element Replacement Unit Cost	Negligibly Sensitive	Reasonably Sensitive
Element Rehabilitation Unit Cost	Slightly Sensitive	Reasonably Sensitive
Element Repair Unit Cost	Reasonably Sensitive	Reasonably Sensitive
Element Maintenance Unit Cost	Slightly Sensitive	Slightly Sensitive
Failure Agency Unit Cost	Reasonably Sensitive	Very Sensitive
	(Only at Low Costs)	(Only at Low Costs)
Discount Rate Factor	Very Sensitive	Slightly Sensitive

Table 2.16. Summary Of Network Total MR&R Costs' Sensitivity

		MR&R Unit	Element	Element	Element	Element	Failure	Discount Rate
Elem ID#		Costs	Replacement	Rehabilitation	Repair Unit	Maintenance	Agency Unit	Factor
	Element Long Name	(All varied)	Unit Cost	Unit Cost	Cost	Unit Cost	Cost	
12	Concrete Deck - Bare	None	Low Costs	High Costs	Low Costs	None	Low Costs	High/Low
13	Concrete Deck - Unprotected w/ AC Overlay	None	None	None	None	None	None	None
28	Steel Deck - Open Grid	None	All Costs	All Costs	Low Costs	High Costs	Low Costs	All
31	Timber Deck - Bare	None	High Costs	Low Costs	None	None	Low Costs	High/Low
38	Concrete Slab - Bare	None	None	High Costs	Low Costs	None	Low Costs	Very Low
39	Concrete Slab - Unprotected w/ AC Overlay	None	None	All Costs	All Costs	None	Low Costs	High/Low
102	Painted Steel Closed Web/Box Girder	None	None	All Costs	All Costs	All Costs	Low Costs	High/Low
104	P/S Conc Closed Web/Box Girder	None	None	All Costs	All Costs	None	Low Costs	High/Low
107	Painted Steel Open Girder/Beam	None	Low Costs	All Costs	Low Costs	High Costs	Low Costs	Very Low
109	P/S Conc Open Girder/Beam	None	All Costs	Low Costs	All Costs	None	Low Costs	High/Low
110	Reinforced Conc Open Girder/Beam	None	Low Costs	All Costs	All Costs	None	Low Costs	High/Low
111	Timber Open Girder/Beam	None	High Costs	Low Costs	None	None	Low Costs	High/Low
113	Painted Steel Stringer	None	All Costs	None	All Costs	Low Costs	Low Costs	High/Low
116	Reinforced Conc Stringer	None	None	High Costs	Low Costs	None	None	High/Low
121	Painted Steel Bottom Chord Thru Truss	None	Low Costs	High Costs	Low Costs	None	None	High/Low
152	Painted Steel Floor Beam	None	Low Costs	All Costs	High Costs	Low Costs	Low Costs	High/Low
161	Painted Steel Pin and/or Pin and Hanger Assembly	None	None	High Costs	Low Costs	Low Costs	Low Costs	High/Low
202	Painted Steel Column or Pile Extension	None	Low Costs	All Costs	All Costs	All Costs	Low Costs	Very Low
204	P/S Conc Column or Pile Extension	None	None	All Costs	All Costs	None	Low Costs	High/Low
205	Reinforced Conc Column or Pile Extension	None	None	All Costs	Low Costs	None	Low Costs	High/Low
206	Timber Column or Pile Extension	None	Low Costs	All Costs	None	None	Low Costs	High/Low
210	Reinforced Conc Pier Wall	None	None	All Costs	All Costs	None	Low Costs	High/Low
215	Reinforced Conc Abutment	None	Low Costs	All Costs	All Costs	None	Low Costs	High/Low
234	Reinforced Conc Cap	None	Low Costs	All Costs	All Costs	None	Low Costs	All
235	Timber Cap	None	All Costs	All Costs	None	None	Low Costs	High/Low
241	Reinforced Concrete Culvert	None	All Costs	All Costs	None	None	Low Costs	High/Low
300	Strip Seal Expansion Joint	None	None	None	All Costs	None	All Costs	High
301	Pourable Joint Seal	None	All Costs	None	High Costs	None	Low Costs	High
302	Compression Joint Seal	None	Low Costs	None	High Costs	None	Low Costs	High
303	Assembly Joint/Seal (modular)	None	None	None	None	None	None	Very High
304	Open Expansion Joint	None	Low Costs	None	High Costs	None	Low Costs	High/Low
310	Elastomeric Bearing	None	None	None	All Costs	None	Low Costs	High/Low
311	Moveable Bearing (roller, sliding, etc.)	None	Low Costs	Low Costs	High Costs	Low Costs	Low Costs	Very High
	Fixed Bearing	None	Low Costs	Low Costs	High Costs	None	Low Costs	High/Low
	Reinforced Conc Bridge Railing	None	Low Costs	None	Low Costs	None	Low Costs	High/Low

Table 2.17. General Summary of Bridge Elements' Sensitivity To MR&R Decision Variables

None \rightarrow Elements not sensitive to Variation in Costs/Discount Rate Factor.

All/All Costs \rightarrow Elements Sensitive to all values.

Low/Low Costs \rightarrow Elements Sensitive to only low values.

High/High Costs \rightarrow Elements Sensitive to only high values

3. Determination of Existing Agency Cost Data

This section summarizes the determination of existing agency cost data at the Florida Department of Transportation (FDOT), including the interview of relevant FDOT personnel, inquiry into FDOT computerized database systems, gathering of documentation, and linkages to FDOT Bridge Management System (BMS) requirements. Through contact by telephone calls, review of Internet web pages, and scheduled meetings, the researcher interviewed various FDOT employees to explore existing sources of agency cost data within the department, data that are relevant to the Pontis- Bridge Management System (BMS) for Florida bridges. At these meetings, the types of data available were ascertained in terms of their appropriateness to BMS, their quality and timeliness, and the degree to which their availability is affected by new systems under development. In addition, the technical and procedural accessibility of the data was determined, for use in this project and also for routine use by the BMS. The results are described in the following major sections: (1) Departmental Contact and Interviews; (2) Gathering of Documentation; and (3) Linkages to Florida BMS Requirements.

3.1. Departmental Contact and Interviews

Initially, the FDOT Internet web site at address <u>http://www.dot.state.fl.us</u> was studied to learn about the agency's practice of cost data management, to identify relevant sources of bridge cost data, and also to locate the various personnel in charge of these data. In addition to the study project manager, Rich Kerr, the following personnel were directly contacted at the FDOT to inquire about existing agency cost data:

<u>Bridge Maintenance Office:</u> Frank Day, John Clark, Kirk Hutchinson, Mike Sprayberry, and Elizabeth Birrel. <u>Planning Office:</u> Bob Weinstein. <u>Office of Information Systems:</u> Rebecca Clemans, and Vicki Bradford.

Interviews were then conducted either by email and phone (Clemans and Bradford) or in person at FDOT premises (Weinstein, Kerr, Clark, Hutchinson, Sprayberry, and Birrel) with each of the above-listed people. The interviews revealed the location, relevance, and database access authorization issues on the various potential sources of cost data. After the interviews, the sources identified include the following categories:

<u>A. Contract Estimating System (CES):</u> Located on the Internet at the web site address <u>http://www.dot.state.fl.us/estimates/CES/contract.htm</u>, this is primarily a system for managing construction cost data related to FDOT projects procured through bidding contracts. The CES, maintained by the FDOT State Estimates Office, is defined as a group of computer programs that are used to automate the various reports, procedures, and computations necessary to produce accurate, timely cost estimates. Related systems, programs, and files include: CES Master Pay Item, CES Job Estimate File, CES Cross Reference File, Contract Administration System (CAS),

Contract Reporting System (CRS), and Bid Analysis Management System (BAMS). The system also provides CES Output/Reports.

After a review of the programs and files available, it was decided that the CES Master Pay Item and CES Output/Reports files would be relevant to the study of agency costs. The Master Pay Item is a dictionary of contract Pay Items, describing the types of contract work items and units of measurement (both Metric and English units), as typically bid on FDOT construction projects. The CES Output has information on Construction Contract History, including the Pay Item Average Unit Cost Report, and Price Trends. The Pay Item Average Unit Cost Report (alias "Akbar") provides historical data. Another document, the Basis of Estimates, published by the FDOT's Engineering Support Services of the Estimates Office, contains a comprehensive list of the pay item structure and definitions.

<u>B. Maintenance Management System (MMS):</u> Identified through meetings with the FDOT Bridge Maintenance personnel, this system captures and stores the costs of maintenance-related operations by FDOT, on its highways and bridges. The work was typically performed by contractors, in-house crews, or prison crews. It is considered a good source of historical data on bridge maintenance activities.

<u>C. District Contract Prototype (DCP)</u>: Identified through meetings with the FDOT Bridge Maintenance personnel, this system is very similar to the CES (Akbar) system, except that DCP is designed to capture only maintenance-related costs from contract-bid projects.

<u>D. District Paper Records:</u> Each FDOT district also partially maintains hardcopies or paper records of their maintenance operations, especially those done by in-house crews.

<u>E. Transportation Costs Report:</u> Located on the FDOT Internet web site at the address <u>http://www.dot.state.fl.us/planning/</u>, this is basically a report or a handbook used as guide for estimating preliminary costs of transportation facilities in Florida. It is not a documented record of past or actual costs.

<u>F. Project Objectives and Accomplishments Report:</u> Produced for planning purposes, this report indicates the fund amount allocated to projects on the bridge rehabilitation and replacement program (BRRP). This report is primarily for planning purposes based on programmed fund estimates, not a record of actual costs. Also closely related to this report, and from the same source of data, are the Bridge Unit Cost Report, and a report on the FDOT Executive Committee Workshop, Program Development Issues, May 18 & 19, 1999. The cost estimates in these three reports are based on programmed funds.

The first three sources of cost data, i.e., Akbar from the Contract Estimating System (CES), Maintenance Management System (MMS), and the District Contract Prototype (DCP), were found to be the most relevant to the study on agency cost, and available in a computerized database format that could be easily downloaded from the FDOT mainframe computers. These three databases are based on actual costs of bridge construction and maintenance operations. The Akbar database utilized for this study contained historical data from 1996 to 1999 while the MMS and DCP data ranged from 1993 to 1999. Interviews with Clemans and Bradford of the Office of Information Systems indicated an already-established procedure for Database access authorization by FDOT consultants.

3.2. Gathering of Documentation

Relevant documents such as instruction manuals, reports, internet site downloads, and sample output reports, were collected on the potential sources of agency cost data, including Akbar, MMS, and the other sources. Initially, the paper copies of the sample reports were converted into electronic spreadsheets and databases, to evaluate their ease of manipulation. Formal application for external access (using outside computer terminals) was not necessary because of the direct identification of the source and the type of data needed. Eventually, access to the mainframe computers was obtained, with the permission to directly download the data at FDOT Bridge Maintenance Office computer terminals. The various documentation collected in the effort to find existing agency cost data include the following:

- Routine Maintenance Cost Handbook, Published by the FDOT State Maintenance Office;
- Bridge Work Order Handbook, Published by the FDOT State Maintenance Office;
- Basis of Estimate, Published by the FDOT Estimate Office;
- FDOT Procedures for the State Office of Maintenance: No. 000-525-001 Construction, Maintenance, and Operation of Other Facilities No. 325-010-001 Maintenance Management System No. 350-020-002 Routine Maintenance Cost Collection No. 375-020-002 Contract Maintenance Inspection and Reporting No. 850-000-001 Transportation Data Collection, Storage and Reporting No. 850-005-001 Reporting Incidents and Management of Damage Repair No. 850-010-031 Bridge Operations and Maintenance Manual No. 850-015-001 Bridge Maintenance Manual - Planning & Repair Methods No. 850-050-003 Guardrail Inspection and Maintenance No. 850-065-002 Maintenance Rating Program;
- FDOT Procedures for the State Office of Comptroller Financial Management: No. 360-050-005 Project Cost Reporting
- Bridge Inventory 1997 Annual Report, Published by the FDOT State Maintenance Office;
- Deficient Bridge List 1997 Repairs and Replacements, Published by the FDOT State Maintenance Office;
- Highway System Overview Briefing Notebook, Published by the FDOT Office of Management and Budget Program Development Office;
- Executive Committee Workshop, Program Development Issues, May 18 & 19, 1999;
- 1998 Transportation Costs, Published by the FDOT Office of Policy Planning;
- Sample Output Print from Pay Item Average Unit Cost Report;
- Sample Output Print from MMS;
- Sample Output Print from Project Objectives and Accomplishments Report (Bridges: Repair and Replace on the State System); and
- Sample Output Print from the Bridge Unit Cost Report (Four-year Report Sorted by Workmix).

Final Report

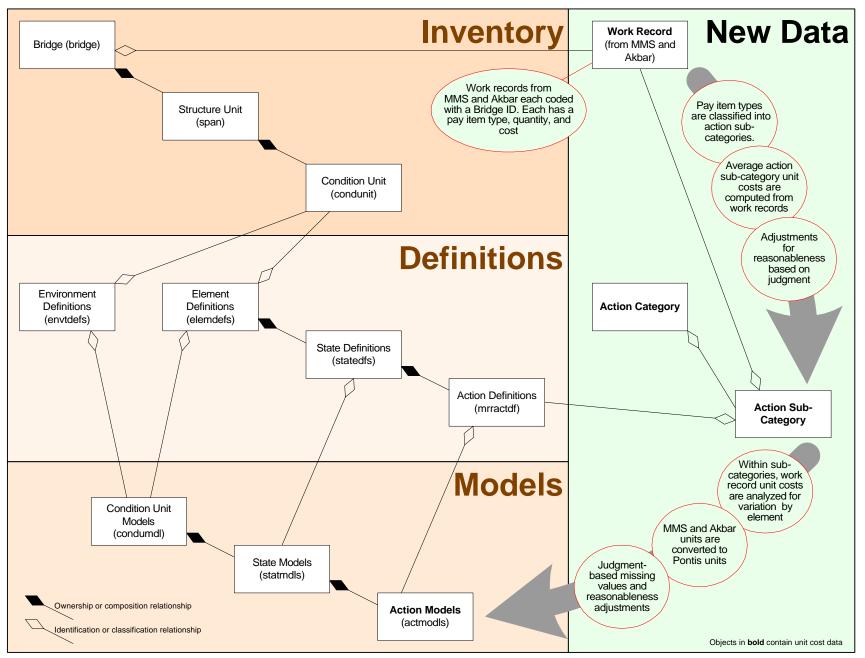


Figure 3-1. Linkages to BMS Requirements

3.3. Linkages to Florida BMS Requirements

A plan was developed for linking the available data to FDOT bridge management system requirements, to serve as a guide during the remainder of the study as well as for future updating. Required are: (1) the definition of linkage formulas or procedures for on-going or one-time computations; and (2) organization of Pontis-required unit costs into a smaller set of action types which can be mapped to FDOT Activity codes and pay items. The categorization has to be refined to reflect an emphasis on the common structure types and also to ensure that each category has a statistically significant sample of historical project data wherever possible.

MMS, DCP, and Akbar are rich sources of project history data, containing the essential data items needed for the analysis. The three systems contain the following essential data:

- Bridge identifier, consistent with the identifiers used in Pontis (only MMS has this information);
- Pay item type or activity code, indicating the nature of the work performed;
- Description, a brief passage of text describing the work;
- Quantity of work;
- Estimated cost of the work.

The estimated cost of the work is estimated by FDOT staff based on an allocation of the total project cost. The MMS cost database contains data on overall highway maintenance operations, including pavement and bridge maintenance. The cost data is based on projects executed in the following ways: (1) using in-house FDOT crews; (2) using prison crews; and (3) by contract with an external company. The last category (contract work) did not have total units of work item recorded in the MMS database. So it was eliminated from the data analyzed in this study, The costs from the first two categories (in-house and prison crews) are more relevant to the study; they include costs of overhead and fringes, built from labor, materials, and equipment usage, using a cost model already developed inside in the MMS. The cost of Maintenance of Traffic (MOT) is also included in the MMS costs. These costs were therefore judged adequate for use in the Pontis MR&R model. Akbar and DCP costs are based on previous contractors' low bids for construction projects which were contracted out. The Akbar and DCP data do not include project engineering costs. Also, mobilization is typically bid by the Contractor as a separate item, so it is not included in the data.

Although the data are potentially valuable, two particular problems must be overcome in order to use them to derive network-level unit costs for Pontis:

- The pay item codes in MMS, DCP, and Akbar are often incompatible with the MR&R action definitions in Pontis;
- MMS, DCP, and Akbar unit costs are often expressed in measurement units different from Pontis.

Because of these problems, it is not possible to use MMS, DCP, or Akbar data directly in Pontis to establish unit costs. Instead, a process of analysis, supplemented by expert judgment, has been developed to estimate the required data. The process involves creation of an intermediate categorization of actions that is compatible with all three systems - MMS, Akbar, and Pontis – thus providing a conduit through which the data may be converted.

Figure 3.1. describes this process. The figure is called a class diagram, because it classifies the various types of data used in the process, and shows how the classes of data relate to each other. The boxes on the left-hand side of the diagram contain the existing Pontis 3.4.3 data related to the analysis, with the Pontis database table names given in parentheses. The lines between classes indicate how the classes are related. For example, a bridge contains structure units, each of which contains condition units. Each condition unit is classified by an environment and an element.

In the bottom center of the diagram, the Action Models class is the one of greatest concern, because it holds the unit cost figures that are to be developed. As the diagram indicates, there is a set of action models for each condition state model, and a set of state models for each condition unit model. The condition unit models differ by element and environment. The result is that there are a very large number of Action Models, and therefore a large number of unit cost factors to be developed. In fact, in the FDOT Pontis database, which adds considerably to the standard AASHTO CoRe Elements, there are potentially 6,504 unit costs to be developed.

The right-hand side of Figure 3.1 shows the new data classes to be developed in this study. The work record class holds the raw MMS and Akbar data, including the items listed above. Action Sub-Category, the most important class in the analysis, holds the new intermediate categorization of actions. In order for the process to work, it must be possible to collapse the work records into action sub-categories, computing an average unit cost that is reasonably consistent within each sub-category. Moreover, it must be possible to then map each and every Pontis MR&R action definition to a sub-category, to determine an initial estimate of unit cost for each Action Model.

Action sub-categories were initially developed judgmentally, based on a detailed review of all three information systems. An attempt was then made to fit the sub-categories to the detailed work records from MMS and Akbar, and then to the MR&R action definitions in Pontis. Fitting the sub-categories to MMS and Akbar relied heavily on the brief text descriptions provided for each work record. Following the initial attempt to fit all three systems, the action sub-category definitions were adjusted to improve the fit.

Choosing the optimal number of action sub-categories depends on balancing two competing factors:

- A small number of large sub-categories improves the sample size used in the statistical calculation of average unit costs; and
- A larger number of smaller sub-categories increases the resolution of the estimates, making it possible to distinguish the costs of more elements.

In addition, it was desired to keep the categorization relatively general, so it would not have to be changed in the future if FDOT data capture capabilities change. The process described in Figure 3.1 allows for the possibility that, if a subcategory turns out to have a large sample size, further analysis may be conducted to try to distinguish individual elements within the sub-category.

vvnite cells repres	ent valid sub-categories; nun	-			
		Action Catego			
	Object	100-Replace	200-Rehab	300-Repair	400-Maint
Materials	0 Other material				1
	1 Deck		2	3	4
	2 Steel/coat (incl metal)	5		6	7
	3 Concrete			8	9
	4 Timber				
	5 Masonry				
	6 MSE				
Hi-Maint	10 Other element				
	11 Joint				
	12 Joint seal				
	13 Bearing (incl p/h)				
	14 Railing				
Drainage	21 Slope prot				
	22 Channel				
	23 Drain sys				
Machinery	31 Machinery	10	10	10,11	10
	32 Cath prot				
Major	41 Beam				
	42 Truss/arch/box				
	43 Cable	_			
	44 Substr elem (exc cap)	12			
	45 Culvert				
	46 Appr slab		13		
Appurtenances	51 Pole/sign				

Table 3.1. Preliminary Action Sub-Categories

White cells represent valid sub-categories; numbers refer to footnotes

Footnotes

1. Wash structure

- 2. Rehab deck and replace overlay
- 3. Repair deck and substrate
- 4. Repair potholes
- 5. Replace paint system
- 6. Spot paint
- 7. Restore top coat
- 8. Clean rebar and patch
- 9. Patch minor spalls
- 10. Includes electrical, hydraulic, and mechanical elements
- 11. Repair and lubricate
- 12. Includes fenders, dolphins, and pile jackets
- 13. Mudjacking

The structure of 49 action sub-categories is given in Table 3.1. In general, it was found that an optimal classification compatible with all three systems could best be derived by appealing to the physical nature of the work, dividing the range of possibilities by action category, shown in the columns of the table, and by the object of the action, shown in the rows of the table. Each action sub-category is designated by a number based on the category and object: for example, sub-category 203 is concrete rehabilitation, and 446 is approach slab maintenance.

It was desired that the sub-category definitions be chosen to minimize the variance of unit costs within sub-categories while maximizing the variance among sub-categories. This was done judgmentally in Task 3, but analyzed more formally in Task 4. For example, it was hypothesized that all concrete repair activities, regardless of element or condition state, would have similar unit costs, so all were grouped into sub-category 303.

After coding all MMS and Akbar work records with appropriate sub-categories, Table 3.2 was developed to show the coverage for each sub-category. The numbers in the table count the work records classified into each sub-category. Certain sub-categories are very well represented in the source data, while others have little or no coverage. Those with sparse coverage will need to be estimated from expert judgment until more complete data can be captured. Every Pontis MR&R action definition was mapped to a sub-category, as shown in the complete list in Appendix A.

		Action Catego	ry		
	Object	100-Replace	200-Rehab	300-Repair	400-Maint
Materials	0 Other material				240
	1 Deck	1	7	22	227
	2 Steel/coat (incl metal)	1	8	47	2
	3 Concrete		0	203	2296
	4 Timber		9		0
	5 Masonry		0		0
	6 MSE		0		0
Hi-Maint	10 Other element				
	11 Joint	26	594	122	81
	12 Joint seal	268			
	13 Bearing (incl p/h)	4	41		14
	14 Railing	257			
Drainage	21 Slope prot	1	477		
	22 Channel		714		0
	23 Drain sys	6	3		102
Machinery	31 Machinery	202	4	5	2
	32 Cath prot	7			
Major	41 Beam	1			
	42 Truss/arch/box	0			
	43 Cable	0	0		
	44 Substr elem (exc cap)	35			
	45 Culvert	0			
	46 Appr slab	115	56		474
Appurtenances	51 Pole/sign	0			

 Table 3.2. Coverage of Sub-Categories in MMS and Akbar

Table shows number of work records in MMS and/or Akbar

Because the classification scheme described in Table 3.1 is quite general, it is useful for many purposes related to bridge costing. For example, it was decided to re-run the Task 2 sensitivity analysis using action categories, to uncover the cost sensitivity of each category. Task 2 found that network optimization results for element replacement, rehabilitation, and repair were quite sensitive to unit costs, while maintenance results were relatively insensitive. Most of the activities classified as "maintenance" at FDOT are minor or routine maintenance, defined as feasible in condition state 1. Most of these do not appear in the AASHTO CoRe elements. These were added for analysis purposes outside of Pontis, and Pontis tends to ignore them. As a result, the 400-series sub-categories are of somewhat lower priority for subsequent analysis in this study.

4. Development of Agency Unit Costs

This section provides a detailed description of the methodology used to develop Pontis agency unit costs. FDOT has three excellent sources of historical project data that were relied upon for preliminary unit cost estimates. For reasons that will become clear in this report, a rather elaborate statistical analysis was required in order to extract useful numbers from the available data sources. The results of a study by Clemson University also provided valuable input.

An expert review process proved essential to the successful development of final costs. The panel of experts identified weaknesses in the available data, reconciled conflicting results from the several data sources, and provided insights that filled in the many data gaps that were found. It was found during this study that nearly all of the unit costs required a detailed review and substantial modification before they could be accepted for use in Pontis. Only 50 percent of the Pontis actions were covered with a statistically significant number of data points in any of the three FDOT information systems, and only 15 percent of the Pontis actions ended up using the results from one of the information systems directly. About 70 percent of the Pontis actions had relevant data from FDOT systems, in terms of being helpful in the considerations of the panel experts, including data that were adjusted, or used directly for the final results. These also included some relevant data that were recorded in units incompatible with those of the Pontis actions. This does not reflect on the quality of the existing FDOT systems, since it was impossible to judge the quality of data collection and processing from this perspective. One of the biggest problems was the inability to match the scope of activities in MMS, Akbar, and DCP to Pontis elements, condition states, and actions.

This problem also influences the recommended strategy for keeping unit cost numbers up-to-date over time. Other than periodic use of Pontis' built-in inflation feature, it is clear that it will not soon be possible to substantially automate major updates to the unit cost models. Certain enhancements to the three FDOT project information systems may lead to the possibility of partial automation in the future, but it is likely that an expert review will still be required. The implementation report addresses possible approaches to improving the ability to update agency unit costs. The final costs are summarized in Appendix A of this report.

4.1. Gathering of Data

The scope of this study included identifying relevant existing agency cost data at FDOT, performing statistical analyses to model the cost data in terms of bridge characteristics, and organizing historical unit costs into a small set of Action Sub-Categories which can be mapped into Pontis-defined actions of bridge elements' maintenance, rehabilitation, and repair (MR&R).

4.1.1. FDOT's Historical Data

An evaluation of the FDOT bridge maintenance data collection systems indicated initially that the historical data collected by the state of Florida with regards to agency unit costs was not completely compatible with the Pontis model. Data were obtained from three in-house sources and had to be supplemented with expert elicitation (questionnaires). The three in-house sources are: the Maintenance Management System (MMS); the Contract Estimating System (CES) also referred to as "Akbar"; and the District Contract Prototype (DCP) System. Each of these sources records slightly different cost information. However, all three have historical project data that are essential to the development of cost data for Pontis.

Maintenance Management System (MMS)

This source of data stores the costs of maintenance activities for highways and bridges in the state of Florida. FDOT Procedure Topic No.: 325-010-001-f (Maintenance), states the purpose of the MMS as "To provide a management system for collecting information necessary to effectively plan, organize, direct and control maintenance operations on the state highway system." Generally, the work recorded in this system is performed by force account crews (inhouse), prison work crews, or some contractors. MMS cost data include overhead and fringe, and the cost of maintenance of traffic (MOT).

MMS activities are represented by a three-digit code such as 805 or 845. The MMS data required some manipulation to obtain workable files for analysis. The MMS data were downloaded from the FDOT mainframe computer in two distinct file types: "scope" and "cost". The "scope" data included such information as the Bridge Number, the date the activity was completed, the MMS Activity Code and most importantly, a short description of the work done. The "cost" data include primarily, the quantity of work done, and the costs of material, equipment, and labor. These two file types were merged to create one new file.

Contract Estimating System (CES) or "Akbar"

The Contract Estimating System (CES) is a group of programs developed to automatically and accurately produce cost estimates from necessary reports and computations. There are three types of files used to maintain the data collected in this system, the Master Pay Item file, the Job Estimate file, and the Cross Reference file. CES is only accessible through authorized FDOT personnel. However, for this study, the researchers were able to use an in-house computer at the DOT to download necessary information.

CES costs are based on previous contractors' low bids for construction projects that were contracted out. The records are stored and identified by bid item (pay item) numbers. Mobilization and Maintenance of Traffic costs are generally listed separately as pay items, rather than being included in other individual pay items numbers. Project engineering costs are not listed in the CES.

District Contract Prototype (DCP) System

This data source, like the other two, has relevant data regarding past bridge maintenance projects. This source is very similar to the CES data, but provides data that are focused primarily on bridge maintenance activities, and not overall roadway construction projects. The DCP system is maintained by each District. Periodically, data from each District's database are compiled into one database maintained by the State. The DCP data are organized by pay item

numbers that are in the same format as those used in the CES data.

4.1.2. Relationship Among Historical Data Files

In order to develop a model of bridge cost data that could be further analyzed, the various source data files were merged using relational database methods. Some of the data collected required some manipulation or merging to combine necessary information. The queries that were executed during the research using Microsoft Access will be described and shown in this section.

Relational databases operate through relationships between separate tables. The database schema is made up of many tables that have a relationship through unique attributes or primary keys. Using the primary keys, information in one table can "relate" to information in another table. Each row of a table is a record, and a column represents the values of a single attribute of the records in the table. A primary key acts as a unique identifier for each row in the table. When a query or search is performed, the database uses the primary key from one table and searches the other table(s) that have the same attribute (foreign key) to complete the relation.

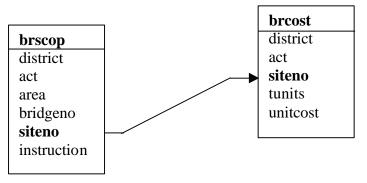


Figure 4.1. Joining of brscop and brcost Tables

Figure 4.1 shows an example of a primary key relationship. This example is one of the actual steps performed using the MMS data. Two tables were initially created from the MMS data: the "scope" file and the "cost" file. The two were merged together to get one new file. A query was run using a primary key/foreign key relationship. The primary key in this instance is *siteno*. Both sides contained the *siteno* field so the data could be easily related. The relationship is a right join type, which means the *siteno* from table **brscop** will only search for those *siteno* in table **brcost** that are exactly the same. In order for there to be a relationship, both tables must contain or share at least one of the same *siteno*. The two files are combined to make **brscop_cost**.

Microsoft Access was also used to join Florida's bridge inventory data to MMS data by using the field *bridgeno* (same as the bridge identifier field *brkey* in pontis) in Figure 4.2. Florida's bridge inventory data includes physical attributes and FHWA classifications such as total length, functional class, deck material, etc. This file was itself the result of merging two Pontis tables, bridge and span. This new file resulting from the merge of inventory and MMS data, contained very useful information that was eventually used for the basic data analysis to find the mean, standard deviation, and coefficient of variation for each specific analysis, and general element

analysis involving regression and ANOVA.

The MMS cost data and several Pontis tables were combined to run a query that resulted in a table that was used for general element analysis.

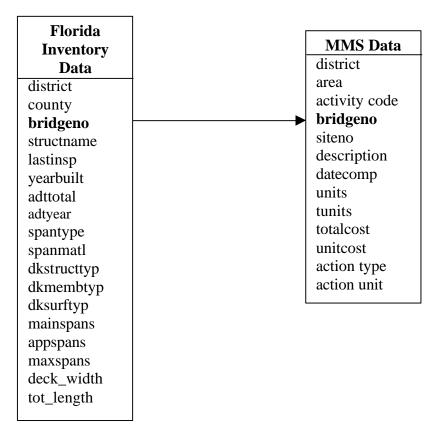


Figure 4.2. Merging of Florida Inventory Data and MMS Data

4.1.3. Sub-Categories: Transition from FDOT Data to Pontis Tables

To achieve a unit cost for each of the elements chosen for this study, a process had to be developed that would relate cost data from the FDOT databases to those in Pontis. There were two key issues that must be addressed. First, Pontis definitions for MR&R actions are not entirely compatible with the pay item codes found in MMS, CES or DCP. A way to group similar elements and similar actions taken needed to be developed. Second, the unit costs from all three sources express units of measure differently from Pontis.

The solution was the creation of a transition table containing a list of Action Sub-categories, as shown in Table 4.1. This list provides a broader grouping of "like" activities so that they are more easily recognizable and easier to analyze. This categorization of actions is compatible with all three data sources and with Pontis. Each Action Sub-Category is a three-digit number. The first digit represents the primary category of the action; Replace (100), Rehab (200), Repair (300) and Minor Maintenance (400). For example, any Action Sub-Category beginning with a 2 is known to be a Rehabilitation activity. A matrix was formed to assign Action Sub-Categories

to each element chosen. The left side of the matrix lists the objects or elements and the top portion lists the four primary categories. For instance, any activity involving a joint replacement is numbered as 111. The Action Sub-Category is in the one hundred (100) category and eleven (11) is the element or object number on the matrix. Note that this object number is not the same as the element type number used in Pontis. The number inside each cell indicates how many bridges have elements that may need the indicated action at some time during its life. For example, concrete rehabilitation (203) may be feasible on 10,824 bridges.

		Action Categ	ory		
	Object	100-Replace		300-Repair	400-Main
Materials	0 Other material				4,714
	1 Deck	8,675	7,727	3,863	8,675
	2 Steel/coat (incl meta	al) 1,275	5,539	3,900	3,062
	3 Concrete		10,824	8,759	10,838
	4 Timber		1,258		1,225
	5 Masonry		3,034		7,210
	6 MSE		146		146
Hi-Maint	10 Other element				
	11 Joint	3,773	5,654	3,094	7,929
	12 Joint seal	7,544			
	13 Bearing (incl p/h)	6,879	6,878		3,878
	14 Railing	9,122			
Drainage	21 Slope prot	7,132	3,786		
	22 Channel		8,259		8,259
	23 Drain sys	3,969	24		3,969
Machinery	31 Machinery	201	201	154	201
-	32 Cath prot	4,474			
Major	41 Beam	8,598			
•	42 Truss/arch/box	234			
	43 Cable	41	41		
	44 Substr elem (exc ca	p) 11,286			
	45 Culvert	2,076			
	46 Appr slab	7,260	7,260		7,260
Appurtenances	51 Pole/sign	180			

Table 4.1. Action Subcategories Matrix

Another key issue for many researchers regarding cost data for MR&R activities was unit compatibility. Many States, including Florida, do not collect data with units that are compatible with those used in Pontis.

By reading the short description (instruction) of work in each MMS record, or the pay item description in CES and DCP, the appropriate Action Sub-Category was matched to each record. After the data collected for this project was separated into the respective Action Sub-Categories, it was noticed that several Action Sub-Categories contained activities with different units of measure.

To solve this problem, a list of Action Sub-Category-Units were created. Action Sub-Category-Units essentially broke down the data even more into a recognizable set by incorporating the

units for each activity. For instance, Action Sub-Category 302 – Clean/Paint Steel, may have data recorded with units of linear feet (LF), Man Hours (MH), and square feet (SF). The Action Sub-Category-Units would simply be 302LF, 302MH, and 302SF, respectively. As another example, an activity involving the replacement of joints (111-Replace Joint) may have recorded data with units of linear feet, LF, square feet, SF, or man hours, MH. Each of the actions performed were assigned the same Action Sub-Category-Unit as the units that were recorded with it. In other words, if a joint was replaced and the cost was recorded in terms of linear feet, the Action Sub-Category-Unit would be 111LF. The use of units could also help in the development of an automated system to match Action Sub-Categories with pay item numbers. Now the data could be sorted by Action Sub-Category-Units and statistical results would be recognizable by this convention.

A key issue for this research was to match Action Sub-Categories with the activity codes and pay item numbers within the MMS, CES and DCP data sources. This is necessary in order to further relate the historical data with the Pontis system. Due to the fact that there are many Action Sub-Categories that match up or correspond to many activity code pay item numbers it can become complex. In the future this step could possibly become automated using SQL commands to search for keywords in the instructions or descriptions of each activity or by establishing a base for these Action Sub-Categories within each data source. For now, to match Action Sub-Categories with pay item numbers and activity codes, it was necessary to manually and tediously read each individual activity description that was performed.

To determine which MMS (activity codes), CES, and DCP (pay item numbers) data matched or contributed to certain Action Sub-Categories, the data from each source were separated by Action Sub-Category-Units. Consequently, this separation of data by Action Sub-Category-Units also became the format in which statistical analysis would be carried out. Each Action Sub-Category-Unit may have several pay item numbers or activity codes that correspond or contribute. For example, Action Sub-Category-Unit 303LF-Clean rebar & patch includes MMS Activity Codes 805 and 810 contributing to the data. Each MMS Activity Code can correspond to many Action Sub-Category-Units. The same holds true for CES and DCP pay item numbers. Pay item numbers are treated slightly differently. There are several formats that they can take, but the most general form is four numbers, then two then one or two, such as XXXX XXX. Only the first four numbers along with the next one or two numbers were considered to create pay item groups (i.e., 2440 7X X). Simplifying and broadening the pay item groups increased the number corresponding to each Action Sub-Category-Unit and made it easier to recognize them.

The final number of Action Sub-Category-Units that had MMS code matches was 73. Of these 73 Action Sub-Category-Units, 40 had more than one MMS code contributing. There were a total of 17 Action Sub-Category-Units in the CES data, with four having more than one pay item group contributing. The DCP data contained 51 total Action Sub-Category-Units with matches, and 32 with more than one contributing. In each of three data sources, the final count of Action Sub-Category-Units are both directly and indirectly usable regarding unit compatibility.

DISTRICT	MMS ACT.	ACTION TYPE	ACTION TYPE UNIT	BRIDGE NO.	DATE COMP	TUNITS	TOTAL COST	UNIT COST
7	810	303	303LF	100069	12/5/96	10	754.84	75.48
7	810	303	303LF	100106	4/27/94	50	181.29	3.63
7	805	303	303LF	100121	6/23/98	7	475.67	67.95
7	810	303	303LF	100167	7/21/95	25	275.37	11.01
7	810	303	303LF	100167	5/18/98	1	68.47	68.47
7	810	303	303LF	100452	4/9/97	14	120.49	8.61
7	810	303	303LF	100461	7/31/96	4	64.38	16.10
8	805	303	303LF	110006	5/25/95	50	7380.43	147.61
5	810	303	303LF	110034	4/7/97	3	105.64	35.21
8	805	303	303LF	110070	2/2/98	16	1761.5	110.09
7	810	303	303LF	150018	11/17/94	60.25	732.56	12.16
1	805	303	303LF	170129	9/20/95	241	2457.09	10.20

Table 4.2. MMS Data Showing Various Activity Codes w/Action Sub-Categories

4.1.4. Size of Available Data

The raw data were refined to remove statistical outliers, and also matched to Pontis data tables. These two actions resulted in reduction of the available size of the data. The table below summarizes size of data as utilized in this study.

Data Information	Maintenance Management System (MMS)	Contract Estimating System (CES)	District Contract Prototype (DCP)
Year Range of Data	1993 - 1999	1993 – 1999	1996 - 1999
Raw Data Size	10,649	1,034	1,972
Data Size After Removal of Statistical Outliers	10,014	1,012	1,941
Data Size with Direct Match to Pontis Elements	2,404	359	1,141

Table 4.3. Summary of Data Manipulation

4.1.5. Problems Encountered and Solutions

The major problem encountered was the inability to match the historical cost data record for MR&R action on a bridge with the deteriorated state of the bridge when this action was performed. Pontis cost tables require this. The solution to this problem was to elicit expert opinions coupled with prorating the same cost between different states, using the ratio in the Pontis cost data from the Clemson study.

Another problem involved "cleaning" the data by eliminating obvious erroneous entries such as negative numbers, zeroes, unusually large numbers (outliers), etc. Also, in preparation for the analysis of variance (ANOVA), it was necessary to merge each of the cost data (MMS, CES, and DCP), with bridge inventory data, using the bridge id as the primary key. This data merge resulted in allocating some Action Sub-Category cost values to multiple elements (if present)

instead of a single element, on an individual bridge. This may not be exactly true, but it is a good and reasonable assumption, which does not affect the ANOVA outputs. On the other hand, due to multiple elements having the same costs, the number of data points is exaggerated and a misleading number may be generated for the average unit costs (overall) for Action Sub-Categories, during the ANOVA. It is therefore more accurate to use the Action Sub-Category average unit costs computed from the basic statistical analyses.

4.1.6. Overhead and Indirect Costs

Based on conversations with Chris Laughlin and Kirk Hutchinson of the State Maintenance Office, Table 4.4 represents the values of overhead rates utilized in MMS:

It was reported by the State Maintenance Office that MMS raw data has no overhead factor incorporated in the original database format. But when the data is extracted as a standard report, which was the form used to collect the data in this study, then some of the overhead may have been included. (*Based on a conversation with Chris Laughlin on 10/27/2000, it seems only labor overhead and fringe are included in the standard reports, but not material overhead*).

Being a product of the traditional bid estimate, the CES and DCP data should contain the contractor's overhead and fringes, distributed over each pay item. It should also be noted that contractor's overhead and fringes are usually different from FDOT's values.

	Financial	Year					
Parameter	1994/95	1995/96	1996/97	1997/98	1998/99	1999/00	2000/01
Labor Overhead	0.4307	0.4307	0.4307	0.4984	0.3320	0.1291	0.0828
Labor Fringe	0.5922	0.5922	0.5647	0.5647	0.5488	0.6507	0.7522
Material Overhead	0.1845	0.1845	0.1845	0.1845	0.1845	0.1845	0.1845

Table 4. 4. Estimated values of overhead and fringe values.

Source: State Comptroller's Office Through FDOT's Chris Laughlin and Kirk Hutchinson

4.1.7. Unit Compatibility

In Pontis, only certain units of measure are standard such as square feet and linear feet. Historical data collected from the Florida Department of Transportation has a variety of unit types. Some of these unit types are compatible with Pontis, some are not. One of the primary goals of this study is to determine a way to convert the non-compatible unit types into those that are.

A count was obtained from each of the three sources for specific Action Sub-Categories that were consistent or inconsistent with Pontis. This count or summary is described as unit compatibility. Only the adjusted cost data without outliers were used for this process. Those that matched were labeled "Direct Use" and those that were not compatible were labeled "Indirect Use". The activities such as *Replace Joint* or *Wash Structure* may be compatible, but the units may not, which can greatly affect the average unit cost. Those Action Sub-Category-Units, both Direct Use and Indirect Use that had at least 10 data points were analyzed using

ANOVA.

During this study, the unit compatibility problem was not completely addressed. However, some possible solutions are recommended, to increase the amount of usable data in future updates of the unit costs. Actions with units such as man-hours could be converted into units of linear feet or square feet by using a conversion factor. For example, a factor to convert the number of manhours it takes to complete a particular amount of linear feet of work may be one solution. Standard unit conversion rates obtained from a sample MMS Standard Report (MMS Detailed Unit Cost by Activity (for 1997-1998) are shown in Table 4.5.

MMS Activity	Activity Description (unit)	Standard MH/Unit	Engineered Unit Cost	Actual Overall	Actual Overall
Code				MH/Unit	Unit Cost
423	Conc. Pavement Joint Repair (LF)	0.030	\$1.43	0.042	\$1.15
424	Conc. Slope Pavement (LF)	0.030	\$0.83	0.064	\$1.00
425	Conc. Pavement Surface Repair (SF)	0.880	\$21.49	1.959	\$30.32
436	Rework Non-Paved Shldr Slopes (Acre)	23.710	\$664.64	26.521	\$664.52
437	Misc. Slope & Ditch Repair (CY)	0.430	\$13.05	0.439	\$10.81
451	Clean Drainage Structures (LF)	0.100	\$2.50	0.098	\$1.93
457	Conc. Repair (CY)	9.460	\$226.98	5.100	\$103.75
459	Conc. Sidewalk Repair (SY)	2.750	\$60.80	2.666	\$53.43
461	Roadside Ditches – Clean&Reshape (LF)	0.090	\$2.28	0.070	\$1.72
520	Signs – Ground Signs, <= 30 SF. (Unit)	0.670	\$23.40	0.693	\$27.11
526	Guardrail Repair (LF)	0.330	\$9.79	0.297	\$7.37
540	Graffiti Removal (SF)	0.030	\$0.58	0.032	\$0.56
541	Roadside Litter Removal (Acre)	0.660	\$9.55	0.857	\$12.76
805	Bridge Joint Repair (LF)	0.220	\$6.15	0.371	\$8.87
806	Bridge Deck Maint. & Repair (SF)	0.090	\$2.66	0.097	\$1.69
810	Bridge Handrail Maint. & Repair (LF)	0.830	\$20.12	0.418	\$6.88

Table 4.5. Sample Man-hour/Unit Values for the Pertinent Maintenance Costs^{*}

*Source: 1997-98 MMS Report.

It should be noted that some important bridge maintenance activities are recorded originally in the MMS in units of Man-hours, e.g. Activity Nos. 825 Superstructure Maintenance and Repair, 845 Substructure Maintenance and Repair, 859 Channel Maintenance, 861 Bridge Electrical Maintenance, 865 Movable Bridge Mechanical Maintenance, 869 Movable Bridge Structural Maintenance, 888 Bridge Damage Repair, 896 Ferry Slip Maintenance and Repair, and 898 Tunnel Repair.

4.1.8. Statewide Cost Index (Inflation) Adjustments

Cost Index factors are very common in the engineering and construction fields. They are dimensionless numbers that help estimators account for changes in prices of materials, labor, services and/or inflation over time. A cost index can estimate the cost of an item or activity for any year, either past or future. The following Equation 4.1 is standard for calculating the desired cost:

$$C_c = C_r(I_c/I_r) \tag{4.1}$$

where $C_c =$ desired cost in dollars, past, present or future

 C_r = reference cost in dollars I_r = corresponding index to time period of C_r

 $I_{\rm c}$ = corresponding index to time period of $C_{\rm c}$

All data collected corresponds to the period of time from 1993 to 1999, meaning that the actual date of completion for each activity falls within these dates. The given cost data had to be converted or adjusted to present-day costs (1999) by means of an index factor. The indices for the Annual Averages for Highway Construction in the state of Florida, Engineering News Record (ENR), FDOT and FHWA were collected from years 1977 to 2000, compiled into table format and plotted against one another.

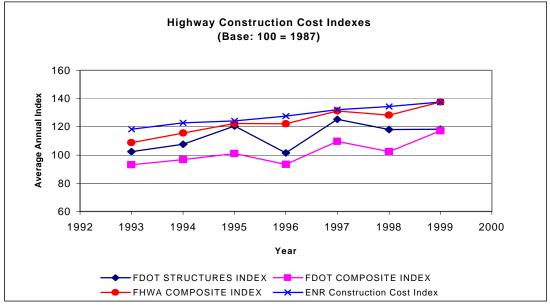


Figure 4.3. Cost Indices for FDOT, FHWA and ENR

Due to price variations nationwide, the FHWA and ENR Composite Index were both slightly higher than those from the FDOT. These were not considered because they do not represent bridge-related activities in Florida. The FDOT Composite Index was determined to be most relevant with the year 1999 being the base (1.00) because it was more reflective of overall time value of money and it included indirect costs such as mobilization and traffic control. The 1999

Index Factor or multiplier for 1993 to 2000 is found by dividing the FDOT Composite Index Factor for 1999 by those from 1993 to 2000. The FDOT Composite Index includes all highway and structures projects, whereas the FDOT Structures Index includes only those projects related to highway structures, primarily new bridge construction.

For this study, Table 4.6 was used to adjust the unit cost values in the statistical analysis spreadsheet before any correlation, regression and analysis of variance was carried out. For the MMS data, the date of completion for each activity is known, therefore a separate column is created to convert the date format into purely a year format. For example, if the date of completion were given in a MM/DD/YY format such as **10/29/97** (October 29, 1997) then the new column (Year Complete) would use the YEAR statement to convert the date to read **1997** only. For the CES and DCP data, date of activity completion was assumed to be the same as the estimate date recorded in the FDOT database.

YEAR	FDOT COMPOSITE INDEX	FDOT COMPOSITE 99 INDEXFACTOR
1993	93.0	1.26
1994	96.8	1.21
1995	101.1	1.16
1996	93.4	1.25
1997	109.6	1.07
1998	102.4	1.14
1999	117.1	1.00
2000	126.8	0.92

Table 4.6. Cost Index Listing From 1993 to 2000

4.2. Statistical Analysis and Results

Using historical data from FDOT, statistical analyses such as regression analysis and analysis of variance (ANOVA) were performed to determine the reliability and model agency unit costs on bridge characteristics, and Pontis elements. For reliability and elimination of outliers, the data were tested to assure they fell within ± 3 standard deviations of the mean. After the analysis was completed using Excel, the Minitab statistical software was used to verify and compare the results obtained from Excel. Minitab was used solely to run statistical calculations.

4.2.1. Basic Data Analysis

To begin the data analysis, descriptive statistics such as the average, standard deviation, coefficient of variation (CV), and required total number of data points were calculated. Also, statistical outliers were removed to assure the data were within ±3 standard deviations (99.7% of observations within this range) from the average unit cost. The procedures for the MMS data are slightly different from those for CES and DCP data. MMS data are distinguishable by eight FDOT Districts, and so the descriptive statistics were found for each. However, the data for all eight districts were eventually combined to provide another view. The data from each district were sorted by Action Sub-Category and by units of measure. The descriptive statistics mentioned above were found for each Action Sub-Category-Unit. A summary listing only the District number, Action Sub-Category, Action Sub-Category-Unit, and statistical results was created on a separate worksheet within the same file.

The coefficient of variation (CV) was first reviewed for each Action Sub-Category-Unit; CV is a unit-less measure of the variability of random variables, estimated by dividing the standard deviation by the mean. Setting a threshold of CV as 1.6, Action_Subcategory Units with higher CVs were identified, and a scatter plot generated to show the outliers. Action Sub-Category-Unit 401SF - Repair Potholes had a recorded coefficient of variation of 3.07. The plot in Figure 4.4 illustrates outliers and the reason for such a high CV value. Such data points represent the extreme data points that will be eliminated, typically due to erroneous entries. After removal of two outliers, the average unit cost dropped dramatically from \$117.29/SF to \$33.75/SF (Figure 4.5).

Once the coefficients of variation and scatter plots were developed, the revised data were produced in another worksheet in the same file. Because some data points were deleted, the descriptive statistics needed to be found again for each Action Sub-Category-Unit. A second summary was also created to exhibit the newly found results. Several of the coefficients of variation analyzed were still above the mark of 1.6. This was allowed because further, more accurate procedures would take place to eliminate even more outliers.

To further eliminate outliers, the use of OR and IF statement formulas were used in the spreadsheet to identify those data points that were not within the ± 3 standard deviations of the mean. Two columns or fields called *Outlier*? and *Data/Outlier* were added to the data files for each source. The logical statements were then inserted and equipped with the proper parameters. In three steps, the logical statements were used for the mathematical elimination of statistical outliers from the raw MMS data. Because the sample data used during the Clemson study

resulted in high coefficients of variation, the FDOT wanted to obtain lower results with their data. The results showed that the removal of outliers was helpful in slightly lowering the coefficients of variation

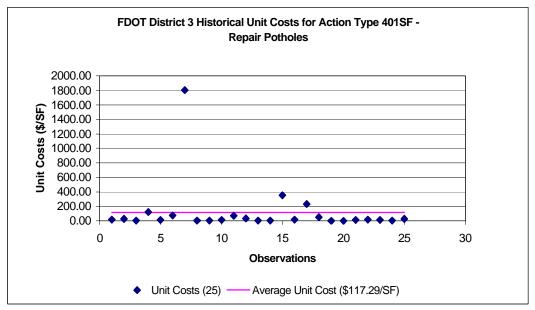


Figure 4.4. MMS Data Plot with Statistical Outliers

The CES data were grouped together and sorted by Action Sub-Category-Units. The descriptive statistics were then found for each Action Sub-Category-Unit and scatter plots, just like those from the MMS data, were created to show the distribution of unit costs. The use of logical formulas to identify and eliminate outliers was only performed once due to the small number of total data. The same process used to remove outliers from the CES data was used for the DCP data. The logical formulas were used once to identify any outliers in the data, and were promptly removed.

A summary was created for each of the data sources showing the results of the elimination of outliers using the logical statements. These summaries were later used in the identification of compatible units, which is explained in the following section. Each summary included the District Number, Action Sub-Category, Action Sub-Category-Unit, units of measure, standard deviation, coefficient of variation, and the total number of data points.

The final step of the initial data analysis was to adjust the unit costs for each of the three data sources into current dollar amounts. In this case, the year 1999 was chosen as the desired year. Using the FDOT Composite Cost Indexes discussed above, an index factor was found for each year starting with 1993 and ending with 1999 (See Table 4.6). Since each maintenance record came with a year of completion, it was very convenient to match up the index factor for each year. The raw unit cost of each record was then multiplied by the corresponding index factor to obtain the adjusted 1999 unit cost. Now that this step was completed, the MMS, CES, and DCP data must be sorted by Action Sub-Category-Unit, and the new 1999-average unit cost, standard deviation, and coefficient of variation must be found. These new values were used in future regression analysis and ANOVA.

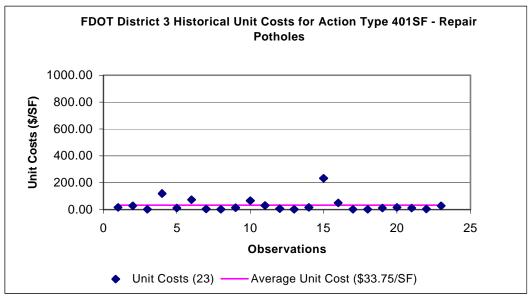


Figure 4.5. MMS Data Plot Without Statistical Outliers

4.2.2. District Location Factors

As part of the data analysis, a comparison of the MMS data from the eight districts within FDOT was carried out regarding the variation of the average unit cost for each Action Sub-Category-Unit. With District 3 (Chiplev) as the base district (index = 1.00), location cost indices were estimated, subject to data availability, for the other seven districts. The information from the summaries of each district was compiled to create plots like those seen in Figure 4.6. and Table 4.7. This plot represents the variation of unit costs between FDOT Districts. One of the possible applications of location indices is that of estimating the cost for one desired district, using the available cost data from another district in the state. For Districts 1 through 7, the unit costs appeared quite consistent; however, District 8 shows a much higher average unit cost. District 8 represents the Florida Turnpike. In fact, District 8 continuously shows much higher average unit costs than the other seven districts for most of the Action Sub-Category-Units analyzed. The reasons for this occurrence are not exactly known, although, it may be due to contract administration and data entry responsibilities for work on the turnpike, higher design standards that apply to Interstate bridges, or site limitations due to heavy traffic. Some Districts do not have any data for some Action Sub-Category-Units; possibly because they do not perform this activity. Appendix B shows more values estimated for district location factors.

DISTRICT	Units	1999_Avg. Unit Cost	Std. Dev.	C.V.	No. of Data	
1	LF	\$15.02	14.84	0.99	16	1.85
2	LF	\$15.18	10.76	0.71	13	1.86
3	LF	\$8.14	8.08	0.99	21	1.00
4	LF	\$41.19	21.98	0.53	5	5.06
5	LF	\$28.39	39.53	1.39	4	3.49
6	LF	\$8.01	5.65	0.71	69	0.98
7	LF	\$23.56	22.26	0.94	14	2.89
8	LF	\$77.94	44.77	0.57	22	9.57

Table 4.7. District Location Cost Indices for Action Sub-Category 112LF Replace Joint Seal

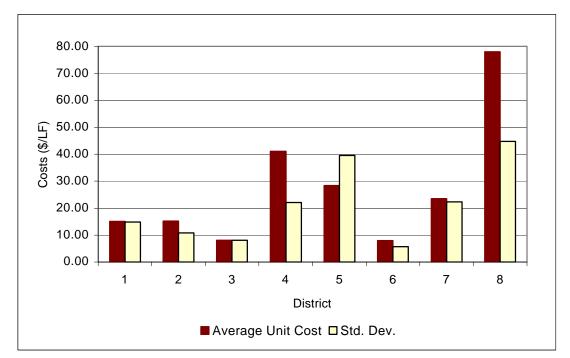


Figure 4.6. Cost Variation by District for Action Sub-Category 112LF – Replace Joint Seal

4.2.3. Regression Analysis: Modeling Bridge Characteristics

Simple linear regression is used to show a correlation or relationships between two variables: an independent and dependent. Regression evaluates the degree of change in one variable due to the change in another variable. There is a base model upon which linear regression is formed for a population, but most often, the lack of complete data due to time constraints or the nature of the research allows researchers to use only sample data or a representation of the complete population. The basic model for simple linear regression is as follows:

$$\mathbf{y} = \mathbf{A} + \mathbf{B}\mathbf{x} \tag{4.2}$$

where
$$A = constant$$
 (Y-intercept), and $B = slope$

Sometimes, when the use of simple linear regression may not fully explain the relationship, nonlinear regression analysis may be needed. The use of logarithmic models helped to make a better fit to some regression plots that showed decent R^2 values. Those factors such as total quantity or repair age that were used as variables to determine if a relationship existed with the unit costs were slightly improved if a non-linear model was utilized. The logarithmic function is based on the following equation:

$$Y = Blnx + A \tag{4.3}$$

where B = slope, and

A = constant (the Y-intercept)

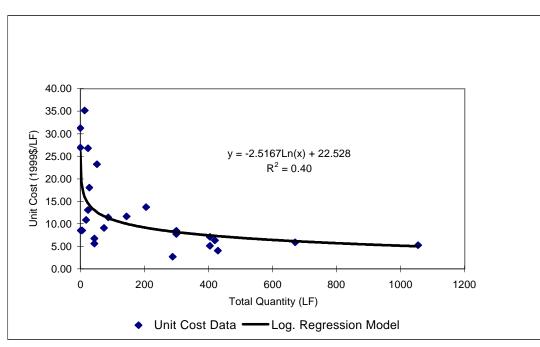


Figure 4.7. Regression Plot – Unit Cost vs. Total Quantity

Using the Clemson University Study as a guide, regression analysis was performed on all Action Sub-Category-Units with sufficient data to show what, if any, characteristics and factors may influence the average unit cost. Some of the factors that were used in the Clemson research include quantity, structure type, and materials. The MMS data along with Florida's Bridge Inventory data provided many of these same factors to use in analysis. The factors chosen for this study had to be logically sound for each element or maintenance activity. For example, it must make sense to analyze bridge joints by total quantity because the total amount could conceivably vary the average unit cost.

As a specific example, Action Sub-Category-Unit 111LF - Replace Joint, factors such as total quantity and repair age were used for regression analysis (see Figure 4.7). Linear regression analysis gave an R² value of 26%. This means that 26% of the variation in unit costs is explained by the total quantity. Twenty-six percent is a fair R² value. However, by applying a logarithmic regression model, a better-fit line can be found with R² value of 40%. This logarithmic model is shown in Figure 4.7.

Action Sub-Category 221 – *Rehab Slope Protection* might be varied by a factor such as total bridge length since the side slopes can usually be a function of the bridge length.

4.2.4. Statistical Sample Size

Due to the fact the data collected from the FDOT is only samples from a larger population, the issue of sample size must be dealt with. Confidence interval theory gives the equation to derive upper limit (U) and lower limit (L) as follows:

$$\{\mathbf{U},\mathbf{L}\} = \mathbf{x} \pm \mathbf{z} \, \mathbf{s}_{\mathbf{x}} \tag{4.4}$$

where $\overline{\mathbf{x}} =$ sample mean

z =fractile of the Standard Normal Distribution

s \bar{x} = sample standard deviation

For a 95% confidence interval, z = 1.96. The right hand side of the equation above is called the maximum error of estimate for the mean (μ or \bar{x}). This error illustrates the possible variation in sampling from the population. To determine a sample size that would yield results within the 95% confidence interval, the following equation is given:

$$N = z^2 [s^2/d^2]$$
 (4.5)

where N =sample size

z = 1.96 for 95% C.I.

s = sample standard deviation

d = set tolerance (\pm \$5.00/unit in this study)

Table 4.8 below shows an example of three different joint seals that were tested using analysis of variance and shows the number of data points for each. The column labeled "N" is the number of data points required to fall within a tolerance or error (d) of \pm 5.00/unit. So, for Element 301

– Pourable Joint Seal, the actual number of data points collected was 11, and the required number to fall within the set tolerance is 18. The last column in the table shows the error for these two values of "N", as 6.47/unit. This error is outside the set tolerance of ± 5.00 /unit. Therefore, the average unit cost for Element 301 can be used, but there is a strong indication that it is not accurate. To determine the upper and lower limits of the confidence interval, simply add/subtract the error term to the average unit cost for each type. For 301 – Pourable Joint Seal, $\$15.45 \pm 6.47$ would result in a confidence interval of \$8.98 to \$21.92. The same process can be done for the overall data results.

Element	Actual N	Required N	Error (d) in Mean Estimate*	Avg. Unit Cost
301 - Pourable Joint Seal	11	18	6.47	15.45
302 - Compression Joint Seal	14	18	5.67	14.08
304 - Open Expansion Joint	5	0	1.45	9.57
Overall Data	30	15	3.55	13.83

Table 4.8. Minimum Sample Size Determination Activity 111LF – Replace Joint

4.2.5. Analysis of Variance (ANOVA)

In simple terms, the Analysis of Variance (ANOVA) is a statistical tool that enables an experimenter to make inferences, at a level of significance, on the means from unknown populations, based on the data sets comprising samples from each of the populations. The ANOVA assumes a normal distribution for each population, and also computes an F-statistic at the specified level of significance. There are two hypotheses relevant to the ANOVA; the first is the null hypothesis (H_0), which states that all means of the populations or treatments are equal; and the second is the alternative hypothesis (H_1), which states that at least one pair of the means are not equal.

$H_0: \mu_1 = \mu_2 = \mu_3 = \ldots = \mu_k$	(4.6)
$H_1: \mu_1 \neq \mu_2 \neq \mu_3 \neq \ldots \neq \mu_k$	(4.7)

In the ANOVA, the F statistic is compared to the $F_{critical}$ value to help determine the outcome. The value of $F_{critical}$ is based upon the degrees of freedom. If the value of F is greater than the value of $F_{critical}$ then the null hypothesis is rejected. If it is less than $F_{critical}$ then the null hypothesis is accepted.

A probability value approach or p-value is also calculated in the ANOVA Table. This value can also help determine whether to reject or accept the null hypothesis. If the p-value is less than the level of significance, the null hypothesis is generally rejected. The p-value is the probability that a TYPE I Error will occur. A TYPE I Error is when a true null hypothesis is rejected. When a false null hypothesis is not rejected a TYPE II Error has occurred. The level of significance adopted for this study was 5%.

The analysis of variance was used to determine the unit cost for specific elements rather than for a set of Action Sub-Category-Units. The overall average unit cost for each Action Sub-Category-Unit was found prior to the ANOVA when the descriptive statistics were found. The analysis of variance provided a count of the total number of data for each element, the average unit cost per element and the variance of the costs for that element.

The value of the F term and the p-value are the primary indicators as to whether or not a null hypothesis is accepted or rejected. The null hypothesis (Ho) is assuming that the means for each treatment on bridge elements are equal ($\mu_{Elem1} = \mu_{Elem2} = \mu_{Elem3}$). If the null hypothesis is rejected (F<F_{crit}) for a certain Action Sub-Category-Unit, it implies that the average unit costs for the elements tested are not equal, and that the individual average unit cost of each element should be used. For example the null hypothesis was accepted in the case of 111LF (Replace Joint), which implies the means are equal and the average unit cost (\$13.03/LF) for the whole group should be used.

The MMS data were analyzed using ANOVA. There were a total of 34 Action Sub-Category-Units considered in the Pontis element analysis, based on the direct or indirect unit compatibility between FDOT data and Pontis action units. Seven were from the 100 series; 111LF-Replace Joint, 112LF-Replace Joint Seal, 114LF, 114MH-Replace Railing, 121MH-Replace Slope Protection, 131MH-Replace Machinery, and 144MH-Replace Substructure. Six were from the 200 series; 211LF, 211MH-Rehab Joint, 213MH-Rehab Bearing, 221SF, 221MH-Rehab Slope Protection, and 231MH-Rehab Machinery. Seven were analyzed from the 300 series; 301MH, 301SF-Repair Deck & Substrate, 302LF, 302MH, 302SF-Spot Paint, 303LF, 303MH-Clean Rebar & Patch, and 311LF-Repair Joint. Finally, there were twelve taken from the 400 series; 400LF, 400MH, 400SF-Wash Structure, 401MH, 401SF-Repair Potholes, 402MH-Restore Topcoat, 403LF, 403MH, 403SF-Patch Minor Spalls, 431MH-Maintain Machinery, and 446MH, 446SF-Maintain Approach Slab. This includes direct and indirect use Action Sub-Category-Units.

Of the seven from the 100-series, six resulted in an acceptable null hypothesis and one rejection. There were 3 that accepted the null hypothesis and 3 that rejected the null hypothesis in the 200series. The 300-series had 6 that accepted the null hypothesis and one that rejected it. The 400series had 9 that accepted the null hypothesis and 3 that rejected the null hypothesis. Some Action Sub-Category-Units do not have ANOVA results because they were not available or the null hypothesis was accepted for that particular one, implying that the overall average unit cost was recommended.

An example of the MMS data output from ANOVA Pontis element analysis is shown in Table 4.9. The Action Sub-Category-Unit 114LF-Replace Railing accepted the null hypothesis. This implies that the overall unit cost of \$18.01/LF for the group should be used. The average unit cost for element 331, 333, and 334 do not seem as though they are equal being \$19.93, \$16.73, and \$14.71, respectively. However, the standard deviation for each of these is fairly large. So there is a possibility of overlapping of values, which means that the average unit costs are considered statistically equal.

				Required	Error (d) in Mean	
Treatments	Count	Avg	C.V.	N**	Estimate*	
331 - Reinforced Conc Railing	75	19.93	0.69	29	3.13	
333 - Other Bridge Railing	61	16.73	0.78	26	3.27	
334 - Metal Bridge Railing - Coated	20	14.71	0.61	12	3.91	
	156					
Overall Data:	156	18.01	0.73	26	2.05	
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	595.23	2	297.61	1.758	0.1759	3.055
Within Groups	25904.43	153	169.31			
Total	26499.65	155				
* 95% Confidence Level						
** Based on tolerance of +/-5						

Table 4.9. Action Sub-Category-Unit 114LF (Replace Railing) Model for Pontis Elements

There is a noticeable difference between the total data count in ANOVA and the Action Sub-Category-Unit data count before ANOVA was performed, which was much lower. This is due to the merge of MMS data with Pontis inventory data; a bridge may have multiple elements. For example, bridge number XXXX in the original MMS data may have its single record of unit cost allocated to two elements like 301 and 302. This results in two records instead of the original one record for this bridge. Thus the new count is more than the original MMS count. Another Action Sub-Category-Unit with good results is 112LF-Replace Joint Seal. Shown in Table 4.10, it too has rejected the null hypothesis because the F-value is greater than the F_{crit} value.

The p-value is another approach to evaluating the outcome of the ANOVA test. The p-value is smaller than the chosen alpha value of 0.5, which also indicates that the average unit costs are not equal. There are four joint seal types included in the analysis, pourable joint seal, compression joint seal, assembly joint/seal, and open expansion joint. The average unit costs have a wide range indicating that they are not equal by inspection. Although the results reveal individual unit costs should be chosen, the sample sizes must be determined reliable so that the error value is not too high. Only element 301-Pourable joint seal has sufficient data to stay within the ± 5 tolerance with 74 data points collected and 65 required. Element 302-Compression joint seal is well below the required minimum of 211. Elements 303-Assembly joint/seal and 304-Open expansion joint are just under their respective minimums. Given these circumstances, the error values are not extremely high, but are beyond the range that was set for this study. Also listed is the coefficient of variation for each element. For elements 301 and 302 they are still above 1.00, even after three steps to remove outliers were performed.

The next example, in Table 4.11, represents unit costs for rehabilitation data for Action Sub-Category-Unit 221MH-Rehab Slope Protection. The three elements include a metal uncoated bulkhead/seawall, a reinforced concrete abutment, and an abutment of another material.

There was a significant amount of data collected for elements 394 and 396, but the variance was considerably high, so the minimum required sample size increased. This example shows that even though ANOVA can provide average unit costs for elements, the sample size may not be large enough to fall within the specified tolerance. For example, the data may state that it costs \$89.89/MH to rehabilitate a concrete abutment, but it is not completely reliable. Only element 393 is above the minimum sample size (N) of 6 with 16 data points. The coefficient of variation for elements 394 and 396 as well as the overall data are high. This indicates that the variability of these elements is very high. A similar model of the unit costs is presented in Table 4.10 for Action Sub-Category-Unit 112LF (Replace Joint Seal).

In Table 4.12, many elements are shown, related to Action Sub-Category-Unit 403MH-Patch Minor Spalls. They range from girders to fender systems to culverts. Several elements had data records numbering into the thousands such as 215-Reinforced Concrete Abutment and 331-Reinforced Concrete Bridge Railing. The overall average unit cost is \$22.33, and many of the elements listed have a similar average unit cost. However, the F-value is greater than the F_{crit} value indicating the average unit costs are not statistically equal. Elements 115, 144, and 154 are probably the reasons for this rejection of the null hypothesis with average unit costs of \$6.80, \$14.95, and \$6.80, respectively. Since the standard deviation for each element was very low, the sample sizes that were obtained were overwhelmingly sufficient. Even though elements 115, 116, 144, and 154 have only one data point each, it should be safe to state that this Action Sub-Category-Unit has very reliable data. The coefficient of variation for each element is also very low also indicating low standard deviations.

Appendices C and D contain more detailed results on results of ANOVA and basics statistical analyses conducted, and also the results of expert opinions elicited.

Treatments	Count	Avg	C.V.	Required N**	Error (d) in Mean Estimate*	
301 - Pourable Joint Seal	74	13.29	1.55	65	4.68	
302 - Compression Joint Seal	94	30.98	1.20	211	7.50	
303 - Assembly Joint/Seal	9	14.38	0.82	21	7.71	
304 - Open Expansion Joint	7	9.79	0.77	9	5.56	
	184					
Overall Data:	184	22.25	1.39	147	4.47	
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	19014.08	4	4753.52	5.339	0.00044	2.422
Within Groups	160269.45	180	890.39			
Total	179283.53	184				
* 95% Confidence Level						
** Based on tolerance of +/-5						

Table 4.10. Action Sub-Category-Unit 112	LF (Replace Joint Seal) Model for Pontis Elements
	$(\cdot I \cdot $

					Error (d)	
				Required	in Mean	
Treatments	Count	Avg	C.V.	N**	Estimate*	
393 - Bulkhead/Seawall Metal						
Uncoated	16	13.77	0.46	6	3.12	
394 - Abutment Slope Protection						
Reinforced Concrete	422	89.89	1.22	1849	10.47	
396 - Abutment Slope Protection						
Other Material	378	68.71	1.35	1331	9.38	
	816					
Overall Data:	816	78.59	1.30	1601	7.00	
ANOVA					<u> </u>	
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	157995.59	2	78997.79	7.7080	0.0005	3.0068
Within Groups	8332226.4	813	10248.74			
Total	8490221.9	815				
* 95% Confidence Level						
** Based on tolerance of +/- 5						

 Table 4.11. Action Sub-Category-Unit 221MH (Rehab Slope Protection) Model for Pontis

 Elements

				Required		
Treatments	Count	Avg	C.V.	N	Error (d)	
104 - P/S Conc Closed Web/Box Girder	9	22.69	0.32	8	4.77	
105 - Rein. Concrete Closed Webs/Box	•					
Girder	2	30.46	0.76	82	31.98	
109 - P/S Conc Open Girder/Beam	914	20.67	0.40	10	0.53	
110 - Reinforced Conc Open	••••	_0.01				
Girder/Beam	102	18.31	0.36	7	1.28	
115 - P/S Conc Stringer	1	6.80	0.00	0	0.00	
116 - Reinforced Conc Stringer	1	49.81	0.00	0 0	0.00	
144 - Reinforced Conc Arch	1	14.95	0.00	0	0.00	
154 - P/S Conc Floor Beam	1	6.80	0.00	0	0.00	
155 - Reinforced Conc Floor Beam	11	25.20	0.00	13	5.35	
204 - P/S Conc Column or Pile				10	0.80	
	398	20.78	0.39			
205 - Reinforced Conc Column or Pile	923	20.36	0.40	10	0.52	
207 - Hollow Core Pile	13	14.25	0.37	4	2.86	
210 - Reinforced Conc Pier Wall	84	20.15	0.30	6	1.31	
215 - Reinforced Conc Abutment	1283	20.31	0.40	10	0.44	
220 - Pile Cap/Footing	436	20.08	0.36	8	0.68	
233 - P/S Conc Cap	4	18.45	0.23	3	4.15	
234 - Reinforced Conc Cap	1166	20.39	0.39	10	0.46	
241 - Reinforced Concrete Culvert	68	17.80	0.41	8	1.75	
Protection	54	19.68	0.33	7	1.76	
299 - Pile Jacket with Cathodic Protection	9	21.81	0.20	3	2.79	
321 - Rein. Conc Approach Slab w/ or						
w/o AC Ovly	1281	20.48	0.40	10	0.45	
331 - Reinforced Conc Bridge Railing	1050	20.50	0.39	10	0.48	
387 - Fender Dolphin System Prestressed						
Conc	57	19.81	0.28	5	1.46	
388 - Fender Dolphin System Reinforced						
Conc	4	29.77	0.10	1	2.78	
394 - Abutment Slope Protection Rein.	•		0.10		•	
Conc	723	20.27	0.42	11	0.62	
475 - Wingwall/Retaining Wall Reinforced	. 20	20.27	02		0.02	
Conc	449	19.40	0.40	9	0.73	
564 - Counterweight	30	20.80	0.19	2	1.43	
ooq oounerweight	9074	20.00	0.15	L	1.40	
	5074					
Overall Data:	9074	20.33	0.39	10	0.16	
ANOVA					_	_
Source of Variation	<u>SS</u>	df 26	<u>MS</u>	F	P-value	F crit
Between Groups	4220.63	26	162.33	2.5439	0.000	1.4968
Within Groups	577301	9047	63.81			
Total	581522	9073				

Table 4.12. Action Sub-Category-Unit 403MH (Patch Minor Spalls) Model for Pontis Elements

4.2.6. Discussion on Statistical Results

The study has investigated the variation among agency unit costs for MR&R activities through statistical analysis. Much of the information regarding regression factors was taken from the Clemson University Study. Clemson's study primarily focused on the collection of unit cost data and the development of a cost database. The Florida study closely examined several topics that other agencies or universities have noted, such as high coefficients of variation, sample sizes, and unit compatibility.

The results from the Pontis element analysis provide a sense of the type of data being collected by FDOT both historically and currently. Although the Action Sub-Category-Units discussed in the previous section show good results, the units still present a compatibility problem in some instances. Many data collected from FDOT are recorded in man-hours, which is not directly compatible with Pontis. However, the elements that have a matching Action Sub-Category-Unit with these incompatible units most often have units such as "linear feet" or "each". These units may provide for simple conversion from man-hours if a time factor is found for completing given amount of linear feet or each particular element.

The Clemson University study stated that the data collected and analyzed produced very high coefficients of variation. For the FDOT study, it was important that the coefficient of variation values be much lower. By removing statistical outliers (three steps for MMS, one step for CES and DCP) the final coefficient values are reasonably lower than those presented in the Clemson study. Of the examples discussed in the previous section, all but four Pontis elements have a coefficient of variation below 1.00. This was the intended goal as the research began. Since the coefficient of variation is a representation of the standard deviation, a value that is closer to zero implies that the data or unit costs are statistically similar and close to the mean. The coefficient of variation values for the Pontis elements analyzed are mostly below the value of 1.00. The DCP values are also good with only a few Action Sub-Category-Units having a coefficient of variation slightly above 1.00. In such cases where the coefficient of variation remains above 1.5, the number of data points is usually low and does not meet the minimum sample size required. A direct comparison with the Clemson results is difficult since each unit cost is accompanied by a condition state. The data collected from the FDOT does not have a condition state attached. To compare the two, the Pontis element, the units, and the action description had to match exactly, otherwise, the values could be for different actions for a different condition state. At a glance, the coefficient of variation for the Pontis elements from the FDOT are generally lower than those presented in the Clemson study.

The DCP data offered 17 Action Sub-Category-Units that were tested using ANOVA. Only four had a null hypothesis that was rejected and were directly compatible with Pontis units. These included 111LF-Replace Joint, 112LF-Replace Joint Seal, 114LF-Replace Railing, and 121SF-Replace Slope Protection. The other thirteen provided only an overall average unit cost because of an accepted null hypothesis or the data that was collected did not match with the Pontis elements required.

For the CES data, only five Action Sub-Category-Units provided specific element average unit costs. In other words, the null hypothesis was rejected in the ANOVA, and the individual

average unit costs should be chosen. Even when the null hypothesis was accepted, average unit costs were available, but were not investigated as thoroughly. They were 111LF-Replace Joint, 112LF-Replace Joint Seal, 114LF-Replace Railing, 131EA-Replace Machinery, and 132SF-Replace Cathodic Protection. Like the MMS and DCP data, there were several Action Sub-Category-Units tested using ANOVA, but the null hypothesis may have been acceptable. The Clemson study provided a good starting point as far as framework is concerned, however, the data samples collected in that study were quite small.

A study by Gannon et al, (1995) provided a report showing the use of statistical analysis to develop cost models for concrete bridge rehabilitation. By collecting bid tabulations from twelve state highway agencies, several activities were analyzed such as deck patching, deck protection systems, structural patching, etc. The variations in cost for these activities were assumed to be due to quantity, maintenance of traffic, number of bidders and the contract amount. Also, inflation adjustments and location adjustments were made to obtain a more accurate or present worth dollar amount.

The FDOT study utilized some of the steps mentioned above such as the adjustments for inflation as well as cost variation factors for each activity. Although each study has different goals, the methodology is very similar. The Florida study utilizes historical data relating to many MR&R Activities to analyze and find agency unit costs for each. Using Analysis of Variance (ANOVA), the variations of costs by each element type (e.g., compression joint, open joint, etc.) were determined, if the data were available. Also studied were physical bridge factors such as deck material type, span material type, deck structure type, and functional classification. ANOVA was used here as well to see if there were variations in unit costs of certain activities.

4.2.7. Consistency Among Results (MMS, CES, and DCP)

For the majority, the average unit costs from the MMS data are lower than those from CES and DCP.. The reason for this variation cannot be easily ascertained but it is suspected that the each of the data sources employ different values of overhead and fringe rates. It is also possible that MMS data (from standard FDOT MMS reports) does not adequately incorporate all the overhead and fringe rates. These average unit costs listed in these tables represent those unit costs that could be used if specific average unit costs were not found using ANOVA. Overall, there were 24 directly compatible Action Sub-Category-Units from MMS, 11 directly compatible from CES, and 20 from DCP. This implies that a conversion of non-compatible units should be performed in order to obtain more compatible results. The results for specific average unit costs for Pontis elements and NBI data, found from ANOVA, are shown in Appendix D.

Overall, there were a reasonably good number of reliable unit costs found from the FDOT data. The initial data analysis, after adjustment for inflation and removal of outliers, produced 131 average unit costs (131 Action Sub-Category-Units) from the MMS data with 24 Action Sub-Category-Units with directly compatible units and 45 with indirect units. Of the 24 direct use, only three had a coefficient of variation over 1.00, and of the 45 indirect use, only two had a coefficient of variation over 1.00. The CES data had eleven directly compatible units and seven indirect with only five total coefficients of variation over 1.00. The DCP data had twenty directly compatible units and 25 indirectly compatible, with only 10 total coefficients of

variation over 1.00. The coefficient of variation for specific elements from the analysis of variance was very good (below 1.00), with only Action Sub-Category-Units 400MH – Wash Structure, 403SF-Patch Minor Spalls, and 446SF – Maintain Approach Slab having very high coefficients of variation for each element.

A very important limitation to the FDOT data collected for the study is that neither the MMS, CES or DCP data has a recorded condition state of the element that was repaired. The current condition state of an element greatly affects what action the preservation model in Pontis will recommend. The data collected for this study does not contain condition state information. If maintenance records were recorded with a condition state, the unit costs of the past data could be analyzed by the specific condition states.

The compatibility of units was identified and reported. There was a considerable amount of data that corresponded to Pontis elements, however, in several cases the historical data units were measured in Man Hours when the Pontis units were Each. There were cases in which the historical data was measured in terms of square yards and the Pontis units were each, but the most prevalent was man-hours. Converting these Action Sub-Category-Units into Pontis-compatible units is a possibility for future research.

A procedure to estimate unit costs from historical data is also explained and an entity relationship diagram is presented as well. The matching of Pay item numbers and Activity Codes with Action Sub-Categories was a crucial step in developing this procedure. By knowing which Pay items and Activity Codes contribute to each Action Sub-Category, a more reasonable unit cost can be determined. This schema was not tested for functionality, but is a framework for future development.

4.3. Missing Data and Expert Review

To supplement the results of the data analyses using FDOT's historical data, bridge maintenance experts from the various districts were assembled at three different meetings to review the data and provide their suggestions. The flow chart show below in Figure 4.8 indicates the feedback-flow pattern of the reviews.

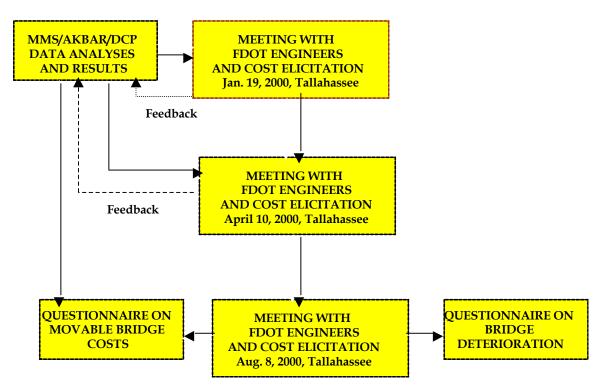


Figure 4.8. Flow chart illustrating the data collection and expert reviews

4.3.1. Description of Expert Interviews

The first of the meetings between the research team and the FDOT engineers took place at the State Maintenance Office, in Tallahassee, on January 19 and 20, 2000. Present at this meeting were the following: Richard Kerr (State Maintenance Office); Todd Hammerle (District 5); Debbie Myers (District 4); Mike Sprayberry (State Maintenance Office); John Clark (State Maintenance Office); Paul Thompson (Researcher); and John Sobanjo (Researcher).

The main issues discussed included familiarization of the FDOT engineers with the progress of the research team's effort on the study, a review of the raw data obtained from FDOT data bases and the accompanying results, as well as a comparison of these results with existing data from the Clemson study (default cost data in Pontis). Each bridge cost item was reviewed, by Pontis element number, and various suggestions on cost were obtained from the FDOT. The review included detailed examination of the typical crew needed to execute certain bridge MR&R actions, with the objective of estimating the labor required relative to the unit cost. Bridge items that were not utilized or rarely present on the Florida inventory, were identified by the team and

noted by the research team for possible elimination from future consideration. Other pertinent sources of expert opinions within FDOT, were also suggested to the research team, including visiting Districts, and other offices such as the Structures Office to discuss specialized costs such as the moveable bridges.

On April 10, 2000, the second meeting took place, at the State Maintenance Office, in Tallahassee. Present at this meeting were the following: Frank Day, Richard Kerr, John Clark, and Jean Ducher (all from the State Maintenance Office); Paul Thompson, and John Sobanjo (both Researchers). The purpose of this meeting was to present the current results by the research team, and elicit the comments of the FDOT engineers on these results.

The reasonableness of the research team's data results were reviewed by the FDOT engineers, and suggested cost revisions were again obtained. In addition, suggestions also included removal of some items from future consideration; investigation of other FDOT sources of raw data;; contacting the FDOT districts and the use of questionnaires for difficult-to-obtain costs on moveable bridges.

The last major meeting between the research team and the FDOT engineers took place between August 8 and 11, 2000, also at the State Maintenance Office, in Tallahassee. Present at this meeting were the following: Richard Kerr (State Maintenance Office); Many Finns (District 6); Mario Bizzio (District 5); Keith Campbell (District 2); Alberto Sardinas (District 4); Paul Thompson (Researcher); Matt Lewis (Student- Researcher); and John Sobanjo (Researcher). The costs were deliberated on and refined based on expert judgment. Suggestions were made by the FDOT engineers on the development and dissemination of the questionnaires for costs on moveable bridges, and also for data on bridge deterioration.

4.3.2. Consistency Between Data Analysis and Expert Judgment

There were some differences between the results of the statistical analyses of the FDOT data, and the experts' opinions on the corresponding costs. Some of the data analysis results were accepted by the experts as being reasonable, while some were adjusted. A few results were rejected. Comparing the results by virtue of its source, the MMS data were usually lower than the other sources, and also considered low most of the times, by the experts.

5. Deterioration Model Results

This section describes the results of our expert elicitation process for Pontis condition predictive models, performed by FDOT request under subtask 6.4 (On-Going Assistance) of the FDOT Pontis Agency Cost Study. Like all states that have implemented Pontis, FDOT came into the effort lacking historical bridge element condition state data. The Department began collecting such data in late 1998, so there is not yet a sufficient history to develop Pontis predictive models. In order to put Pontis to use in the near future for project planning and policy analysis, it is necessary to use an alternative method of estimating these models specific to Florida conditions.

Anticipating that all states would face a similar situation, the developers of Pontis specified a procedure for gathering expert opinion data on the rate of bridge element deterioration, which can be converted to a form directly usable in Pontis. This method, known as the Expert Elicitation Process, is described in Golabi, Thompson, and Hyman (1992). Most of the states implementing Pontis have followed some variation of this original procedure.

A complete effort to develop Pontis predictive models is necessarily lengthy. FDOT uses 136 bridge element types, each having an average of 4.0 condition states and 5.8 feasible actions other than do-nothing. (Such actions are termed "do-something" throughout this report.)

The expert elicitation process began with a meeting in Tallahassee on 10 October, 2000 involving the consultants, FDOT headquarters staff, and representatives of several FDOT District offices. A questionnaire was prepared to seek the desired expert opinion data. Appendix E.1 has the survey instructions and an example form for one of the 136 elements. The full survey was provided as a loose-leaf binder. Over two days, the District engineers were led through numerous examples of the thought process required in order to answer the questions.

Following the completion of the questionnaires by four District engineers, the consultants analyzed the data to produce the final models of bridge element deterioration and action effectiveness. As requested by FDOT, the results will be transmitted to the Department electronically in the form of Microsoft Excel worksheets. This written report includes tables and graphs summarizing the results, but does not contain the full details, which are too voluminous to be printed. The worksheets contain 5,882 records of data ready to be imported into the FDOT Pontis database.

5.1. How Deterioration is Modeled in Pontis

Bridge deterioration is a complex process of physical and chemical changes that occur in bridge components and materials due to time, traffic, and environmental effects. Each element in a bridge deteriorates at its own rate influenced by its immediate environment. Each element also has its own unique effect on the functionality of a bridge, and ultimately its ability to serve the needs of road users.

For example, the corrosion of a primary element such as a steel girder, if allowed to proceed without intervention, may eventually reduce the load-carrying capacity of the bridge, forcing heavier trucks to detour. Certain secondary elements, such as joint seals, may not have a direct effect on road users but do have an indirect effect by delaying the corrosion of primary elements.

When an element is in the early stages of deterioration, it usually has little or no effect on road users. However, the ability to predict its condition is still very important. In many cases early intervention can be less expensive and more effective than treatments applied to elements in more advanced states of deterioration. To find the best opportunities for cost-effective preventive maintenance, bridge management systems such as Pontis use life-cycle cost models, whose major inputs are:

- Unit costs for maintenance, repair, rehabilitation, and replacement actions
- Models to predict the deterioration of each bridge element
- Models to predict the improvement in condition that may result from an action

The latter two inputs together are commonly known as the condition predictive model, since both predict changes in condition of an element as a result of decisions about what, if any, action to take.

Because of the inherent complexity of bridges, it is necessary to employ a simplified framework to measure and analyze condition. The level of simplification is a careful balance between realism of the models and expense of data collection. The approach developed for Pontis, which has subsequently been adopted by nearly all of the states, is to divide a bridge into "elements," which are parts of a bridge having distinct characteristics of deterioration, feasible treatments, and costs. Florida uses a system of 136 elements which are listed with some of the project results in Appendix E.2. Elements include various types of decks, girders, beams, railings, expansion joints, bearings, columns, walls, sign structures, light poles, and moveable bridge equipment. Most of the FDOT elements follow the AASHTO standard for Commonly Recognized (CoRe) elements, but the Department has added many of its own elements to fit its own inventory and policy concerns.

During a bridge inspection, each element is characterized by dividing it into "condition states." Because of the great expense of routinely measuring deterioration processes such as chloride infiltration, corrosion potential, and paint peeling, AASHTO opted to specify a simpler condition rating process that describes only three to five classes of condition for each element. The condition state definitions were designed to be consistent and repeatable when used by suitably trained bridge inspectors in a visual inspection process. As an example, here are the definitions of the condition states of painted steel girders:

- 1. There is no evidence of active corrosion, and the paint system is sound and functioning as intended to protect the metal surface.
- 2. There is little or no active corrosion. Surface corrosion has formed or is forming. The paint system may be chalking, peeling, curling or showing other early evidence of paint system distress but there is no exposure of metal.
- 3. Surface corrosion is prevalent. There may be exposed metal but there is no active corrosion which is causing loss of section.
- 4. Corrosion may be present but any section loss due to active corrosion does not yet warrant structural review of either the element or the bridge.
- 5. Corrosion has caused section loss and is sufficient to warrant structural review to ascertain the impact on the ultimate strength and/or serviceability of either the element or the bridge.

At any given time the condition of the steel girders on a bridge is described by allocating the total length of girders among the five condition states. For example, a given bridge may have 10% of its girder length in state 3, 25% in state 2, and the rest in state 1.

In addition, every element has a condition state called "Failure." This state is not recognized in bridge inspections but is a possible outcome of deterioration. Generally, the Failure state is considered to be condition that is so bad that the element is no longer able to serve its intended function. Usually a failed element must be replaced because of the effect on road users or because of agency policy (or both). It is therefore considered to be the unacceptable end result of deterioration if no action is ever taken.

This description of element condition is convenient for bridge inspectors, and is also convenient for expressing predicted conditions in a life cycle cost analysis. Because of the complexity of deterioration, no engineer can reliably predict the condition of a specific bridge many years in the future. However, based on experience or analysis of historical data, an engineer can reasonably judge the likelihood of each condition state in the future. Just like current condition, future condition can also be expressed as a percent in each condition state, the percent representing a probability.

The tools available for predicting future condition are limited by the types of data that can reliably and economically be collected to describe current condition. The predictive model in Pontis therefore must make best use of condition state data, without requiring that anything else be known about the existing state of the bridge. A simple probabilistic model called a Markovian model is an exact fit to these requirements. The assumptions behind a Markovian model are as follows:

- The state of an element is described at any point in time as a distribution among a small number of condition states.
- The opportunity to make a decision that changes the condition of the element happens at evenly-spaced intervals in time (in Pontis, once a year).
- The likelihood of an element moving from one condition state to another is constant: it

doesn't depend on any other information about the condition of the element or on past condition states.

The last of these assumptions can be relaxed if more data are available, but so far the cost of additional data collection for bridge management has been prohibitive for most agencies. However, one additional piece of data that is available is a classification of the environment in which the element resides. Pontis provides four environments, defined generally as follows:

- Benign Neither environmental factors nor operating practices are likely to significantly change the condition of the element over time, or their effects have been mitigated by past non-maintenance actions or the presence of highly effective protective systems.
- Low Environmental factors and/or operating practices either do not adversely influence the condition of the element or their effects are substantially lessened by the application of effective protective systems.
- Moderate Any change in the condition of the element is likely to be quite normal as measured against those environmental factors and/or operating practices that are considered typical by the agency.
- Severe Environmental factors and/or operating practices contribute to the rapid decline in the condition of the element. Protective systems are not in place or are ineffective.

All of these definitions are relative to conditions typical of the inventory in which they are used. Thus, a Severe environment in Florida is far different from one in New Hampshire. Florida uses three of these categories (omitting Low) and interprets them in a Florida context. A severe environment indicates exposure to salt water or pollution, while a benign environment is relatively dry, protected, and rural.

Accepting these assumptions, a Markovian deterioration model can be expressed very simply as a matrix of transition probabilities. Figure 5.1 is an example from the study results, for a painted steel girder in a severe environment.

			To Condition State												
_			1	1 2 3 4 5 Fail											
		1	93.5	6.5	0.0	0.0	0.0	0.0							
I	State	2		88.6	11.4	0.0	0.0	0.0							
I		3			91.2	8.8	0.0	0.0							
I	Ш	4				88.2	11.8	0.0							
	Ē	5					82.8	17.2							

Figure 5.1. Example transition probability matrix

This table says, for example, that a girder starting in condition state 1 has a 6.5% chance of moving to state 2 in one year, and a 93.5% chance of staying in state 1. A girder in state 5 has a 17.2% chance of failure in one year. Because this is a deterioration model assuming no action is taken, there is no probability of any improvement in condition, such as a movement from state 5 to state 1. Note that all rows must sum to 100%.

When an action is taken, the effect on condition can be expressed in a similar way, as a "dosomething" matrix. Each possible condition state has zero, one or more feasible actions. Each feasible action results in a distribution of condition states immediately following the action. For the painted steel girder element, Figure 5.2 has the study results for the action effectiveness model.

From		To Conditio	n State			
State	Action	1	2	3	4	5
1	1 Surface clean	100.0	0.0	0.0	0.0	0.0
1	2 Misc Maintenance	100.0	0.0	0.0	0.0	0.0
2	1 Surface clean	0.0	100.0	0.0	0.0	0.0
2	2 Clean and paint	91.3	8.8	0.0	0.0	0.0
3	1 Spot blast, clean, and paint	93.8	6.3	0.0	0.0	0.0
4	1 Spot blast, clean, and paint	48.8	22.5	3.8	25.0	0.0
4	2 Replace paint system	72.5	2.5	0.0	25.0	0.0
5	1 Rehab unit	86.3	11.3	2.5	0.0	0.0
5	2 Replace unit	100.0	0.0	0.0	0.0	0.0

Figure 5.2. Example action effectiveness model

For example, if a girder is in state 4 and its paint system is replaced, 72.5% will be in state 1, 2.5% in state 2, and 25% in state 4 immediately after the action. Note that repainting does not remedy section loss, which is why a significant fraction remains in state 4. Florida defines two types of minor maintenance actions in state 1, that are not intended to be modeled in Pontis but are used for other bridge management purposes. The 100% in state 1 indicates that the activity does not change the condition state. Again, all rows must sum to 100%. (The numbers in the table are rounded.)

A convenient feature of Markovian models is that it is easy to use them to calculate an estimate of condition for any future point in time, by matrix multiplication. Figure 5.3 shows the painted steel girder example carried out 30 years. The condition each year is expressed probabilistically. For example, after 30 years there is a 19.2% chance of failure if no action is taken up to then. All of the columns sum to 100% (allowing for rounding).

		Year																														
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
e	1	100.0	93.5	87.4	81.7	76.4	71.5	66.8	62.5	58.4	54.6	51.1	47.7	44.6	41.7	39.0	36.5	34.1	31.9	29.8	27.9	26.1	24.4	22.8	21.3	19.9	18.6	17.4	16.3	15.2	14.2	13.3
itat	2		6.5	11.8	16.2	19.6	22.4	24.5	26.0	27.1	27.8	28.2	28.3	28.2	27.9	27.4	26.8	26.1	25.4	24.6	23.7	22.8	21.9	21.0	20.1	19.2	18.3	17.4	16.6	15.7	14.9	14.1
sp	3			0.7	2.0	3.7	5.6	7.7	9.8	11.9	13.9	15.9	17.7	19.4	20.9	22.2	23.4	24.4	25.2	25.9	26.4	26.8	27.0	27.1	27.1	27.0	26.9	26.6	26.2	25.8	25.3	24.8
icted State	4				0.1	0.2	0.5	1.0	1.5	2.2	3.0	3.9	4.8	5.8	6.8	7.8	8.9	9.9	10.9	11.8	12.7	13.5	14.3	15.0	15.6	16.1	16.6	17.0	17.3	17.6	17.8	17.9
edi	5					0.0	0.0	0.1	0.2	0.3	0.5	0.8	1.1	1.5	1.9	2.4	2.9	3.5	4.0	4.6	5.2	5.8	6.4	7.0	7.6	8.1	8.6	9.1	9.5	9.9	10.3	10.6
Pr	Fail						0.0	0.0	0.0	0.1	0.1	0.2	0.3	0.5	0.8	1.1	1.5	2.0	2.6	3.3	4.1	5.0	6.0	7.1	8.3	9.6	11.0	12.5	14.1	15.7	17.4	19.2

Figure 5.3. Example of long-term prediction

If an action is taken at any point, this may cause an immediate change in condition according to the action effectiveness model, but subsequent deterioration resumes using the same deterioration matrix with the new starting conditions.

The ability to use matrix multiplication to make such predictions owes to a simple rule of probability. If a group of events all must occur in order to result in a desired outcome, the probability of the outcome is equal to the product of the probabilities of each of the required events. For example, the probability of a flipped coin landing on the head side is 0.5. Therefore the probability of three heads in a row is $0.5 \times 0.5 \times 0.5 = 0.125$. In the 30-year example above, the only way to have condition state 1 after 30 years is to "transition" from state 1 to state 1 every year for 30 years. From the deterioration model, the odds of one of these transitions is 93.5%. Therefore the odds of 30 in a row is 93.5% to the 30th power, which is 13.3%, the result

shown in the 30-year table.

This property leads to a simple way to derive do-nothing transition probabilities from expert opinion, in a way that is much simpler than asking engineers to estimate these probabilities directly. Just ask for the median number of years to transition out of a given condition state. This is the way the questionnaire is formulated in Appendix E.1. The median number of years to transition out of a state is the amount of time before the probability of remaining in the starting condition state falls to 50%. This was between 10 and 11 years in state 1 in the example above. If the unknown "stay-the-same" transition probability is P, and if the number of years is Y, then

$$P^{Y} = 50\%$$
 (5.1)

This means that, if Y is the engineer's estimate of the number of years, then P is calculated by

$$P = 0.5^{(1/Y)}$$
(5.2)

Now if we assume that it is unlikely for an element to transition by more than one state in any given year, and impossible to transition to a better state if no action is taken, then we can also estimate the probability of transitioning to the next-worse state as 100%-P, because the outcomes of any state must sum to 100%. All other elements of the matrix are zero, so this completely estimates the matrix.

Unfortunately, no such simplification exists for the do-something probabilities, so the engineers were asked about these directly in the questionnaire. This is made easier by the fact that we are asking about conditions immediately following the action, not at some far-away time in the future.

5.2. Processing of Expert Elicitation Data

Four District engineers (Districts 2, 4, 5, and 8) completed the entire questionnaire binder, turning in an amazing performance. Only 19 of the 136 elements lacked responses from at least one engineer. All of these were very uncommon elements. Each engineer completed an average of 55% of the 1,334 questions from his or her own personal experience.

After entering the results into a Microsoft Excel worksheet, the responses were checked for obvious errors, such as probabilities failing to sum to 100% or entries for non-existent condition states on elements having fewer than 5. Only two such errors were found.

For do-nothing probabilities, engineers provided the median number of years for each state, so these were converted to transition probability matrices using the method described above. Since the questionnaire asked only about the Severe environment, the other two environments were calculated by applying an adjustment factor to the median year responses. The engineers provided some guidance on what factors to use.

The worksheet model calculated coefficients of variation for each question. The coefficient of variation is the population standard deviation of the responses divided by the mean value of the responses. This is zero if there is only one response, or if all the responses agree. The model flagged unusually high values for later review. An analysis of these results is provided later in this report.

For the do-something probabilities, the answers were averaged over the number of responses received for each question. A separate coefficient of variation was computed for each individual probability, then these were averaged to provide a summary number for the whole question. The do-something results were assumed to be the same across all environments.

5.3. Summary of FDOT Results

Since each engineer completed the questionnaire without consulting the others after the initial meeting, the coefficient of variation and response rate of each question is useful for assessing the reliability of responses. It was expected that response rates would be lower, and CVs larger, for elements that are less common in Florida. This proved to be the case.

Figure 5.4 summarizes the results by element category, for the Severe environment. The highest CV was for moveable bridge elements, as expected. The next highest was for decks. This may seem counter-intuitive, but in Florida, where deicing salts are not used, deck problems are relatively less common than in other states with harsher climates. Superstructure elements had a low response rate, due to a number of very uncommon elements in this category, such as cables and unpainted steel elements. In general, the do-something questions had similar response rates and lower CVs than the do-nothing responses.

			Do-Nothing		Do-Someth	Median		ĺ				
			Average		Average							Median
		Element	Coef of	Response	Coef of	Response	1	2	3	4	5	Time to
Category		Count	Variation	Rate	Variation	Rate		_	•	•	•	Failure
Decks/Slabs		12	0.28	65%	0.22	72%	11.5	8.8	8.1	4.7	3.0	50
Superstructure		32	0.14	38%	0.09	42%	17.6	10.4	6.6	4.7	4.0	59
Substructure		31	0.22	58%	0.16	56%	18.7	9.2	6.7	4.7		52
Joints		6	0.29	71%	0.14	67%	7.4	5.0	2.8			21
Bearings		5	0.20	75%	0.14	74%	18.3	12.5	7.8			50
Railing		5	0.19	62%	0.09	59%	17.1	13.3	9.0	8.3		64
Movable		29	0.43	71%	0.23	68%	7.9	6.9	4.9	4.1		33
Other Elements		16	0.20	44%	0.10	37%	17.1	14.6	11.5	6.8		68
	Total	136	0.25	55%	0.15	55%						

Figure 5.4.	Summarv	of results	by a	element	category
1 181110 0111	Summery	of results	0,	erenient	0000000

The right-hand side of this table provides averages of responses given. These should be considered to be very rough, because elements differ in their condition state definitions and even in the number of defined states. Based on these averages, the final column gives the median time to failure, the number of years when the probability of failure reaches 50%. Note that this is not the same as the sum of the median transition times, but is instead the result of multiplication of the full derived transition probability matrix.

Figure 5.5 provides similar results, organized by material type. Unpainted steel and timber had low response rates, as these are uncommon on the state highway system. Moveable bridge elements again had the highest CVs. In both of these tables, it is apparent that joints and moveable bridge elements have the shortest lives, and concrete elements have the longest lives.

The coefficients of variation overall are somewhat lower than expected, indicating better-thanexpected agreement among the four engineers. Figures 5.6 and 5.7 show the pattern of variation. A large number of questions had zero variation, especially for do-something probabilities. Many of these are cases where everyone agreed that replacement actions raise 100% of the element to state 1, or cases where minor maintenance actions leave the condition state unchanged. Only 10 questions had CVs greater than 1, where the standard deviation exceeded the mean.

Final Report

	ſ	Do-Nothing		Do-Someth	ing	Median					
		Average		Average							Median
	Element	Coef of	Response	Coef of	Response	1	2	3	4	5	Time to
Material	Count	Variation	Rate	Variation	Rate	-	_	•	•	•	Failure
Unpainted Steel	17	0.08	18%	0.04	18%	17.6	11.9	8.2	5.2		58
Painted Steel	17	0.22	59%	0.12	57%	14.0	8.1	7.2	5.2	4.8	55
Prestressed Concrete	8	0.26	62%	0.14	58%	25.1	11.5	7.5	4.6		63
Reinforced Concrete	18	0.29	78%	0.24	78%	24.0	13.4	9.0	5.8		69
Timber	11	0.12	29%	0.08	28%	11.4	9.8	6.1	4.7		44
Other	24	0.20	48%	0.10	46%	12.6	10.5	6.9			40
Decks	7	0.32	70%	0.25	77%	12.6	9.0	7.4	4.0	2.9	50
Slabs	5	0.24	58%	0.17	65%	9.9	8.6	9.1	5.9	3.2	51
Electrical	9	0.54	72%	0.20	67%	8.7	6.3	4.2			26
Hydraulic	4	0.39	75%	0.30	73%	4.7	4.1	3.0	2.7		21
Mechanical	16	0.37	69%	0.23	68%	8.3	7.9	5.7	4.6		37
Total	136	0.25	55%	0.15	55%						

Figure 5.5. Summary of results by material type

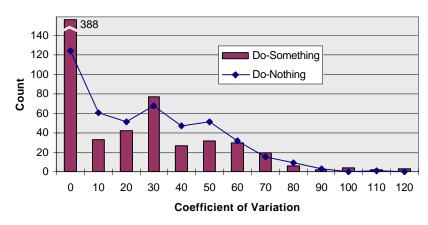


Figure 5.6. Number of questions having each level of C.V.

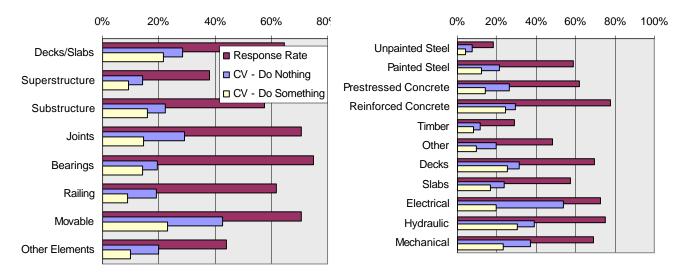


Figure 5.7. Coefficients of variation by category and material

Finally, Figure 5.8 shows how some of the category average results look when the resulting Markov models are extended over 100 years. The graph shows the probability that an element will be above the failed state each year. This is known as a survival probability curve. It is a useful way of graphing bridge condition because it is not affected by differences in condition state definitions among elements.

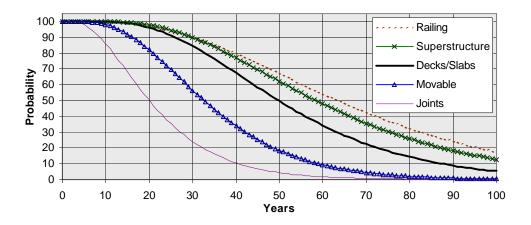


Figure 5.8. Typical survival probability curves

5.4. Importing the Results into a Pontis Database

The Deterioration Analysis Results workbook provided to FDOT includes two worksheets called actmodls and condumdl. These are named after the Pontis tables into which the data should be imported. Column headings on each worksheet match the Pontis columns that should hold the data. For compatibility with other parts of the FDOT Pontis database, these tables have all four environments. However, they include only the elements that are used in Florida. The condumdl table holds the failure probability (which applies only to do-nothing), while the actmodls table holds all the other probabilities by condition state and action.

To import these tables into Pontis, separate the worksheets into their own workbooks, then use InfoMaker's Pipeline feature to copy the data into the Pontis database. Other utilities such as those provided with Oracle can also accomplish this task. Normally these utilities require that an Excel ODBC driver be installed on the system. Final Report

6. Implementation Report

This section presents the implementation report as mandated by the FDOT Research Center Program Manual, to provide guidance and concrete steps to help the research results to be put into practice as broadly as possible. The following sections describe the implementation plan.

6.1. Technical Summary

The purpose of this research has been to analyze the Pontis agency cost model in the context of Florida DOT requirements, to locate data that can be used to customize the model for Florida purposes, to develop new agency unit costs to be made operational within FDOT's implementation of Pontis, and to develop a strategy for keeping these costs up-to-date over time.

All of these objectives have been met. Appendix A of this report presents the detailed results of the data analysis and the final unit costs that have been selected for input to Pontis.

All of the data analysis and tabulation of unit costs was performed on Microsoft Excel spreadsheets, using raw data extracted from FDOT's Pontis database, which is implemented in Oracle. Upon completion of the analysis, the results must be imported back into the Oracle database. In agreement with FDOT it was decided to provide the results to FDOT as an Excel worksheet, with appropriate primary keys for the Pontis actmodls table. FDOT will create an ODBC data source profile for the worksheet and then use InfoMaker's pipeline feature to transfer the unit costs into the Pontis database. This process minimizes the amount of work to be done by FDOT staff and satisfies the Department's data security requirements.

In considering the implementation of these research results, it is important to distinguish the Pontis network level analysis from the project-level analysis. A couple of examples will serve to illustrate the differences:

The handling of project indirect costs (mobilization, maintenance of traffic, project engineering, etc.) differs substantially between the network level and project level. Unit costs developed in this project include allowances for typical indirect costs in order to ensure that the network-level analysis produces correct total costs for comparison to budget constraints. Though accurate at the network level, these allowances may be highly inaccurate when interpreted at the project level. Therefore, a correct project-level analysis should consider indirect costs separately, and not necessarily disaggregated by elements.

The cost structure of certain activities is not apparent at the network level, particularly economies of scale. For example, the unit cost of paint system replacement is always lower than the unit cost of spot painting, so in the network optimization paint system replacement will always be selected when the two alternatives compete in the same condition state. However, at the project level on elements where paint system distress is not extensive, spot painting may well be the more cost-effective choice.

Loading the unit costs into Pontis as described above is all that is necessary to satisfy the network-level requirements of the system. However, Pontis does not have the ability to clearly evaluate the costs of project-level alternatives. In addition, as was noted in the earlier FDOT Pontis User Cost Study, Pontis does not have the flexibility to incorporate new user cost models to evaluate the project-level benefits of bridge functional improvements.

To enable the results of these two research projects to be implemented by FDOT at the project level, a separate task has been identified to develop an outside Project level analysis model. This model will extract its inputs from Pontis, perform an analysis of costs and benefits for an individual bridge using the new FDOT agency and user cost models, and present the alternatives and evaluation results to the decision-maker. The engineer decides on a course of action and indicates this in the new model. The engineer's decision may involve using the default Pontis recommendation derived from the network level, or may include project-specific changes to the scope, cost, and/or benefit of the project. The new model will automatically adjust costs and benefits to reflect changes in project scope or action selection.

To help the engineer in this decision-making process, the model will include a graphic presentation of current conditions and the effect of the planned activity on future conditions. The presentation of life cycle costs resulting from the work will be in a form that is familiar to professionals trained in traditional project level life cycle cost analysis. Because the model will be presented in Microsoft Excel, the engineer will be able to take advantage of spreadsheet formulas for the scoping of projects, estimating work quantities, and calculating indirect costs. These formulas can be as simple or elaborate as needed in order to be realistic for their intended purpose.

When the engineer has finished his manipulation of a project, he may elect to save the results into Pontis. This creates a user-defined project that can subsequently participate in the program simulation and results reports in Pontis.

The original vision for this study assumed that the wealth of historical project data in existing FDOT information systems would make it possible to automate the updating of unit costs in the future. This vision has changed substantially in light of the expert panel's review of the analysis results derived from these systems. It was found during this study that nearly all of the unit costs required a detailed review and substantial modification before they could be accepted for use in Pontis. Only 50 percent of the Pontis actions were covered with a statistically significant number of data points in any of the three information systems, and only 15 percent of the Pontis actions ended up using the results from one of the information systems directly. This does not reflect on the quality of the existing FDOT systems, since it was impossible to judge the quality of data collection and processing from this perspective. One of the biggest problems was the inability to match the scope of activities in MMS, Akbar, and DCP to Pontis elements, condition states, and actions.

In the long term, several enhancements to the existing FDOT systems could help to better identify bridge activities and match them to Pontis actions:

• Akbar and DCP could provide a bridge identifier for each activity. MMS already does so.

In order to accomplish this, it may be necessary to have a contractual requirement in each maintenance contract for recording of this information.

- All three systems could identify the bridge elements that were worked on, as well as other activities not related to bridge elements. This would not always be practical but would be very helpful even if done on a fraction of the work records.
- All three systems could use the Action Subcategory system developed within this project, as a simplified means of relating activity codes to Pontis actions.
- None of these enhancements would be easy to accomplish, though all would be possible if done as part of the design of major system enhancements or replacement systems in the future.

Even after these enhancements are performed, it is certain that an expert review of cost data will be required, using methods similar to those used under this study. If it is desired to institutionalize this process within FDOT, one possible approach is to establish a process within a Cost Estimating Office to maintain unit cost figures over time for all FDOT business processes that require this information. Such an office would provide data to the Districts and headquarters for preparation of engineer's estimates for construction projects, for updating of all asset management systems, for market analysis of the construction market, for forecasting inflation, and for ad hoc management analysis. The scope of this office would by no means be limited to bridges, but would encompass all aspects of the Department's mission for which cost data are useful.

Ontario's Ministry of Transportation has an Estimating Office that is a good example of this approach. A staff of five analysts collects data from the agency's information systems and contractor bids, and analyzes them in detail. They look for patterns of irregular or unbalanced bids as a part of the procurement process, as well as developing unit costs for future projects and for asset management systems. Regional project engineers rely heavily on this information for project design and estimating. An automatic linkage is under development to connect the tabulated data to the Ministry's new Bridge Management System. The office is supported by contracting policies that require all Ministry contractors to supply the data required for unit cost development.

In many ways the activities of the Ontario Estimating Office are similar to the processes undertaken in this Florida study. Analysts maintain various spreadsheet models that analyze the typical work activities within projects and perform various statistical analyses. The outputs are periodically reviewed by users of the data to ensure that they remain realistic for their intended purposes. Centralizing this expertise helps the Ministry to stay ahead of the bidding practices of the contractors, reduces the overall cost of collecting and managing these data, and increases their reliability.

Florida's current effort to satisfy the requirements of GASB Statement 34 regarding asset management may present a good opportunity to establish a capability similar to Ontario's within FDOT. If this is desired, it may be worthwhile to conduct an investigative study, including interviews with Ontario and several State DOTs that have experience with this process. Now that FDOT has excellent inventory and condition data collection processes in place for several types of assets, the accuracy of cost data would seem to be the next major concern in the GASB 34 implementation.

6.2. Technology Transfer Plan

A paper based on the final report of this study will be submitted to the Transportation Research Board by August 1, 2001 for publication and for presentation at the January 2002 Annual Meeting. No other major conferences related to bridge management are anticipated before that date, but a TRB specialty conference on bridge management may occur in 2003. There also is an opportunity to present a paper on this research at the First International Conference on Bridge Maintenance, Safety, and Management in Barcelona, Spain in July 2002.

Under subtask 6.2 of this study, a presentation was prepared, and has already been presented to FDOT staff on October 10, 2000.

Upon FDOT acceptance of the final report, it will be distributed electronically to all agencies that responded to the Task 1 survey. Respondents to the survey were asked to provide e-mail addresses for that purpose. If FDOT concurs, the researchers would also like to distribute the deliverable worksheet with final unit costs with the report. Other DOTs will then have a second authoritative source of agency cost data in addition to the Clemson study when they prepare their own Pontis models.

6.3. Implementation Test Plan

The agency cost model developed in this study is just one small part of FDOT's overall effort to implement the Pontis bridge management system. Pontis is intended to support improved bridge program decision-making by presenting objective information on the costs and benefits of policy and project decisions.

Many of the most difficult Pontis implementation steps, such as the establishment of a clientserver database and the institution of a new bridge inspection process, have already been accomplished by FDOT. A completely populated database is nearly complete, at which time the system may begin to enter production usage for decision support. An additional study, recently launched, will develop the tools needed for project-level implementation of the results.

An important feature of a bridge management system is the ability to estimate the costs and benefits of alternative bridge program decisions. Using this capability, it is possible to measure the benefits of the system by comparing its recommended decisions with those that might have been pursued without the aid of the system. Since Pontis measures only the economic benefits of bridge projects, the system does not consider non-economic factors such as political mandates. The actual programs implemented with the help of Pontis might therefore vary from those that the system would recommend on purely economic grounds. The agency cost model developed in this study is an important part of the system's ability to measure the economic benefits of bridge investments.

7. References

Abed-Al-Rahim, I.J., Johnson, D.W. (1995) "Bridge Replacement Cost analysis procedures. Transportation Research Board," Transportation Research Record 1490. National Academy Press, Washington, DC., p 23-31.

Adams, T.M., Barut, J.F. (1998) "Establishing MR&R Costs for a Network-Level Bridge Management System," Transportation Research Board, Transportation Research Record 1624, National Academy Press, Washington, DC., p 11-20.

Adams, T.M., Sianipar, P.R. (1998) "Sensitivity of Network Level BMS MR&R Policies to Variations in Cost, Transition Probability, and Discount Factor," Transportation Research Record 1642, National Academy Press, Washington, DC.

Appleman, Bernard R. (1997) *Lead-Based Paint Removal for Steel Highway Bridges*, NCHRP Synthesis 251, Transportation Research Board, National Academy Press, Washington, DC.

Chengalur-Smith, Indushobha N., Ballou, Donald P., and Pazer, Harold L. (1997) Modeling the costs of bridge rehabilitation, Transportation Research, Part A: Policy and Practice v 31 n 4 Jul. p 281-293.

Elzarka, Hazem, Bell, Lansford, and Sanders, Steve (1996) *Cost Data Generation for the PONTIS Bridge Management System*, Research Final Report and DAGS User Manual, Department of Civil Engineering, Clemson University, SC.

Gannon, J.E., Weyers, E.R., and Cady, P.D. (1995) "Cost Relationship for Concrete Bridge Protection, Repair, and Rehabilitation," Transportation Research Board, Transportation Research Record 1490, National Academy Press, Washington, DC.

Golabi, Kamal, Paul D. Thompson, and William A Hyman, (1992) Pontis Technical Manual, Report FHWA-SA-93-083, Federal Highway Administration.

James, Ray W., Stukhart, George, Mcfarland, William F., Garcia-Diaz, Alberto, (1993) *Proposed Bridge Management System Implementation Plan for Texas*, Technical Report No. FHWA-TX-92/1259-1F, Texas Transportation Institute, College Station.

Johnson, B., Powell, T., and Queiroz, C. (1997) "Economic Analysis of Bridge Rehabilitation Options Considering Life-Cycle Costs," Transportation Research Board, Transportation Research Record 1624, National Academy Press, Washington, DC., p 8-15.

Ludescher, Hannes, and Hajdin, Rade (1999) "Distinctive Features of the Swiss Road Structures Management System," Preprints of the Transportation Research Board 8th International Bridge Management Conference, Denver, Colorado, April 1999.

Tam, C.K., and Stiemer, S.F. (1996) "Development of bridge corrosion cost model for coating maintenance," Journal of Performance of Constructed Facilities, American Society of Civil Engineers (ASCE), v 10 n 2 May, p 47-56.

Thompson, Paul D. and Markow, Michael J. (1996) *Collecting and Managing Cost Data for Bridge Management Systems,* NCHRP Synthesis 227, Transportation Research Board, National Academy Press, Washington, DC.

Thompson, Paul D., Merlo, Tony, Kerr, Brian, Cheetham, Alan, and Ellis, Reed (1999) "The New Ontario Bridge Management System," Preprints of the Transportation Research Board 8th International Bridge Management Conference, Denver, Colorado, April 1999.

Van Lund, John A., (1995) "Bridge Bearing Replacement," Fourth International Bridge Engineering Conference, Transportation Research Board, National Academy Press, Washington, DC.

Wipf Terry J., Erickson, Donald L, and Klaiber Wayne F (1987) "Cost-Effectiveness Analysis for Strengthening Existing Bridges," Transportation Research Board, Transportation Research Record 1113, National Academy Press, Washington, DC., p 9-17.

Appendix A. Detailed Rationale and Final Cost Results

101 - Replace deck

This activity is very uncommon in Florida, since deicing salt is not used. Bridge replacement due to traffic growth typically occurs long before the deck needs replacement. An initial decision to use the Clemson study results was later revised to use estimates based on expert judgment. FDOT tracking systems did not have sufficient data to estimate a unit cost.

Element	State	Action	Final Cost
12 - Bare Concrete Deck Based on expert judgment	5 - Distress over 25%	2 - Replace deck	30 (SF)
13 - Unp Conc Deck/AC Ovl Based on expert judgment	5 - Distress over 25%	2 - Replace deck	31 (SF)
28 - Steel Deck/Open Grid Based on expert judgment	5 - Advanced corrosion	2 - Replace unit	35 (SF)
29 - Steel Deck/Conc Grid Based on expert judgment	5 - Advanced corrosion	2 - Replace unit	40 (SF)
31 - Timber Deck Based on expert judgment	3 - Some strength loss	2 - Replace deck	10 (SF)
31 - Timber Deck Based on expert judgment	4 - Major strength loss	1 - Replace deck	10 (SF)
32 - Timber Deck/AC Ovly Used Clemson data	3 - Some strength loss	2 - Replace deck & surfa	8 (SF)
32 - Timber Deck/AC Ovly Used Clemson data	4 - Major strength loss	1 - Replace deck & surfa	12 (SF)
38 - Bare Concrete Slab Based on expert judgment	5 - Distress over 25%	2 - Replace deck	30 (SF)
39 - Unp Conc Slab/AC Ovl Based on expert judgment	5 - Distress over 25%	2 - Replace deck	31 (SF)
54 - Timber Slab Used Clemson data	3 - Some strength loss	2 - Replace deck	1 (SF)
54 - Timber Slab Used Clemson data	4 - Major strength loss	1 - Replace deck	1 (SF)
55 - Timber Slab/AC Ovly Used Clemson data	3 - Some strength loss	2 - Replace deck and sur	3 (SF)
55 - Timber Slab/AC Ovly Used Clemson data	4 - Major strength loss	1 - Replace deck and sur	3 (SF)
98 - Conc Deck on PC Pane Based on expert judgment	5 - Distress over 25 %	2 - Replace Deck	30 (SF)
99 - PS Conc Slab Based on expert judgment	5 - Dist >25%	2 - Replace unit	31 (SF)

102 - Replace paint system

Relatively few data points were available in FDOT systems. For element #107, the expert panel had anecdotal evidence of \$170/m, which translates to \$52 per foot. This is consistent with the DCP average of \$4.74 per square foot, assuming that this applies to typical steel I-beams. With relatively little experience repainting other steel elements, it was decided to scale all CoRe elements from #107 according to the Clemson unit costs. Non-Core elements were determined from expert judgment.

-		•	
Element	State	Action	Final Cost
102 - Paint Stl Box Girder Scaled relative to #107 based on Cle	4 - Active corrosion mson data	2 - Replace paint system	2800 (LF)
107 - Paint Stl Opn Girder Based on anecdotal project evidence	4 - Active corrosion and checked against DCP data	2 - Replace paint system	52 (LF)
113 - Paint Stl Stringer Scaled relative to #107 based on Cle	4 - Active corrosion mson data	2 - Replace paint system	33 (LF)
121 - P/Stl Thru Truss/Bot Scaled relative to #107 based on Cle	4 - Active corrosion mson data	2 - Replace paint system	118 (LF)
126 - P/Stl Thru Truss/Top Scaled relative to #107 based on Cle	4 - Active corrosion mson data	2 - Replace paint system	150 (LF)
131 - Paint Stl Deck Truss Scaled relative to #107 based on Cle	4 - Active corrosion mson data	2 - Replace paint system	700 (LF)
141 - Paint Stl Arch Scaled relative to #107 based on Cle	4 - Active corrosion mson data	2 - Replace paint system	420 (LF)
152 - Paint Stl Floor Beam Scaled relative to #107 based on Cle	4 - Active corrosion mson data	2 - Replace paint system	54 (LF)
161 - Paint Stl Pin/Hanger Scaled relative to #107 based on Cle	4 - Active corrosion mson data	2 - Replace paint system	708 (EA)
202 - Paint Stl Column Scaled relative to #107 based on Cle	4 - Active corrosion mson data	2 - Replace paint system	250 (EA)
231 - Paint Stl Cap Scaled relative to #107 based on Cle	4 - Active corrosion mson data	2 - Replace paint system	58 (LF)
487 - Sign Member Horiz Non-CoRe element, based on judgm	4 - Surf Pits ent	2 - Replace paint system	52 (LF)
488 - Sign Member Vertical Non-CoRe element, based on judgm	4 - Surf Pits ent	2 - Repaint	52 (LF)
496 - Painted High Mast L. Non-CoRe element, based on judgm	4 - Surf Pits ent	2 - Repaint	5000 (EA)
497 - Galvan. High Mast L. Non-CoRe element, based on judgm	4 - Surf Pits ent	2 - Repaint	5000 (EA)
550 - Hopkins Frame Non-CoRe element, based on judgm	4 - Surf Pits ent	2 - Repaint	5000 (EA)
562 - Counterweight Suppor Non-CoRe element, based on judgm	4 - Surf Pits ent	2 - Repaint	5000 (EA)
563 - Acc Ladd & Plat Non-CoRe element, based on judgm	4 - Surf Pits ent	2 - Repaint	2500 (EA)

111 - Replace joint

Although project data were available in MMS, the unit costs were found to be unreasonably low (average \$12.54/lf). The reason for this has not yet been determined, but may be due to omission of important cost factors in the recorded data. As a result, the expert panel decided to use Clemson data with certain adjustments based on Florida experience.

Element	State	Action	Final Cost
300 - Strip Seal Exp Joint Akbar data indicates specific element based on experience	3 - Major leakage average of \$85/lf. Estimated based on (2 - Replace joint Clemson data but adjusted downward	122 (LF)
302 - Compressn Joint Seal Akbar data indicates specific element based on experience	3 - Major deterioration average of \$42/lf. Estimated based on (2 - Replace joint Clemson data but adjusted downward	152 (LF)
303 - Assembly Joint/Seal Used Akbar data	3 - Advanced corrosion	2 - Replace unit	420 (LF)
304 - Open Expansion Joint Used Clemson data	3 - Advanced corrosion	2 - Replace unit	304 (LF)
399 - Other Expansion Join Assumed to be the same as element #	3 - Maj Deter ≄304	2 - Replace unit	304 (LF)

123

112 - Replace joint seal

All three of FDOT's tracking systems contained relevant data, as did the Clemson data set. However, in most cases non data sources were in agreement. In each case the expert panel chose one of the data sources based on judgment.			
Element	State	Action	Final Cost
300 - Strip Seal Exp Joint MMS, Akbar, and DCP had relevan panel decided to use the Clemson		1 - Replace gland and pa espectively) but were judged to be too high. Th	50 (LF) ne
301 - Pourable Joint Seal MMS contained relevant data, but in decided to use the Clemson result.	2 - Minor leakage t was judged to be too low, due to	1 - Clean joint and repl omission of important cost factors. The panel	26 (LF)
302 - Compressn Joint Seal Relevant data were found in MMS true unit cost should be somewhat		1 - Replace gland and/or lf), and Clemson (\$76/lf). The panel felt that th d so \$46/lf was chosen.	46 (LF) ne

113 - Replace bearing

	the FDOT data sources, only MMS had data on bearing replacement, but there were only four data points. The panel decided analyze these elements based on typical crew sizes and costs.			
Element	State	Action	Final Cost	
161 - Paint Stl Pin/Hanger This has not been done in Florida. T bridges having this element (difficul		2 - Replace unit ent based on characteristics of the few Floric	100000 (EA) la	
310 - Elastomeric Bearing Based on an analysis of typical crev	3 - Major deterioration v sizes and costs	2 - Replace unit and res	527 (EA)	
311 - Moveable Bearing Based on an analysis of typical crev	3 - Advanced corrosion v sizes and costs	2 - Replace unit	527 (EA)	
312 - Enclosed Bearing Based on an analysis of typical crev	3 - Bearing failures v sizes and costs	2 - Replace unit	527 (EA)	
313 - Fixed Bearing Based on an analysis of typical crev	3 - Advanced corrosion v sizes and costs	2 - Replace unit	527 (EA)	
314 - Pot Bearing No experience in Florida, so Clemso	3 - Advanced corrosion on data were used	2 - Replace unit	1800 (EA)	

114 - Replace railing

Although all three FDOT systems had relevant data, many of the data points were strongly skewed by project-specific factors. When obvious outliers were excluded, all three systems yielded unit costs that were unrealistically low. The expert panel found none of the system-derived unit costs to be suitable for planning purposes. On the other hand, the panel found the Clemson unit costs to be too high. The final unit costs were based on anecdotal project experience and the panel's analysis of typical crew sizes and costs.

Element	State	Action	Final Cost
330 - Metal Rail Uncoated	3 - Active corrosion	2 - Replace unit	70 (LF)
Akbar and DCP data indicate spe	cific element averages of \$33/lf and	\$39/If respectively. Estimated based on an	
analysis of typical crew sizes and	costs		
330 - Metal Rail Uncoated	4 - Section loss	2 - Replace unit	70 (LF)
Based on an analysis of typical cr	ew sizes and costs		
331 - Conc Bridge Railing	4 - Analysis warranted	2 - Replace unit	50 (LF)
Relevant data were found in MMS	6 (\$19/lf), Akbar (\$54/lf), DCP (\$190	/lf). Estimated based on an analysis of typical	
crew sizes and costs.			
332 - Timb Bridge Railing	3 - Some strength loss	1 - Replace unit	33.5 (LF)
Relevant data were found in MMS	6 (\$19/lf) and Akbar (\$29/lf). Estima	ted based on an analysis of typical crew sizes	
and costs.			
333 - Other Bridge Railing	3 - Major deterioration	2 - Replace unit	60 (LF)
Relevant data were found in MMS	6 (\$19/lf), Akbar (\$70/lf), DCP (\$18/l	f). Estimated based on an analysis of typical	· · ·
crew sizes and costs.			
334 - Metal Rail Coated	4 - Active corrosion	2 - Replace unit	70 (LF)
Relevant data were found in MMS	6 (\$19/lf) and Akbar (\$33/lf). Estima	ted based on an analysis of typical crew sizes	
and costs.			
334 - Metal Rail Coated	5 - Analysis warranted	2 - Replace unit	70 (LF)
Deced on an analysis of typical or	,	•	- ()

Based on an analysis of typical crew sizes and costs

121 - Replace slope protection

The districts have been using \$4.18 per sq. ft. (\$45/sm) for project estimation. DCP shows a unit cost more than twice as large, but this is believed to be due to inclusion of non-bridge maintenance work. The panel decided that all slope paving materials should have the same unit cost.

Element	State	Action	Final Cost
394 - R/Conc Abut Slope Pr Used DCP data.	4 - Adv Corros	2 - Replace unit	8 (SF)
395 - Timber Abut Slope Pr Used DCP data.	3 - Minor Loss	2 - Replace unit	10 (SF)
395 - Timber Abut Slope Pr Used DCP data.	4 - Adv Deter	2 - Replace unit	10 (SF)
396 - Other Abut Slope Pro Used DCP data.	3 - Mod Deter	2 - Replace unit	7 (SF)
396 - Other Abut Slope Pro Used DCP data.	4 - Maj Deter	2 - Replace unit	7 (SF)

123 - Replace drainage system These costs were based on an analysis of typical crew sizes and costs. Element State Action **Final Cost** 397 - Drain. Syst Metal 5 - Sect Loss 2 - Replace unit 820 (EA)

2 - Replace unit

DCP data indicate \$600/ea. Panel estimated based on an analysis of typical crew sizes and costs 398 - Drain. Syst Other 4 - Maj Deter

Based on an analysis of typical crew sizes and costs

820 (EA)

131 - Replace machinery

31 - Replace machiner	y		
Survey	0		
Element 540 - Open Gearing	State 3 - Mod Deter	Action 2 - Replace unit	Final Cost 28500 (EA
	n subcategory averages of \$4	2 - Replace unit 11,000/ea, and \$160/ea respectively. One open	20000 (E <i>F</i>
540 - Open Gearing Survey used.	4 - Maj Deter	1 - Replace unit	28500 (EA
541 - Speed Reducers Survey used.	3 - Mod Deter	2 - Replace unit	39000 (EA
541 - Speed Reducers Survey used.	4 - Maj Deter	1 - Replace unit	39000 (EA
542 - Shafts Akbar and DCP data indicate actior	3 - Mod Deter n subcategory averages of \$4	2 - Replace unit 41,000/ea, and \$160/ea respectively. Survey used.	2900 (EA
542 - Shafts Survey used.	4 - Maj Deter	1 - Replace unit	2900 (EA
543 - Shaft Brgs and Coupl Survey used.	3 - Mod Deter	2 - Replace unit	750 (E <i>F</i>
543 - Shaft Brgs and Coupl Survey used.	4 - Maj Deter	1 - Replace unit	750 (EA
544 - Brakes Survey used.	3 - Mod Deter	2 - Replace unit	980 (EA
544 - Brakes Survey used.	4 - Maj Deter	2 - Replace unit	980 (EA
545 - Emergency Drive Survey used.	3 - Mod Deter	2 - Replace System	4500 (EA
545 - Emergency Drive Survey used.	4 - Maj Deter	1 - Replace System	4500 (EA
546 - Span Drive Motors Survey used.	3 - Mod Deter	2 - Replace unit	6700 (EA
546 - Span Drive Motors Survey used.	4 - Maj Deter	1 - Replace unit	6700 (EA
547 - Hydraulic Power Unit Survey used.	3 - Mod Deter	2 - Replace unit	41500 (EA
547 - Hydraulic Power Unit Survey used.	4 - Maj Deter	1 - Replace unit	41500 (EA
548 - Hydraulic Piping Sys Survey used.	3 - Maj Deter	2 - Replace unit	3200 (EA
549 - Hydraulic Cylinders Survey used.	3 - Mod Deter	2 - Replace unit	9000 (EA
549 - Hydraulic Cylinders Survey used.	4 - Maj Deter	1 - Replace unit	9000 (EA
550 - Hopkins Frame Survey used.	5 - Sect Loss	2 - Replace unit	35000 (EA
560 - Locks Survey used.	3 - Mod Deter	2 - Replace unit	2800 (EA
560 - Locks Survey used.	4 - Maj Deter	1 - Replace unit	2800 (EA
561 - Live Load Shoes Survey used.	3 - Maj Deter	2 - Replace unit	7000 (EA
562 - Counterweight Suppor Survey used.	5 - Sect Loss	2 - Replace unit	3000 (EA
563 - Acc Ladd & Plat	5 - Sect Loss	2 - Replace unit	2900 (EA
563 - ACC Ladd & Plat	5 - Sect Loss	2 - Replace unit	

Survey used.			
564 - Counterweight Survey used.	4 - Adv Corros	2 - Replace unit	9000 (EA)
	3 - Mod Deter subcategory averages of \$41,000/ea, f \$121,000/ea for Trunnion. Survey us		9000 (EA)
	4 - Maj Deter subcategory averages of \$41,000/ea, f \$121,000/ea for Trunnion. Survey us		9000 (EA)
570 - Transformers Akbar and DCP data indicate action shows a specific element average of	3 - Maj Deter subcategory averages of \$41,000/ea, f \$1,800/ea. Survey used.	2 - Replace unit and \$160/ea respectively. DCP data	1500 (EA)
571 - Submarine Cable Survey	3 - Maj Deter	2 - Replace unit	10800 each
	3 - Maj Deter subcategory averages of \$41,000/ea, f \$160/ea. and one cost of \$3700. Sun		600 (EA)
573 - PLCs Akbar and DCP data indicate action shows a specific element average of	3 - Maj Deter subcategory averages of \$41,000/ea, f \$28,000/ea. Survey used.	2 - Replace unit and \$160/ea respectively. Akbar data	40400 (EA)
574 - Control Console Akbar and DCP data indicate action shows a specific element average of	3 - Maj Deter subcategory averages of \$41,000/ea, f \$94,000/ea. Survey used.	2 - Replace unit and \$160/ea respectively. Akbar data	30900 (EA)
	3 - Maj Deter subcategory averages of \$41,000/ea, s of \$32,000/ea. and \$5,800/ea. respe	2 - Replace unit and \$160/ea respectively. Akbar and DCP ctively. Survey used.	1000 (EA)
581 - Operator Facilities Akbar and DCP data indicate action	2 - Mod Deter subcategory averages of \$41,000/ea,	2 - Replace unit and \$160/ea respectively. Survey used.	28000 (EA)
581 - Operator Facilities Survey used.	3 - Maj Deter	2 - Replace unit	28000 (EA)
•	3 - Maj Deter 3 - Maj Deter		28000 (EA) 50000 (EA)
Survey used. 582 - Lift Bridge Spec. Eq		2 - Replace unit	
Survey used. 582 - Lift Bridge Spec. Eq Survey used. 583 - Swing Bridge Spec. E	3 - Maj Deter	2 - Replace unit	50000 (EA)
Survey used. 582 - Lift Bridge Spec. Eq Survey used. 583 - Swing Bridge Spec. E Survey used. 590 - Resistance Barriers	3 - Maj Deter 3 - Maj Deter	2 - Replace unit2 - Replace unit2 - Replace unit	50000 (EA) 50000 (EA)

141 - Replace beam

FDOT has no usable data sources for these uncommon actions, so all results were based on the expert panel's discussion of anecdotal project evidence and judgment. All of these costs are highly dependent on historical FDOT construction practice. For example, replacement of prestressed box girders has a very high cost because in Florida nearly all of these bridges are single unit boxes. In general the panel found that none of the Clemson numbers were suitable for use in Florida for these actions.

Element	State	Action	Final Cost
106 - Unpnt Stl Opn Girder	4 - Major section loss	2 - Replace unit	900 (LF)
Based on anecdotal project evidence a			
107 - Paint Stl Opn Girder	5 - Section loss	2 - Replace unit	900 (LF)
Based on anecdotal project evidence a	and judgment		
109 - P/S Conc Open Girder Based on anecdotal project evidence a	4 - Analysis warranted and judgment	2 - Replace unit	370 (LF)
110 - R/Conc Open Girder Based on anecdotal project evidence a	4 - Analysis warranted and judgment	2 - Replace unit	370 (LF)
111 - Timber Open Girder Based on anecdotal project evidence a	3 - Some strength loss and judgment	2 - Replace unit	150 (LF)
111 - Timber Open Girder Based on anecdotal project evidence a	4 - Major strength loss and judgment	2 - Replace unit	150 (LF)
112 - Unpnt Stl Stringer Based on anecdotal project evidence a	4 - Major section loss and judgment	2 - Replace unit	210 (LF)
113 - Paint Stl Stringer Based on anecdotal project evidence a	5 - Section loss and judgment	2 - Replace unit	210 (LF)
116 - R/Conc Stringer Based on anecdotal project evidence a	4 - Analysis warranted and judgment	2 - Replace unit	270 (LF)
117 - Timber Stringer Based on anecdotal project evidence a	3 - Some strength loss and judgment	2 - Replace unit	114 (LF)
117 - Timber Stringer Based on anecdotal project evidence a	4 - Major strength loss and judgment	2 - Replace unit	114 (LF)
151 - Unpnt Stl Floor Beam Based on anecdotal project evidence a	4 - Major section loss and judgment	2 - Replace unit	460 (LF)
152 - Paint Stl Floor Beam Based on anecdotal project evidence a	5 - Section loss and judgment	2 - Replace unit	460 (LF)
155 - R/Conc Floor Beam Based on anecdotal project evidence a	4 - Analysis warranted and judgment	2 - Replace unit	270 (LF)
156 - Timber Floor Beam Based on anecdotal project evidence a	3 - Some strength loss and judgment	2 - Replace unit	114 (LF)
156 - Timber Floor Beam Based on anecdotal project evidence a	4 - Major strength loss and judgment	2 - Replace unit	114 (LF)
230 - Unpnt Stl Cap Based on anecdotal project evidence a	4 - Major section loss and judgment	2 - Replace unit	460 (LF)
231 - Paint Stl Cap Based on anecdotal project evidence a	5 - Section loss and judgment	2 - Replace unit	460 (LF)
233 - P/S Conc Cap Based on anecdotal project evidence a	4 - Analysis warranted and judgment	2 - Replace unit	460 (LF)
234 - R/Conc Cap Based on anecdotal project evidence a	4 - Analysis warranted and judgment	2 - Replace unit	460 (LF)
235 - Timber Cap Based on anecdotal project evidence a	3 - Some strength loss and judgment	2 - Replace unit	150 (LF)
235 - Timber Cap Based on anecdotal project evidence a	4 - Major strength loss and judgment	2 - Replace unit	150 (LF)

142 - Replace truss/arch

	FDOT has no usable data sources for these uncommon actions. Since FDOT has not replaced any trusses or arches, the panel decided to use the Clemson numbers in most cases.					
Element	State	Action	Final Cost			
101 - Unpnt Stl Box Girder Based on anecdotal project evidence	4 - Major section loss e and judgment	2 - Replace unit	1500 (LF)			
102 - Paint Stl Box Girder Based on anecdotal project evidence	5 - Section loss e and judgment	2 - Replace unit	1500 (LF)			
104 - P/S Conc Box Girder Based on anecdotal project evidence	4 - Analysis warranted a and judgment	2 - Replace unit	3000 (LF)			
105 - R/Conc Box Girder Based on anecdotal project evidence	4 - Analysis warranted e and judgment	2 - Replace unit	610 (LF)			
120 - U/Stl Thru Truss/Bot Clemson results	4 - Major section loss	2 - Replace unit	800 (LF)			
121 - P/Stl Thru Truss/Bot Clemson results	5 - Section loss	2 - Replace unit	800 (LF)			
125 - U/Stl Thru Truss/Top Clemson results	4 - Major section loss	2 - Replace unit	900 (LF)			
126 - P/Stl Thru Truss/Top Clemson results	5 - Section loss	2 - Replace unit	950 (LF)			
131 - Paint Stl Deck Truss Clemson results	5 - Section loss	2 - Replace unit	900 (LF)			
135 - Timber Truss/Arch Clemson results	3 - Some strength loss	2 - Replace unit	700 (LF)			
135 - Timber Truss/Arch Clemson results	4 - Major strength loss	2 - Replace unit	800 (LF)			
140 - Unpnt Stl Arch Clemson results	4 - Major section loss	2 - Replace unit	900 (LF)			
141 - Paint Stl Arch Clemson results	5 - Section loss	2 - Replace unit	900 (LF)			
143 - P/S Conc Arch Clemson results	4 - Analysis warranted	2 - Replace unit	175 (LF)			
144 - R/Conc Arch Clemson results	4 - Analysis warranted	2 - Replace unit	1700 (LF)			

143 - Replace cable

These results were based on the panel's discussion of anecdotal project experience since there were no relevant data points in any of the automated systems.

Element	State	Action	Final Cost
146 - Misc Cable Uncoated Anecdotal project evidence	4 - Analysis warranted	2 - Replace unit	160000 (EA)
147 - Misc Cable Coated Anecdotal project evidence	4 - Active corrosion	2 - Replace unit	160000 (EA)
147 - Misc Cable Coated Anecdotal project evidence	5 - Analysis warranted	2 - Replace unit	160000 (EA)

144 - Replace substructure element

Although MMS has project data, the costs are all expressed in units of man-hours, so they are not directly usable for planning. Most of the actions in this group were extremely uncommon, with the exception of timber pile and pile jacket replacement. Costs were based on anecdotal project experience and expert judgment.

Element	State	Action	Final Cost
201 - Unpnt Stl Column DCP data average for action subcateg and judgment	4 - Major section loss gory (\$300/ea) too low. Panel estimate	2 - Replace unit d based on anecdotal project evidence	20000 (EA)
202 - Paint Stl Column DCP data average for action subcateg and judgment	5 - Section loss gory (\$300/ea) too low. Panel estimate	2 - Replace unit d based on anecdotal project evidence	20000 (EA)
204 - P/S Conc Column DCP data average for action subcateg and judgment	4 - Analysis warranted gory (\$300/ea) too low. Panel estimate	2 - Replace unit d based on anecdotal project evidence	20000 (EA)
205 - R/Conc Column DCP data average for action subcated and judgment	4 - Analysis warranted gory (\$300/ea) too low. Panel estimate	2 - Replace unit d based on anecdotal project evidence	20000 (EA)
206 - Timber Column DCP data average for action subcateg and judgment	3 - Some strength loss gory (\$300/ea) too low. Panel estimate	2 - Replace unit d based on anecdotal project evidence	1000 (EA)
206 - Timber Column DCP data average for action subcated and judgment	4 - Major strength loss gory (\$300/ea) too low. Panel estimate	2 - Replace unit d based on anecdotal project evidence	1000 (EA)
207 - P/S Conc Holl Pile DCP data average for action subcated and judgment	4 - Adv Corros gory (\$300/ea) too low. Panel estimate	2 - Replace unit d based on anecdotal project evidence	20000 (EA)
210 - R/Conc Pier Wall Akbar data average for action subcate and judgment	4 - Analysis warranted egory (\$132/lf) too low. Panel estimate	2 - Replace unit d based on anecdotal project evidence	3000 (LF)
211 - Other Mtl Pier Wall Akbar data average for action subcate and judgment	4 - Major deterioration egory (\$132/lf) too low. Panel estimate	2 - Replace unit d based on anecdotal project evidence	3000 (LF)
215 - R/Conc Abutment Akbar data average for action subcate and judgment	4 - Analysis warranted egory (\$132/lf) too low. Panel estimate	2 - Replace unit d based on anecdotal project evidence	820 (LF)
216 - Timber Abutment Akbar data average for action subcate and judgment	3 - Some strength loss egory (\$132/lf) too low. Panel estimate	2 - Replace unit d based on anecdotal project evidence	620 (LF)
216 - Timber Abutment Akbar data average for action subcate and judgment	4 - Major strength loss egory (\$132/lf) too low. Panel estimate	2 - Replace unit d based on anecdotal project evidence	620 (LF)
217 - Other Mtl Abutment Akbar data average for action subcate and judgment	4 - Major deterioration egory (\$132/lf) too low. Panel estimate	2 - Replace unit d based on anecdotal project evidence	820 (LF)
220 - R/C Sub Pile Cap/Ftg DCP data average for action subcateg and judgment	4 - Analysis warranted gory (\$300/ea) too low. Panel estimate	2 - Replace unit d based on anecdotal project evidence	100000 (EA)
298 - Pile Jacket Bare	4 - Maj Deter gory (\$300/ea) too low. Panel estimate	2 - Replace unit d based on anecdotal project evidence	500 (EA)
299 - Pile Jacket/Cath Pro	4 - Maj Deter gory (\$300/ea) too low. Panel estimate	2 - Replace unit d based on anecdotal project evidence	1000 (EA)
386 - Fender/Dolphin Uncoa	4 - Adv Corros	2 - Replace unit	240 (LF)

Akbar data average for action subcates and judgment	gory (\$132/lf) too low. Panel estimated	based on anecdotal project evidence	
387 - P/S Fender/Dolphin Akbar data average for action subcate and judgment	4 - Adv Corros gory (\$132/lf) too low. Panel estimated	2 - Replace unit based on anecdotal project evidence	240 (LF)
388 - R/Conc Fender/Dolphi	4 - Adv Corros	2 - Replace unit	240 (LF)
Akbar data average for action subcates and judgment	gory (\$132/lf) too low. Panel estimated	based on anecdotal project evidence	
389 - Timber Fender/Dolphi	4 - Adv Deter	2 - Replace unit	240 (LF)
Akbar data average for action subcate and judgment	gory (\$132/lf) too low. Panel estimated	based on anecdotal project evidence	
390 - Other Fender/Dolphin	3 - Mod Deter	2 - Replace unit	240 (LF)
Akbar data average for action subcate and judgment	gory (\$132/lf) too low. Panel estimated	based on anecdotal project evidence	
390 - Other Fender/Dolphin	4 - Maj Deter	2 - Replace unit	240 (LF)
Akbar data average for action subcate and judgment	gory (\$132/lf) too low. Panel estimated	based on anecdotal project evidence	
393 - Blkhd Sewl Metal Unc	4 - Adv Corros	2 - Replace unit	9.3 (SF)
Based on anecdotal project evidence a	and judgment		
474 - Walls Uncoated	4 - Adv Corros	2 - Replace unit	61 (LF)
Akbar data average for action subcate and judgment	gory (\$132/lf) too low. Panel estimated	d based on anecdotal project evidence	
475 - R/Conc Walls	4 - Adv Deter	2 - Replace unit	610 (LF)
Akbar data average for action subcate and judgment	gory (\$132/lf) too low. Panel estimated	based on anecdotal project evidence	
476 - Timber Walls	3 - Minor Loss	2 - Replace unit	305 (LF)
Akbar data average for action subcate and judgment	gory (\$132/lf) too low. Panel estimated	based on anecdotal project evidence	
476 - Timber Walls	4 - Adv Deter	2 - Replace unit	305 (LF)
Akbar data average for action subcate and judgment	gory (\$132/lf) too low. Panel estimated	based on anecdotal project evidence	
477 - Other Walls	4 - Maj Deter	2 - Replace unit	610 (LF)
Akbar data average for action subcate	gory (\$132/lf) too low. Panel estimated	based on anecdotal project evidence	
478 - MSE Walls	4 - Maj Deter	2 - Replace unit	366 (LF)
Akbar data average for action subcates and judgment	gory (\$132/lf) too low. Panel estimated	d based on anecdotal project evidence	
489 - Sign Foundation	4 - Adv Corros	2 - Replace unit	460 (EA)
DCP data average for action subcateg	ory (\$300/ea) too low. Panel estimated	d based on anecdotal project evidence	

and judgment

145 - Replace culvert

Since FDOT has no automated	Since FDOT has no automated data on these uncommon actions, the panel decided to use Clemson data.			
Element	State	Action	Final Cost	
240 - Metal Culvert Clemson results	4 - Major corrosion	2 - Replace unit	780 (LF)	
241 - Concrete Culvert Clemson results	4 - Major deterioration	2 - Replace unit	720 (LF)	
243 - Misc Culvert Clemson results	4 - Major deterioration	2 - Replace unit	2700 (LF)	

146 - Replace approach slab

The Akbar average cost was found to be reasonable for all types of approach slabs.				
Element	State	Action	Final Cost	
320 - P/S Conc Appr Slab Akbar results	3 - Major cracks/spalls	2 - Replace unit	13000 (EA)	
320 - P/S Conc Appr Slab Akbar results	4 - Broken/Unstable	1 - Replace unit	13000 (EA)	
321 - R/Conc Approach Slab Akbar results	3 - Major cracks/spalls	2 - Replace unit	13000 (EA)	
321 - R/Conc Approach Slab Akbar results	4 - Broken/Unstable	1 - Replace unit	13000 (EA)	

151 - Replace pole/sign

Although DCP has relevant data, the numbers are far too small for planning purposes. The final numbers were chosen based on anecdotal project experience and expert judgment.			
Element	State	Action	Final Cost
487 - Sign Member Horiz Based on anecdotal project evidence	5 - Sect Loss and judgment	2 - Replace unit	210 (LF)
488 - Sign Member Vertical Based on anecdotal project evidence	5 - Sect Loss and judgment	2 - Replace unit	210 (LF)
495 - Uncoat High Mast L. DCP data average for action subcate and judgment	4 - Adv Corros gory (\$740/ea) too low. Panel estimate	2 - Replace unit d based on anecdotal project evidence	10000 (EA)
496 - Painted High Mast L. DCP data average for action subcate and judgment		2 - Replace unit d based on anecdotal project evidence	10000 (EA)
497 - Galvan. High Mast L. DCP data average for action subcate and judgment		2 - Replace unit d based on anecdotal project evidence	10000 (EA)
498 - Other High Mast L.P. DCP data average for action subcate and judgment		2 - Replace unit d based on anecdotal project evidence	10000 (EA)
499 - H. M. L. P. Found. DCP data average for action subcate and judgment	4 - Adv Corros gory (\$740/ea) too low. Panel estimate	2 - Replace unit d based on anecdotal project evidence	2000 (EA)

201 - Rehab deck/replace overlay

The MMS unit costs were found to be reasonable.				
	Element	State	Action	Final Cost
	13 - Unp Conc Deck/AC Ovl MMS results	3 - 2 to 10% distress	2 - Replac substrate and	37.8 (SF)
	13 - Unp Conc Deck/AC Ovl MMS results	4 - 10-25% distress	2 - Repair substrate and	37.8 (SF)
	13 - Unp Conc Deck/AC OvI MMS results	5 - Distress over 25%	1 - Repair substrate and	37.8 (SF)
	39 - Unp Conc Slab/AC Ovl MMS results	3 - 2-10% distress	2 - Repair substrate & r	37.8 (SF)
	39 - Unp Conc Slab/AC Ovl MMS results	4 - 10-25% distress	2 - Repair substrate and	37.8 (SF)
	39 - Unp Conc Slab/AC Ovl MMS results	5 - Distress over 25%	1 - Repair substrate and	37.8 (SF)
	98 - Conc Deck on PC Pane MMS results	1 - No Damage	1 - Protective Coating	37.8 (SF)
	320 - P/S Conc Appr Slab MMS results	2 - Minor cracks/spalls	2 - Seal Cracks	37.8 (EA)
	320 - P/S Conc Appr Slab MMS results	3 - Major cracks/spalls	1 - Place overlay	37.8 (EA)
	321 - R/Conc Approach Slab MMS results	2 - Cracks/spalls	2 - Seal Cracks	37.8 (EA)
	321 - R/Conc Approach Slab MMS results	3 - Major cracks/spalls	1 - Place overlay	37.8 (EA)

202 - Rehab steel

There were too few data points in the tracking systems for meaningful analysis of costs by element. The panel decided to develop prices based on a discussion of typical crew sizes and costs. These numbers were significantly higher than the Clemson results.

Element	State	Action	Final Cost
28 - Steel Deck/Open Grid Based on an analysis of typical crev	3 - Rust formation v sizes and costs	2 - Rehab connectors	9 (SF)
28 - Steel Deck/Open Grid Based on an analysis of typical crev	4 - Moderate corrosion v sizes and costs	2 - Rehab connectors	15 (SF)
28 - Steel Deck/Open Grid Based on an analysis of typical crev	5 - Advanced corrosion v sizes and costs	1 - Rehab connectors+rep	20 (SF)
29 - Steel Deck/Conc Grid Based on an analysis of typical crev	3 - Rust formation v sizes and costs	2 - Rehab connectors+con	10.8 (SF)
29 - Steel Deck/Conc Grid Based on an analysis of typical crev	4 - Failed connectors v sizes and costs	2 - Rehab connectors+con	18 (SF)
29 - Steel Deck/Conc Grid Based on an analysis of typical crev	5 - Advanced corrosion v sizes and costs	1 - Rehab connectors+con	24 (SF)
101 - Unpnt Stl Box Girder Based on an analysis of typical crev	4 - Major section loss	1 - Rehab unit	20000 (LF)
102 - Paint Stl Box Girder Based on an analysis of typical crev	5 - Section loss	1 - Major rehab unit	20000 (LF)
106 - Unpnt Stl Opn Girder Based on an analysis of typical crev	4 - Major section loss	1 - Rehab unit	6000 (LF)
107 - Paint Stl Opn Girder Based on an analysis of typical crev	5 - Section loss	1 - Major rehab unit	6000 (LF)
112 - Unpnt Stl Stringer Based on an analysis of typical crev	4 - Major section loss	1 - Rehab unit	4000 (LF)
113 - Paint Stl Stringer Based on an analysis of typical crev	5 - Section loss	1 - Major rehab unit	4000 (LF)
120 - U/Stl Thru Truss/Bot	4 - Major section loss	1 - Rehab unit wer but larger trusses than most states.)	30000 (LF)
121 - P/Stl Thru Truss/Bot Based on an analysis of typical crev	5 - Section loss w sizes and costs. (Florida has fev	1 - Major rehab unit wer but larger trusses than most states.)	30000 (LF)
125 - U/Stl Thru Truss/Top Based on an analysis of typical crev	4 - Major section loss w sizes and costs. (Florida has fev	1 - Rehab unit wer but larger trusses than most states.)	30000 (LF)
126 - P/Stl Thru Truss/Top Based on an analysis of typical crev	5 - Section loss w sizes and costs. (Florida has fev	1 - Major rehab unit wer but larger trusses than most states.)	30000 (LF)
131 - Paint Stl Deck Truss Based on an analysis of typical crev	5 - Section loss w sizes and costs. (Florida has fev	1 - Major rehab unit wer but larger trusses than most states.)	25000 (LF)
140 - Unpnt Stl Arch Based on an analysis of typical crev	4 - Major section loss v sizes and costs	1 - Rehab unit	25000 (LF)
141 - Paint Stl Arch Based on an analysis of typical crev	5 - Section loss v sizes and costs	1 - Major rehab unit	25000 (LF)
151 - Unpnt Stl Floor Beam Based on an analysis of typical crev	4 - Major section loss v sizes and costs	1 - Rehab unit	4000 (LF)
152 - Paint Stl Floor Beam Based on an analysis of typical crev	5 - Section loss	1 - Major rehab unit	4000 (LF)
161 - Paint Stl Pin/Hanger	5 - Section loss	1 - Major rehab unit	75000 (EA)

sizes and costs.

DCP data average for action subcategory (\$980/ea) too low. Panel estimated based on an analysis of typical crew sizes and costs. 201 - Unpnt Stl Column 4 - Major section loss 1 - Rehab unit 1000 (EA) DCP data average for action subcategory (\$980/ea) too low. Panel estimated based on an analysis of typical crew sizes and costs. 202 - Paint Stl Column 5 - Section loss 1 - Major rehab unit 1000 (EA) Based on an analysis of typical crew sizes and costs 1 - Rehab unit 230 - Unpnt Stl Cap 4 - Major section loss 1000 (LF) Based on an analysis of typical crew sizes and costs 231 - Paint Stl Cap 5 - Section loss 1 - Major rehab unit 1000 (LF) Based on an analysis of typical crew sizes and costs 240 - Metal Culvert 2 - Minor corrosion 1 - Rehab unit 1500 (LF) Based on an analysis of typical crew sizes and costs 1 - Rehab unit 240 - Metal Culvert 3 - Moderate corrosion 1500 (LF) Based on an analysis of typical crew sizes and costs 240 - Metal Culvert 4 - Major corrosion 1 - Rehab unit 1500 (LF) Based on an analysis of typical crew sizes and costs 1 - Rehabilitate unit 298 - Pile Jacket Bare 4 - Maj Deter 200 (EA) DCP data average for action subcategory (\$980/ea) too high. Panel estimated based on an analysis of typical crew sizes and costs. 299 - Pile Jacket/Cath Pro 4 - Maj Deter 1 - Rehabilitate unit 200 (EA) DCP data average for action subcategory (\$980/ea) too high. Panel estimated based on an analysis of typical crew sizes and costs. 330 - Metal Rail Uncoated 4 - Section loss 1 - Rehab unit 129 (LF) Based on an analysis of typical crew sizes and costs 334 - Metal Rail Coated 4 - Active corrosion 1 - Rehab unit 129 (LF) Based on an analysis of typical crew sizes and costs 334 - Metal Rail Coated 1 - Rehab unit 5 - Analysis warranted 129 (LF) Based on an analysis of typical crew sizes and costs 386 - Fender/Dolphin Uncoa 4 - Adv Corros 1 - Rehabilitate unit 144 (LF) The expert panel set this at 60% of replacement cost. 393 - Blkhd Sewl Metal Unc 4 - Adv Corros 1 - Rehabilitate unit 5.6 (SF) The expert panel set this at 60% of replacement cost. 398 - Drain. Syst Other 4 - Maj Deter 1 - Rehabilitate unit 492 (EA) DCP data average for action subcategory (\$980/ea) too high. Panel estimated based on an analysis of typical crew sizes and costs. 474 - Walls Uncoated 4 - Adv Corros 1 - Rehabilitate unit 120 (LF) Based on an analysis of typical crew sizes and costs 487 - Sign Member Horiz 1 - Rehabilitate unit 5 - Sect Loss 102 (LF) Based on an analysis of typical crew sizes and costs 488 - Sign Member Vertical 5 - Sect Loss 1 - Rehabilitate unit 102 (LF) Based on an analysis of typical crew sizes and costs 495 - Uncoat High Mast L. 4 - Adv Corros 1 - Rehabilitate unit 6000 (EA) DCP data average for action subcategory (\$980/ea) too low. Panel estimated based on an analysis of typical crew sizes and costs. 496 - Painted High Mast L. 5 - Sect Loss 1 - Rehabilitate unit 6000 (EA) DCP data average for action subcategory (\$980/ea) too low. Panel estimated based on an analysis of typical crew sizes and costs. 497 - Galvan. High Mast L. 5 - Sect Loss 1 - Rehabilitate unit 6000 (EA) DCP data average for action subcategory (\$980/ea) too low. Panel estimated based on an analysis of typical crew sizes and costs. 498 - Other High Mast L.P. 2 - Min Deter 1 - Rehabilitate unit 6000 (EA) DCP data average for action subcategory (\$980/ea) too low. Panel estimated based on an analysis of typical crew

141

 498 - Other High Mast L.P.
 3 - Mod Deter
 1 - Rehabilitate unit
 6000 (EA)

 DCP data average for action subcategory
 (\$980/ea) too low. Panel estimated based on an analysis of typical crew sizes and costs.
 6000 (EA)

 498 - Other High Mast L.P.
 4 - Maj Deter
 1 - Rehabilitate unit
 6000 (EA)

DCP data average for action subcategory (\$980/ea) too low. Panel estimated based on an analysis of typical crew sizes and costs.

203 - Rehab concrete

Concrete rehabilitation in Florida is typically carbon fiber wrapping. These costs were based on anecdotal project experience and checked against a small number of data points in DCP. These numbers were significantly higher than the Clemson results.

Element	State	Action	Final Cost
104 - P/S Conc Box Girder Based on anecdotal project experi to identify which type of element is		1 - Rehab unit bilitation of concrete beams, but it is impossibl	500 (LF) e
105 - R/Conc Box Girder Based on anecdotal project experie	4 - Analysis warranted ence.	1 - Rehab unit	500 (LF)
109 - P/S Conc Open Girder Based on anecdotal project experie	4 - Analysis warranted ence.	1 - Rehab unit	500 (LF)
110 - R/Conc Open Girder Based on anecdotal project experie	4 - Analysis warranted ence.	1 - Rehab unit	500 (LF)
116 - R/Conc Stringer Based on anecdotal project experie	4 - Analysis warranted ence.	1 - Rehab unit	500 (LF)
143 - P/S Conc Arch Based on anecdotal project experie	4 - Analysis warranted ence.	1 - Rehab unit	500 (LF)
144 - R/Conc Arch Based on anecdotal project experie	4 - Analysis warranted ence.	1 - Rehab unit	500 (LF)
155 - R/Conc Floor Beam Based on anecdotal project experie	4 - Analysis warranted ence.	1 - Rehab unit	500 (LF)
204 - P/S Conc Column Based on anecdotal project experi was too low.)	4 - Analysis warranted ence. (DCP has \$300 ea. for reha	1 - Rehab unit b of concrete columns, but the panel felt this	5000 (EA)
205 - R/Conc Column Based on anecdotal project experie	4 - Analysis warranted ence.	1 - Rehab unit	5000 (EA)
207 - P/S Conc Holl Pile Based on anecdotal project experie	4 - Adv Corros ence.	1 - Rehabilitate unit	5000 (EA)
210 - R/Conc Pier Wall Based on anecdotal project experie	4 - Analysis warranted ence.	1 - Rehab unit	500 (LF)
215 - R/Conc Abutment Based on anecdotal project experie	4 - Analysis warranted ence.	1 - Rehab unit	500 (LF)
220 - R/C Sub Pile Cap/Ftg Based on anecdotal project experie	4 - Analysis warranted ence.	1 - Rehab unit	5000 (EA)
233 - P/S Conc Cap Based on anecdotal project experie	4 - Analysis warranted ence.	1 - Rehab unit	500 (LF)
234 - R/Conc Cap Based on anecdotal project experie	4 - Analysis warranted ence.	1 - Rehab unit	500 (LF)
241 - Concrete Culvert Based on anecdotal project experi	2 - Minor deterioration ence. This is believed to vary by co	1 - Rehab unit ondition state.	300 (LF)
241 - Concrete Culvert Based on anecdotal project experi	3 - Moderate deteriorati ence. This is believed to vary by co	1 - Rehab unit ondition state.	610 (LF)
241 - Concrete Culvert Based on anecdotal project experi	4 - Major deterioration ence. This is believed to vary by co	1 - Rehab unit ondition state.	910 (LF)
331 - Conc Bridge Railing Based on anecdotal project experie	4 - Analysis warranted ence.	1 - Rehab unit	500 (LF)
387 - P/S Fender/Dolphin Based on anecdotal project experie	4 - Adv Corros ence.	1 - Rehabilitate unit	500 (LF)
388 - R/Conc Fender/Dolphi Based on anecdotal project experie	4 - Adv Corros ence.	1 - Rehabilitate unit	500 (LF)
394 - R/Conc Abut Slope Pr The expert panel set this at 60% o	4 - Adv Corros f replacement cost.	1 - Rehabilitate unit	2.5 (SF)
475 - R/Conc Walls	4 - Adv Deter	1 - Rehabilitate unit	370 (LF)

The expert panel set this at 60°	% of replacement cost.		
489 - Sign Foundation Based on anecdotal project exp	4 - Adv Corros perience.	1 - Rehabilitate unit	1000 (EA)
499 - H. M. L. P. Found. Based on anecdotal project exp	4 - Adv Corros perience.	1 - Rehabilitate unit	1000 (EA)
564 - Counterweight Survey	4 - Adv Corros	1 - Rehabilitate unit	4500 (EA)

204 - Rehab timber

FDOT does not have standardized procedures for timber rehabilitation because opportunities seldom arise for a cost-effective rehabilitation-type action. Therefore, costs can vary widely. MMS, Akbar, and DCP each contain a few relevant data points, but the average unit costs in all three systems were judged to be too low. On the other hand, the Clemson costs were generally too high. The expert panel decided to use 60% of replacement cost for planning purposes. These numbers are assumed not to vary by condition state.

Element	State	Action	Final Cost
31 - Timber Deck	2 - Minor decay	1 - Rehab and/or protect	6 (SF)
The expert panel set this at 60%	-		0 (01)
31 - Timber Deck	3 - Some strength loss	1 - Rehab deck	(SF)
The expert panel set this at 60%	-		
32 - Timber Deck/AC Ovly	2 - Minor deterioration	2 - Rehab and/or protect	5 (SF)
The expert panel set this at 60%	of replacement cost.		
32 - Timber Deck/AC Ovly	3 - Some strength loss	1 - Rehab deck+repair/re	5 (SF)
The expert panel set this at 60%	of replacement cost.		
54 - Timber Slab	2 - Minor decay	1 - Rehab and/or protect	0.6 (SF)
The expert panel set this at 60%			
54 - Timber Slab	3 - Some strength loss	1 - Rehab deck	(SF)
The expert panel set this at 60%			
55 - Timber Slab/AC Ovly The expert panel set this at 60%	2 - Minor deterioration	2 - Rehab and/or protect	2 (SF)
55 - Timber Slab/AC Ovly	3 - Some strength loss	1 - Rehab deck and surfa	(SF)
The expert panel set this at 60%	-		(01)
111 - Timber Open Girder	2 - Minor decay	1 - Rehab &/or protect u	90 (LF)
•	2	If, \$23/If and \$21/If respectively. The expert	
panel set this at 60% of replacen	nent cost.		
111 - Timber Open Girder	3 - Some strength loss	1 - Rehab unit	90 (LF)
The expert panel set this at 60%	of replacement cost.		
111 - Timber Open Girder	4 - Major strength loss	1 - Rehab unit	90 (LF)
The expert panel set this at 60%	of replacement cost.		
117 - Timber Stringer	2 - Minor decay	1 - Rehab &/or protect u	68 (LF)
The expert panel set this at 60%			
117 - Timber Stringer The expert panel set this at 60%	3 - Some strength loss	1 - Rehab unit	68 (LF)
		1 Pahah unit	
117 - Timber Stringer The expert panel set this at 60%	4 - Major strength loss of replacement cost	1 - Rehab unit	68 (LF)
135 - Timber Truss/Arch	2 - Minor decay	1 - Rehab &/or protect u	420 (LF)
The expert panel set this at 60%	-		420 (El)
135 - Timber Truss/Arch	3 - Some strength loss	1 - Rehab unit	420 (LF)
The expert panel set this at 60%	0		
135 - Timber Truss/Arch	4 - Major strength loss	1 - Rehab unit	420 (LF)
The expert panel set this at 60%	of replacement cost.		
156 - Timber Floor Beam	2 - Minor decay	1 - Rehab &/or protect u	68 (LF)
The expert panel set this at 60%	of replacement cost.		
156 - Timber Floor Beam	3 - Some strength loss	1 - Rehab unit	68 (LF)
The expert panel set this at 60%	of replacement cost.		
156 - Timber Floor Beam	4 - Major strength loss	1 - Rehab unit	68 (LF)
The expert panel set this at 60%			
206 - Timber Column	2 - Minor decay	1 - Rehab &/or protect u	600 (EA)
The expert panel set this at 60%		1 Debeb unit	
206 - Timber Column The expert panel set this at 60%	3 - Some strength loss of replacement cost	1 - Rehab unit	600 (EA)
206 - Timber Column	4 - Major strength loss	1 - Rehab unit	600 (EA)
The expert panel set this at 60%	, 0		000 (LA)
	•		

216 - Timber Abutment	2 - Minor decay	1 - Rehab &/or protect u	370 (LF)
The expert panel set this at 60% of	replacement cost.		
216 - Timber Abutment The expert panel set this at 60% of	3 - Some strength loss replacement cost.	1 - Rehab unit	370 (LF)
216 - Timber Abutment The expert panel set this at 60% of	4 - Major strength loss replacement cost.	1 - Rehab unit	370 (LF)
235 - Timber Cap The expert panel set this at 60% of	2 - Minor decay replacement cost.	1 - Rehab &/or protect u	90 (LF)
235 - Timber Cap The expert panel set this at 60% of	3 - Some strength loss replacement cost.	1 - Rehab unit	90 (LF)
235 - Timber Cap The expert panel set this at 60% of	4 - Major strength loss replacement cost.	1 - Rehab unit	90 (LF)
332 - Timb Bridge Railing The expert panel set this at 60% of	2 - Minor decay replacement cost.	1 - Rehab and/or apply s	20 (LF)
389 - Timber Fender/Dolphi The expert panel set this at 60% of	2 - Min Defect replacement cost.	1 - Rehab and/or protect	144 (LF)
389 - Timber Fender/Dolphi The expert panel set this at 60% of	3 - Minor Loss replacement cost.	1 - Rehabilitate unit	144 (LF)
389 - Timber Fender/Dolphi The expert panel set this at 60% of	3 - Minor Loss replacement cost.	2 - Replace unit	144 (LF)
389 - Timber Fender/Dolphi The expert panel set this at 60% of	4 - Adv Deter replacement cost.	1 - Rehabilitate unit	144 (LF)
395 - Timber Abut Slope Pr The expert panel set this at 60% of	2 - Min Defect replacement cost.	1 - Rehab and/or protect	2.5 (SF)
395 - Timber Abut Slope Pr The expert panel set this at 60% of	3 - Minor Loss replacement cost.	1 - Rehabilitate unit	2.5 (SF)
395 - Timber Abut Slope Pr The expert panel set this at 60% of	4 - Adv Deter replacement cost.	1 - Rehabilitate unit	2.5 (SF)
476 - Timber Walls The expert panel set this at 60% of	2 - Min Defect replacement cost.	1 - Rehab and/or Protect	180 (LF)
476 - Timber Walls The expert panel set this at 60% of	3 - Minor Loss replacement cost.	1 - Rehabilitate unit	180 (LF)
476 - Timber Walls The expert panel set this at 60% of	4 - Adv Deter replacement cost.	1 - Rehabilitate unit	180 (LF)

205 - Rehab masonry/other

All of these are relatively uncommon actions. Those applying to masonry were set by the expert panel at 75% of replacement cost. Others were set according to anecdotal project evidence and judgment. Element State Final Cost Action 1 - Rehab unit 211 - Other Mtl Pier Wall 2 - Minor deterioration 1800 (LF) The expert panel set this at 60% of replacement cost. 211 - Other Mtl Pier Wall 3 - Moderate deteriorati 1 - Rehab unit 1800 (LF) The expert panel set this at 60% of replacement cost. 1 - Rehab unit 211 - Other Mtl Pier Wall 4 - Major deterioration 1800 (LF) The expert panel set this at 60% of replacement cost. 217 - Other Mtl Abutment 2 - Minor deterioration 1 - Rehab unit 490 (LF) The expert panel set this at 60% of replacement cost. 217 - Other Mtl Abutment 3 - Moderate deteriorati 1 - Rehab unit 490 (LF) The expert panel set this at 60% of replacement cost. 217 - Other Mtl Abutment 4 - Major deterioration 1 - Rehab unit 490 (LF) The expert panel set this at 60% of replacement cost. 243 - Misc Culvert 2 - Minor deterioration 1 - Rehab unit 225 (LF) The expert panel set this at 75% of concrete. 243 - Misc Culvert 3 - Moderate deteriorati 1 - Rehab unit 460 (LF) The expert panel set this at 75% of concrete. 243 - Misc Culvert 4 - Major deterioration 1 - Rehab unit 680 (LF) The expert panel set this at 75% of concrete. 333 - Other Bridge Railing 2 - Minor cracks/spalls 1 - Rehab unit 45 (LF) Based on anecdotal project evidence and judgment

333 - Other Bridge Railing 3 - Major deterioration 1 - Rehab unit 45 (LF) Based on anecdotal project evidence and judgment 390 - Other Fender/Dolphin 2 - Min Deter 1 - Rehabilitate unit 200 (LF) Based on anecdotal project evidence and judgment 390 - Other Fender/Dolphin 3 - Mod Deter 1 - Rehabilitate unit 200 (LF) Based on anecdotal project evidence and judgment 1 - Rehabilitate unit 390 - Other Fender/Dolphin 4 - Maj Deter 200 (LF) Based on anecdotal project evidence and judgment 477 - Other Walls 2 - Min Deter 1 - Rehabilitate unit 400 (LF) Based on anecdotal project evidence and judgment 1 - Rehabilitate unit 477 - Other Walls 3 - Mod Deter 400 (LF) Based on anecdotal project evidence and judgment 477 - Other Walls 4 - Maj Deter 1 - Rehabilitate unit 400 (LF) Based on anecdotal project evidence and judgment

Element	State	Action	Final Cost
478 - MSE Walls	2 - Min Deter	1 - Rehabilitate unit	300 (LF)
Based on anecdotal project evidence a	and judgment		
478 - MSE Walls	3 - Mod Deter	1 - Rehabilitate unit	300 (LF)
Based on anecdotal project evidence a	and judgment		
478 - MSE Walls	4 - Maj Deter	1 - Rehabilitate unit	300 (LF)
Based on anecdotal project evidence a	and judgment		

211 - Rehab joint

MMS has a significant number of data points, but the costs there are unrealistically low, averaging \$8.11/lf. The DCP average was higher, at \$18.74, but still too low. It is likely that these numbers include only material costs. The expert panel felt that the Clemson results were more realistic for planning purposes.

Element	State	Action	Final Cost
301 - Pourable Joint Seal	3 - Leakage problems	1 - Clean joint; patch s	74 (LF)
MMS and DCP data indicate action	subcategory averages of \$8/lf and	d \$19/lf respectively. Clemson results used.	
303 - Assembly Joint/Seal Clemson results used.	2 - Minor deterioration	1 - Rehab unit	130 (LF)
303 - Assembly Joint/Seal	3 - Advanced corrosion	1 - Rehab unit	190 (LF)
Clemson results used.			
304 - Open Expansion Joint	2 - Minor deterioration	1 - Rehab unit	80 (LF)
Clemson results used.			
304 - Open Expansion Joint	3 - Advanced corrosion	1 - Rehab unit	180 (LF)
Clemson results used.			
399 - Other Expansion Join	2 - Min Deter	1 - Rehabilitate unit	80 (LF)
Assumed to be the same as elemer	nt #304		
399 - Other Expansion Join	3 - Maj Deter	1 - Rehabilitate unit	180 (LF)
• • • • •			. ,

Assumed to be the same as element #304

213 - Rehab bearing

MMS costs are given in man-hours, so they were not directly applicable. Akbar has 2 data points averaging \$3453 each, but it was not possible to determine which type of bearing was involved. It was decided to use the Clemson results, except for pot bearings.

Element	State	Action	Final Cost
310 - Elastomeric Bearing	2 - Minor deterioration	1 - Reset bearings	930 (EA)
Akbar data indicate action subcate	egory averages of \$3,500/ea. Clems	on results used.	
310 - Elastomeric Bearing	3 - Major deterioration	1 - Reset bearings	930 (EA)
Clemson results used.			
311 - Moveable Bearing	3 - Advanced corrosion	1 - Rehab supports	900 (EA)
Clemson results used.			
312 - Enclosed Bearing	2 - Minor deterioration	1 - Rehab unit	1350 (EA)
Clemson results used.			
312 - Enclosed Bearing	3 - Bearing failures	1 - Rehab unit	3700 (EA)
Clemson results used.			
313 - Fixed Bearing	2 - Minor deterioration	1 - Clean and paint or r	670 (EA)
Clemson results used.			
313 - Fixed Bearing	3 - Advanced corrosion	1 - Rehab supports or be	1340 (EA)
Clemson results used.			
314 - Pot Bearing	2 - Minor deterioration	1 - Rehab supports or be	1500 (EA)
Clemson results used.			
314 - Pot Bearing	3 - Advanced corrosion	1 - Rehab bearing device	1500 (EA)
Clemson results used.			

221 - Rehab slope protection

MMS data were found to be too high, probably because they contain activities not related to the slope protection element. DCP results were more consistent with other costs, so they were chosen.

Element	State	Action	Final Cost
396 - Other Abut Slope Pro DCP Results	2 - Min Deter	1 - Rehab and/or Protect	3.22 (SF)
396 - Other Abut Slope Pro DCP Results	3 - Mod Deter	1 - Rehabilitate unit	3.22 (SF)
396 - Other Abut Slope Pro DCP Results	4 - Maj Deter	1 - Rehabilitate unit	3.22 (SF)

222 - Rehab channel

These costs were based on anecdotal project evidence.				
	Element	State	Action	Final Cost
	290 - Channel	2 - Min Deter	1 - Rep. Banks/Prot	600 (EA)
	Based on anecdotal project evidence			
	290 - Channel	3 - Mod Deter	1 - Rep. Banks/Prot	1000 (EA)
	Based on anecdotal project evidence			
	290 - Channel	3 - Mod Deter	2 - Countermeasures	100000 (EA)
	Based on anecdotal project evidence			
	290 - Channel	4 - Maj Deter	1 - Countermeasures	300000 (EA)
	Based on anecdotal project evidence			

223 - Rehab drainage system

These costs were based on anecdotal project evidence.			
Element	State	Action	Final Cost
397 - Drain. Syst Metal	5 - Sect Loss	1 - Rehabilitate unit	600 (EA)
Based on anecdotal project evid	lence		

231 - Rehab machinery

Survey		
Element State	Action	Final Cost
540 - Open Gearing 3 - Mod Deter	1 - Rehabilitate unit	11300 (E
Relevant MMS data available but in units of Man-hours. Survey used.		10000 (T
541 - Speed Reducers 3 - Mod Deter Relevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	16300 (E
542 - Shafts 3 - Mod Deter Relevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	900 (E
543 - Shaft Brgs and Coupl 3 - Mod Deter Relevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	700 (E
544 - Brakes 3 - Mod Deter Relevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	900 (E
544 - Brakes 4 - Maj Deter Relevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	2700 (E
545 - Emergency Drive 3 - Mod Deter Relevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate System	1900 (E
546 - Span Drive Motors 3 - Mod Deter Relevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	2900 (E
547 - Hydraulic Power Unit 3 - Mod Deter Relevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	5500 (E
548 - Hydraulic Piping Sys 3 - Maj Deter Relevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	1400 (E
549 - Hydraulic Cylinders 3 - Mod Deter Relevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	3000 (E
550 - Hopkins Frame 5 - Sect Loss Relevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	5600 (E
560 - Locks3 - Mod DeterRelevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	5500 (E
561 - Live Load Shoes 3 - Maj Deter Relevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	3000 (E
562 - Counterweight Suppor5 - Sect LossRelevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	1600 (E
563 - Acc Ladd & Plat5 - Sect LossRelevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	1800 (E
565 - Trun/Str and Cur Trk3 - Mod DeterRelevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	1300 (E
570 - Transformers3 - Maj DeterRelevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	300 (E
571 - Submarine Cable2 - Min DeterRelevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	1150 ea
571 - Submarine Cable3 - Maj DeterRelevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	2300 ea
572 - Conduit & Junc. Box2 - Min DeterRelevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	400 (E
572 - Conduit & Junc. Box 3 - Maj Deter Relevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	1650 (E
573 - PLCs3 - Maj DeterRelevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	25300 (E
574 - Control Console3 - Maj DeterRelevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	20300 (E
580 - Navigational Lights3 - Maj DeterRelevant MMS data available but in units of Man-hours. Survey used.	1 - Rehabilitate unit	1930 (E

581 - Operator Facilities Relevant MMS data available but in u	2 - Mod Deter nits of Man-hours. Survey used.
581 - Operator Facilities Relevant MMS data available but in u	
582 - Lift Bridge Spec. Eq Relevant MMS data available but in u	
582 - Lift Bridge Spec. Eq Relevant MMS data available but in u	
583 - Swing Bridge Spec. E Relevant MMS data available but in u	
583 - Swing Bridge Spec. E Relevant MMS data available but in u	
590 - Resistance Barriers Relevant MMS data available but in u	
590 - Resistance Barriers Relevant MMS data available but in u	
591 - Warning Gates Relevant MMS data available but in u	
591 - Warning Gates Relevant MMS data available but in u	nits of Man-hours. Survey used.
592 - Traffic Signals Relevant MMS data available but in u	nits of Man-hours. Survey used.
592 - Traffic Signals Relevant MMS data available but in u	

1 - Rehabilitate unit	8700 (EA)
1 - Rehabilitate unit	21200 (EA)
2 - Rehabilitate unit	25000 (EA)
1 - Rehabilitate unit	25000 (EA)
2 - Rehabilitate unit	25000 (EA)
1 - Rehabilitate unit	25000 (EA)
2 - Rehabilitate unit	500 (EA)
1 - Rehabilitate unit	750 (EA)
2 - Rehabilitate unit	1300 (EA)
1 - Rehabilitate unit	4100 (EA)
2 - Rehabilitate unit	1200 (EA)
1 - Rehabilitate unit	3300 (EA)

243 - Rehab cable

 •				
These costs were based on anecdotal project evidence.				
Element	State	Action	Final Cost	
146 - Misc Cable Uncoated	4 - Analysis warranted	1 - Rehab unit and coat	120000 (EA)	
Relevant MMS data available but in units of Man-hours. Survey used.				
147 - Misc Cable Coated	4 - Active corrosion	1 - Rehab unit and repla	120000 (EA)	
Based on anecdotal project evidence				
147 - Misc Cable Coated	5 - Analysis warranted	1 - Rehab unit and repla	120000 (EA)	
Based on anecdotal project evidence				

246 - Mudjacking

 The available data in MMS are in square feet, and Akbar in cubic yards, but approach slabs are eaches. It was decided to rely on the MMS costs assuming typical work situations.

 Element
 State
 Action
 Final Cost

 320 - P/S Conc Appr Slab
 2 - Minor cracks/spalls
 1 - Perform mudjacking o
 6000 (EA)

 Based on MMS and anecdotal project characteristics
 321 - R/Conc Approach Slab
 2 - Cracks/spalls
 1 - Perform mudjacking o
 6000 (EA)

Based on MMS and anecdotal project characteristics

301 - Repair deck and substrate

apply to the entire deck, they differ by		osts on anecdotal project experience. Beca	
Element	State	Action	Final Cost
13 - Unp Conc Deck/AC Ovl Based on anecdotal project evidence	2 - Distress <= 2%	1 - Repair potholes and	5 (SF
13 - Unp Conc Deck/AC Ovl MMS data result (\$74/sf) too high. Es	3 - 2 to 10% distress stimated based on anecdotal proj	1 - Repair potholes and ect evidence	10 (SF
13 - Unp Conc Deck/AC Ovl Based on anecdotal project evidence.	4 - 10-25% distress	1 - Repair potholes and	20 (SF
39 - Unp Conc Slab/AC Ovl Based on anecdotal project evidence.	2 - Distress under 2%	1 - Repair potholes and	5 (SF
39 - Unp Conc Slab/AC Ovl Based on anecdotal project evidence.	3 - 2-10% distress	1 - Repair potholes and	10 (SF
39 - Unp Conc Slab/AC Ovl Based on anecdotal project evidence.	4 - 10-25% distress	1 - Repair potholes and	20 (SF
98 - Conc Deck on PC Pane Based on anecdotal project evidence.	3 - 2-10 % Distress	2 - Repair and Protect	12 (SF
98 - Conc Deck on PC Pane Based on anecdotal project evidence.	4 - 10-25 % Distress	2 - Repair & Protect	22 (SF
98 - Conc Deck on PC Pane Based on anecdotal project evidence.	5 - Distress over 25 %	1 - Repair & Protect	25 (SF
99 - PS Conc Slab Based on anecdotal project evidence.	3 - Dist 2-10%	2 - Repair and protect	13 (SF
99 - PS Conc Slab Based on anecdotal project evidence.	4 - Dist 10-25%	2 - Repair and protect	25 (SF
99 - PS Conc Slab Based on anecdotal project evidence.	5 - Dist >25%	1 - Repair and protect	34 (SF

302 - Spot paint

The panel found the MMS costs to be too low, perhaps because they do not include all cost components. They decided to set the spot painting costs at a fixed ratio to the cost of repainting the paint system. The ratio depended on the unit of measurement (If or each) and on whether spot blasting was included. These costs on average were one-fifth higher than the Clemson results.

Element	State	Action	Final Cost	
Element 28 - Steel Deck/Open Grid	State 4 - Moderate corrosion	1 - Spot blast, clean an	10 (SF)	
•	timated based on anecdotal project evid	•	- (-)	
29 - Steel Deck/Conc Grid Based on anecdotal project evidence.	4 - Failed connectors	1 - Spot blast, clean an	12 (SF)	
101 - Unpnt Stl Box Girder	2 - Minor corrosion	1 - Clean & paint	3640 (LF)	
MMS data result (\$19/lf) too low. Set l	by the expert panel at 1.3 times the cos	t of replacing the paint system.		
101 - Unpnt Stl Box Girder Set by the expert panel at 1.3 times the	3 - Some section loss he cost of replacing the paint system.	1 - Clean & paint	3640 (LF)	
102 - Paint Stl Box Girder Set by the expert panel at 1.3 times the	2 - Paint distress he cost of replacing the paint system.	2 - Clean & paint	3640 (LF)	
102 - Paint Stl Box Girder Set by the expert panel at 1.5 times the	3 - Rust formation ne cost of replacing the paint system.	1 - Spot blast, clean &	4200 (LF)	
102 - Paint Stl Box Girder Set by the expert panel at 1.3 times the	4 - Active corrosion he cost of replacing the paint system.	1 - Spot blast, clean &	4200 (LF)	
106 - Unpnt Stl Opn Girder Set by the expert panel at 1.3 times th	2 - Minor corrosion ne cost of replacing the paint system.	1 - Clean & paint	68 (LF)	
106 - Unpnt Stl Opn Girder Set by the expert panel at 1.3 times th	3 - Some section loss ne cost of replacing the paint system.	1 - Clean & paint	68 (LF)	
107 - Paint Stl Opn Girder Set by the expert panel at 1.3 times th	2 - Paint distress ne cost of replacing the paint system.	2 - Surface clean and re	68 (LF)	
107 - Paint Stl Opn Girder Set by the expert panel at 1.5 times th	3 - Rust formation ne cost of replacing the paint system.	1 - Spot blast,clean & p	78 (LF)	
107 - Paint Stl Opn Girder Set by the expert panel at 1.5 times th	4 - Active corrosion ne cost of replacing the paint system.	1 - Spot blast, clean &	78 (LF)	
112 - Unpnt Stl Stringer Set by the expert panel at 1.3 times th	2 - Minor corrosion ne cost of replacing the paint system.	1 - Clean & paint	43 (LF)	
112 - Unpnt Stl Stringer Set by the expert panel at 1.3 times th	3 - Some section loss ne cost of replacing the paint system.	1 - Clean & paint	43 (LF)	
113 - Paint Stl Stringer Set by the expert panel at 1.3 times th	2 - Paint distress ne cost of replacing the paint system.	2 - Clean & paint	43 (LF)	
113 - Paint Stl Stringer Set by the expert panel at 1.5 times th	3 - Rust formation ne cost of replacing the paint system.	1 - Spot blast, clean &	50 (LF)	
113 - Paint Stl Stringer Set by the expert panel at 1.5 times the	4 - Active corrosion he cost of replacing the paint system.	1 - Spot blast, clean &	50 (LF)	
120 - U/Stl Thru Truss/Bot Set by the expert panel at 1.3 times the	2 - Minor corrosion ne cost of replacing the paint system.	1 - Clean & paint	153 (LF)	
120 - U/Stl Thru Truss/Bot Set by the expert panel at 1.3 times the	3 - Some section loss he cost of replacing the paint system.	1 - Clean & paint	153 (LF)	
121 - P/Stl Thru Truss/Bot Set by the expert panel at 1.3 times the	2 - Paint distress ne cost of replacing the paint system.	2 - Clean & paint	153 (LF)	
121 - P/Stl Thru Truss/Bot Set by the expert panel at 1.5 times the	3 - Rust formation he cost of replacing the paint system.	1 - Spot blast, clean &	177 (LF)	
121 - P/Stl Thru Truss/Bot Set by the expert panel at 1.5 times the	4 - Active corrosion he cost of replacing the paint system.	1 - Spot blast, clean &	177 (LF)	
125 - U/Stl Thru Truss/Top Set by the expert panel at 1.3 times the	2 - Minor corrosion he cost of replacing the paint system.	1 - Clean & paint	195 (LF)	
125 - U/Stl Thru Truss/Top	3 - Some section loss	1 - Clean & paint	195 (LF)	

Set by the expert panel at 1.3 times th	e cost of replacing the paint system.		
126 - P/Stl Thru Truss/Top Set by the expert panel at 1.5 times th	2 - Paint distress e cost of replacing the paint system.	2 - Clean & paint	195 (LF)
126 - P/Stl Thru Truss/Top Set by the expert panel at 1.5 times the	3 - Rust formation e cost of replacing the paint system.	1 - Spot blast, clean &	225 (LF)
126 - P/Stl Thru Truss/Top Set by the expert panel at 1.3 times the	4 - Active corrosion e cost of replacing the paint system.	1 - Spot blast, clean &	225 (LF)
131 - Paint Stl Deck Truss Set by the expert panel at 1.3 times the	2 - Paint distress e cost of replacing the paint system.	2 - Clean & paint	910 (LF)
131 - Paint Stl Deck Truss Set by the expert panel at 1.5 times th	3 - Rust formation e cost of replacing the paint system.	1 - Spot blast, clean &	1050 (LF)
131 - Paint Stl Deck Truss Set by the expert panel at 1.5 times th	4 - Active corrosion e cost of replacing the paint system.	1 - Spot blast, clean &	1050 (LF)
140 - Unpnt Stl Arch Set by the expert panel at 1.3 times th	2 - Minor corrosion e cost of replacing the paint system.	1 - Clean & paint	550 (LF)
140 - Unpnt Stl Arch MMS data result (\$19/lf) too low. Set b	3 - Some section loss by the expert panel at 1.3 times the cost	1 - Clean & paint of replacing the paint system.	550 (LF)
141 - Paint Stl Arch Set by the expert panel at 1.3 times th	2 - Paint distress e cost of replacing the paint system.	2 - Clean & paint	550 (LF)
141 - Paint Stl Arch Set by the expert panel at 1.5 times th	3 - Rust formation e cost of replacing the paint system.	1 - Spot blast, clean &	630 (LF)
141 - Paint Stl Arch Set by the expert panel at 1.5 times th	4 - Active corrosion e cost of replacing the paint system.	1 - Spot blast, clean &	630 (LF)
146 - Misc Cable Uncoated	2 - Surface rust	1 - Clean & coat	7500 (EA)

	· · · · · · · · · · · · · · · · · · ·		
146 - Misc Cable Uncoated Based on expert judgment	2 - Surface rust	1 - Clean & coat	7500 (EA)
146 - Misc Cable Uncoated Based on expert judgment	3 - Moderate deteriorati	1 - Clean & coat	10000 (EA)
151 - Unpnt Stl Floor Beam Set by the expert panel at 1.3 time	2 - Minor corrosion as the cost of replacing the paint system.	1 - Clean & paint	70 (LF)
151 - Unpnt Stl Floor Beam Set by the expert panel at 1.3 time	3 - Some section loss as the cost of replacing the paint system.	1 - Clean & paint	70 (LF)
152 - Paint Stl Floor Beam Set by the expert panel at 1.3 time	2 - Paint distress as the cost of replacing the paint system.	2 - Clean & paint	70 (LF)
152 - Paint Stl Floor Beam Set by the expert panel at 1.5 time	3 - Rust formation as the cost of replacing the paint system.	1 - Spot blast, clean &	81 (LF)
152 - Paint Stl Floor Beam Set by the expert panel at 1.5 time	4 - Active corrosion as the cost of replacing the paint system.	1 - Spot blast, clean &	81 (LF)
161 - Paint Stl Pin/Hanger Set by the panel at 10% of replace	2 - Paint distress e paint system.	2 - Clean & paint	71 (EA)
161 - Paint Stl Pin/Hanger Set by the panel at 20% of replace	3 - Rust formation e paint system.	1 - Spot blast, clean an	142 (EA)
161 - Paint Stl Pin/Hanger Set by the panel at 20% of replace	4 - Active corrosion e paint system.	1 - Spot blast, clean an	142 (EA)
201 - Unpnt Stl Column Set by the panel at 10% of replace	E Ruotronnation	1 - Clean & paint	25 (EA)
201 - Unpnt Stl Column Set by the panel at 10% of replace	3 - Some section loss paint system.	1 - Clean & paint	25 (EA)
202 - Paint Stl Column Set by the panel at 10% of replace	2 - Paint distress e paint system.	2 - Clean & paint	25 (EA)
202 - Paint Stl Column Set by the panel at 20% of replace	3 - Rust formation e paint system.	1 - Spot blast, clean &	50 (EA)
202 - Paint Stl Column	4 - Active corrosion	1 - Spot blast, clean &	50 (EA)

Set by the panel at 20% of replace p	paint system.		
230 - Unpnt Stl Cap Set by the expert panel at 1.3 times	2 - Rust formation the cost of replacing the paint system.	1 - Clean & paint	75 (LF)
230 - Unpnt Stl Cap Set by the expert panel at 1.3 times	3 - Some section loss the cost of replacing the paint system.	1 - Clean & paint	75 (LF)
231 - Paint Stl Cap Set by the expert panel at 1.3 times	2 - Paint distress the cost of replacing the paint system.	2 - Clean & paint	75 (LF)
231 - Paint Stl Cap Set by the expert panel at 1.5 times	3 - Rust formation the cost of replacing the paint system.	1 - Spot blast, clean &	87 (LF)
231 - Paint Stl Cap Set by the expert panel at 1.5 times	4 - Active corrosion the cost of replacing the paint system.	1 - Spot blast, clean &	87 (LF)
311 - Moveable Bearing Used Clemson data	2 - Minor deterioration	1 - Clean & paint	720 (EA)
334 - Metal Rail Coated MMS data	2 - Surface rust forming	1 - Clean and Restore Co	19 (LF)
334 - Metal Rail Coated MMS data, adjusted for condition sta	3 - Rust prevalent ate	1 - Clean and Restore Co	29 (LF)
386 - Fender/Dolphin Uncoa	2 - Surf Rust	1 - Clean and paint	(LF)
386 - Fender/Dolphin Uncoa	3 - Minor Loss	1 - Clean and paint	(LF)
393 - Bikhd Sewi Metal Unc MMS data	2 - Surf Rust	1 - Clean and paint	29 (SF)
393 - Bikhd Sewl Metal Unc MMS data, adjusted for condition sta	3 - Minor Loss ate	1 - Clean and paint	44 (SF)
397 - Drain. Syst Metal	3 - Surf Rust	1 - Spot paint	(EA)
397 - Drain. Syst Metal	4 - Surf Pits	1 - Spot paint	(EA)
474 - Walls Uncoated MMS data	2 - Surf Rust	1 - Clean and paint	19 (LF)
474 - Walls Uncoated MMS data, adjusted for condition sta	3 - Minor Loss ate	1 - Clean and paint	29 (LF)
487 - Sign Member Horiz Set by the expert panel at 1.3 times	2 - Paint Dist the cost of replacing the paint system.	2 - Clean and paint	68 (LF)
487 - Sign Member Horiz Set by the expert panel at 1.3 times	3 - Surf Rust the cost of replacing the paint system.	1 - Spot paint	68 (LF)
487 - Sign Member Horiz Set by the expert panel at 1.3 times	4 - Surf Pits the cost of replacing the paint system.	1 - Clean and paint	68 (LF)
488 - Sign Member Vertical Set by the expert panel at 1.3 times	3 - Surf Rust the cost of replacing the paint system.	1 - Spot Paint	68 (LF)
488 - Sign Member Vertical	4 - Surf Pits the cost of replacing the paint system.	1 - Spot Paint	68 (LF)
495 - Uncoat High Mast L. Set by the panel at 10% of replace p	2 - Surf Rust baint system.	1 - Clean and paint	500 (EA)
495 - Uncoat High Mast L. Set by the panel at 10% of replace p	3 - Minor Loss paint system.	1 - Clean and paint	500 (EA)
496 - Painted High Mast L. Set by the panel at 10% of replace p	3 - Surf Rust	1 - Spot Paint	500 (EA)
496 - Painted High Mast L. Set by the panel at 10% of replace p	4 - Surf Pits	1 - Spot Paint	500 (EA)
497 - Galvan. High Mast L. Set by the panel at 10% of replace p	3 - Surf Rust	1 - Spot Paint	500 (EA)

497 - Galvan. High Mast L. Set by the panel at 10% of replace	4 - Surf Pits paint system.	1 - Spot paint	500 (EA)
550 - Hopkins Frame Set by the panel at 10% of replace	3 - Surf Rust paint system.	1 - Spot paint	500 (EA)
550 - Hopkins Frame Set by the panel at 10% of replace	4 - Surf Pits paint system.	1 - Spot paint	500 (EA)
561 - Live Load Shoes Set by the panel at 10% of replace	2 - Min Deter paint system of similar elements.	1 - Clean and paint	500 (EA)
562 - Counterweight Suppor Set by the panel at 10% of replace	3 - Surf Rust paint system.	1 - Spot paint	500 (EA)
562 - Counterweight Suppor Set by the panel at 10% of replace	4 - Surf Pits paint system.	1 - Spot paint	500 (EA)
563 - Acc Ladd & Plat Set by the panel at 10% of replace	3 - Surf Rust paint system.	1 - Spot paint	250 (EA)
563 - Acc Ladd & Plat Set by the panel at 10% of replace	4 - Surf Pits paint system.	1 - Spot paint	250 (EA)

303 - Clean rebar and patch

MMS costs were found to be too lo average one-third lower than the C		tal project evidence and expert judgment. These co	osts were on
Element	State	Action	Final Cost
104 - P/S Conc Box Girder MMS data indicate action subcateg judgment.	3 - Delams/spalls ory average of \$42/lf. Estimated	1 - Clean steel & patch based on anecdotal project evidence and	1000 (LF
105 - R/Conc Box Girder Based on anecdotal project eviden	3 - Delams/spalls ce and judgment.	1 - Clean rebar & patch,	1000 (LF
109 - P/S Conc Open Girder MMS data indicate action subcateg on anecdotal project evidence and		1 - Clean steel & patch, cific element average of \$47/lf. Estimated based	200 (LF
110 - R/Conc Open Girder MMS data indicate action subcateg anecdotal project evidence and jud		1 - Clean rebar & patch, crific element cost of \$95/lf. Estimated based on	200 (LF
116 - R/Conc Stringer Based on anecdotal project evidend	3 - Delams/spalls ce and judgment.	1 - Clean rebar & patch,	200 (LF
143 - P/S Conc Arch Based on anecdotal project evidend	3 - Delams/spalls ce and judgment.	1 - Clean steel & patch,	200 (LF
144 - R/Conc Arch Based on anecdotal project evidend	3 - Delams/spalls ce and judgment.	1 - Clean rebar & patch,	200 (LF
155 - R/Conc Floor Beam Based on anecdotal project evidence	3 - Delams/spalls ce and judgment.	1 - Clean rebar & patch,	200 (LF
204 - P/S Conc Column Relevant MMS data available but ir	3 - Delams/spalls Man-hours unit. Estimated bas	1 - Clean steel & patch ed on anecdotal project evidence and judgment.	500 (EA
205 - R/Conc Column Relevant MMS data available but ir	3 - Delams/spalls Man-hours unit. Estimated bas	1 - Clean rebar & patch, ed on anecdotal project evidence and judgment.	500 (EA
210 - R/Conc Pier Wall MMS data indicate action subcateg on anecdotal project evidence and		1 - Clean rebar & patch, cific element average of \$43/lf. Estimated based	350 (LF
215 - R/Conc Abutment MMS data indicate action subcateg on anecdotal project evidence and		1 - Clean rebar & patch, cific element average of \$23/lf. Estimated based	150 (LF
220 - R/C Sub Pile Cap/Ftg Relevant MMS data available but ir	3 - Delams/spalls Man-hours unit. Estimated bas	1 - Clean rebar & patch, ed on anecdotal project evidence and judgment.	500 (EA
233 - P/S Conc Cap MMS data indicate action subcateg judgment.	3 - Delams,spalls ory average of \$42/lf. Estimated	1 - Clean steel & patch, based on anecdotal project evidence and	200 (LF
234 - R/Conc Cap MMS data indicate action subcateg on anecdotal project evidence and		1 - Clean rebar & patch, cific element average of \$32/lf. Estimated based	200 (LF
299 - Pile Jacket/Cath Pro Based on anecdotal project evidend	3 - Mod Deter ce and judgment.	1 - Clean and patch	500 (EA
331 - Conc Bridge Railing MMS data indicate action subcateg on anecdotal project evidence and		1 - Clean rebar & patch, cific element average of \$41/lf. Estimated based	200 (LF
394 - R/Conc Abut Slope Pr MMS data indicate action subcateg judgment.	3 - Exposed Stl ory average of \$33/sf. Estimated	1 - Clean and patch d based on anecdotal project evidence and	100 (SF

311 - Repair joint

Evidence in the Clemson study and MMS indicated that compression joints should be more expensive than strip seals, but the panel discussed this and felt that strip seals should cost more. They used a number consistent with Akbar for compression joint seals but increased the cost of strip seals.

Element	State	Action	Final Cost
300 - Strip Seal Exp Joint	2 - Minor leakage	1 - Patch/reset/clean jo	61 (LF)
Based on anecdotal project evidence (MMS \$27/lf; Akbar \$21/lf; DCP \$3	, 0	igher than any of the available data sources	
302 - Compressn Joint Seal	2 - Minor deterioration	1 - Patch/rem/reseal/cln	30 (LF)
Based on anecdotal project evidence and judgment. This number is consistent with Akbar (\$21/lf) and slightly lower			

than DCP (\$37/lf). It is about half as much as the Clemson study (64/lf).

331 - Repair/lubricate machinery

Survey			
Element	State	Action	Final Cost
540 - Open Gearing	2 - Min Deter	1 - Clean and lubricate	5620 (EA
Relevant data available in MMS bu results for action subcat 231).	it in Man-hours unit. DCP data av	erage is \$102/ea. Survey used (modification o	of
541 - Speed Reducers	2 - Min Deter	1 - Clean and lubricate	8120 (EA
Survey used (modification of result	ts for action subcat 231).		
542 - Shafts	2 - Min Deter	1 - Clean and lubricate	420 (EA
Survey used (modification of result	ts for action subcat 231).		
543 - Shaft Brgs and Coupl	2 - Min Deter	1 - Clean and lubricate	330 (EA
Survey used (modification of result	ts for action subcat 231).		
544 - Brakes	2 - Min Deter	1 - Clean/Lubricate/Oil	450 (EA
Survey used (modification of result	ts for action subcat 231).		
561 - Live Load Shoes	2 - Min Deter	2 - Realign and/or shim	1500 (EA
Survey used (modification of result	ts for action subcat 231).		
565 - Trun/Str and Cur Trk	2 - Min Deter	1 - Clean and lubricate	650 (EA
Survey used (modification of result	ts for action subcat 231).		
570 - Transformers	2 - Min Deter	1 - Clean and lubricate	150 (EA
Survey used (modification of result	ts for action subcat 231)		

400 - Wash structure

Three different approaches were	chosen depending on the units of m	easurement.	
Element	State	Action	Final Cost
28 - Steel Deck/Open Grid DCP had 37 cents per sq.ft. while planning purposes.	2 - Minor deterioration Clemson had 50 cents. The panel	1 - Surface clean felt that 50 cents was closer to typical for	0.5 (SF
29 - Steel Deck/Conc Grid The panel felt that this should be t	2 - Minor deterioration the same as element #28	1 - Surface clean	0.5 (SF
102 - Paint Stl Box Girder Slightly reduced from MMS.	1 - No corrosion	1 - Surface clean	10 (LF
102 - Paint Stl Box Girder Slightly reduced from MMS.	2 - Paint distress	1 - Surface clean	10 (LF
107 - Paint Stl Opn Girder Slightly reduced from MMS.	1 - No corrosion	1 - Surface clean	10 (LF
107 - Paint Stl Opn Girder Slightly reduced from MMS.	2 - Paint distress	1 - Surface clean	10 (LF
113 - Paint Stl Stringer Slightly reduced from MMS.	1 - No corrosion	1 - Surface clean	10 (LF
113 - Paint Stl Stringer Slightly reduced from MMS.	2 - Paint distress	1 - Surface clean	10 (LF
121 - P/Stl Thru Truss/Bot Slightly reduced from MMS.	1 - No corrosion	1 - Surface clean	10 (LF
121 - P/Stl Thru Truss/Bot Slightly reduced from MMS.	2 - Paint distress	1 - Surface clean	10 (LF
126 - P/Stl Thru Truss/Top Slightly reduced from MMS.	1 - No corrosion	1 - Surface clean	10 (LF
126 - P/Stl Thru Truss/Top Slightly reduced from MMS.	2 - Paint distress	1 - Surface clean	10 (LF
131 - Paint Stl Deck Truss Slightly reduced from MMS.	1 - No corrosion	1 - Surface clean	10 (LF
131 - Paint Stl Deck Truss Slightly reduced from MMS.	2 - Paint distress	1 - Surface clean	10 (LF
141 - Paint Stl Arch Slightly reduced from MMS.	1 - No corrosion	1 - Surface clean	10 (LF
141 - Paint Stl Arch Slightly reduced from MMS.	2 - Paint distress	1 - Surface clean	10 (LF
152 - Paint Stl Floor Beam Slightly reduced from MMS.	1 - No corrosion	1 - Surface clean	10 (LF
152 - Paint Stl Floor Beam Slightly reduced from MMS.	2 - Paint distress	1 - Surface clean	10 (LF
161 - Paint Stl Pin/Hanger Akbar data indicate action subcate and costs	1 - No corrosion egory average of \$3200/ea. Estimat	1 - Surface clean ed based on an analysis of typical crew size	200 (EA s
161 - Paint Stl Pin/Hanger Estimated based on an analysis c	2 - Paint distress f typical crew sizes and costs	1 - Surface clean	200 (EA
202 - Paint Stl Column Estimated based on an analysis of	1 - No corrosion f typical crew sizes and costs	1 - Surface clean	200 (EA
202 - Paint Stl Column Estimated based on an analysis of	2 - Paint distress f typical crew sizes and costs	1 - Surface clean	200 (EA
231 - Paint Stl Cap Slightly reduced from MMS.	1 - No corrosion	1 - Surface clean	10 (LF
231 - Paint Stl Cap Slightly reduced from MMS.	2 - Paint distress	1 - Surface clean	10 (LF
397 - Drain. Syst Metal	1 - Excellent	1 - Surface clean	200 (EA

and costs 397 - Drain. Syst Metal 200 (EA) 2 - Paint dist 1 - Surface Clean Estimated based on an analysis of typical crew sizes and costs 398 - Drain. Syst Other 2 - Min Deter 1 - Surface clean 200 (EA) Estimated based on an analysis of typical crew sizes and costs 398 - Drain. Syst Other 3 - Mod Deter 1 - Surface clean 200 (EA) Estimated based on an analysis of typical crew sizes and costs 487 - Sign Member Horiz 2 - Paint Dist 1 - Surface clean 10 (LF) Slightly reduced from MMS. 488 - Sign Member Vertical 1 - Excellent 1 - Surface Clean 10 (LF) Slightly reduced from MMS. 488 - Sign Member Vertical 2 - Paint Dist 1 - Surface Clean 10 (LF) Slightly reduced from MMS. 496 - Painted High Mast L. 1 - Surface clean 1 - Excellent 200 (EA) Akbar data indicate action subcategory average of \$3200/ea. Estimated based on an analysis of typical crew sizes and costs 1 - Surface clean 200 (EA) 496 - Painted High Mast L. 2 - Paint Dist Based on an analysis of typical crew sizes and costs 497 - Galvan. High Mast L. 1 - Excellent 1 - Surface Clean 200 (EA) Based on an analysis of typical crew sizes and costs 497 - Galvan. High Mast L. 2 - Paint Dist 1 - Surface clean 200 (EA) Based on an analysis of typical crew sizes and costs 1 - Surface clean 550 - Hopkins Frame 1 - Excellent 200 (EA) Based on an analysis of typical crew sizes and costs 550 - Hopkins Frame 2 - Paint Dist 1 - Surface clean 200 (EA) Based on an analysis of typical crew sizes and costs 562 - Counterweight Suppor 1 - Surface clean 200 (EA) 1 - Excellent Based on an analysis of typical crew sizes and costs 562 - Counterweight Suppor 1 - Surface clean 200 (EA) 2 - Paint Dist Based on an analysis of typical crew sizes and costs 563 - Acc Ladd & Plat 1 - Excellent 1 - Surface clean 200 (EA) Based on an analysis of typical crew sizes and costs 563 - Acc Ladd & Plat 2 - Paint Dist 1 - Surface clean 200 (EA) Based on an analysis of typical crew sizes and costs

Akbar data indicate action subcategory average of \$3200/ea. Estimated based on an analysis of typical crew sizes

401 - Repair potholes

These sectors and susilable from on			
		d on a discussion of anecdotal project evidence.	_
Element	State	Action 2 - Miscellaneous Maint	Final Cost
12 - Bare Concrete Deck MMS data indicate action subcategor on anecdotal project evidence and jud		cific element average of \$26/sf. Estimated based	2 (SF)
12 - Bare Concrete Deck Based on anecdotal project evidence	2 - Distress <= 2%	1 - Repair spalled/delam	5 (SF)
12 - Bare Concrete Deck Based on anecdotal project evidence	3 - 2 to 10 % distress	1 - Repair spalled areas	10 (SF)
12 - Bare Concrete Deck Based on anecdotal project evidence	4 - 10 to 25% distress	1 - Repair spalled areas	20 (SF)
13 - Unp Conc Deck/AC Ovl MMS data indicate a specific element judgment.	1 - No damage average of \$24/sf. Estimated	1 - Miscellaneous Maint based on anecdotal project evidence and	2 (SF)
28 - Steel Deck/Open Grid MMS data indicate a specific element judgment.	1 - No corrosion average of \$28/sf. Estimated	1 - Miscellaneous Maint based on anecdotal project evidence and	4 (SF)
29 - Steel Deck/Conc Grid MMS data indicate a specific element judgment.	1 - No corrosion average of \$32/sf. Estimated	1 - Miscellaneous Maint based on anecdotal project evidence and	4 (SF)
31 - Timber Deck Based on anecdotal project evidence	1 - No decay	1 - Miscellaneous Maint	2 (SF)
32 - Timber Deck/AC Ovly Based on anecdotal project evidence	1 - No deterioration	1 - Miscellaneous Maint	2 (SF)
32 - Timber Deck/AC Ovly Based on anecdotal project evidence	2 - Minor deterioration	1 - Repair potholes	4 (SF)
38 - Bare Concrete Slab MMS data indicate a specific element judgment.	1 - No damage average of \$11/sf. Estimated	2 - Miscellaneous Maint based on anecdotal project evidence and	2 (SF)
38 - Bare Concrete Slab Based on anecdotal project evidence	2 - Distress <=2%	1 - Repair spalled/delam	5 (SF)
38 - Bare Concrete Slab Based on anecdotal project evidence	3 - 2-10% distress	1 - Repair spalled areas	10 (SF)
38 - Bare Concrete Slab Based on anecdotal project evidence	4 - 10-25% distress	1 - Repair spalled areas	20 (SF)
39 - Unp Conc Slab/AC Ovl MMS data indicate a specific element judgment.	1 - No damage average of \$30/sf. Estimated	1 - Miscellaneous Maint based on anecdotal project evidence and	2 (SF)
54 - Timber Slab Based on anecdotal project evidence	1 - No decay	1 - Miscellaneous Maint	5 (SF)
55 - Timber Slab/AC Ovly Based on anecdotal project evidence	1 - No deterioration	1 - Miscellaneous Maint	10 (SF)
55 - Timber Slab/AC Ovly Based on anecdotal project evidence	2 - Minor deterioration	1 - Repair potholes	20 (SF)
98 - Conc Deck on PC Pane MMS data indicate a specific element judgment.	2 - Distress under 2 % average of \$15/sf. Estimated	1 - Spalls & Delams based on anecdotal project evidence and	5 (SF)
98 - Conc Deck on PC Pane Based on anecdotal project evidence	3 - 2-10 % Distress	1 - Spalls & Delams	10 (SF)
98 - Conc Deck on PC Pane Based on anecdotal project evidence	4 - 10-25 % Distress	1 - Spalls & Delams	20 (SF)
99 - PS Conc Slab	2 - Dist <2%	1 - Repair	5 (SF)

MMS data indicate a specific element average of \$23/sf. Estimated based on anecdotal project evidence and judgment.

99 - PS Conc Slab	3 - Dist 2-10%	1 - Repair Spl/Delam	10 (SF)
Based on anecdotal project evidence	9		
99 - PS Conc Slab	4 - Dist 10-25%	1 - Repair Spl/Delam	22 (SF)
Based on anecdotal project evidence)		

402 - Restore top coat

These costs are not available from an		on a discussion of anecdotal project evidence	
Element	State	Action	Final Cost
28 - Steel Deck/Open Grid	3 - Rust formation	1 - Surface clean+restor	1 (SF)
Based on anecdotal project evidence 29 - Steel Deck/Conc Grid	3 - Rust formation	1 - Surface clean+restor	1 (85)
Based on anecdotal project evidence	3 - Rust formation	1 - Sunace clean+restor	1 (SF)
101 - Unpnt Stl Box Girder	1 - No corrosion	1 - Miscellaneous Maint	25 (LF)
MMS data indicate action subcategor judgment.	y average of \$3/lf. Estimated ba	ased on anecdotal project evidence and	
102 - Paint Stl Box Girder Based on anecdotal project evidence	1 - No corrosion	2 - Miscellaneous Maint	25 (LF)
106 - Unpnt Stl Opn Girder Based on anecdotal project evidence	1 - No corrosion	1 - Miscellaneous Maint	25 (LF)
107 - Paint Stl Opn Girder Based on anecdotal project evidence	1 - No corrosion	2 - Miscellaneous Maint	25 (LF)
112 - Unpnt Stl Stringer Based on anecdotal project evidence	1 - No corrosion	1 - Miscellaneous Maint	25 (LF)
113 - Paint Stl Stringer Based on anecdotal project evidence	1 - No corrosion	2 - Miscellaneous Maint	25 (LF)
120 - U/Stl Thru Truss/Bot Based on anecdotal project evidence	1 - No corrosion	1 - Miscellaneous Maint	25 (LF)
121 - P/Stl Thru Truss/Bot Based on anecdotal project evidence	1 - No corrosion	2 - Miscellaneous Maint	25 (LF)
125 - U/Stl Thru Truss/Top Based on anecdotal project evidence	1 - No corrosion	1 - Miscellaneous Maint	25 (LF)
126 - P/Stl Thru Truss/Top Based on anecdotal project evidence	1 - No corrosion	2 - Miscellaneous Maint	25 (LF)
131 - Paint Stl Deck Truss Based on anecdotal project evidence	1 - No corrosion	2 - Miscellaneous Maint	25 (LF)
140 - Unpnt Stl Arch Based on anecdotal project evidence	1 - No corrosion	1 - Miscellaneous Maint	25 (LF)
141 - Paint Stl Arch Based on anecdotal project evidence	1 - No corrosion	2 - Miscellaneous Maint	25 (LF)
146 - Misc Cable Uncoated Based on anecdotal project evidence	1 - No corrosion	1 - Miscellaneous Maint	5000 (EA)
147 - Misc Cable Coated Based on anecdotal project evidence	1 - No corrosion	1 - Miscellaneous Maint	5000 (EA)
147 - Misc Cable Coated Based on anecdotal project evidence	2 - Surface rust forming	1 - Clean & Restore Coat	7500 (EA)
147 - Misc Cable Coated Based on anecdotal project evidence	3 - Rust prevalent	1 - Clean & Restore Coat	10000 (EA)
151 - Unpnt Stl Floor Beam Based on anecdotal project evidence	1 - No corrosion	1 - Miscellaneous Maint	25 (LF)
152 - Paint Stl Floor Beam Based on anecdotal project evidence	1 - No corrosion	2 - Miscellaneous Maint	25 (LF)
161 - Paint Stl Pin/Hanger Based on anecdotal project evidence	1 - No corrosion	2 - Miscellaneous Maint	25 (EA)
201 - Unpnt Stl Column Based on anecdotal project evidence	1 - No corrosion	1 - Miscellaneous Maint	500 (EA)
202 - Paint Stl Column Based on anecdotal project evidence	1 - No corrosion	2 - Miscellaneous Maint	500 (EA)
230 - Unpnt Stl Cap	1 - No corrosion	1 - Miscellaneous Maint	25 (LF)

Final Report

Based on anecdotal project evidence

based on anecdotal project evidence			
231 - Paint Stl Cap Based on anecdotal project evidence	1 - No corrosion	2 - Miscellaneous Maint	25 (LF)
240 - Metal Culvert Based on anecdotal project evidence	1 - No deterioration	1 - Miscellaneous Maint	25 (LF)
298 - Pile Jacket Bare Based on anecdotal project evidence	1 - Excellent	1 - Miscellaneous Maint	500 (EA)
299 - Pile Jacket/Cath Pro Based on anecdotal project evidence	1 - Excellent	1 - Miscellaneous Maint	500 (EA)
330 - Metal Rail Uncoated Based on anecdotal project evidence	1 - No corrosion	1 - Miscellaneous Maint	25 (LF)
330 - Metal Rail Uncoated Based on anecdotal project evidence	2 - Rust formation	1 - Clean and Coat	25 (LF)
330 - Metal Rail Uncoated Based on anecdotal project evidence	3 - Active corrosion	1 - Clean and Coat	25 (LF)
334 - Metal Rail Coated Based on anecdotal project evidence	1 - No corrosion	1 - Miscellaneous Maint	25 (LF)
386 - Fender/Dolphin Uncoa Based on anecdotal project evidence	1 - Excellent	1 - Miscellaneous Maint	25 (LF)
393 - Blkhd Sewl Metal Unc Based on anecdotal project evidence	1 - Excellent	1 - Miscellaneous Maint	25 (SF)
395 - Timber Abut Slope Pr Based on anecdotal project evidence	1 - Excellent	1 - Miscellaneous Maint	25 (SF)
397 - Drain. Syst Metal Based on anecdotal project evidence	1 - Excellent	2 - Miscellaneous Maint	500 (EA)
474 - Walls Uncoated Based on anecdotal project evidence	1 - Excellent	1 - Miscellaneous Maint	25 (LF)
487 - Sign Member Horiz Based on anecdotal project evidence	1 - Excellent	1 - Miscellaneous Maint	25 (LF)
488 - Sign Member Vertical Based on anecdotal project evidence	1 - Excellent	2 - Miscellaneous Maint	25 (LF)
488 - Sign Member Vertical Based on anecdotal project evidence	2 - Paint Dist	2 - Clean and restore	60 (LF)
495 - Uncoat High Mast L. Based on anecdotal project evidence	1 - Excellent	1 - Miscellaneous Maint	500 (EA)
496 - Painted High Mast L. Based on anecdotal project evidence	1 - Excellent	2 - Miscellaneous Maint	500 (EA)
496 - Painted High Mast L. Based on anecdotal project evidence	2 - Paint Dist	2 - Clean and restore	6000 (EA)
497 - Galvan. High Mast L. Based on anecdotal project evidence	1 - Excellent	2 - Miscellaneous Maint	500 (EA)
497 - Galvan. High Mast L. Based on anecdotal project evidence	2 - Paint Dist	2 - Clean and restore	6000 (EA)
498 - Other High Mast L.P. Based on anecdotal project evidence	1 - Excellent	1 - Miscellaneous Maint	500 (EA)
550 - Hopkins Frame Survey	2 - Paint Dist	2 - Clean and restore	5000 (EA)
562 - Counterweight Suppor Survey	2 - Paint Dist	2 - Clean and restore	5000 (EA)
563 - Acc Ladd & Plat Survey	2 - Paint Dist	2 - Clean and restore	1000 (EA)

403 - Patch minor spalls

For elements measured in linear feet, the panel reviewed MMS and DCP data and decided to use MMS for condition state 1 and DCP for condition state 2, rounding the costs upward. Square-foot and each-based elements were based on anecdotal project evidence.

Element	State	Action	Final Cost
98 - Conc Deck on PC Pane	1 - No Damage	2 - Miscellaneous Maint	2 (SF)
Based on anecdotal project evidence (MMS \$50/sf; Akbar \$42/sf; DCP \$3	and judgment. This number is lower the 1/sf).	han any of the available data sources	
99 - PS Conc Slab Based on anecdotal project evidence	1 - No Damage	1 - Miscellaneous Maint	2 (SF)
104 - P/S Conc Box Girder Based on MMS.	1 - No deterioration	1 - Miscellaneous Maint	25 (LF)
104 - P/S Conc Box Girder Based on DCP.	2 - Minor cracks/spalls	1 - Seal cracks minor pa	40 (LF)
105 - R/Conc Box Girder Based on MMS and DCP.	1 - No deterioration	1 - Miscellaneous Maint	35 (LF)
105 - R/Conc Box Girder Based on Akbar.	2 - Minor cracks/spalls	1 - Seal cracks minor pa	45 (LF)
109 - P/S Conc Open Girder Based on MMS and DCP.	1 - No deterioration	1 - Miscellaneous Maint	35 (LF)
109 - P/S Conc Open Girder Based on Akbar.	2 - Minor cracks/spalls	1 - Seal cracks minor pa	45 (LF)
110 - R/Conc Open Girder Based on MMS.	1 - No deterioration	1 - Miscellaneous Maint	25 (LF)
110 - R/Conc Open Girder Based on Akbar.	2 - Minor cracks/spalls	1 - Seal cracks minor pa	45 (LF)
116 - R/Conc Stringer Based on MMS and DCP.	1 - No deterioration	1 - Miscellaneous Maint	35 (LF)
116 - R/Conc Stringer Based on Akbar.	2 - Minor cracks/spalls	1 - Seal cracks minor pa	45 (LF)
143 - P/S Conc Arch Based on MMS and DCP.	1 - No deterioration	1 - Miscellaneous Maint	35 (LF)
143 - P/S Conc Arch Based on Akbar.	2 - Minor cracks/spalls	1 - Seal cracks minor pa	45 (LF)
144 - R/Conc Arch Based on MMS.	1 - No deterioration	1 - Miscellaneous Maint	25 (LF)
144 - R/Conc Arch Based on Akbar.	2 - Minor cracks/spalls	1 - Seal cracks minor pa	45 (LF)
155 - R/Conc Floor Beam Based on MMS and DCP.	1 - No deterioration	1 - Miscellaneous Maint	35 (LF)
155 - R/Conc Floor Beam Based on Akbar.	2 - Minor cracks/spalls	1 - Seal cracks minor pa	45 (LF)
204 - P/S Conc Column Relevant data in MMS, Akbar, and D evidence	1 - No deterioration CP but in units of Man-hours and SF.	1 - Miscellaneous Maint Estimated based on anecdotal project	500 (EA)
204 - P/S Conc Column Based on anecdotal project evidence	2 - Minor cracks/spalls	1 - Seal cracks minor pa	250 (EA)
205 - R/Conc Column Based on anecdotal project evidence	1 - No deterioration	1 - Miscellaneous Maint	500 (EA)
205 - R/Conc Column Based on anecdotal project evidence	2 - Minor cracks/spalls	1 - Seal cracks minor pa	250 (EA)
207 - P/S Conc Holl Pile Based on anecdotal project evidence	1 - Excellent	1 - Miscellaneous Maint	500 (EA)
207 - P/S Conc Holl Pile	2 - Min Ck/Spl	1 - Seal and patch	250 (EA)

Based on anecdotal project evidence			
207 - P/S Conc Holl Pile Based on anecdotal project evidence	3 - Exposed Stl	1 - Clean and Patch	300 (EA)
210 - R/Conc Pier Wall Based on MMS.	1 - No deterioration	1 - Miscellaneous Maint	30 (LF)
210 - R/Conc Pier Wall Based on Akbar.	2 - Minor cracks/spalls	1 - Seal cracks minor pa	45 (LF)
215 - R/Conc Abutment Based on MMS.	1 - No deterioration	1 - Miscellaneous Maint	35 (LF)
215 - R/Conc Abutment Based on Akbar.	2 - Minor cracks/spalls	1 - Seal cracks minor pa	45 (LF)
220 - R/C Sub Pile Cap/Ftg Based on anecdotal project evidence	1 - No deterioration	1 - Miscellaneous Maint	500 (EA)
220 - R/C Sub Pile Cap/Ftg Based on anecdotal project evidence	2 - Minor cracks/spalls	1 - Seal cracks minor pa	250 (EA)
233 - P/S Conc Cap Based on MMS.	1 - No deterioration	1 - Miscellaneous Maint	35 (LF)
233 - P/S Conc Cap Based on DCP and Akbar.	2 - Minor cracks/spalls	1 - Seal cracks minor pa	45 (LF)
234 - R/Conc Cap Based on MMS.	1 - No deterioration	1 - Miscellaneous Maint	35 (LF)
234 - R/Conc Cap Based on DCP and Akbar.	2 - Minor cracks/spalls	1 - Seal cracks minor pa	45 (LF)
241 - Concrete Culvert Based on MMS.	1 - No deterioration	1 - Miscellaneous Maint	25 (LF)
298 - Pile Jacket Bare Relevant data in MMS, Akbar, and Do evidence	2 - Min Ck/Spl CP but in units of Man-hours and SF. E	1 - Seal and patch stimated based on anecdotal project	200 (EA)
298 - Pile Jacket Bare Based on anecdotal project evidence	3 - Mod Deter	1 - Clean and patch	300 (EA)
299 - Pile Jacket/Cath Pro Based on anecdotal project evidence	2 - Min Ck/Spl	1 - Seal and patch	200 (EA)
331 - Conc Bridge Railing Based on MMS.	1 - No deterioration	1 - Miscellaneous Maint	35 (LF)
331 - Conc Bridge Railing Based on DCP and Akbar.	2 - Minor cracks/spalls	1 - Seal cracks minor pa	45 (LF)
387 - P/S Fender/Dolphin Based on MMS.	1 - Excellent	1 - Miscellaneous Maint	35 (LF)
387 - P/S Fender/Dolphin Based on DCP and Akbar.	2 - Min Ck/Stl	1 - Seal and patch	45 (LF)
387 - P/S Fender/Dolphin Based on anecdotal project evidence	3 - Exposed Stl	1 - Clean and patch	50 (LF)
388 - R/Conc Fender/Dolphi Based on MMS.	1 - Excellent	1 - Miscellaneous Maint	25 (LF)
388 - R/Conc Fender/Dolphi Based on DCP.	2 - Min Ck/Spl	1 - Seal and patch	40 (LF)
388 - R/Conc Fender/Dolphi Based on anecdotal project evidence	3 - Exposed Stl	1 - Clean and patch	50 (LF)
394 - R/Conc Abut Slope Pr MMS data indicate a specific element	1 - Excellent average of \$52/sf. Estimated based or	1 - Miscellaneous Maint n anecdotal project evidence	25 (SF)
394 - R/Conc Abut Slope Pr MMS data indicate a specific element	2 - Min Ck/Spl t average of \$52/sf.	1 - Seal and patch	55 (SF)
475 - R/Conc Walls	1 - Excellent	1 - Miscellaneous Maint	35 (LF)

Based on MMS.			
475 - R/Conc Walls Based on DCP and Akbar.	2 - Min Ck/Spl	1 - Seal and patch	40 (LF)
475 - R/Conc Walls Based on anecdotal project evidence.	3 - Exposed Stl	1 - Clean and patch	50 (LF)
489 - Sign Foundation Based on anecdotal project evidence.	1 - Excellent	1 - Miscellaneous Maint	100 (EA)
489 - Sign Foundation Based on anecdotal project evidence.	2 - Min Ck/Spl	1 - Seal and patch	200 (EA)
489 - Sign Foundation Based on anecdotal project evidence.	3 - Exposed Stl	1 - Clean and patch	300 (EA)
499 - H. M. L. P. Found. Based on anecdotal project evidence.	1 - Excellent	1 - Miscellaneous Maint	100 (EA)
499 - H. M. L. P. Found. Based on anecdotal project evidence.	2 - Min Ck/Spl	1 - Seal and patch	200 (EA)
499 - H. M. L. P. Found. Based on anecdotal project evidence.	3 - Exposed Stl	1 - Clean and patch	300 (EA)
564 - Counterweight Relevant data in MMS, Akbar, and DC	2 - Min Ck/Spl CP but in units of Man-hours and SF. Es	1 - Seal and patch stimated based on survey.	(EA)
564 - Counterweight Survey	3 - Exposed Stl	1 - Clean and patch	(EA)

404 - Maintain timber

No data were available for these a	activities, so unit costs were ba	sed on expert judgment.	
Element	State	Action	Final Cost
111 - Timber Open Girder Based on expert judgment.	1 - No decay	1 - Miscellaneous Maint	25 (LF)
117 - Timber Stringer Based on expert judgment.	1 - No decay	1 - Miscellaneous Maint	25 (LF)
135 - Timber Truss/Arch Based on expert judgment.	1 - No decay	1 - Miscellaneous Maint	25 (LF)
156 - Timber Floor Beam Based on expert judgment.	1 - No decay	1 - Miscellaneous Maint	25 (LF)
206 - Timber Column Based on expert judgment.	1 - No decay	1 - Miscellaneous Maint	100 (EA)
216 - Timber Abutment Based on expert judgment.	1 - No decay	1 - Miscellaneous Maint	25 (LF)
235 - Timber Cap Based on expert judgment.	1 - No decay	1 - Miscellaneous Maint	25 (LF)
332 - Timb Bridge Railing Based on expert judgment.	1 - No decay	1 - Miscellaneous Maint	25 (LF)
389 - Timber Fender/Dolphi Based on expert judgment.	1 - Excellent	1 - Miscellaneous Maint	25 (LF)
476 - Timber Walls Based on expert judgment.	1 - Excellent	1 - Miscellaneous Maint	25 (LF)

405 - Maintain masonry

oo mamannaooniy			
No data were available for these a	ctivities, so unit costs were based	on expert judgment.	
Element	State	Action	Final Cost
211 - Other Mtl Pier Wall Based on expert judgment.	1 - No deterioration	1 - Miscellaneous Maint	25 (LF)
217 - Other Mtl Abutment Based on expert judgment.	1 - No deterioration	1 - Miscellaneous Maint	25 (LF)
243 - Misc Culvert Based on expert judgment.	1 - No deterioration	1 - Miscellaneous Maint	25 (LF)
333 - Other Bridge Railing Based on expert judgment.	1 - No deterioration	1 - Miscellaneous Maint	25 (LF)
390 - Other Fender/Dolphin Based on expert judgment.	1 - Excellent	1 - Miscellaneous Maint	25 (LF)
396 - Other Abut Slope Pro Based on expert judgment.	1 - Excellent	1 - Miscellaneous Maint	25 (SF)
398 - Drain. Syst Other Based on expert judgment.	1 - Excellent	1 - Miscellaneous Maint	100 (EA)
477 - Other Walls Based on expert judgment.	1 - Excellent	1 - Miscellaneous Maint	25 (LF)

406 - Maintain MSE			
No data were available for th	nese activities, so unit costs were bas	ed on expert judgment.	
Element	State	Action	Final Cost
478 - MSE Walls	1 - Excellent	1 - Miscellaneous Maint	25 (LF
Based on expert judgment.			

411 - Maintain joint

- I	Mantan joint						
	Average costs from MMS were reason	s from MMS were reasonable.					
	Element	State	Action	Final Cost			
	300 - Strip Seal Exp Joint Based on MMS.	1 - No leakage	1 - Miscellaneous Maint	4 (LF)			
	301 - Pourable Joint Seal Based on MMS.	1 - No deterioration	1 - Miscellaneous Maint	4 (LF)			
	302 - Compressn Joint Seal Based on MMS.	1 - No deterioration	1 - Miscellaneous Maint	4 (LF)			
	303 - Assembly Joint/Seal Based on MMS.	1 - No deterioration	1 - Miscellaneous Maint	4 (LF)			
	304 - Open Expansion Joint Based on MMS.	1 - No deterioration	1 - Miscellaneous Maint	4 (LF)			
	399 - Other Expansion Join Based on MMS.	1 - Excellent	1 - Miscellaneous Maint	4 (LF)			

413 - Maintain bearing

MMS costs are in man-hours, so anecdotal project experience was used.

Element	State	Action	Final Cost
310 - Elastomeric Bearing	1 - No deterioration	1 - Miscellaneous Maint	100 (EA)
Relevant data in MMS but in uni	ts of Man-hours. Estimated based of	n anecdotal project evidence.	
311 - Moveable Bearing	1 - No deterioration	1 - Miscellaneous Maint	100 (EA)
Based on anecdotal project evide	ence.		
312 - Enclosed Bearing	1 - No deterioration	1 - Miscellaneous Maint	100 (EA)
Based on anecdotal project evide	ence.		
313 - Fixed Bearing	1 - No deterioration	1 - Miscellaneous Maint	100 (EA)
Based on anecdotal project evide	ence.		
314 - Pot Bearing	1 - No deterioration	1 - Miscellaneous Maint	100 (EA)
Based on anecdotal project evide	ence.		

422 - Maintain channel

 MMS costs are in man-hours, so anecdotal project experience was used.
 Action

 Element
 State
 Action

 290 - Channel
 1 - Excellent
 1 - Miscellaneous Maint

Final Cost 500 (EA)

Relevant data in MMS, Akbar, and DCP but in units of Man-hours, SF, and HA respectively. Estimated based on anecdotal project evidence.

423 - Maintain drainage system

 ·						
MMS costs are in man-hours, so anec	MS costs are in man-hours, so anecdotal project experience was used.					
Element	State	Action	Final Cost			
397 - Drain. Syst Metal	2 - Paint dist	2 - Flush drainage syst	500 (EA)			
Based on anecdotal project evidence.						
397 - Drain. Syst Metal	3 - Surf Rust	2 - Flush drainage syst	500 (EA)			
Based on anecdotal project evidence.						
397 - Drain. Syst Metal	4 - Surf Pits	2 - Flush drainage syst	500 (EA)			
Based on anecdotal project evidence.						
398 - Drain. Syst Other	2 - Min Deter	2 - Flush drainage syst	500 (EA)			
Based on anecdotal project evidence.						
398 - Drain. Syst Other	3 - Mod Deter	2 - Flush drainage syst	500 (EA)			
Based on anecdotal project evidence.						

431 - Maintain machinery

Suprov		
Survey	Action	Final Orat
Element State 540 - Open Gearing 1 - Excellent	Action 1 - Miscellaneous Maint	Final Cost 2810 (EA)
Relevant data in MMS but in units of Man-hours. DCP indicates average (modification of results for action subcats 231 and 331).		2010 (LA,
541 - Speed Reducers1 - ExcellentSurvey (modification of results for action subcats 231 and 331).	1 - Miscellaneous Maint	4060 (EA)
542 - Shafts1 - ExcellentSurvey (modification of results for action subcats 231 and 331).	1 - Miscellaneous Maint	210 (EA)
543 - Shaft Brgs and Coupl1 - ExcellentSurvey (modification of results for action subcats 231 and 331).	1 - Miscellaneous Maint	170 (EA)
544 - Brakes 1 - Excellent Survey (modification of results for action subcats 231 and 331).	1 - Miscellaneous Maint	225 (EA)
545 - Emergency Drive 1 - Excellent Survey (modification of results for action subcats 231 and 331).	1 - Miscellaneous Maint	460 (EA)
545 - Emergency Drive 2 - Min Deter Survey (modification of results for action subcats 231 and 331).	1 - Service System	460 (EA)
546 - Span Drive Motors 1 - Excellent Survey (modification of results for action subcats 231 and 331).	1 - Miscellaneous Maint	710 (EA)
546 - Span Drive Motors 2 - Min Deter Survey (modification of results for action subcats 231 and 331).	1 - Maintain and/or Serv	710 (EA)
547 - Hydraulic Power Unit 1 - Excellent Survey (modification of results for action subcats 231 and 331).	1 - Miscellaneous Maint	1370 (EA)
547 - Hydraulic Power Unit 2 - Min Deter Survey (modification of results for action subcats 231 and 331).	1 - Maintain and/or serv	1370 (EA)
548 - Hydraulic Piping Sys 1 - Excellent Survey (modification of results for action subcats 231 and 331).	1 - Miscellaneous Maint	330 (EA)
548 - Hydraulic Piping Sys 2 - Min Deter Survey (modification of results for action subcats 231 and 331).	1 - Perform maintenance	330 (EA)
549 - Hydraulic Cylinders 1 - Excellent Survey (modification of results for action subcats 231 and 331).	1 - Miscellaneous Maint	750 (EA)
549 - Hydraulic Cylinders 2 - Min Deter Survey (modification of results for action subcats 231 and 331).	1 - Maintain and service	750 (EA)
550 - Hopkins Frame 1 - Excellent Survey (modification of results for action subcats 231 and 331).	2 - Miscellaneous Maint	1400 (EA)
560 - Locks 1 - Excellent Survey (modification of results for action subcats 231 and 331).	1 - Miscellaneous Maint	1370 (EA)
560 - Locks 2 - Min Deter Survey (modification of results for action subcats 231 and 331).	1 - Perform maintenance	1370 (EA)
561 - Live Load Shoes 1 - Excellent Survey (modification of results for action subcats 231 and 331).	1 - Miscellaneous Maint	750 (EA)
562 - Counterweight Suppor 1 - Excellent Survey (modification of results for action subcats 231 and 331).	2 - Miscellaneous Maint	400 (EA)
563 - Acc Ladd & Plat 1 - Excellent Survey (modification of results for action subcats 231 and 331).	2 - Miscellaneous Maint	450 (EA)
564 - Counterweight 1 - Excellent Survey (modification of results for action subcats 231 and 331).	1 - Miscellaneous Maint	(EA)
565 - Trun/Str and Cur Trk 1 - Excellent Survey (modification of results for action subcats 231 and 331).	1 - Miscellaneous Maint	325 (EA)
570 - Transformers 1 - Excellent Survey (modification of results for action subcats 231 and 331).	1 - Miscellaneous Maint	80 (EA)
571 - Submarine Cable 1 - Excellent	1 - Miscellaneous Maint	290 each

Survey (modification of results for action subcats 231 and 331).
572 - Conduit & Junc. Box 1 - Excellent
Survey (modification of results for action subcats 231 and 331).
573 - PLCs 1 - Excellent
Survey (modification of results for action subcats 231 and 331).
573 - PLCs 2 - Min Deter
Survey (modification of results for action subcats 231 and 331).
574 - Control Console 1 - Excellent
Survey (modification of results for action subcats 231 and 331).
574 - Control Console 2 - Min Deter
Survey (modification of results for action subcats 231 and 331).
580 - Navigational Lights 1 - Excellent
Survey (modification of results for action subcats 231 and 331).
580 - Navigational Lights 2 - Min Deter
Survey (modification of results for action subcats 231 and 331).
581 - Operator Facilities 1 - Excellent Survey (modification of results for action subcats 231 and 331).
582 - Lift Bridge Spec. Eq 1 - Excellent Survey (modification of results for action subcats 231 and 331).
582 - Lift Bridge Spec. Eq 2 - Mod Deter
Survey (modification of results for action subcats 231 and 331).
583 - Swing Bridge Spec. E 1 - Excellent
Survey (modification of results for action subcats 231 and 331).
583 - Swing Bridge Spec. E 2 - Mod Deter
Survey (modification of results for action subcats 231 and 331).
590 - Resistance Barriers 1 - Excellent
Survey (modification of results for action subcats 231 and 331).
590 - Resistance Barriers 2 - Mod Deter
Survey (modification of results for action subcats 231 and 331).
591 - Warning Gates1 - Excellent
Survey (modification of results for action subcats 231 and 331).
591 - Warning Gates 2 - Mod Deter
Survey (modification of results for action subcats 231 and 331).
592 - Traffic Signals 1 - Excellent
Survey (modification of results for action subcats 231 and 331).
592 - Traffic Signals 2 - Mod Deter

Survey (modification of results for action subcats 231 and 331).

1 - Miscellaneous Maint	100 (EA)
1 - Miscellaneous Maint	6330 (EA)
1 - Clean and maintain	6330 (EA)
1 - Miscellaneous Maint	5080 (EA)
1 - Clean and maintain	5080 (EA)
1 - Miscellaneous Maint	490 (EA)
1 - Clean and maintain	490 (EA)
1 - Perform maintenance	2170 (EA)
1 - Perform maintenance	6250 (EA)
1 - Perform maintenance	6250 (EA)
1 - Perform maintenance	6250 (EA)
1 - Perform maintenance	6250 (EA)
1 - Perform maintenance	130 (EA)
1 - Perform maintenance	130 (EA)
1 - Perform maintenance	330 (EA)
1 - Perform maintenance	330 (EA)
1 - Perform maintenance	290 (EA)
1 - Perform maintenance	290 (EA)

446 - Maintain approach slab

no mannann approac				
Anecdotal project experience was used.				
Element	State	Action	Final Cost	
320 - P/S Conc Appr Slab	1 - No deterioration	1 - Miscellaneous Maint	200 (EA)	
Relevant data in MMS and Akbar evidence.	but in units of SF and SY respective	vely. Estimated based on anecdotal project		
321 - R/Conc Approach Slab	1 - No deterioration	1 - Miscellaneous Maint	200 (EA)	

Based on anecdotal project evidence.

Appendix B. Estimate of District Location Factors.

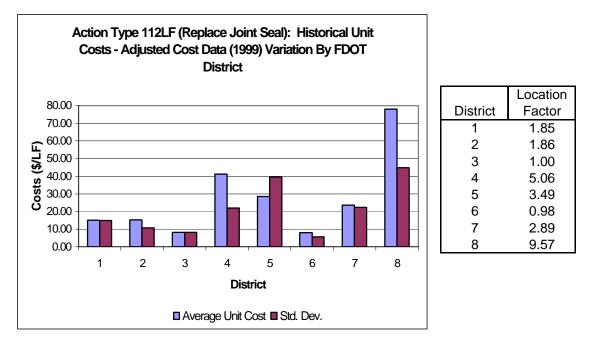


Figure B.1 Variation By District: Subcategory-Unit 112LF (Replace Joint Seal)

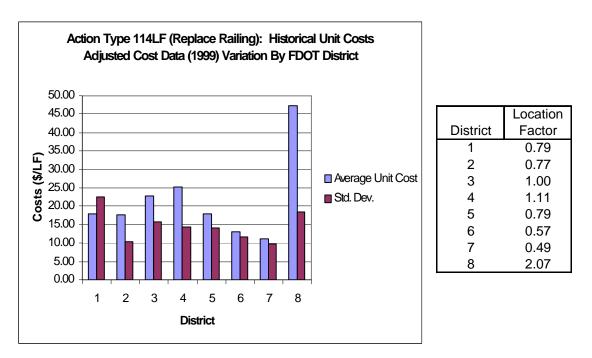


Figure B.2 Variation By District: Subcategory-Unit 114LF (Replace Railing)

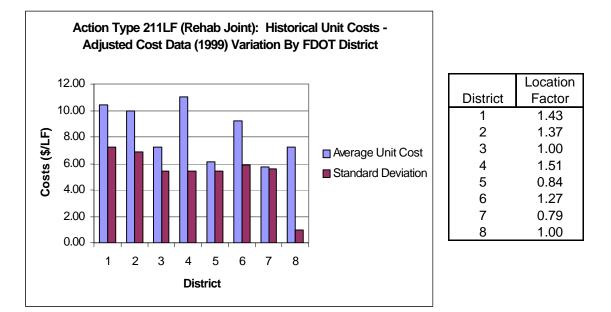


Figure B.3. Variation By District: Subcategory-Unit 211LF (Rehab Joint)

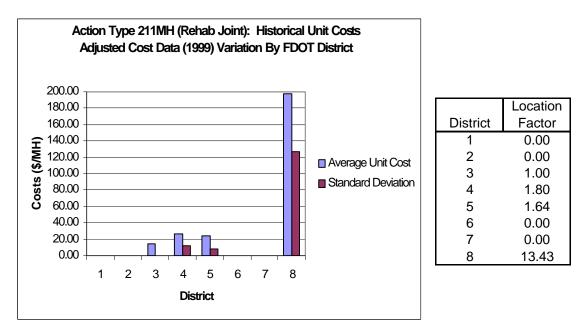


Figure B.4. Variation By District: Subcategory-Unit 211MH (Rehab Joint)

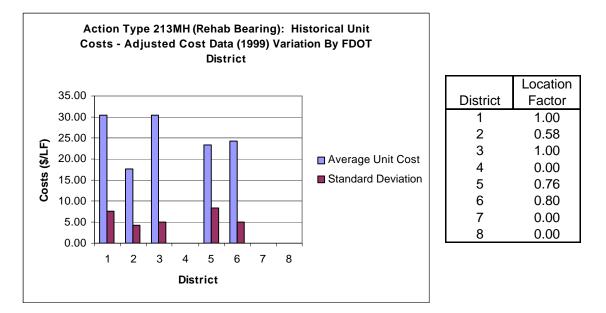


Figure B.5. Variation By District: Subcategory-Unit 213 MH (Rehab Bearing)

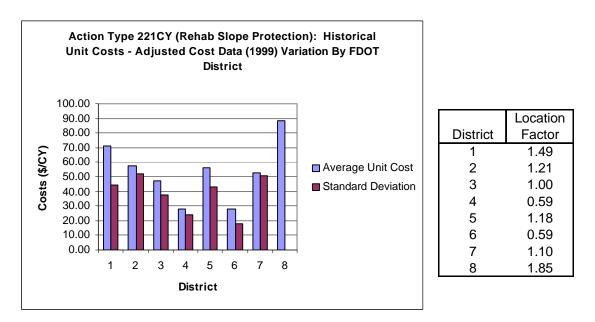


Figure B.6. Variation By District: Subcategory-Unit 221 CY (Rehab Slope Protection)

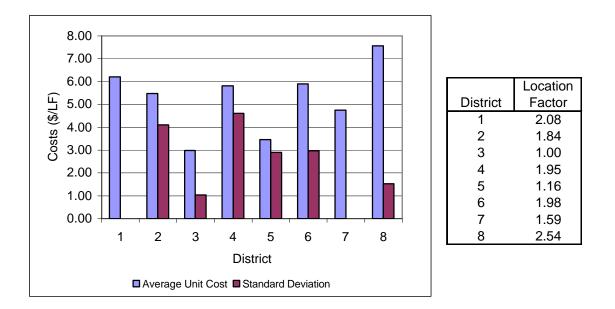


Figure B.7. Variation By District: Subcategory-Unit 221LF (Rehab Slope Protection)

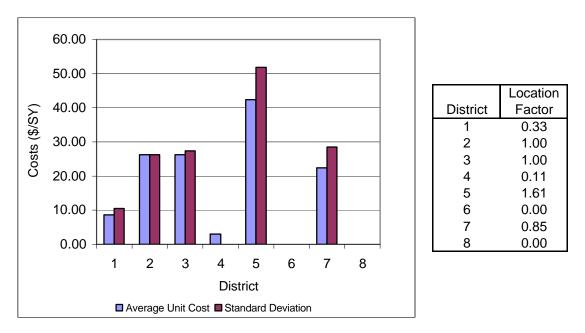


Figure B.8. Variation By District: Subcategory-Unit 221MH (Rehab Slope Protection)

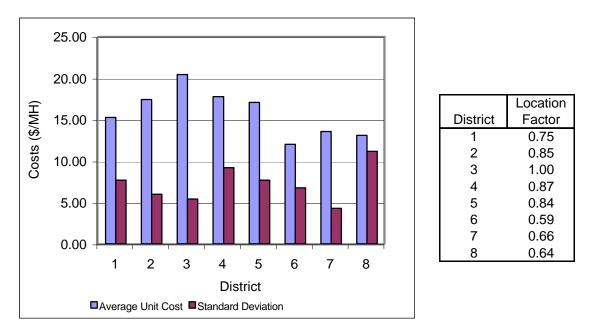


Figure B.9 Variation By District: Subcategory-Unit 221SY (Rehab Slope Protection)

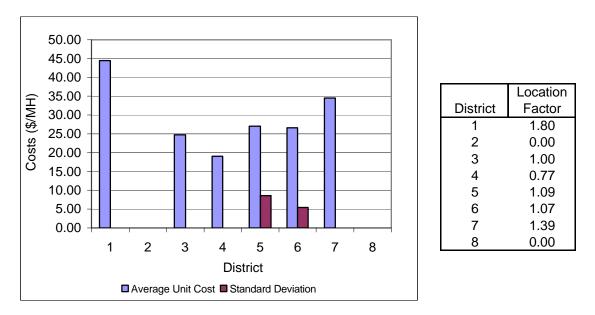
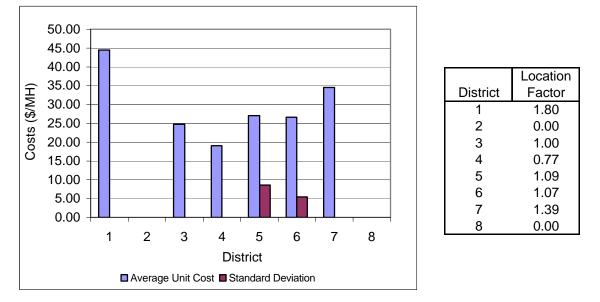



Figure B.10. Variation By District: Subcategory-Unit 222MH (Rehab Channel)

Figure B.11. Variation By District: Subcategory-Unit 231MH (Rehab Machinery)

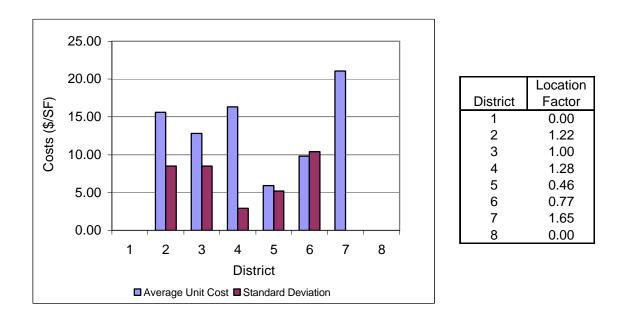
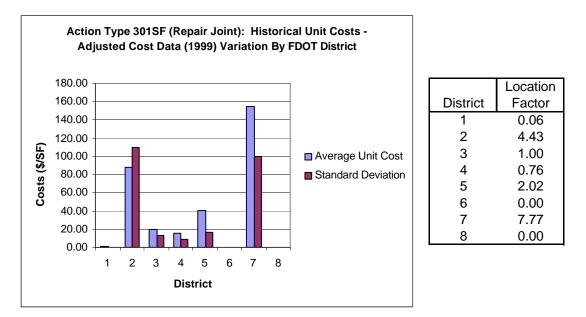



Figure B.12. Variation By District: Subcategory-Unit 246SF (Mudjacking)

Figure B.13. Variation By District: Subcategory-Unit 301SF (Repair Joint)

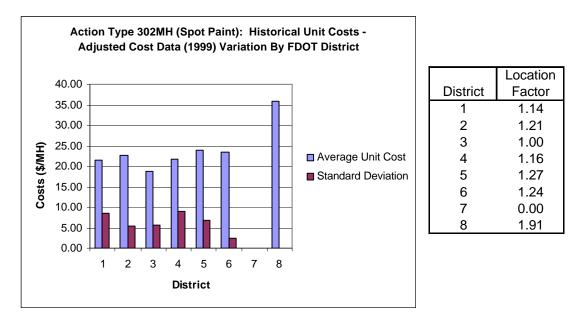


Figure B.14. Variation By District: Subcategory-Unit 302MH (Spot Paint)

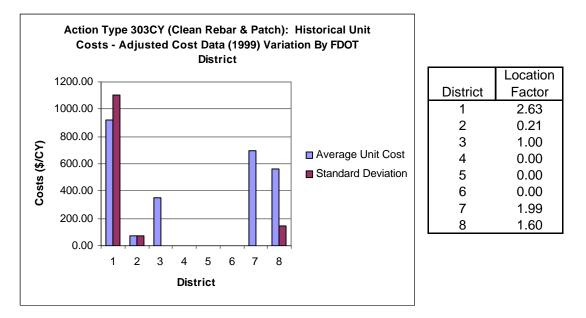


Figure B.15. Variation By District: Subcategory-Unit 303CY (Clean Rebar and Patch)

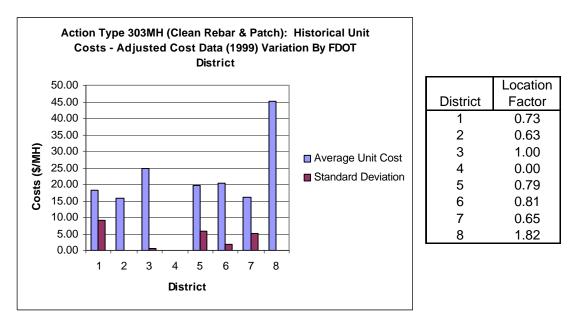


Figure B.16. Variation By District: Subcategory-Unit 303MH (Clean Rebar and Patch)

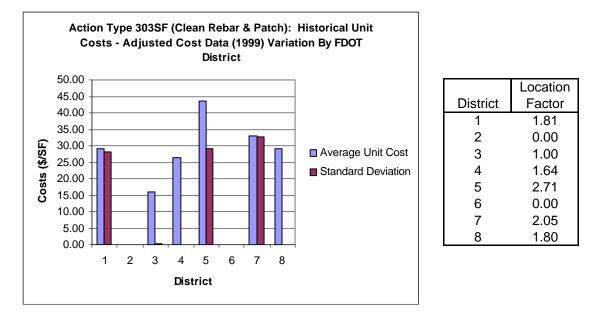


Figure B.17. Variation By District: Subcategory-Unit 303SF (Clean Rebar and Patch)

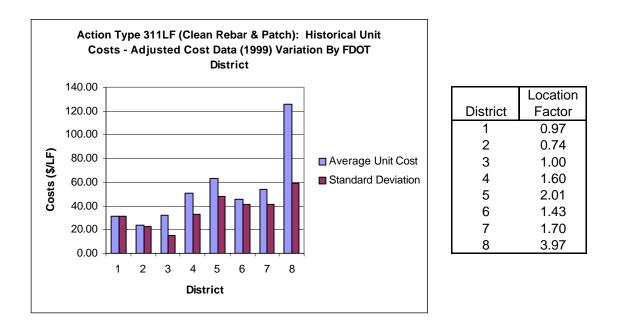


Figure B.18. Variation By District: Subcategory-Unit 311LF (Repair Joint)

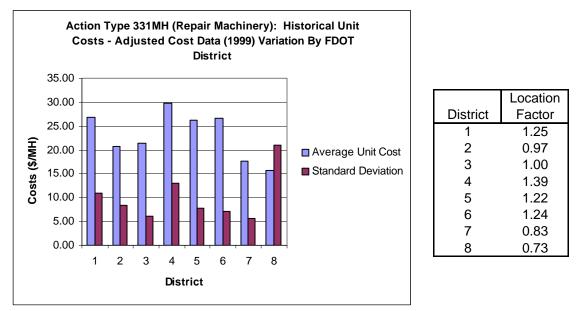


Figure B.19. Variation By District: Subcategory-Unit 331MH (Repair Machinery)

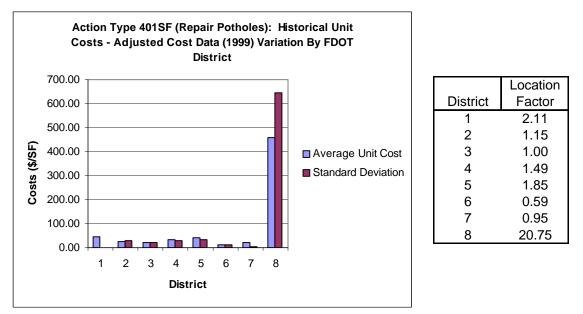


Figure B.20. Variation By District: Subcategory-Unit 401SF (Repair Potholes)

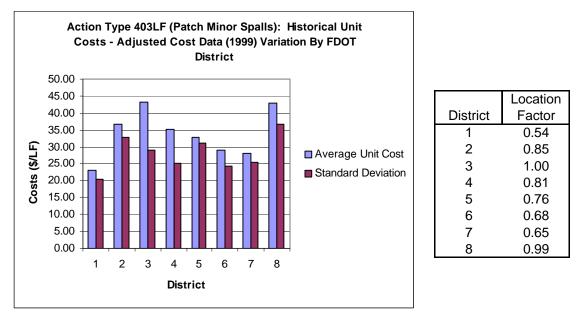


Figure B.21. Variation By District: Subcategory-Unit 403LF (Patch Minor Spalls)

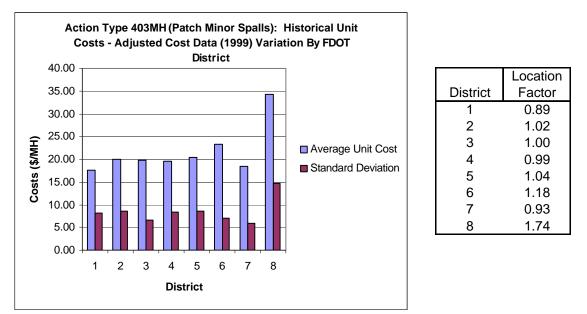


Figure B.22. Variation By District: Subcategory-Unit 403MH (Patch Minor Spalls)

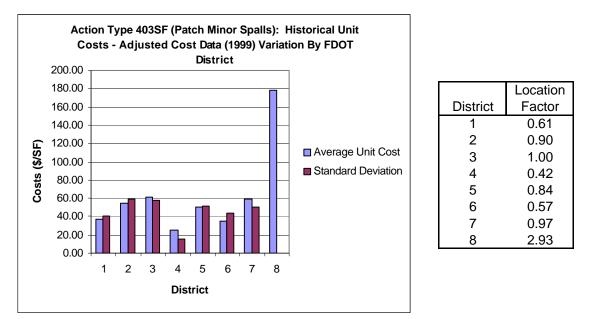


Figure B.23. Variation By District: Subcategory-Unit 403SF (Patch Minor Spalls)

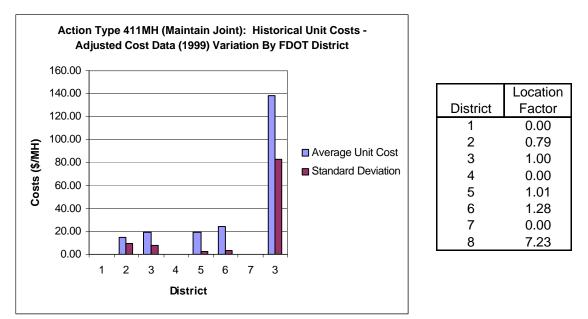


Figure B.24. Variation By District: Subcategory-Unit 411MH (Maintain Joint)

Final Report

	TABLE C1.	AKB/	AR REFINED I	DATA SUMMAR	RY			
CONTRACT	UNIT COSTS 1996	1999 A	kbar Data (ADJU	ISTED FOR INFLA	TION AND OUTL	.IERS)		
ACTION SUBCAT	ACT SUBCAT-UNIT	UNIT	TOTAL QTY	TOTAL DOLLAR AMT.	UNIT PRICE	STD.DEV.	COEFF. OF VARIATION	NO. OF JOBS
112	112LF	LF	42462	2,784,576,40	73.92	50.82	0.69	96
114	114EA	EA	269	85,743.44	342.34	165.99	0.48	33
114	114LF	LF	229500.6	3,187,757.85	28.78	29.03	1.01	73
131	131AS	AS	13	1,091,364.33	105,596.08	201,284.97	1.91	9
131	131EA	EA	786	2,499,138.28	40,551.21	58,782.59	1.45	29
131	131LB	LB	35249931.9	38,679,395.59	3.00	2.73	0.91	115
131	131LF	LF	15433.24	1,201,276.75	104.55	120.36	1.15	13
131	131LS	LS	24	1,465,711.78	65,808.01	96,134.54	1.46	21
132	132SF	SF	14380	466,774.70	44.05	20.56	0.47	3
144	144LF	LF	1208	161,090.79	131.54	55.38	0.42	5
146	146EA	EA	527	6,424,672.83	12,935.61	7,540.32	0.58	112
204	204LF	LF	16818	315,744.93	23.01	10.92	0.47	6
213	213EA	EA	41	53,222.46	3,453.31	4,031.12	1.17	2
246	246CY	СҮ	1470.85	497,637.98	406.08	108.44	0.27	18
301	301SY	SY	4756	206,672.35	43.46			1
311	311CY	СҮ	1.13	14,167.34	12,537.47			1
311	311LF	LF	614107	2,360,769.26	20.95	28.94	1.38	22
400	400EA	EA	149	547,540.04	3,193.50	2,811.77	0.88	4
400	400LS	LS	32	202,454.93	7,861.15	8,158.98	1.04	16
400	400SY	SY	7283	205,079.90	30.49	8.00	0.26	3
401	401LF	LF	54567	244,742.26	25.65	29.47	1.15	11
401	401SY	SY	721634.2	1,515,102.10	2.71	0.92	0.34	120
403	403CF	CF	5651.65	1,490,440.37	696.78	985.61	1.41	18
403	403GA	GA	265	6,926.91	24.47	4.13	0.17	3
403	403SF	SF	22961.6	249,288.97	41.47	32.40	0.78	7
446	446LF	LF	3242	245,058.73	75.39	39.10	0.52	5
446	446SF	SF	82233	350,143.12	5.61	2.39	0.43	11
446	446SY	SY	2418936.34	9,713,889.76	12.17	12.84	1.05	255
							TOTALS	1012
	311LF	DIRECT	USE IN ACTION SU	BCAT-UNIT				
	400SY		T USE IN ACTION SU					

CO1	TABLE C2. DCP REFINED DATA SUMMARY NTRACT UNIT COSTS 1993 1999 DATA (ADJUSTED FOR INFLATION AND OUTLIERS						
COI	NTRACT UNIT COSTS 19	93 195	99 DATA (ADJUSTI	ED FOR INFLA	ATION A	AND OUTLIERS)	
ACTION SUBCAT	ACTION SUBCAT UNIT	UNIT	Avg. Unit Cost	STD. DEV.	C.V.	NO. OF DATA	
102	102LS	LS	115,186.89	223.25	0.00	2	
102	102M2	М2	73.33	46.19	0.63	3	
102	102SF	SF	4.74	8.33	1.76	5	
111	111LF	LF	281.61			1	
112	112CF	CF	541.00	186.84	0.35	5	
112	112LF	LF	62.64	45.33	0.72	13	
112	112M1	M1	2,410.82	4,617.40	1.92	10	
112	112M3	M3	11,435.55	444.70	4.00	1	
114	114LF	LF	140.06	144.73	1.03	13 3	
<u>114</u> 121	<u>114M1</u> 121CF	M1 CF	<u>176.82</u> 20.43	114.33	0.65	1	
121	121CF	СГ	20.43	103.76	0.47	8	
121	12101 121M2	M2	56.70	28.76	0.47	14	
121	121M2	M3	297.07	29.25	0.10	3	
121	121MJ	MT	74.22	19.30	0.26	6	
121	121SY	SY	86.33	23.51	0.20	14	
121	12101 121TN	TN	183.17	112.21	0.61	10	
123	123EA	EA	596.64	378.33	0.63	6	
123	123M1	M1	88.72	34.03	0.38	7	
131	131AS	AS	411.73	353.08	0.86	36	
131	131CY	СҮ	16.02			1	
131	131EA	EA	161.32	225.28	1.40	824	
131	131KG	KG	20.00			1	
131	131LB	LB	19.36			1	
131	131LF	LF	3.09	3.25	1.05	41	
131	131LO	LO	100.00			1	
131	131LS	LS	1,131.81	1,589.26	1.40	11	
131	131M1	M1	5.00	5.93	1.19	29	
131	131PI	PI	1,006.33			1	
132	132EA	EA	768.64	454.87	0.59	2	
132	132M2	М2	530.00			1	
141	141EA	EA	1,814.57			1	
143	143EA	EA	432.54	246.24	0.57	3	
143	143LF	LF	3.93			1	
143	143M1	M1	5.08	0.83	0.16	5	
143	143PI	PI	663.26			1	
144	144EA	EA	291.65	222.27	0.76	15	
144	144M1	M1	127.00	31.11	0.24	2	
145	145LF	LF	264.42	10.50	0.05	1	
146	146CY	CY	232.33	10.53	0.05	3	
146	146M3	M3	492.00	10.02	0.10	1	
146	146SY	SY	55.73 48,781.59	10.83	0.19	2	
151 151	151AS 151EA	AS EA	48,781.59 739.89	794.82	1.07	180	
202	202EA	EA	979.56	852.99	0.87	5	
202	203CF	CF	337.14	53.04	0.16	5	
203	203EA	EA	300.00	0.00	0.00	2	
203	203LF	LF	682.14	101.30	0.15	2	
203	203M1	M1	837.60	57.12	0.07	5	
203	203M3	M3	10,329.44	620.28	0.06	2	
204	204LF	LF	20.69			1	
204	204M1	M1	65.00	0.00	0.00	2	
204	204M3	M3	2,152.02	838.85	0.39	4	
204	204MB	MB	8,435.77	5,977.23	0.71	7	
211	211LF	LF	18.74	13.67	0.73	13	
211	211M1	M1	55.63	89.72	1.61	4	
221	221CY	CY	49.99	52.33	1.05	5	
221	221M2	M2	3.42	2.92	0.85	3	
221	221M3	M3	11.41			1	

			P REFINED DA			
CO	NTRACT UNIT COSTS 19	93 199	99 DATA (ADJUST	ED FOR INFLA	ATION /	AND OUTLIERS)
ACTION SUBCAT	ACTION SUBCAT UNIT	UNIT	Avg. Unit Cost	STD. DEV.	C.V.	NO. OF DATA
303	303CF	CF	529.79	462.38	0.87	20
303	303CY	CY	935.21	703.66		9
303	303M3	M3	3,281.81	6,490.07	1.98	11
311	311LF	LF	36.60	12.49	0.34	4
331	331EA	EA	102.30	100.54	0.98	17
331	331LO	LO	175.86	79.91	0.45	10
331	331LS	LS	1,745.45	1,208.60	0.69	10
331	331LU	LU	35.00	26.48	0.76	7
331	331PM	PM	13.83	11.89	0.86	3
400	400M2	M2	2.05	1.31	0.64	10
400	400SF	SF	0.37	0.26	0.71	17
403	403LF	LF	36.70	6.16	0.17	7
403	403M1	M1	109.80	13.85	0.13	2
403	403SF	SF	30.73	38.31	1.25	13
422	422AC	AC	125.08	163.87	1.31	43
422	422CY	CY	21.84			1
422	422EA	EA	386.36	1,084.83	2.81	83
422	422HA	HA	212.56	322.93	1.52	22
422	422KM	KM	660.68	1,284.82	1.94	8
422	422LF	LF	4.58	3.69	0.81	33
422	422M1	M1	9.63	5.20	0.54	12
422	422M2	M2	0.40			1
422	422PM	PM	168.48	162.70	0.97	12
423	423M2	M2	50.00			1
431	431AS	AS	216.80	262.44	1.21	5
431	431EA	EA	272.97	199.86	0.73	4
431	431LO	LO	85.97	93.82	1.09	201
446	446LF	LF	4.64	5.55	1.20	6
446	446M1	M1	14.96	2.86	0.19	3
446	446MT	MT	307.08	50.90	0.17	2
446	446TN	ΤN	918.56	87.07	0.09	2
					total	1941
	311LF	DIRECT	USE IN ACTION SUBC	AT-UNIT		
	400SY	INDIREC	T USE IN ACTION SUB	CAT-UNIT		

TABLE C3. MMS REFINED DATA SUMMARY										
Ν	AR&R UNIT COSTS 19	93 199	9 DATA (ADJUSTED F	OR INFLATIO	ON AND C	UTLIERS)				
ACTION_SUBCAT	ACT_SUBCAT_UNIT	Units	99_Avg. Unit Cost	Std. Dev.	C.V.	No. of Data				
101	101MH	MH	14.74			1				
101	101SF	SF	117.09			1				
102	102MH	MH	26.70			1				
102	102SF	SF	20.91			1				
111	111LF	LF	12.54	9.08	0.72	25				
111	111SF	SF	6.90			1				
111	111T	Т	332.00			1				
112	112LF	LF	21.50	30.64	1.43	164				
112	112MH	MH	22.67	4.78	0.21	6				
112	112SF	SF	530.84	749.08	1.41	2				
113	113MH	MH	32.23	7.48	0.23	7				
114	114LF	LF	18.46	13.84	0.75	130				
114	114MH	MH	20.75	6.63	0.32	28				
114	114SF	SF	11.13	6.13	0.52	3				
		-		0.13	0.55	1				
121	121CY	CY	818.33	10.00	0.40					
121	121MH	MH	64.48	40.20	0.62	21				
123	123LF	LF	68.52	62.68	0.91	2				
123	123MH	MH	18.00	4.24	0.24	8				
123	123SF	SF	37.72			1				
131	131MH	MH	20.99	5.50	0.26	60				
131	131SF	SF	15.62			1				
141	141MH	MH	29.64	17.90	0.60	2				
144	144MH	MH	21.39	7.61	0.36	29				
151	151EACH	EACH	40.81	57.35	1.41	3				
151	151LF	LF	16.39			1				
151	151MH	MH	26.07	12.55	0.48	31				
151	151UNITS	UNITS	28.65	19.72	0.69	124				
201	201MH	МН	24.94	17.48	0.70	3				
201	201SF	SF	37.80	12.82	0.34	4				
202	202CF	CF	138.83			1				
202	202MH	MH	23.49	4.83	0.21	7				
202	202MH	MH	22.36	2.12	0.09	2				
203	204LF	LF	46.26	49.44	1.07	2				
204	204LF 204MH	MH	24.35	17.23		13				
					0.71					
211	211LF	LF	8.11	6.23	0.77	564				
211	211MH	MH	150.19	133.10	0.89	123				
211	211SF	SF	303.42	584.94	1.93	18				
211	211T	Т	107.27	146.70	1.37	2				
213	213MH	MH	23.61	7.40	0.31	60				
221	221A	А	892.14			1				
221	221CF	CF	25.70	21.68	0.84	8				
221	221CY	CY	48.02	42.84	0.89	128				
221	221LF	LF	6.60	3.03	0.46	231				
221	221MH	MH	68.90	94.68	1.37	821				
221	221SF	SF	84.56	79.25	0.94	7				
221	221SY	SY	23.75	26.85	1.13	86				
221	221T	Т	216.87	244.39	1.13	4				
222	222CY	CY	105.88	83.10	0.78	200				
222	22201 222LF	LF	25.79	39.46	1.53	4				
222	222MH	MH	16.91	7.27	0.43	377				
222	222SF	SF	20.91	10.93	0.52	3				
222	2223F 2222SY	SF SY	12.93	14.66	1.13	95				
223	223CY	CY	635.34	973.18	1.53	5				
223	223LF	LF	20.00	19.19	0.96	18				
223	223MH	MH	83.93	113.54	1.35	30				
223	223SF	SF	28.02	31.24	1.11	13				
223	223SY	SY	6.16			1				
223	223T	Т	286.07	114.86	0.40	2				
231	231MH	MH	27.46	8.50	0.31	30				

TABLE C3. MMS REFINED DATA SUMMARY											
Ν	IR&R UNIT COSTS 19	R UNIT COSTS 1993 1999 DATA (ADJUSTED FOR INFLATION AND O									
ACTION_SUBCAT	ACT_SUBCAT_UNIT	Units	99_Avg. Unit Cost	Std. Dev.	C.V.	No. of Data					
246	246CF	CF	32.85	27.39	0.83	14					
246	246CY	CY	79.09	67.28	0.85	5					
246	246MH	MH	22.81	15.10	0.66	6					
246	246SF	SF	12.91	7.62	0.59	24					
246	246SY	SY	64.32	112.58	1.75	5					
246	246T	Т	185.18	116.43	0.63	43					
301	301CY	CY	1,063.13			1					
301	301MH	MH	22.66	4.11	0.18	13					
301	301SF	SF	74.08	88.56	1.20	14					
301	301T	Т	206.53	113.43	0.55	12					
302	302LF	LF	18.63	11.16	0.60	6					
302	302MH	MH	22.30	6.23	0.28	131					
302	302SF	SF	28.62	13.98	0.49	21					
302	302UNITS	UNITS	11.95		_	1					
303	303CY	CY	328.36	459.18	1.40	14					
303	303LF	LF	42.24	45.83	1.08	29					
303	303MH	MH	18.96	7.16	0.38	132					
303	303SF	SF	33.10	28.16	0.85	41					
303	303T	Т	715.80			1					
311	311LF	LF	52.49	48.30	0.92	261					
311	311MH	MH	116.84	133.49	1.14	6					
311	311SF	SF	25.88	34.43	1.33	8					
331	331MH	MH	26.78	11.94	0.45	1023					
331	331UNITS	UNITS	29.63	10.66	0.36	5					
400	400CBM	CBM	175.89			1					
400	400CY	CY	3,884.87			1					
400	400LF	LF	11.31	14.16	1.25	3					
400	400MH	MH	17.90	7.60	0.42	130					
400	400SF	SF	5.04	5.53	1.10	115					
400	400UNITS	UNITS	19.43			1					
401	401CBM	CBM	111.81			1					
401	401EACH	EACH	8.73	12.46	1.43	7					
401	401LF	LF	8.23	4.78	0.58	48					
401	401LM	LM	70.02	39.20	0.56	3					
401	401MH	MH	21.20	9.93	0.47	28					
401	401SF	SF	24.24	26.03	1.07	160					
401	401T	T	219.59	162.13	0.74	27					
402	402LF	LF	2.86	1.28	0.45	3					
402	402MH	MH	20.99	6.96	0.33	26					
402	402SF		914.08			1					
402	402UNITS	UNITS	23.95	220 51	0.01	1					
403 403	403CY	CY	363.56 32.11	330.51 28.32	0.91	66 336					
403	403LF 403MH	LF MH	20.31	28.32 8.05	0.88 0.40	336 1413					
403	403MH	SF	49.63	52.46	1.06	441					
403	4035F 403T	T	49.03	5,578.41	1.31	2					
403	4031 411CY	CY	290.93	0,070.41		1					
411	411LF	LF	3.89	2.91	0.75	72					
411	411LF 411MH	MH	43.68	58.73	1.34	20					
411	411SF	SF	8.15	9.59	1.18	54					
413	413MH	MH	19.19	7.86	0.41	33					
422	422A	A	255.42	259.98	1.02	48					
422	422CBM	CBM	210.93			1					
422	422CDM	CY	172.18	138.83	0.81	8					
422	422G	G	4.30	1.99	0.46	56					
422	422LF	LF	3.27	2.29	0.40	18					
422	422MH	MH	16.91	8.08	0.48	640					
422	422SF	SF	31.40	28.56	0.91	6					
422	422UNITS	UNITS	19.05			1					

	TABLE	C3. M	IMS REFINED DA	TA SUMM	ARY	
N	IR&R UNIT COSTS 19	93 199	9 DATA (ADJUSTED F	OR INFLAT	ION AND C	DUTLIERS)
ACTION_SUBCAT	ACT_SUBCAT_UNIT	Units	99_Avg. Unit Cost	Std. Dev.	C.V.	No. of Data
423	423CBM	CBM	972.97	1,080.48	1.11	11
423	423CY	CY	179.11	140.17	0.78	3
423	423EM	EM	179.30			1
423	423LF	LF	8.73	6.49	0.74	11
423	423MH	МН	19.00	8.14	0.43	64
423	423SF	SF	9.94	9.59	0.96	413
431	431MH	MH	19.94	3.78	0.19	30
446	446CF	CF	14.44	13.75	0.95	2
446	446CY	CY	860.83			1
446	446LF	LF	8.43	6.38	0.76	54
446	446MH		23.00	10.31	0.45	48
446	446SF	SF	22.47	28.04	1.25	250
446	446T	Т	385.63	349.86	0.91	20
					TOTALS	10014
	311LF	DIRECT U	JSE IN ACTION SUBCAT-U			
	331MH	INDIREC	T USE IN ACTION SUBCAT-	UNIT		
		C.V. abov	e 1.00			

TABLE C.4 Action Subcategory-Unit 112L	F (Replace Joir	nt Seal) Mo	del for Pontis	Elements C	ES Data	
Groups	Count	Average	CV	N**	Error (d) in Mean Estimate*	C.I.
TYPE 1: EXPANSION JOINT SEAL	oount	Average			Lotinate	0.1.
(COMPRESSION ELAST)	20	41.95	0.54	80	10.01	\$31.95 to \$51.96
TYPE 2: EXPANSION JOINT SEAL (STRIP						
ELAST)	51	85.00	0.54	319	12.50	\$72.50 to \$97.51
TYPE 3: EXPANSION JOINT SEAL						
(MODULAR)	6	418.85	0.43	4987	144.14	\$274.70 to \$562.99
TYPE 4: ELASTIC PREFORMED JOINT						
SEAL	23	64.21	0.68	294	17.89	\$46.32 to \$82.10
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	711310.07	3	237103.36	71.5613	0.0000	2.6994
Within Groups	318076.00	96	3313.29			
· · · · · · · · · · · · · · · · · · ·						
Total	1029386.07	99				
* 95% Confidence Level						
** Required number of data points. Based on	tolerance of +/-	5				
·						

					Error (d) in Mean	
Groups	Count	Average	CV	N**	Estimate*	C.I.
TYPE 1: HANDRAIL CONC	32	53.29	0.54	126	9.91	\$43.38 to \$63.19
TYPE 2: HANDRAIL ALUMINUM (REMOVE						
& REINSTALL)	1	32.60	0.00	0	0.00	N/A
TYPE 3: GUARDRAIL (BRIDGE)	3	69.76	1.53	1753	120.86	\$-51.10 to \$190.61
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	1218.78	2	609.39	0.4177	0.6620	3.2849
Within Groups	48149.65	33	1459.08			
Total	49368.43	35				

TABLE C.6 Action Subcategory-Unit 131E	A (Replace Ma	chinerv) Mo	del for Ponti	s Elements C	ES Data	
		, , , , , , , , , , , , , , , , , , ,			Error (d) in	
					Mean	
Groups	Count	Average	CV	N**	Estimate*	C.I.
TYPE 1: MACHINERY & CASTINGS(F&I)	3	33822.57	0.84	125494459	32338.63	\$1483.93 to \$66161.20
TYPE 2: EMERGENCY GENERATOR	5	41701.27	0.30	23798500	10908.37	\$30792.90 to \$52609.64
TYPE 3: MACHINERY & CASTINGS(F&I)	3	120909.76	0.97	2098926970	132253.76	\$-11344.01 to \$253163.52
TYPE 4: LOGIC CONTROLLER	7	27998.64	0.71	61170793	14780.63	\$13218.00 to \$42779.27
TYPE 5: CONTROL CONSOLE(F&I)	9	93959.66	1.09	1625010962	67185.71	\$26773.95 to \$161145.36
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	32078355889	4	8019588972	1.5136	0.2327	2.8167
Within Groups	1.1656E+11	22	5298203552			
Total	1.48639E+11	26				

TABLE C.7 Action Subcategory-Unit 131LS (Replace Machinery) Model for Pontis Elements CES Data									
					Error (d) in Mean				
Groups	Count	Average	CV	N**	Estimate*	C.I.			
TYPE 9: MACHINERY & CASTINGS	1	428655.88	0.00	0	0.00	\$428655.88 to \$428655.88			
TYPE 11: MACHINERY & CASTINGS(F&I)	1	638735.90	0.00	0	0.00	\$638735.90 to \$638735.90			
TYPE 10: NAVIGATION LIGHTS	11	31969.45	0.58	53601141	11037.24	\$20932.20 to \$43006.69			
ANOVA									
Source of Variation	SS	df	MS	F	P-value	F crit			
Between Groups	4E+11	2	2E+11	642.265	0.000	4.103			
Within Groups	3E+09	10	3E+08						
Total	5E+11	12							

TABLE C.8 Action Subcategory-Unit 403SI	(Error (d) in Mean	
Groups	Count	Average	CV	N**	Estimate*	C.I.
PATCHING PORTLAND CEMENT						
CONCRETE PAVEMENT	5	57.44	0.37	70	18.75	\$38.69 to \$76.20
CONC SURFACES CLEANING & SEALING	2	1.52	0.82	0	1.73	\$-0.20 to \$3.25
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	4467.56	1	4467.56	12.1916	0.0174	6.6079
Within Groups	1832.22	5	366.44			
Total	6299.78	6				

Groups	Count	Average	C.V.	Required N**	Error (d) in Mean Estimate*	C.I.
(A460 7 2) - EXPANSION JOINT SEAL						
(COMPRESSION ELAST)	6	55.22	1.20	674	52.98	\$2.24 to \$108.20
(A460 8101) - ELASTIC PREPRMD JOINT SEAL						
(PLYMRIC NOSING)	2	92.26	0.20	52	25.42	\$66.84 to \$117.68
A460 20 4) - ELASTOMERIC STRUCTURAL						
JOINT SEAL REPLCMT	5	59.69	0.14	10	7.24	\$52.45 to \$66.93
ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	2129.18	2	1064.59	0.4725	0.6367	4.1028
Within Groups	22533.03	10	2253.30	0.4720	0.0007	4.1020
	22000.00	10	2200.00			
Total	24662.21	12				
* 95% Confidence Level						
** Actual number of data points. Based on tolerance	e of +/- 5					

Groups	Count	Average	CV	Required N**	Error (d) in Mean Estimate*	C.I.
EXPANSION JOINT SEAL (STRIP						
ELASTOMERIC)	5	4588.52	1.31	5547630	5266.70	\$-678.18 to \$9855.22
ELASTIC PREFORMED JOINT SEAL	2	181.63	0.98	4869	246.71	\$-65.08 to \$428.34
ELASTOMERIC STRUCTURAL JOINT SEAL						
REPLACEMENT	3	267.45	0.27	775	80.35	\$187.10 to \$347.80
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	47432543.85	2	23716271.92	1.1493	0.3702	4.7374
Within Groups	144451117.1	7	20635873.87			
Total	191883660.9	9				
* 95% Confidence Level						
** Actual number of data points. Based on tolera	nce of +/- 5					
						1

TABLE C.11 Action Subcategory-Unit 114LF (F	Replace Railing) Model fo	r Pontis Elem	ents DCP Da	ta	
Groups	Count	Average	C.V.	Required N**	Error (d) in Mean Estimate*	C.I.
CONC HANDRAIL	9	187.41	0.81	3532	99.05	\$88.36 to \$286.46
HANDRAIL ALUMINUM	3	38.89	0.71	118	31.33	\$7.56 to \$70.22
GUARDRAIL	1	17.37	0.00	0	0.00	N/A
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	65939.76806	2	32969.88403	1.7781	0.2184	4.1028
Within Groups	185421.45	10	18542.14454			
Total	251361.21	12				
* 95% Confidence Level						
** Actual number of data points. Based on tolerand	ce of +/- 5					

TABLE C.12 Action Subcategory-Unit 121M	2 (Replace Slope	e Protection	Model for	Pontis Elemen	ts DCP Data	
Groups	Count	Average	CV	Required N**	Error (d) in Mean Estimate*	C.I.
DITCH PAVEMENT CONCRETE	9	72.20	1.23	1203	57.80	\$14.40 to \$130.00
SLOPE PAVEMENT CONCRETE	5	82.34	0.22	50	15.74	\$66.60 to \$98.08
RIPRAP FABRIC-FORMED CONCRETE	1	32.36	0	0	0.00	N/A
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	2093.14	2.00	1046.57	0.1965	0.8242	3.8853
Within Groups	63906.86	12.00	5325.57			
Total	66000.00	14.00				
* 95% Confidence Level						
** Actual number of data points. Based on tolera	nce of +/- 5					

TABLE C.13 Action Subcategory-Unit 1215	SY (Replace Slope	Protection) Model for Po	ntis Flomon	ts DCP Data	
Groups RIP-RAP (CONCRETE)	Count	Average 63.46	CV 0.51	Required N**	Error (d) in Mean Estimate* 36.30	C.I. \$27.16 to \$99.76
CONC SLOPE PAVT	<u> </u>	92.57	0.19	48	10.45	\$27.16 to \$99.76 \$82.12 to \$103.02
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	1997.43	1	1997.429789	4.621	0.05267965	4.747
Within Groups	5187.19	12	432.27			
Total	7184.62	13				
* 95% Confidence Level						
** Actual number of data points. Based on tole	erance of +/- 5					

Groups	Count	Average	CV	Required N**	Error (d) in Mean Estimate*	C.I.
JNDERDRAIN, TYPE I	1	80.93	0.00	0	0.00	N/A
JNDERDRAIN, TYPE V	2	132.72	0.05	6	8.83	\$123.89 to \$141.55
JNDERDRAIN OUTLET PIPE	4	68.68	0.31	70	20.92	\$47.76 to \$89.60
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	5539.54	2	2769.77	7.8708	0.0411	6.9443
Within Groups	1407.62	4	351.91			
Fotal	6947.16	6				
* 95% Confidence Level ** Actual number of data points. Based on tolera	ance of +/- 5					

Groups	Count	Average	CV	Required N**	Error (d) in Mean Estimate*	C.I.
LOOP ASSEMBLY	17	756.09	0.23	4666	82.83	\$673.26 to \$838.92
CNTRL ASSEM ACT SS F&I(D-4,1 PRE PLN)	1	13150.88	0.00	0	0.00	N/A
BALLAST ASSEMBLY	19	103.62	0.55	494	25.50	\$78.12 to \$129.12
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	161719447	2	80859723.74	5056.80	8.4522E-43	3.27590044
Within Groups	543670	34	15990.30			
Total	162263118	36				
* 95% Confidence Level ** Actual number of data points. Based on toleran	ce of +/- 5					

TABLE C.16 Action Subcategory-Unit 131EA (Re	eplace Machi	nery) Model	for Pontis	Elements DCP	Data	
Groups	Count	Average	CV	Required N**	Error (d) in Mean Estimate*	C.I.
CONTROLLER CABINET	1	500.00	0.00	0	0.00	N/A
PULL & JUNCTION BOXES	66	155.89	1.22	5573	45.94	\$109.94 to \$201.83
MAST ARM COMB,STD	19	248.59	1.05	10379	116.86	\$131.72 to \$365.45
DETECTOR PEDEST	1	150.00	0.00	0	0.00	N/A
LUMINAIRE & BRACKET ARM	83	201.16	0.02	6442	44.05	\$157.11 to \$245.21
LOAD CENTER	167	201.52	1.85	21303	56.47	\$145.05 to \$257.99
SURGE PROTECTOR	17	21.76	0.43	13	4.42	\$17.35 to \$26.18
REFRACTOR	44	46.62	0.74	182	10.18	\$36.44 to \$56.80
QUICK DISCONNECT PLUG	29	109.72	0.45	372	17.91	\$91.81 to \$127.63
FRANGIBLE BASE FOR LIGHT POLE	45	125.07	0.92	2051	33.76	\$91.31 to \$158.82
SYS CNTRL EQUIP	10	183.11	0.26	344	29.31	\$153.81 to \$212.42
SYS AUX	67	372.82	0.95	19471	85.24	\$287.58 to \$458.05
CLOSED CIRCUIT TV	18	806.90	1.85	343388	690.60	\$116.30 to \$1497.50
HIGH MAST PARTS	81	346.13	2.83	147414	213.30	\$132.83 to \$559.44
BALLAST	13	76.85	0.36	121	15.24	\$61.61 to \$92.09
LAMP	68	42.63	0.77	165	7.78	\$34.85 to \$50.41
LUMINAIRE STARTER BOARD	5	32.38	0.32	16	9.03	\$23.35 to \$41.42
GROUND ROD	9	28.93	0.34	15	6.40	\$22.53 to \$35.33
FUSE	19	9.66	0.57	5	2.47	\$7.19 to \$12.14
DUMMY SLUG	9	1.73	0.99	0	1.12	\$0.61 to \$2.85
FUSE HOLDER	37	16.11	0.40	6	2.07	\$14.04 to \$18.17
LOAD BREAK	10	220.51	0.90	6015	122.63	\$97.87 to \$343.14
TRANSFORMER	3	1748.93	0.78	286393	1544.87	\$204.06 to \$3293.80
VALVE BOX	1	1209.71	0.00	0	0.00	N/A
HIGH VOLTAGE PRIMARY LIGHTNING ARREST	1	683.80	0.00	0	0.00	N/A
JUNCTION BOXES	1	3629.13	0.00	0	0.00	N/A
LOOP ASSEMBLY	1	967.77	0.00	0	0.00	N/A
MUSHROOM BOLT ASSY.W/DEFLECTOR	1	37.61	0.00	0	0.00	N/A
OIL SWITCH	1	228.71	0.00	0	0.00	N/A
SWITCH BOX	2	87.96	0.61	443	74.40	\$13.56 to \$162.35

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	38128382.12	29	1314771.80	6.6480	0.0000	1.4818
Within Groups	158016944.67	799	197768.39			
Total	196145326.79	828				
* 95% Confidence Level						
** Actual number of data points. Based on t	olerance of +/- 5					

TABLE C.17 Action Subcategory-Unit 131	LF (Replace Mach	inery) Model	for Pontis	Elements DCP	Data	
Groups	Count	Average	CV	Required N**	Error (d) in Mean Estimate*	C.I.
GROUNDING ELECTRODE	1	3.76	0.00	0	0.00	N/A
CONDUIT	20	6.27	1.12	8	3.09	\$3.18 to \$9.36
LOOP MATERIAL	1	4.41	0.00	0	0.00	N/A
SYS COMMUNICATIONS CARRIER	11	1.35	0.64	0	0.51	\$0.84 to \$1.86
CONDUCTORS	9	1.08	0.60	0	0.42	\$0.66 to \$1.50
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	254.39	4	63.60	2.46608	0.06178	2.62605
Nithin Groups	954.18	37	25.79			
Fotal	1208.57	41				
95% Confidence Level						
* Actual number of data points. Based on tol	erance of +/- 5					

TABLE C.18 Action Subcategory-Unit 13	1LS (Replace Machin	ery) Mode	el for Pontis E	lements DCP	Data	
Groups	Count	Average	C.V.	Required N**	Error (d) in Mean Estimate*	C.I.
NAVIGATION LIGHTS	6	5785.04	1.56	12464958	7206.06	\$-1421.02 to \$12991.10
SYS COMM	6	260.15	0.04	18	8.65	\$251.50 to \$268.80
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	91573100.55	1	91573100.55	2.2578	0.1638	4.9646
Within Groups	405591934.71	10	40559193.47			
Total	497165035.26	11				
* 95% Confidence Level						
** Actual number of data points. Based on to	olerance of +/- 5					

Groups	Count	Average	с٧	Required N**	Error (d) in Mean Estimate*	C.I.
CONDUCTOR	25	4.07	1.42	5	2.26	\$1.81 to \$6.33
GROUNDING	1	12.33	0.00	0	0.00	N/A
CONDUIT	2	37.34	0.88	166	45.52	\$-8.19 to \$82.86
LOOP MATERIAL	2	8.35	0.28	1	3.23	\$5.12 to \$11.58
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	2086.34	3	695.45	9.6102	0.0002	2.9752
Within Groups	1881.49	26	72.37			
Total	3967.83	29				
* 95% Confidence Level						
** Actual number of data points. Based on to	lerance of +/- 5					

Groups	Count	Average	cv	Required N**	Error (d) in Mean Estimate*	C.I.
PLASTIC FILTER FABRIC	3	26.01	0.75	58	21.99	\$4.02 to \$48.00
CONC DITCH PAVT	8	30.08	0.18	5	3.78	\$26.30 to \$33.86
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	36.09	1	36.09	0.3371	0.5757	5.1174
Within Groups	963.56	9	107.06			
Total	999.65	10				
* 95% Confidence Level						
** Actual number of data points. Based on to	lerance of $\pm/-5$					

TABLE C.21 Action Subcategory-Unit 111LF (R	eplace Joint) Model for P	ontis Elemen	ts MMS Data	1	
Treatments	Count	Average	C.V.	N**	Error (d) in Mean Estimate*	C. I.
301 - Pourable Joint Seal	11	15.45	0.71	18	6.47	\$8.98 to \$21.92
302 - Compression Joint Seal	14	14.08	0.77	18	5.67	\$8.41 to \$19.75
304 - Open Expansion Joint	5	9.57	0.17	0	1.45	\$8.12 to \$11.02
	30					
Overall Data:	30	13.83	0.72	15	3.55	\$10.28 to \$17.38
ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	120.30	2	60.15	0.594	0.5589	3.354
Within Groups	2732.03	27	101.19			
Total	2852.33	29				
* 95% Confidence Level						
** Required number of data points. Based on tolera	ance of +/- 5					

TABLE C.22 Action Subcategory-Unit 112LF (F		····,			Error (d) in	
					Mean	
Treatments	Count	Average	C.V.	N**	Estimate*	C. I.
301 - Pourable Joint Seal	74	13.29	1.55	65	4.68	\$8.61 to \$17.97
302 - Compression Joint Seal	94	30.98	1.20	211	7.50	\$23.48 to \$38.48
303 - Assembly Joint/Seal	9	14.38	0.82	21	7.71	\$6.67 to \$22.09
304 - Open Expansion Joint	7	9.79	0.77	9	5.56	\$4.23 to \$15.35
	184					
Overall Data:	184	22.25	1.39	147	4.47	\$17.78 to \$26.72
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	19014.08	4	4753.52	5.339	0.00044	2.422
Within Groups	160269.45	180	890.39			
Total	179283.5286	184				
* 95% Confidence Level						
** Required number of data points. Based on toler	rance of +/- 5					

Treatments	Count	Average	C.V.	N**	Error (d) in Mean Estimate*	C. I.
331 - Reinforced Conc Bridge Railing	75	19.93	0.69	29	3.13	\$16.80 to \$23.06
333 - Other Bridge Railing	61	16.73	0.78	26	3.27	\$13.46 to \$20.00
334 - Metal Bridge Railing - Coated	20	14.71	0.61	12	3.91	\$10.80 to \$18.62
	156					
Overall Data:	156	18.01	0.73	26	2.05	\$15.96 to \$20.06
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	595.23	2	297.61	1.7578	0.1759	3.0552
Within Groups	25904.43	153	169.3099795			
Total	26499.65	155				
* 95% Confidence Level ** Required number of data points. Based on toler	ance of +/- 5					

TABLE C.24 Action Subcategory-Unit 114MH (R	Replace Raili	ng) Model for	Pontis Elem	ents MMS Da		
					Error (d) in	
-	•		<u> </u>		Mean	
Treatments	Count	Average	C.V.	N**	Estimate*	C. I.
201 - Unpainted Steel Column or Pile	2	21.27	0.26	5	7.68	\$13.59 to \$28.95
202 - Painted Steel Column or Pile	3	18.22	0.16	1	3.21	\$15.01 to \$21.43
204 - P/S Conc Column or Pile	13	17.16	0.19	2	1.79	\$15.36 to \$18.95
205 - Reinforced Conc Column or Pile	21	19.58	0.32	6	2.66	\$16.92 to \$22.25
206 - Timber Column or Pile	5	24.92	0.38	13	8.21	\$16.71 to \$33.14
210 - Reinforced Conc Pier Wall	9	18.10	0.18	2	2.14	\$15.96 to \$20.24
215 - Reinforced Conc Abutment	26	20.59	0.34	8	2.72	\$17.87 to \$23.31
220 - Pile Cap/Footing	21	20.51	0.28	5	2.48	\$18.02 to \$22.99
234 - Reinforced Conc Cap	28	20.33	0.34	7	2.55	\$17.78 to \$22.88
241 - Reinforced Concrete Culvert	1	32.20	0.00	0	0.00	N/A
298 - Pile Jacket without Cathodic Protection	3	22.54	0.10	1	2.65	\$19.89 to \$25.20
299 - Pile Jacket with Cathodic Protection	1	17.07	0.00	0	0.00	N/A
386 - Fender Dolphin System Metal Uncoated	2	23.46	0.10	1	3.39	\$20.07 to \$26.85
387 - Fender Dolphin System Prestressed Concret	12	17.41	0.21	2	2.03	\$15.38 to \$19.44
389 - Fender Dolphin System Timber	11	17.86	0.12	1	1.22	\$16.63 to \$19.08
393 - Bulkhead/Seawall Metal Uncoated	1	17.07	0.00	0	0.00	N/A
394 - Abutment Slope Protection Reinforced Conc	6	22.52	0.44	15	7.88	\$14.64 to \$30.40
396 - Abutment Slope Protection Other Material	22	20.02	0.29	5	2.44	\$17.58 to \$22.47
	187					
Overall Data:	203	19.91	0.30	5	0.82	\$19.09 to \$20.73
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	668.07	17.00	39.30	1.1072	0.3506	1.6835
Within Groups	5998.50	169.00	35.49			
Total	6666.56	186.00				
* 95% Confidence Level						
** Required number of data points. Based on tolera	ance of +/- 5					

TABLE C.25 Action Subcategory-Unit 121MH (F	Protection)	Model for Po	ntis Element	ts MMS Data		
	•				Error (d) in Mean	
Treatments	Count	Average	C.V.	N**	Estimate*	C. I.
394-Abutment Slope Protection Reinforced Concre	20	66.98	0.59	240	17.33	\$49.66 to \$84.31
396 - Abutment Slope Protection Other Material	4	39.48	0.79	149	30.56	\$8.92 to \$70.04
	24					
Overall Data:	24	62.40	0.63	235	15.64	\$46.76 to \$78.04
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	2521.23	1	2521.23	1.7008	0.2057	4.3009
Within Groups	32612.80	22	1482.40			
Total	35134.03579	23				
* 95% Confidence Level						
** Required number of data points. Based on toler	ance of +/- 5					

TABLE C.26 Action Subcategory-Unit 131MH (R	epiace maci	mery) woder			Error (d) in	
					Mean	
Treatments	Count	Average	C.V.	N**	Estimate*	C. I.
		Average	-	N ***		\$16.53 to \$18.63
540 - Open Gearing	24	17.58	0.15		1.05	\$10.53 10 \$18.63
541 -Speed Reducers	23	17.25	0.12	1	0.87	.
542 - Shafts	24	17.58	0.15	1	1.05	\$16.53 to \$18.63
543 - Shaft Bearings and Shaft Couplings	24	17.58	0.15	1	1.05	\$16.53 to \$18.63
544 - Brakes	23	17.25	0.12	1	0.87	\$16.38 to \$18.11
545 - Emergency Drive and Back Up Power Syster	25	18.25	0.23	3	1.67	\$16.58 to \$19.93
546 - Span Drive Motors	18	17.79	0.14	1	1.16	\$16.63 to \$18.95
547 - Hydraulic Power Units	15	19.23	0.28	4	2.73	\$16.50 to \$21.95
548 - Hydraulic Piping System	15	19.23	0.28	4	2.73	\$16.50 to \$21.95
549 - Hydraulic Cylinders/Motors/Rotary Actuators	15	19.23	0.28	4	2.73	\$16.50 to \$21.95
550 - Hopkins Frame	5	18.79	0.09	0	1.52	\$17.27 to \$20.31
560 - Span Locks/Toe Locks/Heel Stops/Tail Locks	27	18.30	0.22	2	1.49	\$16.81 to \$19.79
561 - Live Load Shoes/Strike Plates/Buffer Cylinde	31	18.19	0.23	3	1.47	\$16.72 to \$19.65
562 - Counterweight Support	29	18.29	0.22	3	1.48	\$16.80 to \$19.77
563 - Access Ladder & Platforms	34	18.13	0.22	2	1.34	\$16.79 to \$19.47
564 - Counterweight	31	18.37	0.22	2	1.40	\$16.98 to \$19.77
565 - Trunnion/Straight and Curved Track	31	18.37	0.22	2	1.40	\$16.98 to \$19.77
570 - Transformers & Thyristors	13	17.52	0.11	1	1.04	\$16.48 to \$18.56
571 - Submarine Cable	24	18.31	0.23	3	1.67	\$16.64 to \$19.98
572 - Conduit & Junction Boxes	31	18.37	0.22	2	1.40	\$16.98 to \$19.77
573 - Programmable Logic Controllers	21	18.20	0.24	3	1.91	\$16.29 to \$20.11
574 - Control Console	27	18.13	0.22	2	1.51	\$16.62 to \$19.65
580 - Navigational Light System	30	18.15	0.21	2	1.37	\$16.78 to \$19.51
581 - Operator Facilities	30	18.15	0.21	2	1.37	\$16.78 to \$19.51
Lift Bridge Specific Equipment	4	18.87	0.24	3	4.52	\$14.35 to \$23.39
583 - Swing Bridge Specific Equipment	3	15.64	0.26	2	4.53	\$11.11 to \$20.17
590 - Resistance Barriers	4	17.38	0.13	1	2.19	\$15.19 to \$19.56
591 - Warning Gates	27	18.13	0.22	2	1.51	\$16.62 to \$19.65
592 - Traffic Signal	27	18.13	0.22	2	1.51	\$16.62 to \$19.65
	635	10.10	0.22	<u> </u>		φ10.02 to φ10.00

TABLE C.26 Action Subcategory-Unit 131MH (Replace Machinery) Model for Pontis Elements MMS Data (Continued)										
Overall Data:	661	20.75	0.21	3	0.33	\$20.42 to \$21.08				
ANOVA										
Source of Variation	SS	df	MS	F	P-value	F crit				
Between Groups	151.92	28	5.43	0.3720	0.9989	1.4950				
Within Groups	8837.9	606	14.58							
Total	8989.8	634								
* 95% Confidence Level										
** Required number of data points. Based on tolera	ance of +/- 5									

TABLE C.27 Action Subcategory-Unit 144MH (R	Replace Subs	structure) Mod	lel for Pontis	Elements M	MS Data	
					Error (d) in	
					Mean	
Treatments	Count	Average	C.V.	N**	Estimate*	C. I.
201 - Unpainted Steel Column or Pile	2	21.27	0.26	5	7.68	\$13.59 to \$28.95
202 - Painted Steel Column or Pile	3	18.22	0.16	1	3.21	\$15.01 to \$21.43
204 - P/S Conc Column or Pile	13	17.16	0.19	2	1.79	\$15.36 to \$18.95
205 - Reinforced Conc Column or Pile	21	19.58	0.32	6	2.66	\$16.92 to \$22.25
206 - Timber Column or Pile	5	24.92	0.38	13	8.21	\$16.71 to \$33.14
210 - Reinforced Conc Pier Wall	9	18.10	0.18	2	2.14	\$15.96 to \$20.24
215 - Reinforced Conc Abutment	26	20.59	0.34	8	2.72	\$17.87 to \$23.31
220 - Pile Cap/Footing	21	20.51	0.28	5	2.48	\$18.02 to \$22.99
234 - Reinforced Conc Cap	28	20.33	0.34	7	2.55	\$17.78 to \$22.88
241 - Reinforced Concrete Culvert	1	32.20	0.00	0	0.00	N/A
298 - Pile Jacket without Cathodic Protection	3	22.54	0.10	1	2.65	\$19.89 to \$25.20
299 - Pile Jacket with Cathodic Protection	1	17.07	0.00	0	0.00	N/A
386 - Fender Dolphin System Metal Uncoated	2	23.46	0.10	1	3.39	\$20.07 to \$26.85
387 - Fender Dolphin System Prestressed Concret	12	17.41	0.21	2	2.03	\$15.38 to \$19.44
389 - Fender Dolphin System Timber	11	17.86	0.12	1	1.22	\$16.63 to \$19.08
393 - Bulkhead/Seawall Metal Uncoated	1	17.07	0.00	0	0.00	N/A
394 - Abutment Slope Protection Reinforced Conc	6	22.52	0.44	15	7.88	\$14.64 to \$30.40
396 - Abutment Slope Protection Other Material	22	20.02	0.29	5	2.44	\$17.58 to \$22.47
	187					
Overall Data:	203	19.91	0.30	5	0.82	\$19.09 to \$20.74
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	668.07	17	39.30	1.1072	0.3506	1.6835
Within Groups	5998.50	169	35.49			
Total	6666.56	186				
* 95% Confidence Level						
** Required number of data points. Based on tolera	ance of +/- 5					

Table C.28 Action Subcategory-Unit 211LF (Rehab	Joint) Model f	or Pontis El	ements MM	IS Data		
					Error (d) in Mean	
Treatments	Count	Average	C.V.	N**	Estimate*	C. I.
300 - Strip Seal Expansion Joint	12	6.00	0.76	3	2.59	\$3.41 to \$8.58
301 - Pourable Joint Seal	463	7.92	0.78	6	0.56	\$7.35 to \$8.48
302 - Compression Joint Seal	148	9.10	0.70	6	1.02	\$8.08 to \$10.12
303 - Assembly Joint/Seal (modular)	46	8.91	0.85	9	2.18	\$6.72 to \$11.09
304 - Open Expansion Joint	61	9.36	0.76	8	1.79	\$7.57 to \$11.15
	730					
Overall Data:	730	8.31	0.77	6	0.46	\$7.84 to \$8.77
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	311.65	4	77.91	1.9270	0.1041	2.3842
Within Groups	29312.17204	725	40.43			
Total	29623.81873	729				
* 95% Confidence Level						
** Required number of data points. Based on tolerance	of +/- 5					

Table C.29 Action Subcategory-Unit 211MH (Rehab	Joint) Model	for Pontis E	Elements MM	S Data		
					Error (d) in Mean	
Treatments	Count	Average	C.V.	N**	Estimate*	C. I.
300 - Strip Seal Expansion Joint	55	169.38	0.72	2292	32.28	\$137.10 to \$201.65
301 - Pourable Joint Seal	43	85.38	1.29	1862	32.90	\$52.48 to \$118.28
302 - Compression Joint Seal	30	195.66	0.81	3820	56.42	\$139.24 to \$252.07
304 - Open Expansion Joint	5	22.92	0.81	54	16.36	\$6.56 to \$39.27
	133					
Overall Data:	133	142.64	0.94	2762	22.79	\$119.86 to \$165.43
	100	112.01	0.01	2102	22.10	\$110100 to \$100110
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	336297.13	3	112099.04	7.1007	0.0002	2.6748
Within Groups	2036539.94	129	15787.13			
Total	2372837.08	132				
* 95% Confidence Level						
** Required number of data points. Based on tolerance	of +/- 5					

Table C.30 Action Subcategory-Unit 213MH (Rehab						
	Ξ.				Error (d) in Mean	
Treatments	Count	Average	C.V.	N**	Estimate*	C. I.
310 - Elastomeric Bearing	34	24.68	0.28	8	2.35	\$22.34 to \$27.03
311 - Moveable Bearing (roller, sliding, etc.)	39	23.43	0.36	11	2.62	\$20.81 to \$26.06
313 - Fixed Bearing	25	23.08	0.39	12	3.52	\$19.56 to \$26.60
	98					
Overall Data:	98	23.78	0.34	10	1.59	\$22.19 to \$25.36
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	44.97	2	22.49	0.3443	0.7095884	3.0922
Within Groups	6204.07	95	65.31			
Total	6249.04	97				
* 95% Confidence Level						
** Required number of data points. Based on tolerance	of +/- 5					

Table C.31 Action Subcategory-Unit 221SF (Rehab Slope Protection) Model for Pontis Elements MMS Data							
	•				Error (d) in Mean		
Treatments	Count	Average	C.V.	N**	Estimate*	C. I.	
394 - Abutment Slope Protection Reinforced Concrete	3	157.81	0.36	485	63.57	\$94.24 to \$221.37	
396 - Abutment Slope Protection Other Material	3	38.78	0.86	170	37.59	\$1.19 to \$76.38	
	6						
Overall Data:	6	98.30	0.78	915	61.74	\$36.56 to \$160.03	
ANOVA							
Source of Variation	SS	df	MS	F	P-value	F crit	
Between Groups	21248.98	1	21248.98	9.9785	0.0342	7.7086	
Within Groups	8517.90	4	2129.47				
Total	29766.88	5					
* 95% Confidence Level							
** Required number of data points. Based on tolerance	of +/- 5						

Table C.32 Action Subcategory-Unit 221MH (Rehab						
					Error (d) in Mean	
Treatments	Count	Average	C.V.	N**	Estimate*	C. I.
393 - Bulkhead/Seawall Metal Uncoated	16	13.77	0.46	6	3.12	\$10.66 to \$16.89
394 - Abutment Slope Protection Reinforced Concrete	422	89.89	1.22	1849	10.47	\$79.42 to \$100.36
396 - Abutment Slope Protection Other Material	378	68.71	1.35	1331	9.38	\$59.33 to \$78.09
	816					
Overall Data:	816	78.59	1.30	1601	7.00	\$71.58 to \$85.59
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	157995.59	2	78997.79	7.7080	0.0005	3.0068
Within Groups	8332226.359	813	10248.74			
Total	8490221.948	815				
* 95% Confidence Level						
** Required number of data points. Based on tolerance	of +/- 5					

Table C.33 Action Subcategory-Unit 231MH (Rehab M					Error (d)	
					in Mean	
Treatments	Count	Average	C.V.	N**	Estimate*	C. I.
540 - Open Gearing	19	29.11	0.33	14	4.32	\$24.79 to \$33.43
541 - Speed Reducers	19	29.11	0.33	14	4.32	\$24.79 to \$33.43
542 - Shafts	20	29.05	0.32	13	4.10	\$24.94 to \$33.15
543 - Shaft Bearings and Shaft Couplings	20	29.05	0.32	13	4.10	\$24.94 to \$33.15
544 - Brakes	18	28.99	0.34	15	4.56	\$24.43 to \$33.55
545 - Emergency Drive and Back Up Power System	18	27.52	0.33	13	4.21	\$23.31 to \$31.73
546 - Span Drive Motors	19	29.11	0.33	14	4.32	\$24.79 to \$33.43
547 - Hydraulic Power Units	8	28.39	0.29	10	5.66	\$22.74 to \$34.05
548 - Hydraulic Piping System	8	28.39	0.29	10	5.66	\$22.74 to \$34.05
549 - Hydraulic Cylinders/Motors/Rotary Actuators	8	28.39	0.29	10	5.66	\$22.74 to \$34.05
550 - Hopkins Frame	7	32.20	0.41	27	9.81	\$22.39 to \$42.01
560 - Span Locks/Toe Locks/Heel Stops/Tail Locks	21	28.68	0.32	13	3.97	\$24.71 to \$32.65
561 - Live Load Shoes/Strike Plates/Buffer Cylinders	21	28.68	0.32	13	3.97	\$24.71 to \$32.65
562 - Counterweight Support	10	31.59	0.25	9	4.87	\$26.72 to \$36.46
563 - Access Ladder & Platforms	22	28.24	0.33	13	3.88	\$24.36 to \$32.12
564 - Counterweight	21	28.68	0.32	13	3.97	\$24.71 to \$32.65
565 - Trunnion/Straight and Curved Track	21	28.68	0.32	13	3.97	\$24.71 to \$32.65
570 - Transformers & Thyristors	19	28.88	0.33	14	4.34	\$24.54 to \$33.22
571 - Submarine Cable	20	28.55	0.33	14	4.16	\$24.39 to \$32.72
572 - Conduit & Junction Boxes	21	28.68	0.32	13	3.97	\$24.71 to \$32.65
573 - Programmable Logic Controllers	10	28.82	0.30	11	5.35	\$23.46 to \$34.17
574 - Control Console	20	28.55	0.33	14	4.16	\$24.39 to \$32.72
580 - Navigational Light System	22	28.24	0.33	13	3.88	\$24.36 to \$32.12
581 - Operator Facilities	21	28.68	0.32	13	3.97	\$24.71 to \$32.65
590 - Resistance Barriers	5	26.61	0.27	8	6.31	\$20.29 to \$32.92
591 - Warning Gates	21	28.68	0.32	13	3.97	\$24.71 to \$32.65
592 - Traffic Signal	20	28.55	0.33	14	4.16	\$24.39 to \$32.72
	459					
Overall Data:	459	28.76	0.32	13	0.83	\$27.93 to \$29.60

Table C.33 Action Subcategory-Unit 231MH (Reh	Table C.33 Action Subcategory-Unit 231MH (Rehab Machinery) Model for Pontis Elements MMS Data (Continued)										
ANOVA											
Source of Variation	SS	df	MS	F	P-value	F crit					
Between Groups	243.66	26	9.37	0.1072	1.0000	1.5213					
Within Groups	37777.22	432	87.45								
Total	38020.88	458									
* 95% Confidence Level											
** Required number of data points. Based on tolerar	nce of +/- 5										

							Error (d) in	
							Mean	
Treatments	Count	Avg	Variance	Std. dev.	C.V.	N**	Estimate*	C. I.
540 - Open Gearing	563	25.94	116.44	10.79	0.42	18	0.89	\$25.05 to \$26.83
541 - Speed Reducers	548	26.38	127.71	11.30	0.43	20	0.95	\$25.44 to \$27.33
542 - Shafts	571	26.21	124.26	11.15	0.43	19	0.91	\$25.30 to \$27.13
543 - Shaft Bearings and Shaft								
Couplings	615	27.01	141.22	11.88	0.44	22	0.94	\$26.07 to \$27.95
544 - Brakes	555	26.31	126.42	11.24	0.43	19	0.94	\$25.37 to \$27.25
545 - Emergency Drive and Back Up								
Power System	546	25.62	107.98	10.39	0.41	17	0.87	\$24.75 to \$26.49
546 - Span Drive Motors	573	27.04	137.15	11.71	0.43	21	0.96	\$26.08 to \$28.00
547 - Hydraulic Power Units	269	25.83	151.17	12.29	0.48	23	1.47	\$24.36 to \$27.30
548 - Hydraulic Piping System	269	25.83	151.17	12.29	0.48	23	1.47	\$24.36 to \$27.30
549 - Hydraulic								
Cylinders/Motors/Rotary Actuators	267	25.85	152.23	12.34	0.48	23	1.48	\$24.37 to \$27.33
550 - Hopkins Frame	224	26.97	141.74	11.91	0.44	22	1.56	\$25.41 to \$28.53
560 - Span Locks/Toe Locks/Heel								
Stops/Tail Locks	716	26.82	141.57	11.90	0.44	22	0.87	\$25.95 to \$27.69
561- Live Load Shoes/Strike								
Plates/Buffer Cylinders	685	26.70	143.83	11.99	0.45	22	0.90	\$25.80 to \$27.60
562 - Counterweight Support	650	26.49	147.64	12.15	0.46	23	0.93	\$25.55 to \$27.42
563 - Access Ladder & Platforms	761	26.61	140.08	11.84	0.44	22	0.84	\$25.77 to \$27.45
564 - Counterweight	735	26.67	141.63	11.90	0.45	22	0.86	\$25.81 to \$27.53
565 - Trunnion/Straight and Curved								
Track	743	26.60	140.47	11.85	0.45	22	0.85	\$25.74 to \$27.45
570 - Transformers & Thyristors	482	27.85	148.89	12.20	0.44	23	1.09	\$26.76 to \$28.94
571 - Submarine Cable	595	27.19	148.35	12.18	0.45	23	0.98	\$26.22 to \$28.17
572 - Conduit & Junction Boxes	761	26.54	138.26	11.76	0.44	21	0.84	\$25.70 to \$27.38
573 - Programmable Logic Controllers	481	28.00	169.16	13.01	0.46	26	1.16	\$26.84 to \$29.16
574 - Control Console	687	26.81	143.50	11.98	0.45	22	0.90	\$25.92 to \$27.71
580 - Navigational Light System	760	26.43	135.63	11.65	0.44	21	0.83	\$25.60 to \$27.26
581 - Operator Facilities	716	26.57	140.13	11.84	0.45	22	0.87	\$25.70 to \$27.43

TABLE C.34 Action Subcategory-Unit 331MH (Repair/lubricate machinery) Model for Pontis Elements MMS Data (Continued)									
29	21.21	78.66	8.87	0.42	12	3.23	\$17.98 to \$24.44		
9	23.93	59.55	7.72	0.32	9	5.04	\$18.89 to \$28.97		
87	27.96	179.44	13.40	0.48	28	2.81	\$25.15 to \$30.78		
717	26.85	143.14	11.96	0.45	22	0.88	\$25.97 to \$27.72		
715	26.85	143.54	11.98	0.45	22	0.88	\$25.97 to \$27.73		
15329									
15329	26.64	139.54	11.81	0.44	21	0.19	\$26.46 to \$26.83		
d on tolerand	ce of +/- 5								
	29 9 87 717 715 15329 15329	29 21.21 9 23.93 87 27.96 717 26.85 715 26.85 15329	29 21.21 78.66 9 23.93 59.55 87 27.96 179.44 717 26.85 143.14 715 26.85 143.54 15329 26.64 139.54	29 21.21 78.66 8.87 9 23.93 59.55 7.72 87 27.96 179.44 13.40 717 26.85 143.14 11.96 715 26.85 143.54 11.98 15329 26.64 139.54 11.81	29 21.21 78.66 8.87 0.42 9 23.93 59.55 7.72 0.32 87 27.96 179.44 13.40 0.48 717 26.85 143.14 11.96 0.45 715 26.85 143.54 11.98 0.45 15329 26.64 139.54 11.81 0.44	29 21.21 78.66 8.87 0.42 12 9 23.93 59.55 7.72 0.32 9 87 27.96 179.44 13.40 0.48 28 717 26.85 143.14 11.96 0.45 22 715 26.85 143.54 11.98 0.45 22 15329 26.64 139.54 11.81 0.44 21	29 21.21 78.66 8.87 0.42 12 3.23 9 23.93 59.55 7.72 0.32 9 5.04 87 27.96 179.44 13.40 0.48 28 2.81 717 26.85 143.14 11.96 0.45 22 0.88 715 26.85 143.54 11.98 0.45 22 0.88 15329 26.64 139.54 11.81 0.44 21 0.19		

TABLE C.35 Action Subcategory-Uni	it 301SF (Repa	ir Deck & S	Substrate) M	odel for Po	ntis Elem	nents MM	I S Data	
			· ·				Error (d) in Mean	
Treatments	Count	Average	Variance	Std. dev.	C.V.	N**	Estimate*	C. I.
12 - Concrete Deck - Bare	10	82.97	9303.43	96.45	1.16	1430	59.78	\$23.18 to \$142.75
13 - Concrete Deck - Unprotected w/								
AC Overlay	2	19.07	192.53	13.88	0.73	30	19.23	\$0.00 to \$38.30
28 - Steel Deck - Open Grid	2	25.16	34.46	5.87	0.23	5	8.14	\$17.03 to \$33.30
29 - Steel Deck - Concrete Filled Grid	1	29.32	0.00	0.00	0.00	0	0.00	N/A
98 - Concrete Deck on Precast Deck								
Panels	1	158.66	0.00	0.00	0.00	0	0.00	N/A
99 - Prestressed Concrete Slab								
(Sonovoid)	1	10.59	0.00	0.00	0.00	0	0.00	N/A
	17							
Overall Data:	17	65.69	6723.58	82.00	1.25	1033	38.98	\$26.71 to \$104.67
ANOVA								
Source of Variation	SS	df	MS	F	P-value	F crit		
Between Groups	23619.36332	5	4723.87	0.6189	0.6886	3.2039		
Within Groups	83957.87215	11	7632.53					
Total	107577.24	16						
* 95% Confidence Level								
** Required number of data points. Bas	ed on tolerance	e of +/- 5						

TABLE C.36 Action Subcategory-Unit	302LF (Spc	ot Paint) Mod	del for Pontis	s Elements	MMS Dat	a		
	· ·						Error (d) in	
							Mean	
Treatments	Count	Average	Variance	Std. dev.	C.V.	N**	Estimate*	C. I.
102 - Painted Steel Closed Web/Box								
Girder	1	35.03	0.00	0.00	0.00	0	0.00	N/A
107 - Painted Steel Open Girder/Beam	2	21.84	46.23	6.80	0.31	7	9.42	\$12.42 to \$31.27
113 - Painted Steel Stringer	1	17.04	0.00	0.00	0.00	0	0.00	N/A
152 - Painted Steel Floor Beam	2	21.84	46.23	6.80	0.31	7	9.42	\$12.42 to \$31.27
540 - Open Gearing	1	17.04	0.00	0.00	0.00	0	0.00	N/A
541 - Speed Reducers	1	17.04	0.00	0.00	0.00	0	0.00	N/A
542 - Shafts	1	17.04	0.00	0.00	0.00	0	0.00	N/A
543 - Shaft Bearings and Shaft								
Couplings	1	17.04	0.00	0.00	0.00	0	0.00	N/A
544 - Brakes	1	17.04	0.00	0.00	0.00	0	0.00	N/A
546 - Span Drive Motors	1	17.04	0.00	0.00	0.00	0	0.00	N/A
550 - Hopkins Frame	1	17.04	0.00	0.00	0.00	0	0.00	N/A
560 - Span Locks/Toe Locks/Heel								
Stops/Tail Locks	2	21.84	46.23	6.80	0.31	7	9.42	\$12.42 to \$31.27
561 - Live Load Shoes/Strike								
Plates/Buffer Cylinders	2	21.84	46.23	6.80	0.31	7	9.42	\$12.42 to \$31.27
562 - Counterweight Support	1	17.04	0.00	0.00	0.00	0	0.00	N/A
563 - Access Ladder & Platforms	1	17.04	0.00	0.00	0.00	0	0.00	N/A
565 - Trunnion/Straight and Curved								
Track	1	17.04	0.00	0.00	0.00	0	0.00	N/A
	20							
Overall Data:	20	19.86	28.11	5.30	0.27	4	2.32	\$17.54 to \$22.18
ANOVA								
Source of Variation	SS	df	MS	F	P-value	F crit		
Between Groups	349.27	15	23.28	0.5037	0.8514	5.8578		
Within Groups	184.90	4	46.23	1				

TABLE C.36 Action Subcategory-Un	it 302LF (Spo	ot Paint) Mo	del for Pontis	Elements MMS Da	ta (Conti	inued)		
Total	534.17	19						
* 95% Confidence Level								
** Required number of data points. Based on tolerance of +/- 5								

TABLE C.37 Action Subcategory-Unit								
	`						Error (d) in Mean	
Treatments	Count	Average	Variance	Std. dev.	C.V.	N**	Estimate*	C. I.
102 - Painted Steel Closed Web/Box								
Girder	1	16.37	0.00	0.00	0.00	0	0.00	N/A
107 - Painted Steel Open Girder/Beam	98	22.07	29.02	5.39	0.24	4	1.07	\$21.00 to \$23.14
113 - Painted Steel Stringer	53	23.79	28.32	5.32	0.22	4	1.43	\$22.35 to \$25.22
121 - Painted Steel Bottom Chord Thru								
Truss	14	24.20	40.80	6.39	0.26	6	3.35	\$20.85 to \$27.54
126 - Painted Steel Thru Truss (excl.								
bottom chord)	14	24.20	40.80	6.39	0.26	6	3.35	\$20.85 to \$27.54
131 - Painted Steel Deck Truss	5	24.02	12.25	3.50	0.15	2	3.07	\$20.95 to \$27.09
141 - Painted Steel Arch	1	28.67	0.00	0.00	0.00	0	0.00	N/A
152 - Painted Steel Floor Beam	55	23.70	27.46	5.24	0.22	4	1.38	\$22.32 to \$25.09
161 - Painted Steel Pin and/or Pin and								
Hanger Assembly	1	22.82	0.00	0.00	0.00	0	0.00	N/A
202 - Painted Steel Column or Pile	16	22.16	22.23	4.71	0.21	3	2.31	\$19.85 to \$24.47
231 - Painted Steel Cap	2	16.03	16.62	4.08	0.25	3	5.65	\$10.38 to \$21.68
397 - Drainage System Metal Coated	1	20.55	0.00	0.00	0.00	0	0.00	N/A
540 - Open Gearing	36	23.89	29.69	5.45	0.23	5	1.78	\$22.11 to \$25.67
541 - Speed Reducers	23	23.68	23.05	4.80	0.20	4	1.96	\$21.71 to \$25.64
542 - Shafts	36	23.89	29.69	5.45	0.23	5	1.78	\$22.11 to \$25.67
543 - Shaft Bearings and Shaft								
Couplings	37	23.88	28.87	5.37	0.22	4	1.73	\$22.15 to \$25.61
544 - Brakes	22	23.69	24.14	4.91	0.21	4	2.05	21.64 to \$25.74
546 - Span Drive Motors	23	23.82	22.50	4.74	0.20	3	1.94	\$21.88 to \$25.76
550 - Hopkins Frame	3	26.37	29.97	5.47	0.21	5	6.20	\$20.18 to \$32.57
560 - Span Locks/Toe Locks/Heel								
Stops/Tail Locks	35	23.46	21.70	4.66	0.20	3	1.54	\$21.91 to \$25.00
561 - Live Load Shoes/Strike								
Plates/Buffer Cylinders	33	23.83	21.20	4.60	0.19	3	1.57	\$22.26 to \$25.40
562 - Counterweight Support	25	23.55	15.99	4.00	0.17	2	1.57	\$21.98 to \$25.12

TABLE C.37 Action Subcategory-Unit 302MH (Spot Paint) Model for Pontis Elements MMS Data (Continued)											
563 - Access Ladder & Platforms	50	23.53	27.17	5.21	0.22	4	1.44	\$22.08 to \$24.97			
565 - Trunnion/Straight and Curved											
Track	34	23.56	22.11	4.70	0.20	3	1.58	\$21.98 to \$25.14			
582 - Lift Bridge Specific Equipment	1	23.18	0.00	0.00	0.00	0	0.00	N/A			
583 - Swing Bridge Specific Equipment	13	24.27	44.11	6.64	0.27	7	3.61	\$20.66 to \$27.88			
	632										
Overall Data:	632	23.43	26.64	5.16		4	0.40	\$23.03 to \$23.83			
ANOVA											
Source of Variation	SS	df	MS	F	P-value	F crit					
Between Groups	502.59	25	20.10	0.7471	0.8093	1.5243					
Within Groups	16307.35653	606	26.91								
Total	16809.94262	631									
* 95% Confidence Level											
** Required number of data points. Bas	sed on tolerance	e of +/- 5									

TABLE C.38 Action Subcategory-Unit 302SF (Spot Paint) Model for Pontis Elements MMS Data										
							Error (d) in			
							Mean			
Treatments	Count	Average	Variance	Std. dev.	C.V.	N**	Estimate*	C. I.		
107 - Painted Steel Open Girder/Beam	15	30.45	178.29	13.35	0.44	27	6.76	\$23.69 to \$37.20		
113 - Painted Steel Stringer	15	30.45	178.29	13.35	0.44	27	6.76	23.69 to \$37.20		
121 - Painted Steel Bottom Chord Thru										
Truss	2	41.26	412.03	20.30	0.49	63	28.13	\$13.13 to \$69.40		
126 - Painted Steel Thru Truss (excl.										
bottom chord)	2	41.26	412.03	20.30	0.49	63	28.13	\$13.13 to \$69.40		
131 - Painted Steel Deck Truss	1	29.14	0.00	0.00	0.00	0	0.00	N/A		
152 - Painted Steel Floor Beam	15	30.45	178.29	13.35	0.44	27	6.76	\$23.69 to \$37.20		
202 - Painted Steel Column or Pile	3	40.03	145.53	12.06	0.30	22	13.65	\$26.38 to \$53.68		
540 - Open Gearing	9	27.56	145.83	12.08	0.44	22	7.89	\$19.67 to \$35.45		
541 - Speed Reducers	8	28.74	152.46	12.35	0.43	23	8.56	\$20.18 to \$37.29		
542 - Shafts	9	27.56	145.83	12.08	0.44	22	7.89	\$19.67 to \$35.45		
543 - Shaft Bearings and Shaft										
Couplings	11	26.11	127.49	11.29	0.43	20	6.67	\$19.44 to \$32.78		
544 - Brakes	9	27.56	145.83	12.08	0.44	22	7.89	\$19.67 to \$35.45		
546 - Span Drive Motors	11	26.11	127.49	11.29	0.43	20	6.67	\$19.44 to \$32.78		
550 - Hopkins Frame	5	33.01	184.32	13.58	0.41	28	11.90	\$21.11 to \$44.91		
560 - Span Locks/Toe Locks/Heel										
Stops/Tail Locks	13	26.19	110.55	10.51	0.40	17	5.72	\$20.48 to \$31.91		
561 - Live Load Shoes/Strike										
Plates/Buffer Cylinders	13	28.32	132.21	11.50	0.41	20	6.25	\$22.07 to \$34.57		
562 - Counterweight Support	12	26.88	113.89	10.67	0.40	18	6.04	\$20.84 to \$32.92		
563 - Access Ladder & Platforms	13	26.19	110.55	10.51	0.40	17	5.72	\$20.48 to \$31.91		
565 - Trunnion/Straight and Curved										
Track	13	26.19	110.55	10.51	0.40	17	5.72	\$20.48 to \$31.91		
	179									
Overall Data:	179	28.55	140.38	11.85	0.42	22	1.74	\$26.81 to \$30.28		

TABLE C.38 Action Subcategory-Un	it 302SF (Spot	Paint) Mo	del for Ponti	s Elements	MMS Da	ta (Continu	ed)	
ANOVA								
Source of Variation	SS	df	MS	F	P-value	F crit		
Between Groups	1711.97	18	95.11	0.6538	0.8516	1.6687		
Within Groups	23276.47519	160	145.48					
Total	24988.44217	178						
* 95% Confidence Level								
** Required number of data points. Bas	sed on tolerance	e of +/- 5						

TABLE C.39 Action Subcategory-Un	it 303LF (Clear	n Rebar & I	Patch) Mode	I for Pontis	Elements	s MMS E	Data	
			,				Error (d) in Mean	
Treatments	Count	Average	Variance	Std. dev.	C.V.	N**	Estimate*	C. I.
109 - P/S Conc Open Girder/Beam	22	46.50	2437.01	49.37	1.06	374	20.63	\$25.87 to \$67.13
110 - Reinforced Conc Open								
Girder/Beam	1	94.64	0.00	0.00	0.00	0	0.00	N/A
204 - P/S Conc Column or Pile	11	32.53	1546.58	39.33	1.21	238	23.24	\$9.28 to \$55.77
205 - Reinforced Conc Column or Pile	19	46.96	2331.57	48.29	1.03	358	21.71	\$25.25 to \$68.67
210 - Reinforced Conc Pier Wall	1	23.21	0.00	0.00	0.00	0	0.00	N/A
215 - Reinforced Conc Abutment	27	42.87	2253.93	47.48	1.11	346	17.91	\$24.96 to \$60.78
220 - Pile Cap/Footing	10	34.79	2094.33	45.76	1.32	322	28.36	\$6.43 to \$63.16
234 - Reinforced Conc Cap	21	31.59	1339.95	36.61	1.16	206	15.66	\$15.93 to \$47.25
298 - Pile Jacket without Cathodic								
Protection	1	4.39	0.00	0.00	0.00	0	0.00	N/A
321 - Reinforced Conc Approach Slab								
w/ or w/o AC Ovly	28	42.38	2177.17	46.66	1.10	335	17.28	\$25.09 to \$59.66
331 - Reinforced Conc Bridge Railing	25	41.07	2098.46	45.81	1.12	322	17.96	\$23.11 to \$59.03
387 - Fender Dolphin System								
Prestressed Concrete	2	23.78	0.66	0.81	0.03	0	1.12	\$22.66 to \$24.91
394 - Abutment Slope Protection								
Reinforced Concrete	18	44.41	2342.89	48.40	1.09	360	22.36	\$22.05 to \$66.77
475 - Wingwall/Retaining Wall								
Reinforced Concrete	11	36.27	1099.25	33.15	0.91	169	19.59	\$16.67 to \$55.86
	197							
Overall Data:	197	40.73	1953.68	44.20	1.09	300	6.17	\$34.55 to \$46.90
ANOVA								
Source of Variation	SS	df	MS	F	P-value	F crit		
Between Groups	10090.4627	13	776.19	0.3810	0.9745	1.7740		
Within Groups	372830.3803	183	2037.32					
Total	382920.843	196						

TABLE C.40 Action Subcategory-Unit 303MH (Clean Rebar & Patch) Model for Pontis Elements MMS Data										
							Error (d) in			
							Mean			
Treatments	Count	Average	Variance	Std. dev.	C.V.	N**	Estimate*	C. I.		
109 - P/S Conc Open Girder/Beam	68	19.00	36.63	6.05	0.32	6	1.44	\$17.56 to \$20.43		
110 - Reinforced Conc Open										
Girder/Beam	7	18.75	9.37	3.06	0.16	1	2.27	\$16.48 to \$21.02		
204 - P/S Conc Column or Pile	41	18.88	43.75	6.61	0.35	7	2.02	\$16.86 to \$20.91		
205 - Reinforced Conc Column or Pile	64	18.42	35.96	6.00	0.33	6	1.47	\$16.95 to \$19.89		
210 - Reinforced Conc Pier Wall	3	17.98	70.72	8.41	0.47	11	9.52	\$8.46 to \$27.49		
215 - Reinforced Conc Abutment	90	18.82	42.61	6.53	0.35	7	1.35	\$17.47 to \$20.17		
220 - Pile Cap/Footing	36	20.59	39.37	6.27	0.30	6	2.05	\$18.54 to \$22.64		
233 - P/S Conc Cap	3	25.12	10.00	3.16	0.13	2	3.58	\$21.54 to \$28.70		
234 - Reinforced Conc Cap	79	18.92	34.39	5.86	0.31	5	1.29	\$17.63 to \$20.22		
241 - Reinforced Concrete Culvert	38	19.64	76.35	8.74	0.44	12	2.78	\$16.86 to \$22.42		
298 - Pile Jacket without Cathodic										
Protection	4	11.20	95.13	9.75	0.87	15	9.56	\$1.64 to \$20.75		
299 - Pile Jacket with Cathodic										
Protection	1	1.14	0.00	0.00	0.00	0	0.00	N/A		
321 - Reinforced Conc Approach Slab										
w/ or w/o AC Ovly	85	18.81	40.79	6.39	0.34	6	1.36	\$17.45 to \$20.17		
331 - Reinforced Conc Bridge Railing	71	19.00	47.48	6.89	0.36	7	1.60	\$17.40 to \$20.60		
387 - Fender Dolphin System										
Prestressed Concrete	8	18.62	16.43	4.05	0.22	3	2.81	\$15.82 to \$21.43		
394 - Abutment Slope Protection										
Reinforced Concrete	51	18.81	52.18	7.22	0.38	8	1.98	\$16.83 to \$20.80		
475 - Wingwall/Retaining Wall										
Reinforced Concrete	66	18.47	57.86	7.61	0.41	9	1.84	\$16.63 to \$20.30		
564 - Counterweight	2	18.11	5.20	2.28	0.13	1	3.16	\$14.95 to \$21.27		
	717									
Overall Data:	717	18.88	44.30	6.66	0.35	7	0.49	\$18.40 to \$19.37		

TABLE C.40 Action Subcategory	/-Unit 303MH (Clear	n Rebar &	Patch) Mode	el for Ponti	s Elemen	ts MMS I	Data (Conti	nued)
ANOVA								
Source of Variation	SS	df	MS	F	P-value	F crit		
Between Groups	826.7376329	17	48.63	1.1004	0.3485	1.6374		
Within Groups	30890.79378	699	44.19					
Total	31717.53141	716						
* 95% Confidence Level								
** Required number of data points.	Based on tolerance	of +/- 5						

TABLE C.41 Action Subcategory-Un	it 311LF (Repa	air Joint) M	odel for Pont	tis Element	ts MMS D	ata		
Treatments	Count	Average	Variance	Std. dev.	C.V.	N**	Error (d) in Mean Estimate*	C. I.
300 - Strip Seal Expansion Joint	10	26.90	176.86	13.30	0.49	27	8.24	\$18.66 to \$35.14
301 - Pourable Joint Seal	67	42.23	1672.36	40.89	0.43	257	9.79	\$32.44 to \$52.02
302 - Compression Joint Seal	202	56.90	2559.37	50.59	0.89	393	6.98	\$49.92 to \$63.88
303 - Assembly Joint/Seal (modular)	44	37.71	1119.25	33.46	0.89	172	9.89	\$27.83 to \$47.60
304 - Open Expansion Joint	19	46.67	1793.56	42.35	0.91	276	19.04	\$27.62 to \$65.71
399 - Other Expansion Joint	5	25.68	542.58	23.29	0.91	83	20.42	\$5.26 to 446.10
	347							
Overall Data:	347	49.76	2132.29	46.18	0.93	328	4.86	\$44.90 to \$54.62
ANOVA								
Source of Variation	SS	df	MS	F	P-value	F crit		
Between Groups	28788.79187	5	5757.76	2.7693	0.0181	2.2405		
Within Groups	708983.4526	341	2079.13036					
Total	737772.2445	346						
* 95% Confidence Level								
** Required number of data points. Bas	sed on toleranc	e of +/- 5						

TABLE C.42 Action Subcategory-Unit 40	OLF (Was	sh Structur	e) Model fo	or Pontis	Elements	MMS Data	3	
				Std.			Error (d) in Mean	
Treatments	Count	Average	Variance	dev.	C.V.	N**	Estimate*	C. I.
110 - Reinforced Conc Open Girder/Beam	1	3.90	0.00	0.00	0.00	0	0.00	N/A
398 - Drainage Sytem Other Material	3	11.31	200.38	14.16	1.25	31	16.02	\$-4.71 to \$27.32
	4							
Overall Data:	4	9.45	147.31	12.14	1.28	23	11.89	\$2.44 to \$21.35
ANOVA								
Source of Variation	SS	df	MS	F	P-value	F crit		
Between Groups	41.15	1	41.15	0.2054	0.6948	18.5128		
Within Groups	400.76	2	200.38					
Total	441.92	3						
* 95% Confidence Level								
** Required number of data points. Based of	on tolerand	ce of +/- 5						

TABLE C.43 Action Subcategory-Unit 40	ta							
	•						Error (d) in	
				Std.			Mean	
Treatments	Count	Average	Variance	dev.	C.V.	N**	Estimate*	C. I.
102 - Painted Steel Closed Web/Box								
Girder	3	19.53	0.97	0.98	0.05	0	1.11	\$18.42 to \$20.64
105 - Reinforced Concrete Closed								
Webs/Box Girder	1	13.55	0.00	0.00	0.00	0	0.00	N/A
107 - Painted Steel Open Girder/Beam	23	20.95	43.00	6.56	0.31	4	2.68	\$18.27 to \$23.63
109 - P/S Conc Open Girder/Beam	98	17.06	59.21	7.69	0.45	15	1.52	\$15.54 to \$18.58
110 - Reinforced Conc Open Girder/Beam	3	14.45	11.02	3.32	0.23	0	3.76	\$10.69 to \$18.21
113 - Painted Steel Stringer	4	23.13	15.09	3.88	0.17	1	3.81	\$19.32 to \$26.94
152 - Painted Steel Floor Beam	4	23.13	15.09	3.88	0.17	1	3.81	\$19.32 to \$26.95
398 - Drainage Sytem Other Material	75	19.93	44.40	6.66	0.33	12	1.51	\$18.42 to \$21.44
	211							
Overall Data:	211	18.72	51.54	7.18	0.38	8	0.97	\$17.75 to \$19.69
ANOVA								
Source of Variation	SS	df	MS	F	P-value	F crit		
Between Groups	734.4	7	104.91	2.1107	0.0440	2.0549		
Within Groups	10089.9	203	49.70					
Total	10824.2	210						
* 95% Confidence Level								
** Required number of data points. Based of	on tolerand	ce of +/- 5						

TABLE C.44 Action Subcategory-Unit 400	SF (Was	r Pontis	Elements I	MMS Data	1			
							Error (d) in	
				Std.			Mean	
Treatments	Count	Average	Variance	dev.	C.V.	N**	Estimate*	C. I.
104 - P/S Conc Closed Web/Box Girder	1	1.21	0.00	0.00	0.00	0	0.00	N/A
107 - Painted Steel Open Girder/Beam	25	5.68	39.43	6.28	1.11	6	2.46	\$3.22 to \$8.14
109 - P/S Conc Open Girder/Beam	79	4.51	27.59	5.25	1.16	4	1.16	\$3.35 to \$5.67
110 - Reinforced Conc Open Girder/Beam	7	4.20	39.42	6.28	1.49	6	4.65	
113 - Painted Steel Stringer	6	3.34	4.48	2.12	0.63	1	1.69	\$1.65 to \$5.03
121 - Painted Steel Bottom Chord Thru								
Truss	1	2.30	0.00	0.00	0.00	0	0.00	N/A
126 - Painted Steel Thru Truss (excl.								
bottom chord)	1	2.30	0.00	0.00	0.00	0	0.00	N/A
146 - Cable - Uncoated (not embedded in								
concrete)	1	1.21	0.00	0.00	0.00	0	0.00	N/A
147 - Cable - Coated (not embedded in								
concrete)	1	1.21	0.00	0.00	0.00	0	0.00	N/A
152 - Painted Steel Floor Beam	6	3.34	4.48	2.12	0.63	1	1.69	\$1.65 to \$5.03
398 - Drainage Sytem Other Material	69	4.82	24.14	4.91	1.02	4	1.16	\$3.66 to \$5.98
	197							
Overall Data:	197	4.61	26.12	5.11	1.11	4	0.71	\$3.90 to \$5.32
ANOVA								
Source of Variation	SS	df	MS	F	P-value	F crit		
Between Groups	98	10	9.79	0.3628	0.9610	1.8819		
Within Groups	5021	186	26.99					
Total	5119	196						
* 95% Confidence Level								
** Required number of data points. Based c	n tolerand	ce of +/- 5						

TABLE C.45 Action Subcategory-Unit 40	1MH (Re	oair Pothol	es) Model 1	for Ponti	s Elements	s MMS Da		
							Error (d) in	
				Std.			Mean	
Treatments	Count	Average	Variance	dev.	C.V.	N**	Estimate*	C. I.
12 - Concrete Deck - Bare	7	24.06	135.00	11.62	0.48	21	8.61	\$15.45 to \$32.67
13 - Concrete Deck - Unprotected w/ AC								
Overlay	13	19.64	116.94	10.81	0.55	18	5.88	\$13.77 to \$25.52
38 - Concrete Slab - Bare	1	20.44	0.00	0	0.00	0	0.00	N/A
39 - Concrete Slab - Unprotected w/ AC								
Overlay	4	21.82	115.18	10.73	0.49	18	10.52	\$11.30 to \$32.34
99 - Prestressed Concrete Slab (Sonovoid)	5	20.40	3.80	1.95	0.10	1	1.71	\$18.69 to \$22.11
	30							
Overall Data:	30	21.12	92.00	9.59	0.45	14	3.43	\$17.69 to \$24.55
ANOVA								
Source of Variation	SS	df	MS	F	P-value	F crit		
Between Groups	94	4	23.48	0.2280	0.9201	2.7587		
Within Groups	2574	25	102.96					
Total	2668	29						
* 95% Confidence Level								
** Required number of data points. Based of	on toleran	ce of +/- 5						

TABLE C.46 Action Subcategory-Unit 40							Error (d) in	
				Std.			Mean	
Treatments	Count	Average	Variance	dev.	C.V.	N**	Estimate*	C. I.
12 - Concrete Deck - Bare	54	25.88	890.43	29.84	1.15	137	7.96	\$17.92 to \$33.84
13 - Concrete Deck - Unprotected w/ AC								
Overlay	55	24.20	652.67	25.55	1.06	100	6.75	\$17.44 to \$30.95
28 - Steel Deck - Open Grid	3	30.46	466.23	21.59	0.71	72	24.43	\$6.02 to \$54.89
29 - Steel Deck - Concrete Filled Grid	1	31.85	0.00	0.00	0.00	0	0.00	N/A
38 - Concrete Slab - Bare	10	10.45	164.86	12.84	1.23	25	7.96	\$2.49 to \$18.41
39 - Concrete Slab - Unprotected w/ AC								
Overlay	11	29.75	903.12	30.05	1.01	139	17.76	\$11.99 to \$47.51
98 - Concrete Deck on Precast Deck								
Panels	8	15.30	191.31	13.83	0.90	29	9.58	\$5.71 to \$24.88
99 - Prestressed Concrete Slab (Sonovoid)	21	22.62	490.07	22.14	0.98	75	9.47	\$13.15 to \$32.08
\$ * * * *	163							
Overall Data:	163	23.81	668.18	25.85	1.09	103	3.97	\$19.84 to \$27.78
ANOVA								
Source of Variation	SS	df	MS	F	P-value	F crit		
Between Groups	3220	7	460.04	0.6789	0.6897	2.0691		
Within Groups	105024	155	677.58					
Total	108245	162						
* 95% Confidence Level	100270	102						
** Required number of data points. Based of	on tolerand	ce of +/- 5						

TABLE C.47 Action Subcategory-Unit 40	2MH (Res	TABLE C.47 Action Subcategory-Unit 402MH (Restore Top Coat) Model for Pontis Elements MMS Data										
							Error (d) in					
				Std.			Mean					
Treatments	Count	Average	Variance	dev.	C.V.	N**	Estimate*	C. I.				
102 - Painted Steel Closed Web/Box												
Girder	4	16.91	2.51	1.58	0.09	0	1.55	\$15.36 to \$18.46				
107 - Painted Steel Open Girder/Beam	10	20.34	12.72	3.57	0.18	2	2.21	\$18.13 to \$22.55				
113 - Painted Steel Stringer	2	22.14	6.80	2.61	0.12	1	3.61	\$18.53 to \$25.75				
152 - Painted Steel Floor Beam	2	22.14	6.80	2.61	0.12	1	3.61	\$18.53 to \$25.76				
540 - Open Gearing	3	32.61	71.19	8.44	0.26	11	9.55	\$23.06 to \$42.16				
541 - Speed Reducers	3	32.61	71.19	8.44	0.26	11	9.55	\$23.06 to \$42.16				
542 - Shafts	3	32.61	71.19	8.44	0.26	11	9.55	\$23.06 to \$42.16				
543 - Shaft Bearings and Shaft Couplings	3	32.61	71.19	8.44	0.26	11	9.55	\$23.06 to \$42.16				
544 - Brakes	3	32.61	71.19	8.44	0.26	11	9.55	\$23.06 to \$42.16				
546 - Span Drive Motors	3	32.61	71.19	8.44	0.26	11	9.55	\$23.06 to \$42.16				
550 - Hopkins Frame	2	36.92	30.80	5.55	0.15	5	7.69	\$29.23 to \$44.61				
560 - Span Locks/Toe Locks/Heel												
Stops/Tail Locks	3	32.61	71.19	8.44	0.26	11	9.55	\$23.06 to \$42.16				
561 - Live Load Shoes/Strike Plates/Buffer												
Cylinders	3	32.61	71.19	8.44	0.26	11	9.55	\$23.06 to \$42.16				
562 - Counterweight Support	2	36.92	30.80	5.55	0.15	5	7.69	\$29.23 to \$44.61				
563 - Access Ladder & Platforms	3	32.61	71.19	8.44	0.26	11	9.55	\$23.06 to \$42.16				
565 - Trunnion/Straight and Curved Track	3	32.61	71.19	8.44	0.26	11	9.55	\$23.06 to \$42.16				
	52											
Overall Data:	52	28.57	74.05	8.61	0.30	11	2.34	\$26.23 to \$30.91				
ANOVA												
Source of Variation	SS	df	MS	F	P-value	F crit						
Between Groups	2156	15	143.71	3.1914	0.0022	1.9543						
Within Groups	1621	36	45.03									
Total	3777	51										
* 95% Confidence Level												
** Required number of data points. Based of	n tolerand	ce of +/- 5										

TABLE C.48 Action Subcategory-Unit 40							Error (d) in	
				Std.			Mean	
Treatments	Count	Average	Variance	dev.	C.V.	N**	Estimate*	C. I.
104 - P/S Conc Closed Web/Box Girder	3	21.49	10.44	3.23	0.15	2	3.66	\$17.83 to \$25.14
105 - Reinforced Concrete Closed	•			0.20	00			<i>•••••••••••••••••••••••••••••••••••••</i>
Webs/Box Girder	1	4.22	0.00	0.00	0.00	0	0.00	N/A
109 - P/S Conc Open Girder/Beam	217	33.54	906.99	30.12	0.90	139	4.01	\$29.53 to \$37.55
110 - Reinforced Conc Open Girder/Beam	18	22.16	174.71	13.22	0.60	27	6.11	\$16.06 to \$28.27
144 - Reinforced Conc Arch	2	22.79	100.43	10.02	0.44	15	13.89	\$8.90 to \$36.68
155 - Reinforced Conc Floor Beam	1	8.82	0.00	0.00	0.00	0	0.00	N/A
204 - P/S Conc Column or Pile	123	27.64	501.77	22.40	0.81	77	3.96	\$23.68 to \$31.60
205 - Reinforced Conc Column or Pile	199	34.14	969.46	31.14	0.91	149	4.33	\$29.82 to \$38.47
207 - Hollow Core Pile	5	34.12	333.79	18.27	0.54	51	16.01	\$18.11 to \$50.14
210 - Reinforced Conc Pier Wall	26	28.67	474.26	21.78	0.76	73	8.37	\$20.30 to \$37.04
215 - Reinforced Conc Abutment	319	31.99	808.05	28.43	0.89	124	3.12	\$28.87 to \$35.11
220 - Pile Cap/Footing	106	30.18	636.89	25.24	0.84	98	4.80	\$25.37 to \$34.98
234 - Reinforced Conc Cap	264	31.29	796.75	28.23	0.90	122	3.40	\$27.89 to \$34.70
241 - Reinforced Concrete Culvert	1	96.48	0.00	0.00	0.00	0	0.00	N/A
298 - Pile Jacket without Cathodic								
Protection	12	30.01	766.62	27.69	0.92	118	15.67	\$14.34 to \$45.67
299 - Pile Jacket with Cathodic Protection	5	15.54	100.48	10.02	0.64	15	8.79	\$6.76 to \$24.33
321 - Reinforced Conc Approach Slab w/								
or w/o AC Ovly	317	31.78	810.09	28.46	0.90	124	3.13	\$28.65 to \$34.91
331 - Reinforced Conc Bridge Railing	262	32.06	730.62	27.03	0.84	112	3.27	\$28.79 to \$35.33
387 - Fender Dolphin System Prestressed								
Concrete	18	34.54	1094.45	33.08	0.96	168	15.28	\$19.26 to \$49.83
394 - Abutment Slope Protection								
Reinforced Concrete	163	35.49	978.48	31.28	0.88	150	4.80	\$30.69 to \$40.30
475 - Wingwall/Retaining Wall Reinforced								
Concrete	89	32.28	951.75	30.85	0.96	146	6.41	\$25.87 to \$38.69
564 - Counterweight	4	30.79	1223.02	34.97	1.14	188	34.27	\$-3.48 to \$65.06
	2155							

TABLE C.48 Action Subcategory-Unit 40	3LF (Patcl	h Minor S	palls) Mod	el for Por	ntis Eleme	nts MMS D	ata (Contin	ued)
Overall Data:	2151	32.01	805.08	28.37	0.89	124	1.20	\$30.82 to \$33.21
ANOVA								
Source of Variation	SS	df	MS	F	P-value	F crit		
Between Groups	15806	21	752.66	0.9340	0.5459	1.5607		
Within Groups	1718796	2133	805.81					
Total	1734602	2154						
* 95% Confidence Level								
** Required number of data points. Based of	on tolerance	e of +/- 5						

				Std.			Error (d) in Mean	
Treatments	Count	Average	Variance	dev.	C.V.	N**	Estimate*	C. I.
104 - P/S Conc Closed Web/Box Girder	9	22.69	53.34	7.30	0.32	8	4.77	\$17.91 to \$27.46
105 - Reinforced Concrete Closed								
Nebs/Box Girder	2	30.46	532.54	23.08	0.76	82	31.98	\$-1.52 to \$62.44
109 - P/S Conc Open Girder/Beam	914	20.67	68.00	8.25	0.40	10	0.53	\$20.14 to \$21.21
110 - Reinforced Conc Open Girder/Beam	102	18.31	43.47	6.59	0.36	7	1.28	\$17.03 to \$19.59
115 - P/S Conc Stringer	1	6.80	0.00	0.00	0.00	0	0.00	N/A
116 - Reinforced Conc Stringer	1	49.81	0.00	0.00	0.00	0	0.00	N/A
144 - Reinforced Conc Arch	1	14.95	0.00	0.00	0.00	0	0.00	N/A
154 - P/S Conc Floor Beam	1	6.80	0.00	0.00	0.00	0	0.00	N/A
155 - Reinforced Conc Floor Beam	11	25.20	81.84	9.05	0.36	13	5.35	\$19.85 to \$30.54
204 - P/S Conc Column or Pile	398	20.78	65.78	8.11	0.39	10	0.80	\$19.98 to \$21.57
205 - Reinforced Conc Column or Pile	923	20.36	65.12	8.07	0.40	10	0.52	\$19.84 to \$20.88
207 - Hollow Core Pile	13	14.25	27.59	5.25	0.37	4	2.86	\$11.40 to \$17.11
210 - Reinforced Conc Pier Wall	84	20.15	37.56	6.13	0.30	6	1.31	\$18.84 to \$21.46
215 - Reinforced Conc Abutment	1283	20.31	64.61	8.04	0.40	10	0.44	\$19.87 to \$20.74
220 - Pile Cap/Footing	436	20.08	53.09	7.29	0.36	8	0.68	\$19.40 to \$20.77
233 - P/S Conc Cap	4	18.45	17.95	4.24	0.23	3	4.15	\$14.30 to \$22.60
234 - Reinforced Conc Cap	1166	20.39	63.52	7.97	0.39	10	0.46	\$19.93 to \$20.85
241 - Reinforced Concrete Culvert	68	17.80	54.36	7.37	0.41	8	1.75	\$16.05 to \$19.55
298 - Pile Jacket without Cathodic								
Protection	54	19.68	43.37	6.59	0.33	7	1.76	\$17.92 to \$21.44
299 - Pile Jacket with Cathodic Protection	9	21.81	18.19	4.26	0.20	3	2.79	\$19.02 to \$24.60
321 - Reinforced Conc Approach Slab w/								
or w/o AC Ovly	1281	20.48	66.06	8.13	0.40	10	0.45	\$20.03 to \$20.92
331 - Reinforced Conc Bridge Railing	1050	20.50	63.98	8.00	0.39	10	0.48	\$20.02 to \$20.99
387 - Fender Dolphin System Prestressed								
Concrete	57	19.81	31.64	5.63	0.28	5	1.46	\$18.35 to \$21.27
388 - Fender Dolphin System Reinforced								
Concrete	4	29.77	8.06	2.84	0.10	1	2.78	\$26.98 to \$32.55

TABLE C.49 Action Subcategory-Unit 40	3MH (Pato	ch Minor S	Spalls) Mod	del for Po	ontis Eleme	nts MMS	Data (Conti	nued)
394 - Abutment Slope Protection								
Reinforced Concrete	723	20.27	71.93	8.48	0.42	11	0.62	\$19.65 to \$20.89
475 - Wingwall/Retaining Wall Reinforced								
Concrete	449	19.40	61.44	7.84	0.40	9	0.73	\$18.68 to \$20.13
564 - Counterweight	30	20.80	15.96	4.00	0.19	2	1.43	\$19.37 to \$22.23
	9074							
Overall Data:	9074	20.33	64.09	8.01	0.39	10	0.16	\$20.16 to \$20.49
ANOVA								
Source of Variation	SS	df	MS	F	P-value	F crit		
Between Groups	4221	26	162.33	2.5439	0.000025	1.4968		
Within Groups	577301	9047	63.81					
Total	581522	9073						
* 95% Confidence Level								
** Required number of data points. Based of	on toleranc	e of +/- 5						

TABLE C.50 Action Subcategory-Unit 40	3SF (Pate	ch Minor S	palls) Mode	el for Po	ntis Eleme	nts MMS	Data	
			-				Error (d) in	
				Std.			Mean	
Treatments	Count	Average	Variance	dev.	C.V.	N**	Estimate*	C. I.
104 - P/S Conc Closed Web/Box Girder	4	50.53	3372.48	58.07	1.15	518	56.91	\$-6.38 to \$107.44
109 - P/S Conc Open Girder/Beam	295	49.25	2347.80	48.45	0.98	361	5.53	\$43.72 to \$54.78
110 - Reinforced Conc Open Girder/Beam	25	60.86	3764.24	61.35	1.01	578	24.05	\$36.81 to \$84.91
115 - P/S Conc Stringer	1	2.52	0.00	0.00	0.00	0	0.00	N/A
144 - Reinforced Conc Arch	2	11.81	5.08	2.25	0.19	1	3.13	\$8.68 to \$14.93
154 - P/S Conc Floor Beam	1	2.52	0.00	0.00	0.00	0	0.00	N/A
155 - Reinforced Conc Floor Beam	2	18.28	175.64	13.25	0.73	27	18.37	\$-0.09 to \$36.65
204 - P/S Conc Column or Pile	163	50.04	2877.53	53.64	1.07	442	8.24	\$41.81 to \$58.28
205 - Reinforced Conc Column or Pile	269	47.94	2343.55	48.41	1.01	360	5.79	\$42.16 to \$53.73
207 - Hollow Core Pile	4	52.74	3286.71	57.33	1.09	505	56.18	\$-3.44 to \$108.93
210 - Reinforced Conc Pier Wall	31	39.75	1562.21	39.52	0.99	240	13.91	\$25.84 to \$53.67
215 - Reinforced Conc Abutment	419	50.78	2854.71	53.43	1.05	439	5.12	\$45.67 to \$55.90
220 - Pile Cap/Footing	135	43.74	2548.98	50.49	1.15	392	8.52	\$35.22 to \$52.25
234 - Reinforced Conc Cap	374	48.70	2787.92	52.80	1.08	428	5.35	\$43.35 to \$54.05
241 - Reinforced Concrete Culvert	4	20.67	19.15	4.38	0.21	3	4.29	\$16.39 to \$24.96
298 - Pile Jacket without Cathodic								
Protection	20	37.49	941.87	30.69	0.82	145	13.45	\$24.04 to \$50.94
299 - Pile Jacket with Cathodic Protection	3	61.40	2777.72	52.70	0.86	427	59.64	\$1.76 to \$121.04
321 - Reinforced Conc Approach Slab w/								
or w/o AC Ovly	407	50.33	2846.32	53.35	1.06	437	5.18	\$45.15 to \$55.51
331 - Reinforced Conc Bridge Railing	370	49.32	2741.52	52.36	1.06	421	5.34	\$43.99 to \$54.66
387 - Fender Dolphin System Prestressed								
Concrete	18	35.48	1178.04	34.32	0.97	181	15.86	\$19.63 to \$51.34
388 - Fender Dolphin System Reinforced								
Concrete	3	64.83	7647.08	87.45	1.35	1175	98.96	\$-34.12 to \$163.79
394 - Abutment Slope Protection								
Reinforced Concrete	223	51.51	2548.80	50.49	0.98	392	6.63	\$44.89 to \$58.14
475 - Wingwall/Retaining Wall Reinforced								
Concrete	144	56.29	3325.25	57.66	1.02	511	9.42	\$46.88 to \$65.71
564 - Counterweight	10	27.25	439.11	20.95	0.77	67	12.99	\$14.26 to \$40.23

TABLE C.50 Action Subcategory-Unit 40	3SF (Patc	h Minor S	palls) Mod	el for Poi	ntis Eleme	nts MMS D	ata (Contir	lued)
Overall Data:	2927	49.42	2677.08	51.74	1.05	411	1.87	\$47.55 to \$51.30
ANOVA								
Source of Variation	SS	df	MS	F	P-value	F crit		
Between Groups	45210	23	1965.64	0.7327	0.8159	1.5330		
Within Groups	7787925	2903	2682.72					
Total	7833135	2926						
* 95% Confidence Level								
** Required number of data points. Based of	on toleranc	e of +/- 5						

TABLE C.51 Action Subcategory-Unit 43	1MH (Ma	intain Macl	ninery) Mod	lel for Po	ontis Eleme	ents MMS	S Data	
							Error (d) in	
				Std.			Mean	
Treatments	Count	Average	Variance	dev.	C.V.	N**	Estimate*	C. I.
540 - Open Gearing	27	20.15	14.38	3.79	0.19	2	1.43	\$18.72 to \$21.58
541 - Speed Reducers	26	20.13	14.95	3.87	0.19	2	1.49	\$18.64 to \$21.62
542 - Shafts	27	20.15	14.38	3.79	0.19	2	1.43	\$18.72 to \$21.58
543 - Shaft Bearings and Shaft Couplings	27	20.15	14.38	3.79	0.19	2	1.43	\$18.72 to \$21.58
544 - Brakes	26	20.13	14.95	3.87	0.19	2	1.49	\$18.64 to \$21.62
545 - Emergency Drive and Back Up								
Power System	25	20.23	15.31	3.91	0.19	2	1.53	\$18.69 to \$21.76
546 - Span Drive Motors	19	20.25	17.60	4.19	0.21	3	1.89	\$18.37 to \$22.14
547 - Hydraulic Power Units	5	20.48	22.79	4.77	0.23	4	4.18	\$16.30 to \$24.67
548 - Hydraulic Piping System	5	20.48	22.79	4.77	0.23	4	4.18	\$16.30 to \$24.67
549 - Hydraulic Cylinders/Motors/Rotary								
Actuators	5	20.48	22.79	4.77	0.23	4	4.18	\$16.30 to \$24.67
550 - Hopkins Frame	8	17.64	6.33	2.52	0.14	1	1.74	\$15.89 to \$19.38
560 - Span Locks/Toe Locks/Heel								
Stops/Tail Locks	21	20.18	16.45	4.06	0.20	3	1.73	\$18.45 to \$21.92
561 - Live Load Shoes/Strike Plates/Buffer								
Cylinders	25	19.87	15.58	3.95	0.20	2	1.55	\$18.32 to \$21.42
562 - Counterweight Support	17	20.38	16.08	4.01	0.20	2	1.91	\$18.47 to \$22.29
563 - Access Ladder & Platforms	28	20.01	14.36	3.79	0.19	2	1.40	\$18.61 to \$21.42
564 - Counterweight	19	20.34	17.95	4.24	0.21	3	1.91	\$18.44 to \$22.25
565 - Trunnion/Straight and Curved Track	21	20.18	16.45	4.06	0.20	3	1.73	\$18.45 to \$21.92
570 - Transformers & Thyristors	13	20.69	13.28	3.64	0.18	2	1.98	\$18.71 to \$22.67
571 - Submarine Cable	14	21.26	19.21	4.38	0.21	3	2.30	\$18.96 to \$23.55
572 - Conduit & Junction Boxes	22	20.20	15.67	3.96	0.20	2	1.65	\$18.55 to \$21.86
573 - Programmable Logic Controllers	6	21.80	20.74	4.55	0.21	3	3.64	\$18.15 to \$25.44
574 - Control Console	18	20.34	18.48	4.30	0.21	3	1.99	\$18.35 to \$22.33
580 - Navigational Light System	22	20.20	15.67	3.96	0.20	2	1.65	\$18.55 to \$21.86
581 - Operator Facilities	20	20.26	17.18	4.15	0.20	3	1.82	\$18.44 to \$22.25
583 - Swing Bridge Specific Equipment	7	19.51	9.41	3.07	0.16	1	2.27	\$17.23 to \$21.78
590 - Resistance Barriers	1	19.24	0.00	0.00	0.00	0	0.00	N/A

592 - Traffic Signal 19 20.25 17.60 4.19 0.21 3 1.89 \$18.37 to \$22.14 492								
591 - Warning Gates	19	20.25	17.60	4.19	0.21	3	1.89	\$18.37 to \$22.14
592 - Traffic Signal	19	20.25	17.60	4.19	0.21	3	1.89	\$18.37 to \$22.14
	492							
Overall Data:	492	20.20	15.21	3.90	0.19	2	0.34	\$19.85 to \$20.54
ANOVA								
Source of Variation	SS	df	MS	F	P-value	F crit		
Between Groups	98	27	3.63	0.2282	0.999988	1.5098		
Within Groups	7373	464	15.89					
Total	7470	491						
* 95% Confidence Level								
** Required number of data points. Based of	on tolerand	ce of +/- 5						

TABLE C.52 Action Subcategory-Unit 44	6MH (Ma	intain App	roach Slab) Model f	or Pontis E	Elements	MMS Data	
				Std.			Error (d) in Mean	
Treatments	Count	Average	Variance	dev.	C.V.	N**	Estimate*	C. I.
12 - Concrete Deck - Bare	26	25.05	118.28	10.88	0.43	18	4.18	\$20.87 to \$29.24
13 - Concrete Deck - Unprotected w/ AC								
Overlay	18	21.36	101.78	10.09	0.47	16	4.66	\$16.70 to \$26.02
28 - Steel Deck - Open Grid	1	25.34	0.00	0.00	0.00	0	0.00	N/A
38 - Concrete Slab - Bare	1	15.48	0.00	0.00	0.00	0	0.00	N/A
	46							
Overall Data:	46	23.41	108.89	10.43	0.45	17	3.02	\$20.39 to \$26.42
ANOVA Source of Variation	SS	df	MS	F	P-value	F crit		
Between Groups	213	3	70.92	0.6355	0.5963	2.8271		
Within Groups	4687	42	111.60					
Total	4900	45						
* 95% Confidence Level								
** Required number of data points. Based of	n tolerand	ce of +/- 5						

TABLE C.53 Action Subcategory-Unit 44	6SF (Mai	ntain Appr	oach Slab)	Model fo	or Pontis E	lements I	MMS Data	
z 1							Error (d) in	
				Std.			Mean	
Treatments	Count	Average	Variance	dev.	C.V.	N**	Estimate*	C. I.
12 - Concrete Deck - Bare	142	23.31	762.82	27.62	1.18	117	4.54	\$18.77 to \$27.85
13 - Concrete Deck - Unprotected w/ AC								
Overlay	69	19.76	547.94	23.41	1.18	84	5.52	\$14.23 to \$25.28
28 - Steel Deck - Open Grid	3	36.58	3319.20	57.61	1.58	510	65.19	\$-28.62 to \$101.77
29 - Steel Deck - Concrete Filled Grid	2	4.23	14.00	3.74	0.88	2	5.19	\$-0.95 to \$9.42
38 - Concrete Slab - Bare	16	23.24	1152.09	33.94	1.46	177	16.63	\$6.61 to \$39.87
39 - Concrete Slab - Unprotected w/ AC								
Overlay	15	28.29	1274.11	35.69	1.26	196	18.06	\$10.22 to \$46.35
98 - Concrete Deck on Precast Deck								
Panels	3	45.54	4974.28	70.53	1.55	764	79.81	\$-34.27 to \$125.35
99 - Prestressed Concrete Slab (Sonovoid)	12	17.15	413.46	20.33	1.19	64	11.50	\$5.65 to \$28.66
	262							
Overall Data:	262	22.63	786.98	28.05	1.24	121	3.40	\$19.24 to \$26.03
ANOVA								
Source of Variation	SS	df	MS	F	P-value	F crit		
Between Groups	4316	7	616.62	0.7789	0.6055	2.0457		
Within Groups	201086	254	791.68					
Total	205402	261						
* 95% Confidence Level								
** Required number of data points. Based of	on tolerand	ce of +/- 5						

AS# 1 101 101 101 101 101 101 101 101 101	Elem# Element						UNIT COS	T (AN)	IMMS A	AS# GRO	UP UNI	T COST	AKBAR	ELEMENT UNIT	COST	(ANOVIAKB/	AR AS# GROUP UN	IIT CO	DCP ELEME						
101 101 101 101 101 101 101 101 101		Units	Condition State	Action	MIN S Unit			# of	IVIIVI S				Akbar			# of Akbar		# of	DCP		# of	DCP			# 0
101 101 101 101 101 101 101 101		(SF)	5-Distress over 25%	2-Replace deck	Unit	AVG.	C.V.	Data		AVG. 117.09	C.V.	Dala	Unit	AVG.	C.V.	Data Unit	AVG. C.V.	Dala	Unit AVG.	C. V	. Data	Unit	AVG.	C.V.	. Dat
101 101 101 101 101 101 101	13 Unp Conc Deck/AC Ovl		5-Distress over 25%	2-Replace deck					SF	117.09		1													-
101 101 101 101 101			5-Distress over 25%	2-Replace deck					SF	117.09		1													+
101 101 101 101	18 P Conc Deck/Thin Ovl		5-Distress over 25%	2-Replace deck					SF	117.09		1													-
101 101 101			5-Distress over 25%	2-Replace deck					SF	117.09		1													+
101 101	26 Conc Deck/Coatd Bars	(SF)	5-Distress over 25%	2-Replace deck					SF	117.09		1													-
101	27 Conc Deck/Cathodic	(SF)	5-Distress over 25%	2-Replace Deck					SF	117.09		1													
		(SF)	5-Advanced corrosion	2-Replace unit					SF	117.09		1													
101		(SF)	5-Advanced corrosion	2-Replace unit					SF	117.09		1													
		(SF)	5-Major section loss	2-Replace unit					SF	117.09		1												<u> </u>	_
101		(SF)	3-Some strength loss	2-Replace deck					SF	117.09		1												<u> </u>	_
101 101		(SF)	4-Major strength loss	1-Replace deck					SF SF	117.09 117.09		1												<u> </u>	-
101		(SF) (SF)	3-Some strength loss 4-Major strength loss	2-Replace deck & surfa 1-Replace deck & surfa	_				SF	117.09		1													-
101		(SF)	5-Distress over 25%	2-Replace deck					SE	117.09		1													+
101	39 Unp Conc Slab/AC Ovl		5-Distress over 25%	2-Replace deck	+				SF	117.09		1													+
101			5-Distress over 25%	2-Replace deck	1				SF	117.09		1													+
101			5-Distress over 25%	2-Replace deck					SF	117.09		1													+
101			5-Distress over 25%	2-Replace deck					SF	117.09		1													
101	52 Conc Slab/Coatd Bars	(SF)	5-Distress over 25%	2-Replace deck	1				SF	117.09		1													1
101		(SF)	5-Distress over 25%	2-Replace Deck					SF	117.09		1													
101			3-Some strength loss	2-Replace deck					SF	117.09		1													_
101		(SF)	4-Major strength loss	1-Replace deck					SF	117.09		1												——	
101		(SF)	3-Some strength loss	2-Replace deck and sur					SF	117.09		1												<u> </u>	
101 101	55 Timber Slab/AC Ovly 98 Conc Deck on PC Pane	(SF)	4-Major strength loss	1-Replace deck and sur	+				SF SF	117.09		1										+			+
01		(SF) (SF)	5-Distress over 25 % 5-Dist >25%	2-Replace Deck 2-Replace unit					SF	117.09 117.09		1												<u> </u>	-
02		(LF)	4-Active corrosion	2-Replace unit 2-Replace paint system					3F	117.09												SF	4 74	1.76	3
02		(LF)	4-Active corrosion	2-Replace paint system																		SF		1.76	
02			4-Active corrosion	2-Replace paint system																		SF		1.76	
02		(LF)	4-Active corrosion	2-Replace paint system																		SF		1.76	
02		(LF)	4-Active corrosion	2-Replace paint system																		SF		1.76	
102	131 Paint Stl Deck Truss	(LF)	4-Active corrosion	2-Replace paint system																		SF	4.74	1.76	ذ
02	141 Paint Stl Arch	(LF)	4-Active corrosion	2-Replace paint system																		SF		1.76	
02		(LF)	4-Active corrosion	2-Replace paint system																		SF		1.76	
102		(EA)	4-Active corrosion	2-Replace paint system																		SF		1.76	
102			4-Active corrosion	2-Replace paint system																		SF		1.76	
102		(LF)	4-Active corrosion	2-Replace paint system																		SF		1.76	
102		(LF)	4-Surf Pits	2-Replace paint system																		SF		1.76	
102 102		(LF)	4-Surf Pits 4-Surf Pits	2-Repaint	_																	SF SF		1.76	
102			4-Surf Pits	2-Repaint 2-Repaint																		SF		1.76	
102			4-Surf Pits	2-Repaint																		SF		1.76	
102			4-Surf Pits	2-Repaint																		SF		1.76	
102		(EA)	4-Surf Pits	2-Repaint																		SF		1.76	
111	300 Strip Seal Exp Joint	(LF)	3-Major leakage	2-Replace joint					LF	12.54	0.72	25	LF	85.00	0.536	51 LF	73.92 0.69	96				LF	281.61		-
111	302 Compressn Joint Seal	(LF)	3-Major deterioration	2-Replace joint					LF	12.54	0.72	25	LF	41.95	0.544	20 LF	73.92 0.69	96				LF	281.61		
111		(LF)	3-Advanced corrosion	2-Replace unit					LF	12.54	0.72	25	LF	418.85	0.430	6 LF	73.92 0.69	96				LF	281.61		
111		(LF)	3-Advanced corrosion	2-Replace unit					LF	12.54	0.72	25	LF			LF	73.92 0.69	96				LF	281.61		
111		(LF)	3-Maj Deter	2-Replace unit					LF	12.54	0.72	25	LF	64.21	0.682	23 LF	73.92 0.69	96				LF	281.61	—	_
112		(LF)	3-Major leakage	1-Replace gland and pa	LF	87.64	N/A	1	LF	22.60	1.38	185		85.00	0.536	51 LF	73.92 0.69	96	M1 4,	588.52	1.31 5	LF	62.64		
112 112		(LF) (LF)	2-Minor leakage 3-Major deterioration	1-Clean joint and repl 1-Replace gland and/or		13.29 30.98	1.55 1.20	/4	LF	22.60 22.60	1.38 1.38	185		41.95	0.544	2015	73.92 0.69 73.92 0.69	96	LF	55.22	1.20 6		62.64 62.64		
113			4-Major section loss	2-Replace unit	LF	30.90	1.20	34	MH	32.23	0.23	7		41.55	0.344	20 LF	73.92 0.09	90	LF	JJ.22	1.20 0		02.04	0.72	-
									MH			7													-
113		(EA)	5-Section loss	2-Replace unit					MH	32.23	0.23	- 7													-
113 113		(EA) (EA)	3-Major deterioration 3-Advanced corrosion	2-Replace unit and res 2-Replace unit	+				MH	32.23 32.23	0.23	7										+			+
13		(EA) (EA)	3-Bearing failures	2-Replace unit 2-Replace unit	+				MH	32.23	0.23	7										+			+
13				2-Replace unit					MH	32.23	0.23	7													+
113				2-Replace unit	1				MH	32.23	0.23	7													+
13		()		2-Replace unit					MH	32.23	0.23	7													+
14		(LF)	3-Active corrosion	2-Replace unit					LF	18.46	0.75	130	LF	32.60	N/A	1 LF	28.78 1.01	73	LF	38.89	0.71 3	LF	140.06		3
14	330 Metal Rail Uncoated	(LF)	4-Section loss	2-Replace unit					LF	18.46	0.75	130	LF	32.60	N/A		28.78 1.01	73	LF	38.89	0.71 3	LF	140.06	1.03	
14	331 Conc Bridge Railing	(LF)		2-Replace unit	LF	19.93	0.69	75	LF	18.46	0.75	130		53.29	0.536	32 LF	28.78 1.01	73	LF	187.41	0.81 9	LF	140.06		
14			3-Some strength loss	1-Replace unit					LF	18.46	0.75	130				LF	28.78 1.01	73				LF	140.06		
14			3-Major deterioration	2-Replace unit	LF	16.73	0.78	61	LF	18.46	0.75		LF	69.76	1.531	3 LF	28.78 1.01	73	LF	17.37 N/A	1	LF	140.06		
14			4-Active corrosion	2-Replace unit	LF	14.71	0.61	20	LF	18.46	0.75	130	LF	32.60	N/A		28.78 1.01	73				LF	140.06		
14		(LF)		2-Replace unit	LF	14.71	0.61	20	LF	18.46	0.75	130	LF	32.60	N/A	1 LF	28.78 1.01	73			-		140.06		_
-24 -		(SF)	4-Adv Corros	2-Replace unit	МН	66.98	0.59	20	MH	64.48	0.62	24							M2	82.34	0.22 5	SY	86.33		
21		(SF)	3-Minor Loss 4-Adv Deter	2-Replace unit 2-Replace unit	+				MH MH	64.48 64.48	0.62	24 24										SY SY	86.33	0.27	
21 21 21																									

Appendix D (Table D.1.) Summary of Detailed Analysis on FDOT Data (Basic Statistics and ANOVA); Bold indicate Different Means for Elements in
Same Action Subcategory (AS) Group)

		Same Action	JU	bcategory (A	(S) Group)																									
						MMS	ELEMENT	UNIT COST	r (AN		AS# GR		r cost	AKB	AR ELEMENT UNIT	COST	(ANOV	АКВ	AR AS# GRO		NIT CO	DCP	ELEME	INT UNI	T COST	(ANO	DCP /	AS# GF	LOUP	JNIT C
						s			# of	s			# of				# of	Akbar			# of	DCP				# of	DCP			# of
		Element	Units	Condition State	Action	Unit	AVG.	C.V.	Data		AVG.	C.V.	Data	Unit	AVG.	C.V.	Data	Unit	AVG.	C.V.	Data		AVG.			Data	Unit	AVG.	C.V.	Data
121		Other Abut Slope Pro		4-Maj Deter	2-Replace unit					MH	64.48		24									SY		63.46	0.51	3	SY	86.33	0.27	14
123 123		Drain. Syst Metal Drain. Syst Other		5-Sect Loss 4-Maj Deter	2-Replace unit 2-Replace unit	_				MH MH	18.00 18.00																EA	596.64	0.63	
123		Open Gearing	(EA)	3-Mod Deter	2-Replace unit	мн	17.58	0.15	24	MH	20.99		60	IS	428,655.88	N/A	1	FΔ	40.551.21	1 45	20						FA	161 32	1.40	82
131		Open Gearing	(EA)	4-Mai Deter	1-Replace unit	MH	17.50	0.10	24	MH	20.99		60		428,655.88	N/A	1	EA	40,551.21		29						EA	161.32	1.40	824
131		Speed Reducers	(EA)	3-Mod Deter	2-Replace unit	MH	17.25	0.12	23	MH	20.99		60	LS	428,655.88	N/A	1	EA	40,551.21		29						EA	161.32	1.40	824
131		Speed Reducers	(EA)	4-Maj Deter	1-Replace unit	MH				MH	20.99		60	LS	428,655.88	N/A	1	EA	40,551.21	1.45	29						EA	161.32	1.40	824
131		Shafts	(EA)	3-Mod Deter	2-Replace unit	MH	17.58	0.15	24	MH	20.99	0.26	60					EA	40,551.21		29						EA	161.32	1.40	82
131 131		Shafts	(EA)	4-Maj Deter	1-Replace unit	MH MH	47.50	0.45		MH MH	20.99		60 60					EA	40,551.21		29						EA	161.32	1.40	82 82
131		Shaft Brgs and Coupl	(EA) (EA)	3-Mod Deter 4-Maj Deter	2-Replace unit 1-Replace unit	MH	17.58	0.15	24	MH	20.99 20.99		60						40,551.21		29						EA	161.32	1.40	82
131		Brakes		3-Mod Deter	2-Replace unit	MH	17.25	0.12	23	MH	20.99		60					FA	40,551.21		23						FA	161.32		82
131		Brakes		4-Maj Deter	2-Replace unit	MH		0.12	20	MH	20.99		60					EA	40,551.21	1.45	29						EA	161.32	1.40	82
131		Emergency Drive	(EA)	3-Mod Deter	2-Replace System	MH	18.25	0.23	25	MH	20.99		60					EA	40,551.21	1.45	29						EA	161.32	1.40	82
131		Emergency Drive	(EA)	4-Maj Deter	1-Replace System	MH				MH	20.99		60					EA	40,551.21		29							161.32		82
131		Span Drive Motors	(EA)	3-Mod Deter	2-Replace unit	MH	17.79	0.14	18	MH	20.99		60					EA	40,551.21		29							161.32	1.40	82
131		Span Drive Motors	(EA)	4-Maj Deter	1-Replace unit	MH	40.00	0.00	45	MH	20.99	0.26	60					EA	40,551.21		29							161.32		82
131 131		Hydraulic Power Unit Hydraulic Power Unit	(EA) (EA)	3-Mod Deter 4-Maj Deter	2-Replace unit 1-Replace unit	MH MH	19.23	0.28	15	MH MH	20.99 20.99	0.26	60 60	I	-			EA EA	40,551.21		29						EA	161.32	1.40	82 82
131		Hydraulic Power Unit	(EA)	3-Maj Deter	2-Replace unit	MH	19.23	0.28	15	MH	20.99		60	<u> </u>				EA	40,551.21		28						EA	161.32	1.40	02 82
131		Hydraulic Cylinders	(EA)	3-Mod Deter	2-Replace unit	MH	19.23	0.20	15	MH	20.99		60	<u> </u>			<u> </u>	EA	40,551.21		29						EA	161.32	1.40	82
131		Hydraulic Cylinders	(EA)	4-Maj Deter	1-Replace unit	MH			-	MH	20.99		60					EA	40,551.21	1.45	29						EA	161.32	1.40	82
131	550	Hopkins Frame	(EA)	5-Sect Loss	2-Replace unit	MH	18.79	0.09	5	MH	20.99	0.26	60	1				EA	40,551.21		29						EA	161.32	1.40	82
131		Locks	(EA)	3-Mod Deter	2-Replace unit	MH	18.30	0.22	27		20.99		60		33,822.57	0.84	3	EA	40,551.21		29						EA	161.32	1.40	82
131		Locks	(EA)	4-Maj Deter	1-Replace unit	MH				MH	20.99		60	EA	33,822.57	0.84	3	EA	40,551.21		29							161.32		82
131		Live Load Shoes	(EA)	3-Maj Deter	2-Replace unit	MH	18.19	0.23	31	MH	20.99		60					EA	40,551.21		29							161.32	1.40	82
131 131		Counterweight Suppor Acc Ladd & Plat		5-Sect Loss	2-Replace unit	MH MH	18.29	0.22	29 34		20.99 20.99		60 60					EA FA	40,551.21		29							161.32	1.40	82 82
131		Counterweight	(EA) (EA)	5-Sect Loss 4-Adv Corros	2-Replace unit 2-Replace unit	MH	18.13 18.37	0.22	34		20.99		60					EA FA	40,551.21 40,551.21		29							161.32 161.32		82
131		Trun/Str and Cur Trk	(EA)	3-Mod Deter	2-Replace unit 2-Replace unit	MH	18.37	0.22	31		20.99	0.26	60	FΔ	120,909.76	0.97	3	EA FA	40,551.21		28						EA	161.32	1.40	82
131		Trun/Str and Cur Trk	(EA)	4-Maj Deter	1-Replace unit	MH	10.07	0.22	01	MH	20.99		60	EA	120,909.76	0.97	3	EA	40,551.21		29						EA	161.32	1.40	82
131		Transformers	(EA)	3-Maj Deter	2-Replace unit	MH	17.52	0.11	13		20.99		60			0.01		EA	40,551.21		29	EA	1.	748.93	0.78	3	EA	161.32	1.40	82
131		Submarine Cable	each	3-Maj Deter	2-Replace unit	MH	18.31	0.23	24		20.99		60					EA	40,551.21		29	EA		155.89	1.22	66	EA	161.32	1.40	82
131		Conduit & Junc. Box	(EA)	3-Maj Deter	2-Replace unit	MH	18.37	0.22		MH	20.99		60					EA	40,551.21		29							161.32		82
131		PLCs	(EA)	3-Maj Deter	2-Replace unit	MH	18.20	0.24	21		20.99		60		27,998.64	0.71	7	EA	40,551.21		29						EA	161.32		82
131		Control Console	(EA)	3-Maj Deter	2-Replace unit	MH	18.13	0.22		MH	20.99		60		93,959.66	1.09	9	EA	40,551.21		29							161.32		82
131 131		Navigational Lights Operator Facilities	(EA)	3-Maj Deter	2-Replace unit	MH MH	18.15	0.21	30 30		20.99 20.99		60 60	LS	31,969.45	0.58	11	EA	40,551.21		29	LS	5,	785.04	1.56	6		161.32		82 82
131		Operator Facilities	(EA) (EA)	2-Mod Deter 3-Mai Deter	2-Replace unit 2-Replace unit	MH	18.15	0.21	30	MH	20.99		60						40,551.21 40,551.21		29							161.32		82 82
131		Lift Bridge Spec. Eq	(EA)	3-Maj Deter	2-Replace unit	MH	18.87	0.24	4	MH	20.99	0.26	60					FΔ	40,551.21		23							161.32		82
131		Swing Bridge Spec. E	(EA)	3-Maj Deter	2-Replace unit	MH	15.64	0.24	3	MH	20.99	0.26	60					EA	40,551.21		29						EA	161.32	1.40	82
131		Resistance Barriers	(EA)	3-Maj Deter	2-Replace unit	MH	17.38	0.13	4	MH	20.99		60					EA	40,551.21		29							161.32	1.40	82
131	591	Warning Gates	(EA)	3-Maj Deter	2-Replace unit	MH	18.13	0.22	27		20.99	0.26	60					EA	40,551.21	1.45	29						EA	161.32	1.40	82
131		Traffic Signals	(EA)	3-Maj Deter	2-Replace unit	MH	18.13	0.22	27	MH	20.99	0.26	60					EA	40,551.21	1.45	29						EA	161.32	1.40	82
132		Bare Concrete Deck	(SF)	1-No damage	1-Add a protective sys									SF	44.05	0.47	3	SF		0.47	3							530.00		
132		Bare Concrete Deck	(SF)	2-Distress <= 2%	2-Add a protective sys	_								SF	44.05	0.47	3	SF		0.47	3							530.00		
132 132		Bare Concrete Deck	(SF) (SF)	3-2 to 10 % distress 4-10 to 25% distress	2-Rep spall & add prot	_								51	44.05	0.47	3	51		0.47	3							530.00 530.00		
132		Bare Concrete Deck	(SF)	5-Distress over 25%	2-Rep spall & add prot 1-Repair spalled areas	+								SF	44.05	0.47	3	SF		0.47	3							530.00	<u> </u>	
132		Conc Deck/Coatd Bars		1-No damage	1-Add a protective sys											5.41		SF		0.47	3							530.00	\vdash	
132		Conc Deck/Coatd Bars		2-Distress <=2%	2-Add a protective sys									1				SF		0.47	3							530.00		
132	26	Conc Deck/Coatd Bars	(SF)	3-Distress 2-10%	2-Rep spall & add prot									1				SF	44.05	0.47	3						M2	530.00		
132		Conc Deck/Coatd Bars		4-10-25% distress	2-Rep spall & add prot													SF	44.05		3							530.00		
132		Conc Deck/Coatd Bars		5-Distress over 25%	1-Repair spalled areas													SF	44.05		3							530.00		
132		Conc Deck/Cathodic	(SF)	1-No damage	1-Add a protective sys									L				SF	44.05		3							530.00	\square	
132 132		Conc Deck/Cathodic	(SF)	2-Distress <=2%	2-Add a protective sys	+								-				5F 0F		0.47	3							530.00	\parallel	
132		Conc Deck/Cathodic	()	3-2 to 10% distress 4-10-25% distress	2-Rep spall & add prot 2-Rep spall & add prot													or SF		0.47	3							530.00 530.00	<u> </u>	
132		Conc Deck/Cathodic	(SF)	5-Distress over 25%	2-Rep spall & add prot 1-Repair spalled areas									<u> </u>				SF		0.47	3	-						530.00	\vdash	
132		Bare Concrete Slab	(SF)	1-No damage	1-Add a protective sys									<u> </u>				SF	44.05	0.47	3							530.00		
132		Bare Concrete Slab	(SF)	2-Distress <=2%	2-Add a protective sys													SF		0.47	3							530.00		
132		Bare Concrete Slab	(SF)	3-2-10% distress	2-Rep spall & add prot													SF		0.47	3							530.00		
132		Bare Concrete Slab	(SF)	4-10-25% distress	2-Rep spall & add prot													SF	44.05		3							530.00		
132		Bare Concrete Slab	(SF)	5-Distress over 25%	1-Repair spalled areas													SF	44.05		3							530.00		
132		Conc Slab/Coatd Bars	(SF)	1-No damage	1-Add a protective sys									L				SF	44.05		3							530.00	\square	
132 132		Conc Slab/Coatd Bars		2-Distress under 2%	2-Add a protective sys									I			L	SF		0.47	3							530.00	\square	
132		Conc Slab/Coatd Bars		3-2-10% distress 4-10-25% distress	2-Rep spall & add prot 2-Rep spall & add prot	+				\vdash				<u> </u>				OF OF		0.47	3							530.00 530.00	\vdash	
132		Conc Slab/Coatd Bars		5-Distress over 25%	2-Rep spall & add prot 1-Repair spalled areas													SF		0.47	3							530.00	<u> </u>	
132		Conc Slab/Coato Bars	(SF)	1-No damage	1-Add a protective sys									l –				SF		0.47	3							530.00		
132		Conc Slab/Cathodic	(SF)	2-Distress under 2%	2-Add a protective sys									1				SF		0.47	3						M2	530.00		
132		Conc Slab/Cathodic	(SF)	3-2-10% distress	2-Rep spall & add prot													SF		0.47	3							530.00		
				4						•		· · · · · ·		•								•								-

	Same Action			• •	MMS	ELEMENT	UNIT COS	T (ANG	MMS 4	AS# GRO		T COST	AKBAI		T COST (ANO)	АКВА	R AS# GROUP UN	іт со	DCP ELEMENT UNIT C	OST (ANC	DCP	AS# GROUI	
					MM		0.0.000	# of	MIM		0. 0.1	# of			-	Akbar				# of	DCP		#
S# E	lem# Element	Units	Condition State	Action	S Unit	AVG.	C.V.	# 01 Data	-	AVG.	C.V.	Data		AVG.	C.V. Data		AVG. C.V.	# 01 Data			Unit	AVG. C.	
132	53 Conc Slab/Cathodic	(SF)	4-10-25% distress	2-Rep spall & add prot												SF	44.05 0.47	3			M2	530.00	-
132	53 Conc Slab/Cathodic	(SF)	5-Distress over 25%	1-Repair spalls+overla												SF	44.05 0.47	3				530.00	
132		(SF)	2-Distress under 2 %	2-Add Protect. Syst.						00.04	0.00	0				SF	44.05 0.47	3			M2	530.00	—
141 141	106 Unpnt Stl Opn Girder 107 Paint Stl Opn Girder	(LF) (LF)	4-Major section loss 5-Section loss	2-Replace unit 2-Replace unit	_				MH MH	29.64 29.64	0.60	2											—
141		(LF) (LF)	4-Analysis warranted	2-Replace unit	_				MH	29.64	0.60	2											
141		(LF)	4-Analysis warranted	2-Replace unit					MH	29.64	0.60	2											
141		(LF)	3-Some strength loss	2-Replace unit					MH	29.64	0.60	2											
141	111 Timber Open Girder	(LF)	4-Major strength loss	2-Replace unit					MH	29.64	0.60	2											
141		(LF)	4-Major section loss	2-Replace unit					MH	29.64	0.60	2											
141		(LF)	5-Section loss	2-Replace unit					MH	29.64	0.60	2											
141		(LF)	4-Analysis warranted	2-Replace unit	_				MH MH	29.64	0.60	2											
141 141		(LF) (LF)	4-Analysis warranted 3-Some strength loss	2-Replace unit	_				MH	29.64 29.64	0.60	2											_
141		(LF) (LF)	4-Major strength loss	2-Replace unit 2-Replace unit	-				MH	29.64	0.60	2											
141		(LF)	4-Major section loss	2-Replace unit					MH	29.64	0.60	2											
141		(LF)	5-Section loss	2-Replace unit					MH	29.64	0.60	2											-
141		(LF)	4-Analysis warranted	2-Replace unit					MH	29.64	0.60	2											
141		(LF)	4-Analysis warranted	2-Replace unit					MH	29.64	0.60	2											
141		(LF)	3-Some strength loss	2-Replace unit					MH	29.64	0.60	2											_
141		(LF)	4-Major strength loss	2-Replace unit	_				MH	29.64	0.60	2											_
141 141	230 Unpnt Stl Cap 231 Paint Stl Cap	(LF) (LF)	4-Major section loss 5-Section loss	2-Replace unit 2-Replace unit					MH	29.64 29.64	0.60	2									+		+
141	233 P/S Conc Cap	(LF)	4-Analysis warranted	2-Replace unit	-				MH	29.64	0.60	2											
141		(LF)	4-Analysis warranted	2-Replace unit					MH	29.64	0.60	2											
141		(LF)	3-Some strength loss	2-Replace unit					MH	29.64	0.60	2											
141		(LF)	4-Major strength loss	2-Replace unit					MH	29.64	0.60	2											
42		(LF)	4-Major section loss	2-Replace unit																			
42		(LF)	5-Section loss	2-Replace unit																			
142		(LF)	4-Analysis warranted	2-Replace unit																			_
142 142		(LF) (LF)	4-Analysis warranted	2-Replace unit	_																		
142		(LF) (LF)	4-Major section loss 5-Section loss	2-Replace unit 2-Replace unit	_																		
142		(LF) (LF)	4-Major section loss	2-Replace unit	_																		
142		(LF)	5-Section loss	2-Replace unit																			
142		(LF)	4-Major section loss	2-Replace unit																			
142		(LF)	5-Section loss	2-Replace unit																			
142		(LF)	3-Some strength loss	2-Replace unit																			
142		(LF)	4-Major strength loss	2-Replace unit																			_
142		(LF)	4-Major section loss	2-Replace unit																			_
142 142	141 Paint Stl Arch 143 P/S Conc Arch	(LF) (LF)	5-Section loss	2-Replace unit	_																		
142		(LF) (LF)	4-Analysis warranted 4-Analysis warranted	2-Replace unit 2-Replace unit	_																		
142		(LF)	4-Major deterioration	2-Replace unit	-																		
143		(EA)	4-Analysis warranted	2-Replace unit																	EA	432.54 0.5	57
143		(EA)	4-Active corrosion	2-Replace unit																	EA	432.54 0.5	57
143		(EA)	5-Analysis warranted	2-Replace unit																	EA	432.54 0.5	57
144	201 Unpnt Stl Column	(EA)	4-Major section loss	2-Replace unit	MH	21.27	0.26	2	МН	21.39	0.36	29				LF	131.54 0.42	5			_	291.65 0.7	
144	202 Paint Stl Column	(EA)	5-Section loss	2-Replace unit	MH	18.22	0.16	3	MH	21.39	0.36	29				LF	131.54 0.42	5				291.65 0.7	
144	204 P/S Conc Column	(EA)	4-Analysis warranted	2-Replace unit	MH	17.16	0.19		MH MH	21.39	0.36	29 29				LF	131.54 0.42	5				291.65 0.7	
144 144	205 R/Conc Column 206 Timber Column	(EA) (EA)	4-Analysis warranted 3-Some strength loss	2-Replace unit 2-Replace unit	MH	19.58 24.92	0.32	21	MH	21.39 21.39	0.36	29					131.54 0.42 131.54 0.42	5			EA	291.65 0.7 291.65 0.7	
144		(EA)	4-Major strength loss	2-Replace unit	IVII I	24.32	0.00	5	MH	21.39	0.36	29				LF	131.54 0.42	F			EA	291.65 0.7	
44	207 P/S Conc Holl Pile	(EA)	4-Adv Corros	2-Replace unit					MH	21.39	0.36	29				LF	131.54 0.42	5				291.65 0.7	
144	210 R/Conc Pier Wall	(LF)	4-Analysis warranted	2-Replace unit	MH	18.10	0.18	9	MH	21.39	0.36	29				LF	131.54 0.42	5				291.65 0.7	
44	211 Other Mtl Pier Wall	(LF)	4-Major deterioration	2-Replace unit					MH	21.39	0.36	29				LF	131.54 0.42	5				291.65 0.7	
44		(LF)	4-Analysis warranted	2-Replace unit	MH	20.59	0.34	26	MH	21.39	0.36	29				LF	131.54 0.42	5				291.65 0.7	
44		(LF)	3-Some strength loss	2-Replace unit					MH	21.39	0.36	29				LF	131.54 0.42	5				291.65 0.7	
44		(LF)	4-Major strength loss	2-Replace unit					MH	21.39	0.36	29				LF	131.54 0.42	5				291.65 0.7	
44		(LF)	4-Major deterioration	2-Replace unit	NAL 1	20.54	0.00	24	MH	21.39	0.36	29					131.54 0.42	5				291.65 0.7	
44 44	220 R/C Sub Pile Cap/Ftg 225 Unpnt Stl Submd Pile		4-Analysis warranted 4-Major section loss	2-Replace unit	IVIH	20.51	0.28	21	MH	21.39 21.39	0.36	29				LF	131.54 0.42 131.54 0.42	5				291.65 0.7	
44 44	226 P/S Conc Submgd Pile	(EA)	4-Major section loss 4-Analysis warranted	2-Replace unit 2-Replace unit					MH	21.39	0.36	29				LF	131.54 0.42	5				291.65 0.7	
			4-Analysis warranted	2-Replace unit					MH	21.39	0.36	29				LF	131.54 0.42	F				291.65 0.7	
			3-Some strength loss	2-Replace unit					MH	21.39	0.36	29				LF	131.54 0.42	E				291.65 0.7	
44	228 Timb Submerged Pile	(EA)	4-Major strength loss	2-Replace unit					MH	21.39	0.36	29				LF	131.54 0.42	5			EA	291.65 0.7	76
44	229 P/S Conc Holl Sub Pi			2-Replace unit					MH	21.39	0.36	29				LF	131.54 0.42	5				291.65 0.7	
			4-Maj Deter	2-Replace unit	MH	22.54	0.10		MH	21.39	0.36	29				LF	131.54 0.42	5			EA	291.65 0.7	76
			4-Maj Deter	2-Replace unit	MH	17.07	N/A		MH	21.39	0.36	29				LF	131.54 0.42	5				291.65 0.7	
		(LF)	4-Adv Corros	2-Replace unit	MH	23.46	0.10		MH	21.39	0.36	29				LF	131.54 0.42	5				291.65 0.7	
441	387 P/S Fender/Dolphin	(LF) (LF)	4-Adv Corros	2-Replace unit	MH	17.41	0.21	12	MH MH	21.39	0.36	29	ſ			LF	131.54 0.42	5			EA	291.65 0.7	/6 -

Appendix D (Table D.1.) Summary of Detailed Analysis on FDOT Data (Basic Statistics and ANOVA); Bold indicate Different Means for Elements in
Same Action Subcategory (AS) Group)

			JU	ibcategory (As	s) Group)	r				1							r										
						MMS	ELEMENT UN	IIT COS	T (AN	MMS	AS# GRO	UP UNI	IT COST	AKBAR ELEMENT UN	IT COST	(ANOV	AKB/	AR AS# GRO	UP UN	ит со	DCP	ELEMENT UNIT CO	OST (AN	ODCF	AS# (GROUP	UNIT
						MM			# of	MM				Akbar							DCP		# of	DCP			#
۸ ۹ #	Elom#	Element	Units	Condition State	Action	S Unit	AVG.	сv	# ог Data	S Unit	AVG.	C.V.	# or Data		C.V.		Akbar	AVG.	C.V.	# ог Data		AVG. C.V.			AVG	G. C.V.	
								0.1.						AVG.	C.V.	Dala				Dala	Onic	AVG. C.V.	Date				
144		Timber Fender/Dolphi Other Fender/Dolphin	(LF)		2-Replace unit	ΜΗ	17.86	0.12	11	MH	21.39 21.39	0.36						131.54 131.54	0.42	5						65 0.76 65 0.76	
144		Other Fender/Dolphin			2-Replace unit 2-Replace unit					MH	21.39	0.36						131.54	0.42	5						65 0.76	
144			(SF)	,	2-Replace unit	мн	17.07	N/A	1	MH	21.39	0.36					LF	131.54		5				EA		65 0.76	
144			(LF)		2-Replace unit		11.01	11/7		MH	21.39	0.36					LF	131.54	0.42	5				EA		65 0.76	
144			(LF)	4-Adv Deter	2-Replace unit					MH	21.39	0.36					LF	131.54	0.42	5				EA		65 0.76	
144			(LF)		2-Replace unit					MH	21.39	0.36					LF	131.54	0.42	5						65 0.76	
144			(LF)		2-Replace unit					мн	21.39	0.36					LF	131.54	0.42	5						65 0.76	
144		Other Walls	(LF)		2-Replace unit					MH	21.39	0.36	29				LF	131.54	0.42	5						65 0.76	
144	478	MSE Walls	(LF)	4-Maj Deter	2-Replace unit					MH	21.39	0.36	29				LF	131.54	0.42	5				EA	291.0	65 0.76	ذ
144			(EA)		2-Replace unit					MH	21.39	0.36	29				LF	131.54	0.42	5				EA	2011	65 0.76	5
145			(LF)		2-Replace unit																			LF	264.4		
145			(LF)		2-Replace unit																			LF			
145			(LF)		2-Replace unit								L											LF	264.4		
145 146			(LF)		2-Replace unit								<u> </u>				F 4	40.005.04	0.50	440				LF	264.4	42 73 0.19	
146			(EA)		2-Replace unit								<u> </u>				EA	12,935.61	0.58	112				SY		73 0.19	
146		R/Conc Appr Slab	(EA)	4-Broken/Unstable 3-Major cracks/spalls	1-Replace unit 2-Replace unit	+				+							EA	12,935.61 12,935.61	0.58	112				SY		73 0.19	
140		R/Conc Approach Slab		4-Broken/Unstable	1-Replace unit								<u> </u>				EΑ	12,935.61	0.58	112				SY		73 0.19	
140			(LF)		2-Replace unit					LF	16.39		1					12,000.01	0.00	112				EA		89 1.07	
151			(LF)		2-Replace unit					LF	16.39		1			-	1							EA		89 1.07	
151			(EA)		2-Replace unit					EA	40.81	1.41	3				1							EA	739.8		
151			(EA)	5-Sect Loss	2-Replace unit					EA	40.81	1.41	3											EA	739.8	89 1.07	7 .
151			(EA)		2-Replace unit					EA	40.81	1.41	3				1							EA	739.8	89 1.07	7 1
151			(EA)	4-Maj Deter	2-Replace unit					EA	40.81	1.41	3											EA		89 1.07	
151			(EA)		2-Replace unit					EA	40.81	1.41	3											EA	739.8	89 1.07	/ 1
201		Unp Conc Deck/AC Ovl			2-Replac substrate and					SF	37.80	0.34	4														
201		Unp Conc Deck/AC Ovl			2-Repair substrate and					SF	37.80	0.34	4														
201		Unp Conc Deck/AC Ovl			1-Repair substrate and					SF	37.80	0.34	4														
201		P Conc Deck/AC Ovly		3-2 to 10% distress	2-Replace overlay					SF	37.80	0.34	4														_
201		P Conc Deck/AC Ovly			2-Replace overlay+prot					SF	37.80 37.80	0.34	4														-
201		P Conc Deck/AC Ovly P Conc Deck/Thin Ovl			1-Replace overlay+prot					SF	37.80	0.34	4														-
201		P Conc Deck/Thin Ovl			2-Replace overlay 1-Replace overlay					SF	37.80	0.34	4				-									_	-
201		P Conc Deck/Rigid Ov			2-Replace overlay					SF	37.80	0.34	4														-
201		P Conc Deck/Rigid Ov			1-Replace overlay					SF	37.80	0.34															+
201		Conc Deck/Cathodic		4-10-25% distress	1-Repair spalled areas					SF	37.80	0.34															+
201		Unp Conc Slab/AC Ovl			2-Repair substrate & r					SF	37.80	0.34	4														+
201	39	Unp Conc Slab/AC Ovl	(SF)	4-10-25% distress	2-Repair substrate and					SF	37.80	0.34	4														
201		Unp Conc Slab/AC Ovl			1-Repair substrate and					SF	37.80	0.34	4														
201		P Conc Slab/AC Ovly		3-2-10% distress	2-Replace overlay					SF	37.80	0.34	4														
201		P Conc Slab/AC Ovly			2-Replace overlay and					SF	37.80	0.34	4														
201	40	P Conc Slab/AC Ovly	(SF)		1-Replace overlay and					SF	37.80	0.34	4														
201	44	P Conc Slab/Thin Ovl P Conc Slab/Thin Ovl	(SF)		2-Replace overlay					SF SF	37.80	0.34	4														_
201		P Conc Slab/Rigid Ov			1-Replace overlay					SF	37.80 37.80	0.34	4														_
201		P Conc Slab/Rigid Ov		5-Distress over 25%	2-Replace overlay 1-Replace overlay	+				SF	37.80	0.34												-			+
201		Conc Deck on PC Pane		1-No Damage	1-Replace overlay 1-Protective Coating					SF	37.80	0.34					-									—	+
201			(EA)		2-Seal Cracks					SF	37.80	0.34					 							+			+
201			(EA)		1-Place overlay					SF	37.80	0.34															+
201		R/Conc Approach Slab			2-Seal Cracks					SF	37.80	0.34					1										+
201		R/Conc Approach Slab			1-Place overlay					SF	37.80	0.34															+
202	28	Steel Deck/Open Grid	(SF)	3-Rust formation	2-Rehab connectors					MH	23.49	0.21	7											EA	979.5	56 0.87	/
202	28	Steel Deck/Open Grid	(SF)	4-Moderate corrosion	2-Rehab connectors					MH	23.49	0.21	7											EA	979.5	56 0.87	1
202		Steel Deck/Open Grid			1-Rehab connectors+rep					MH	23.49	0.21	7													56 0.87	
202		Steel Deck/Conc Grid			2-Rehab connectors+con					MH	23.49	0.21	7													56 0.87	
202		Steel Deck/Conc Grid			2-Rehab connectors+con					MH	23.49	0.21	7													56 0.87	
202		Steel Deck/Conc Grid			1-Rehab connectors+con					MH	23.49	0.21	7											EA		56 0.87	
202		Corrug/Orthotpc Deck		3-Rust formation	2-Repair potholes and	$ \rightarrow $				MH MH	23.49	0.21	7								I					56 0.87	
202 202		Corrug/Orthotpc Deck			2-Replace paint system	+				MH	23.49 23.49	0.21														56 0.87 56 0.87	
202			(SF) (LF)		1-Rehab/replace paint 1-Rehab unit					MH	23.49	0.21	7											EA		56 0.87	
202			(LF)	5-Section loss	1-Renad unit 1-Maior rehab unit					MH	23.49	0.21	7				-							EA		56 0.87	
202			(LF)		1-Rehab unit					MH	23.49	0.21	7											EA		56 0.87	
202			(LF)	5-Section loss	1-Renab unit 1-Major rehab unit					MH	23.49	0.21	7			-	1							EA		56 0.87	
202			(LF)		1-Rehab unit					MH	23.49	0.21	7				+							EA		56 0.87	
202			(LF)	5-Section loss	1-Major rehab unit					MH	23.49	0.21	7				1							EA		56 0.87	
202			(LF)		1-Rehab unit					MH	23.49	0.21	7				1							EA		56 0.87	
202			(LF)	5-Section loss	1-Major rehab unit					MH	23.49	0.21	7				1							EA		56 0.87	
202			(LF)	4-Major section loss	1-Rehab unit					MH	23.49	0.21	7				1							EA	979.	56 0.87	7
202	126		(LF)	5-Section loss	1-Major rehab unit					MH	23.49	0.21	7	1		1										56 0.87	
202	130	Unpnt Stl Deck Truss	(LF)	4-Major section loss	1-Rehab unit					MH	23.49	0.21	7											EA	979.5	56 0.87	1

				bcategory (AS		ailed Analysis on FDOT Data (Basic Statistics and ANOVA); Bold indicate Different I										Means for Elements in												
							ELEMENT UN		T (AN	MMS	AS# GRO	UP UN	IT COST	ТАКВ	BAR ELEMENT UNI	T COST	(ANOV	АКВА	R AS# GRC	DUP UN	т со	DCP ELEME	NT UNIT COST (A		CP A	S# GF	ROUP	UNIT
AS# E	Elem#	Element	Units	Condition State	Action	S Unit	AVG.	C.V.	# of Data		AVG.	C.V.		f Akba Unit		C.V.		Akbar Unit	AVG.	C.V.		DCP Unit AVG.	# o C.V. Dai		CP hit	AVG.	C.V.	# 0 /. Dat
202			(LF)		1-Major rehab unit					MH	23.49	0.21	7	7												979.56		
202			(LF) (LF)	4-Major section loss 5-Section loss	1-Rehab unit 1-Maior rehab unit					MH MH	23.49 23.49	0.21	7	7												979.56 979.56		
202			(LF)	4-Major section loss	1-Rehab unit					MH	23.49	0.21	7	,												979.56		
202			(LF)	5-Section loss	1-Major rehab unit					MH	23.49	0.21	7	7												979.56		
202		1 0	(EA)	4-Major section loss	1-Rehab unit					MH	23.49	0.21	7	7												979.56	-	
202			(EA)	5-Section loss	1-Major rehab unit					MH MH	23.49	0.21	7	,												979.56		
202 202			(EA) (EA)	4-Major section loss 5-Section loss	1-Rehab unit 1-Maior rehab unit					MH	23.49 23.49	0.21	7	,												979.56 979.56		
202			(EA)	4-Major section loss	1-Rehab Unit					MH	23.49	0.21	7	,												979.56		
202			(LF)	4-Major section loss	1-Rehab unit					MH	23.49	0.21	7	7												979.56		
202			(LF)	5-Section loss	1-Major rehab unit					MH	23.49	0.21	7													979.56		
202			(LF)	2-Minor corrosion	1-Rehab unit					MH MH	23.49	0.21	7	,												979.56		
202 202			(LF) (LF)	3-Moderate corrosion 4-Major corrosion	1-Rehab unit 1-Rehab unit					MH	23.49 23.49	0.21	7	,	-											979.56 979.56		
202			(EA)	4-Maj Deter	1-Rehabilitate unit					MH	23.49	0.21	7	,												979.56		
202		Pile Jacket/Cath Pro	(EA)	4-Maj Deter	1-Rehabilitate unit	1				MH	23.49	0.21	7	7												979.56		
202			(LF)	4-Section loss	1-Rehab unit					MH	23.49	0.21	7													979.56		
202 202			(LF) (LF)	4-Active corrosion 5-Analysis warranted	1-Rehab unit 1-Rehab unit	1				MH MH	23.49 23.49	0.21	7													979.56 979.56		
202			(LF)	4-Adv Corros	1-Rehabilitate unit					MH	23.49	0.21	7	,												979.56		
202			(SF)	4-Adv Corros	1-Rehabilitate unit					MH	23.49	0.21	7	,	-											979.56		
202	398	B Drain. Syst Other	(EA)	4-Maj Deter	1-Rehabilitate unit					MH	23.49	0.21	7	7										_		979.56		
202			(LF)	4-Adv Corros	1-Rehabilitate unit					MH	23.49	0.21	7	7												979.56		
202 202			(LF) (LF)	5-Sect Loss	1-Rehabilitate unit					MH MH	23.49 23.49	0.21	7	,												979.56		
202			(LF) (EA)	5-Sect Loss 4-Adv Corros	1-Rehabilitate unit 1-Rehabilitate unit					MH	23.49	0.21	7	,										_		979.56		
202			(EA)	5-Sect Loss	1-Rehabilitate unit					MH	23.49	0.21	7	,												979.56		
202			(EA)	5-Sect Loss	1-Rehabilitate unit					MH	23.49	0.21	7	7										E.	A 9	979.56	0.8	7
202			(EA)	2-Min Deter	1-Rehabilitate unit					MH	23.49	0.21	7	7												979.56		
202 202		•	(EA)	3-Mod Deter	1-Rehabilitate unit					MH MH	23.49 23.49	0.21	7	,												979.56 979.56		
202			(EA) (LF)	4-Maj Deter 4-Analysis warranted	1-Rehabilitate unit 1-Rehab unit	-				MH	23.49	0.21	2	>											.F 6	19.50	0.8	5
203			(LF)	4-Analysis warranted	1-Rehab unit					MH	22.36	0.09	2	>												682.14	0.1	5
203			(LF)	4-Analysis warranted	1-Rehab unit					MH	22.36	0.09	2	2										_		682.14		
203			(LF)	4-Analysis warranted	1-Rehab unit					MH	22.36	0.09	2	2												82.14		-
203 203			(LF) (LF)	4-Analysis warranted 4-Analysis warranted	1-Rehab unit 1-Rehab unit					MH MH	22.36 22.36	0.09	2	2												682.14 682.14		
203			(LF) (LF)	4-Analysis warranted	1-Rehab unit					MH	22.30	0.09	2	>												62.14 682.14		
203			(LF)	4-Analysis warranted	1-Rehab unit					MH	22.36	0.09	2	2												682.14		
203			(LF)	4-Analysis warranted	1-Rehab unit					MH	22.36	0.09	2	2												682.14	0.1/	5
203			(LF)	4-Analysis warranted	1-Rehab unit					MH	22.36	0.09	2	2												82.14		
203 203			(EA) (EA)	4-Analysis warranted	1-Rehab unit					MH MH	22.36 22.36	0.09	2	2												300.00 300.00		-
203			(EA) (EA)	4-Analysis warranted 4-Adv Corros	1-Rehab unit 1-Rehabilitate unit					MH	22.30	0.09	2	>												300.00		-
203			(LF)	4-Analysis warranted	1-Rehab unit					MH	22.36	0.09	2	>												682.14		
203			(LF)	4-Analysis warranted	1-Rehab unit					MH	22.36	0.09	2	2										L	.F 6	682.14	0.1	5
203			(EA)	4-Analysis warranted	1-Rehab unit					MH	22.36	0.09	2	2												300.00		
203 203			(EA) (EA)	4-Analysis warranted 4-Analysis warranted	1-Rehab unit	1				MH MH	22.36 22.36	0.09	2													300.00 300.00		
203			(EA) (EA)	4-Adv Corros	1-Rehabilitate unit					MH	22.30	0.09	2	>											-	300.00		-
203			(LF)	4-Analysis warranted	1-Rehab unit					MH	22.36	0.09	2	>												582.14		
203			(LF)	4-Analysis warranted	1-Rehab unit					MH	22.36	0.09	2	2												682.14	0.1/	5
203			(LF)	2-Minor deterioration	1-Rehab unit					MH	22.36	0.09	2	2										_		82.14		
203			(LF)	3-Moderate deteriorati	1-Rehab unit					MH MH	22.36	0.09	2	2												82.14		
203 203			(LF) (LF)	4-Major deterioration 4-Analysis warranted	1-Rehab unit 1-Rehab unit	+				MH	22.36 22.36	0.09	2	-												682.14 682.14		
203			(LF)	4-Adv Corros	1-Rehabilitate unit	1				MH	22.36	0.09	2													682.14	-	-
203	388	R/Conc Fender/Dolphi	(LF)	4-Adv Corros	1-Rehabilitate unit					MH	22.36	0.09	2	2												682.14		-
203		R/Conc Abut Slope Pr	(SF)		1-Rehabilitate unit				_	MH	22.36	0.09	2	2										L	.F 6	682.14	0.1	5
203		5 R/Conc Walls	(LF)	4-Adv Deter 4-Adv Corros	1-Rehabilitate unit	1				MH	22.36	0.09	2													682.14 300.00		
					1-Rehabilitate unit 1-Rehabilitate unit					MH	22.36		2	>	-											300.00 300.00		
					1-Rehabilitate unit					MH			2	2												300.00		
204	31	Timber Deck	(SF)	2-Minor decay	1-Rehab and/or protect	1								1				LF		0.47	6			L	.F	20.69	1	1
204					1-Rehab deck													LF		0.47	6					20.69		
204		2 Timber Deck/AC Ovly 2 Timber Deck/AC Ovly			2-Rehab and/or protect									1	_			LF LF		0.47	6					20.69		
204 204					1-Rehab deck+repair/re 1-Rehab and/or protect	1	<u> </u>			+				1						0.47	6					20.69 20.69		+
204					1-Rehab deck									1	-			LF		0.47	6					20.69		+
204	55	Timber Slab/AC Ovly	(SF)	2-Minor deterioration	2-Rehab and/or protect	1								1				LF	23.01	0.47	6			L	.F	20.69)	+
204					1-Rehab deck and surfa	1								1				LF		0.47	6					20.69		+

				bcategory (A	5) Group)	r											1				-			1		
						MMS	ELEMENT U	NIT COST	r (ANG	MMS A	S# GRO	UP UNI	T COST	AKBAR ELEMENT	UNIT C	COST (A	NOVAK	BAR AS# G	ROUP	UNIT	:0:D	CP ELEMENT	UNIT COST (ANC	DCP	AS# GROL	JP UNIT C
AS# E	Elem#	Element	Units	Condition State	Action	S Unit	AVG.	C.V.	# of Data	S Unit	AVG.	C.V.	# of Data	Akbar Unit AV	/G.	C.V.	# of Akb Data Unit		G. C.		of D ata U	CP iit AVG.	# of C.V. Data	DCP Unit	AVG. C.	# of .V. Data
204	111	Timber Open Girder	(LF)	2-Minor decay	1-Rehab &/or protect u		-	-		LF	46.26	1.07	2		-	-	LF	23.			6	-	-	LF	20.69	1
204			(LF)	3-Some strength loss	1-Rehab unit					LF	46.26	1.07	2				LF				6			LF	20.69	1
204			(LF)	4-Major strength loss	1-Rehab unit					LF	46.26	1.07	2				LF	-			6			LF	20.69	1
204		Timber Stringer	(LF)	2-Minor decay	1-Rehab &/or protect u					LF	46.26	1.07	2				LF				6			LF	20.69	1
204 204		Timber Stringer Timber Stringer	(LF) (LF)	3-Some strength loss 4-Major strength loss	1-Rehab unit 1-Rehab unit					LF	46.26 46.26	1.07	2				LF				6				20.69 20.69	1
204			(LF)	2-Minor decay	1-Rehab &/or protect u					LF	46.26	1.07	2				LF				6				20.69	- 1
204			(LF)	3-Some strength loss	1-Rehab unit					LF	46.26	1.07	2				LF				6			LF	20.69	- 1
204			(LF)	4-Major strength loss	1-Rehab unit					LF	46.26	1.07	2				LF				6			LF	20.69	1
204			(LF)	2-Minor decay	1-Rehab &/or protect u					LF	46.26	1.07	2				LF		01 0.	47	6			LF	20.69	1
204			(LF)	3-Some strength loss	1-Rehab unit					LF	46.26	1.07	2				LF				6			LF	20.69	1
204			(LF)	4-Major strength loss	1-Rehab unit					LF	46.26	1.07	2				LF				6			LF	20.69	1
204 204			(EA)	2-Minor decay	1-Rehab &/or protect u					MH MH	24.35	0.71	13				LF	-			6			LF	20.69 20.69	1
204			(EA) (EA)	3-Some strength loss 4-Major strength loss	1-Rehab unit 1-Rehab unit					MH	24.35 24.35	0.71	13				LF				6				20.69	1
204		Timber Abutment	(LF)	2-Minor decay	1-Rehab &/or protect u					LF	46.26	1.07	2		-		LF				6			LF	20.69	1
204		Timber Abutment	(LF)	3-Some strength loss	1-Rehab unit					LF	46.26	1.07	2				LF				6			LF	20.69	1
204			(LF)	4-Major strength loss	1-Rehab unit					LF	46.26	1.07	2	1			LF				6			LF	20.69	1
204			(EA)	2-Minor decay	1-Rehab &/or protect u					MH	24.35	0.71	13				LF				6			LF	20.69	1
204			(EA)	3-Some strength loss	1-Rehab unit					MH	24.35	0.71	13				LF				6			LF	20.69	1
204			(EA)	4-Major strength loss	1-Rehab unit					MH	24.35	0.71	13				LF	-			6			LF	20.69	1
204 204		Timber Cap	(LF) (LF)	2-Minor decay 3-Some strength loss	1-Rehab &/or protect u 1-Rehab unit						46.26 46.26	1.07	2								6				20.69 20.69	
204			(LF)	4-Major strength loss	1-Rehab unit					LF	46.26	1.07	2				LF				6			LF	20.69	
204			(LF)	2-Minor decay	1-Rehab unit					LF	46.26	1.07	2				LF				6	-		LF	20.69	1
204	242		(LF)		1-Rehab unit					LF	46.26	1.07	2				LF			47	6			LF	20.69	1
204	242		(LF)	4-Major deterioration	1-Rehab unit					LF	46.26	1.07	2				LF		01 0.	47	6			LF	20.69	1
204			(LF)	2-Minor decay	1-Rehab and/or apply s					LF	46.26	1.07	2				LF				6			LF	20.69	1
204			(LF)	2-Min Defect	1-Rehab and/or protect					LF	46.26	1.07	2				LF				6			LF	20.69	1
204 204			(LF) (LF)	3-Minor Loss 3-Minor Loss	1-Rehabilitate unit					LF LF	46.26 46.26	1.07	2				LF				6				20.69 20.69	1
204			(LF)	4-Adv Deter	2-Replace unit 1-Rehabilitate unit					LF IF	46.26	1.07	2				LF				6				20.69	
204			(SF)	2-Min Defect	1-Rehab and/or protect					MH	24.35	0.71	13				LF				6			LF	20.69	1
204			(SF)	3-Minor Loss	1-Rehabilitate unit					MH	24.35	0.71	13				LF				6			LF	20.69	1
204	395	Timber Abut Slope Pr	(SF)	4-Adv Deter	1-Rehabilitate unit					MH	24.35	0.71	13				LF	23.	01 0.	47	6			LF	20.69	1
204			(LF)	2-Min Defect	1-Rehab and/or Protect					LF	46.26	1.07	2				LF	-			6			LF	20.69	1
204			(LF)	3-Minor Loss	1-Rehabilitate unit					LF	46.26	1.07	2				LF				6			LF	20.69	1
204			(LF)	4-Adv Deter	1-Rehabilitate unit					LF	46.26	1.07	2				LF	23.	01 0.	47	6			LF	20.69	1
205 205			(LF) (LF)	2-Minor deterioration 3-Moderate deteriorati	1-Rehab unit 1-Rehab unit																					
205		Other Arch	(LF)	4-Major deterioration	1-Rehab unit														_							
205			(LF)	2-Minor deterioration	1-Rehab unit																					
205			(LF)	3-Moderate deteriorati	1-Rehab unit																					
205			(LF)	4-Major deterioration	1-Rehab unit																					
205			(LF)	2-Minor deterioration	1-Rehab unit																					
205			(LF)	3-Moderate deteriorati	1-Rehab unit																					
205 205		Other Mtl Abutment Misc Culvert	(LF) (LF)	4-Major deterioration 2-Minor deterioration	1-Rehab unit																					
205			(LF)	3-Moderate deteriorati	1-Rehab unit														_	_						
205			(LF)	4-Major deterioration	1-Rehab unit																					
205			(LF)	2-Minor cracks/spalls	1-Rehab unit														_	_						
205	333	Other Bridge Railing	(LF)	3-Major deterioration	1-Rehab unit																					
205			(LF)	2-Min Deter	1-Rehabilitate unit																					
205			(LF)	3-Mod Deter	1-Rehabilitate unit																					
205 205			(LF)	4-Maj Deter 2-Min Deter	1-Rehabilitate unit														_							
205		Other Walls Other Walls	(LF) (LF)	3-Mod Deter	1-Rehabilitate unit 1-Rehabilitate unit																					
205			(LF)	4-Maj Deter	1-Rehabilitate unit														-	-	_					
206		MSE Walls	(LF)	2-Min Deter	1-Rehabilitate unit																-					
206		MSE Walls	(LF)	3-Mod Deter	1-Rehabilitate unit									1												_
206			(LF)	4-Maj Deter	1-Rehabilitate unit																					
211	301	Pourable Joint Seal	(LF)	3-Leakage problems	1-Clean joint; patch s	LF	7.92	0.78	463	LF	8.11	0.77	564											LF	18.74 0	.73 13
211			(LF)	2-Minor deterioration	1-Rehab unit	LF	8.91	0.85	46	LF	8.11	0.77	564											LF	18.74 0	
211	303	Assembly Joint/Seal	(LF)	3-Advanced corrosion	1-Rehab unit	LF	8.91	0.85	46	LF	8.11	0.77	564											LF	18.74 0	.73 13
211	304	Open Expansion Joint	(LF)	2-Minor deterioration	1-Rehab unit	LF	9.36	0.76	61	LF	8.11	0.77	564											LF	18.74 0	
211	304	Open Expansion Joint	(LF)	3-Advanced corrosion	1-Rehab unit	LF	9.36	0.76	61	LF	8.11	0.77	564											LF	18.74 0	.73 13
211			(LF)	2-Min Deter	1-Rehabilitate unit					LF	8.11	0.77	564											LF	18.74 0	.73 13
211	399	Other Expansion Join	(LF)	3-Maj Deter	1-Rehabilitate unit					LF	8.11	0.77	564											LF	18.74 0	.73 13
213	310	Elastomeric Bearing	(EÁ)	2-Minor deterioration	1-Reset bearings	MH	24.68	0.28	34	MH	23.61	0.31	60				E/			17	2					
213			(EA)	3-Major deterioration	1-Reset bearings	MH	24.68	0.28		MH	23.61	0.31	60				E/		31 1.		2					
213	211	Moveable Bearing	(EA)	3-Advanced corrosion	1-Rehab supports	MH	23.43	0.36	39	MH	23.61	0.31	60				EA	3,453.	31 1.	17	2			1 T		

			ble D.1.) Sur bcategory (A	nmary of Deta S) Group)	ailed	Analy:	sis on	FD	от	Data	(Bas	sic S	Stat	tistics and	ANOV	/A);	Bold in	dicat	e D	oiffe	erent Me	ans	for E	Eler	nen	ts	in
					MMS	ELEMENT	JNIT COST	(ANC	MMS	AS# GRC		r cost	АКВ	AR ELEMENT UNI	T COST (AN		BAR AS# GR	DUP UN	пт со	DCP	ELEMENT UN	IT COS	T (ANO	DCP	AS# G	ROU	P UNIT C
	Elem# Element	Units	Condition State	Action	MIM S Unit	AVG.	C.V.			AVG.	C. V.		Akbar Unit	AVG.		# of Ak Data Un		C.V.	# oi Data		AVG.	C. V.	# of Data	DCP Unit	AVG	. C.	# of V. Data
213	312 Enclosed Bearing 312 Enclosed Bearing	(EA)	2-Minor deterioration	1-Rehab unit					MH MH	23.61	0.31	60 60				E			2	2							
213 213	313 Fixed Bearing	(EA) (EA)	3-Bearing failures 2-Minor deterioration	1-Rehab unit 1-Clean and paint or r	мн	23.08	0.39	25	MH	23.61 23.61	0.31	60				E				2							
213	313 Fixed Bearing	(EA)	3-Advanced corrosion	1-Rehab supports or be	MH	23.08	0.39			23.61	0.31	60							- 2	>							
213	314 Pot Bearing	(EA)	2-Minor deterioration	1-Rehab supports or be					MH	23.61	0.31	60				E			2	2							
213	314 Pot Bearing	(EA)	3-Advanced corrosion	1-Rehab bearing device					MH	23.61	0.31	60				E	A 3,453.31	1.17	2	2							-
213	315 Disk Bearing	(EA)	2-Minor deterioration	1-Rehab supports or be					MH	23.61	0.31	60				E	A 3,453.31		2	2							
213	315 Disk Bearing	(EA)	3-Advanced corrosion	1-Rehab bearing device					MH	23.61	0.31	60				E	A 3,453.31	1.17	2	2							
221 221	396 Other Abut Slope Pro	(SF)	2-Min Deter	1-Rehab and/or Protect	er.	20.70	0.86	-	SF SF	84.56	0.94	7												SY	28.9	7 0.3	35 11
221	396 Other Abut Slope Pro 396 Other Abut Slope Pro	(SF) (SF)	3-Mod Deter 4-Maj Deter	1-Rehabilitate unit 1-Rehabilitate unit	SF	38.78 38.78	0.86	3	SF	84.56 84.56	0.94	7												SY		7 0.: 7 0.:	
222	290 Channel	(EA)	2-Min Deter	1-Rep. Banks/Prot	MH	16.91	0.43	377	-	12.93	1.13	95								-				51	20.3	0.	5 11
222	290 Channel	(EA)	3-Mod Deter	1-Rep. Banks/Prot	MH	16.91	0.43		SY	12.93	1.13	95								-							
222	290 Channel	· /	3-Mod Deter	2-Countermeasures	MH	16.91	0.43			12.93	1.13	95															
222	290 Channel	(EA) (EA)	4-Maj Deter	2-Countermeasures	MH	16.91	0.43			12.93	1.13	95 95						+ +		1		+		\vdash			
222	397 Drain. Syst Metal	(EA)	5-Sect Loss	1-Countermeasures 1-Rehabilitate unit	IVIT	10.01	0.40	5/1	MH	83.93	1.13	95 30		+ +				+ +		+	1	<u> </u>	-	\vdash		-	
231	540 Open Gearing	(EA)	3-Mod Deter	1-Rehabilitate unit	MH	29.11	0.33	19	MH	27.46	0.31	30		+						1		<u> </u>		\vdash		+	
231	541 Speed Reducers	(EA)	3-Mod Deter	1-Rehabilitate unit	MH	29.11	0.33	19	MH	27.46	0.31	30								1		-				1	-
231	542 Shafts	(EA)	3-Mod Deter	1-Rehabilitate unit	MH	29.05	0.32		MH	27.46	0.31	30															
231	543 Shaft Brgs and Coupl	(EA)	3-Mod Deter	1-Rehabilitate unit	MH	29.05	0.32			27.46	0.31	30										\perp					
231	544 Brakes	(EA)	3-Mod Deter	1-Rehabilitate unit	MH	28.99	0.34	18	MH	27.46	0.31	30															
231 231	544 Brakes 545 Emergency Drive	(EA) (EA)	4-Maj Deter 3-Mod Deter	1-Rehabilitate unit 1-Rehabilitate System	мн	27.52	0.33	19	MH MH	27.46 27.46	0.31	30 30								1			-			-	
231	546 Span Drive Motors	(EA)	3-Mod Deter	1-Rehabilitate system	MH	27.52	0.33			27.46	0.31	30														-	
231	547 Hydraulic Power Unit	(EA)	3-Mod Deter	1-Rehabilitate unit	MH	28.39	0.33		MH	27.40	0.31	30															
231	548 Hydraulic Piping Sys	(EA)	3-Maj Deter	1-Rehabilitate unit	MH	28.39	0.29		MH	27.46	0.31	30					-										
231	549 Hydraulic Cylinders	(EA)	3-Mod Deter	1-Rehabilitate unit	MH	28.39	0.29	8	MH	27.46	0.31	30															-
231	550 Hopkins Frame	(EA)	5-Sect Loss	1-Rehabilitate unit	MH	32.20	0.41		MH	27.46	0.31	30															
231	560 Locks	(EA)	3-Mod Deter	1-Rehabilitate unit	MH	28.68	0.32			27.46	0.31	30															
231	561 Live Load Shoes	(EA)	3-Maj Deter	1-Rehabilitate unit	MH	28.68	0.32		MH	27.46	0.31	30															
231 231	562 Counterweight Suppor 563 Acc Ladd & Plat	(EA) (EA)	5-Sect Loss 5-Sect Loss	1-Rehabilitate unit	MH	31.59 28.24	0.25			27.46 27.46	0.31	30 30															
231	565 Trun/Str and Cur Trk	(EA)	3-Mod Deter	1-Rehabilitate unit 1-Rehabilitate unit	MH	28.68	0.33			27.46	0.31	30														-	
231	570 Transformers	(EA)	3-Mai Deter	1-Rehabilitate unit	MH	28.88	0.33		MH	27.46	0.31	30															
231		each	2-Min Deter	1-Rehabilitate unit	MH	28.55	0.33			27.46	0.31	30															
231	571 Submarine Cable	each	3-Maj Deter	1-Rehabilitate unit					MH	27.46	0.31	30															-
231	572 Conduit & Junc. Box	(EA)	2-Min Deter	1-Rehabilitate unit	MH	28.68	0.32	21	MH	27.46	0.31	30															
231	572 Conduit & Junc. Box	(EA)	3-Maj Deter	1-Rehabilitate unit					MH	27.46	0.31	30															
231	573 PLCs	(EA)	3-Maj Deter	1-Rehabilitate unit	MH	28.82	0.30	10 20	MH	27.46	0.31	30 30															
231 231	574 Control Console 580 Navigational Lights	(EA) (EA)	3-Maj Deter 3-Maj Deter	1-Rehabilitate unit 1-Rehabilitate unit	MH	28.55 28.24	0.33			27.46 27.46	0.31	30															
231	581 Operator Facilities	(EA)	2-Mod Deter	1-Rehabilitate unit	MH	28.68	0.32		MH	27.46	0.31	30														-	
231	581 Operator Facilities	(EA)	3-Maj Deter	1-Rehabilitate unit		20.00	0.02	21	MH	27.46	0.31	30															
231	582 Lift Bridge Spec. Eq	(EA)	2-Mod Deter	2-Rehabilitate unit					MH	27.46	0.31	30															
231	582 Lift Bridge Spec. Eq	(EA)	3-Maj Deter	1-Rehabilitate unit					MH	27.46	0.31	30															
231	583 Swing Bridge Spec. E	(EA)	2-Mod Deter	2-Rehabilitate unit					MH	27.46	0.31	30															
231	583 Swing Bridge Spec. E	(EA)	3-Maj Deter	1-Rehabilitate unit		20.01	0.07		MH	27.46	0.31	30						<u> </u>		1		<u> </u>		[
231 231	590 Resistance Barriers 590 Resistance Barriers	(EA) (EA)	2-Mod Deter 3-Maj Deter	2-Rehabilitate unit	MH	26.61	0.27	5	MH MH	27.46 27.46	0.31	30 30		<u> </u>						-		<u> </u>		\vdash		-	
231	590 Resistance Barriers 591 Warning Gates	(EA) (EA)	2-Mod Deter	1-Rehabilitate unit 2-Rehabilitate unit	МН	28.68	0.32	21	MH	27.46	0.31	30						+ +		1		+	-	\vdash		-	
231	591 Warning Gates	(EA)	3-Maj Deter	1-Rehabilitate unit		20.00	5.02	- '	MH	27.40	0.31	30		+ +						1				\vdash		-	
231	592 Traffic Signals	(EA)	2-Mod Deter	2-Rehabilitate unit	MH	28.55	0.33	20	MH	27.46	0.31	30								1		-				1	-
231	592 Traffic Signals	(EA)	3-Maj Deter	1-Rehabilitate unit					MH	27.46	0.31	30															
243		(EA)	4-Analysis warranted	1-Rehab unit and coat																							
243	147 Misc Cable Coated	(EA)	4-Active corrosion	1-Rehab unit and repla	_																						
243	147 Misc Cable Coated	(EA)	5-Analysis warranted	1-Rehab unit and repla					SE	12.04	0.50	24					V 406.00	0.27	10	-		<u> </u>		\vdash		-	_
246 246	320 P/S Conc Appr Slab 321 R/Conc Approach Slab	(EA)	2-Minor cracks/spalls 2-Cracks/spalls	1-Perform mudjacking o 1-Perform mudjacking o	SF	11.60	0.61	21	SF SF	12.91 12.91	0.59	24 24				C		0.27 0.27	18	2							_
301	13 Unp Conc Deck/AC Ovl			1-Perform mudjacking o 1-Repair potholes and	SF	19.07	0.61	21	SF	74.08	1.20	24 14				S			10	1—		<u> </u>	-			-	+
301	13 Unp Conc Deck/AC Ovl			1-Repair potholes and	SF	19.07	0.73	2	SF	74.08	1.20	14				s	Y 43.46	s	1	1		<u> </u>		\vdash		-	
301	13 Unp Conc Deck/AC Ovl	(SF)	4-10-25% distress	1-Repair potholes and	SF	19.07	0.73	2	SF	74.08	1.20	14				S			1			1					-
301	14 P Conc Deck/AC Ovly			1-Repair potholes					SF	74.08	1.20	14					Y 43.46		1								
301	14 P Conc Deck/AC Ovly			1-Repair potholes					SF	74.08	1.20	14					Y 43.46		1			<u> </u>			-		
301	14 P Conc Deck/AC Ovly			1-Patch potholes					SF	74.08		14					Y 43.46		1			<u> </u>	<u> </u>				
301 301	39 Unp Conc Slab/AC Ovl			1-Repair potholes and					SF SF	74.08 74.08		14				S			1			<u> </u>		\vdash			
301	39 Unp Conc Slab/AC Ovl 39 Unp Conc Slab/AC Ovl			1-Repair potholes and 1-Repair potholes and					SF SF	74.08 74.08		14					Y 43.46 Y 43.46		1				-	\vdash		-	
301	40 P Conc Slab/AC Ovly			1-Repair potholes and 1-Repair potholes					SF	74.08	1.20	14					Y 43.46 Y 43.46		1	-				\vdash		-	
301	40 P Conc Slab/AC Ovly			1-Repair potholes					SF	74.08	1.20	14					Y 43.46		1				-			-	
301	40 P Conc Slab/AC Ovly	(SF)	4-10-25% distress	1-Patch potholes					SF	74.08	1.20	14					Y 43.46		1	1		-				1	-
301	98 Conc Deck on PC Pane			2-Repair and Protect 2-Repair & Protect	SF	158.66	N/A	1	SF	74.08	1.20	14					Y 43.46		1								
301	98 Conc Deck on PC Pane				SF	158.66	N/A		SF	74.08	1.20						Y 43.46										

			S) Group)	MANAC					C# CDC		TCOCT	AKBAR ELEMENT UN	TCOST							T COST			
				MM		UNIT COST		MM	3# GKC	JUP UN			11 6051										
# Elem# Element	Units	Condition State	Action	S Unit	AVG.	C.V.	# of Data		AVG.	C.V.	# of Data	Akbar Unit AVG.	C.V.	# of Data	Akbar Unit AVC	G. C.V.		DCP Unit	AVG.		♯ of Data	DCP Unit AVG. C.V.	
01 98 Conc Deck on PC Pane	(SF)	5-Distress over 25 %	1-Repair & Protect	SF	158.66	N/A	1	SF	74.08	1.20	14				SY 43.4		1						-
01 99 PS Conc Slab	(SF)	3-Dist 2-10%	2-Repair and protect	SF	10.59	N/A	1	SF	74.08	1.20	14				SY 43.4		1						-
	(SF)	4-Dist 10-25%	2-Repair and protect	SF	10.59	N/A	1	SF	74.08	1.20	14				SY 43.4		1						
	(SF)	5-Dist >25%	1-Repair and protect	SF	10.59	N/A	1	SF	74.08	1.20	14				SY 43.4	6	1						
	(SF)	4-Moderate corrosion	1-Spot blast, clean an					SF	28.62	0.49	6												
	(SF)	4-Failed connectors	1-Spot blast, clean an					SF	28.62	0.49	6												_
	(SF)	4-Moderate deteriorati	1-Spot blast,clean,pai	_				SF LF	28.62		6												_
	(LF) (LF)	2-Minor corrosion 3-Some section loss	1-Clean & paint	_				LF	18.63 18.63	0.60	6												+
	(LF) (LF)	2-Paint distress	1-Clean & paint 2-Clean & paint	IF	35.03	N/A	1	LF	18.63	0.60	6							-					+
	(LF)	3-Rust formation	1-Spot blast, clean &	IF	35.03	N/A	1	LF	18.63	0.60	6							-					+-
	(LF)	4-Active corrosion	1-Spot blast, clean &	LF	35.03	N/A	1	LF	18.63	0.60	6							-					+
	(LF)	2-Minor corrosion	1-Clean & paint		00.00			LF	18.63		6												+
	(LF)	3-Some section loss	1-Clean & paint					LF	18.63		6												+
	(LF)	2-Paint distress	2-Surface clean and re	LF	21.84	0.31	2	LF	18.63	0.60	6												-
	(LF)	3-Rust formation	1-Spot blast,clean & p	LF	21.84	0.31	2	LF	18.63	0.60	6												-
	(LF)	4-Active corrosion	1-Spot blast, clean &	LF	21.84	0.31	2	LF	18.63	0.60	6												
	(LF)	2-Minor corrosion	1-Clean & paint					LF	18.63	0.60	6												
	(LF)	3-Some section loss	1-Clean & paint	1				LF	18.63	0.60	6												\perp
	(LF)	2-Paint distress	2-Clean & paint	LF	17.04	N/A	1	LF	18.63	0.60	6												_
	(LF)	3-Rust formation	1-Spot blast, clean &		17.04	N/A	1	LF	18.63	0.60	6					-		I					+
	(LF)	4-Active corrosion 2-Minor corrosion	1-Spot blast, clean &	LF	17.04	N/A	1	LF LF	18.63	0.60	6												_
	(LF) (LF)		1-Clean & paint	_				LF	18.63 18.63	0.60	6												+
	(LF) (LF)	3-Some section loss 2-Paint distress	1-Clean & paint	_				LF	18.63	0.60	6												+
	(LF) (LF)	3-Rust formation	2-Clean & paint 1-Spot blast, clean &	_				LF	18.63		0												+
	(LF)	4-Active corrosion	1-Spot blast, clean &	-				LF	18.63	0.60	6												+
	(LF)	2-Minor corrosion	1-Clean & paint					LF	18.63	0.60	6							-					+
	(LF)	3-Some section loss	1-Clean & paint					LF	18.63	0.60	6												+
	(LF)	2-Paint distress	2-Clean & paint					LF	18.63	0.60	6							-					+
	(LF)	3-Rust formation	1-Spot blast, clean &					LF	18.63	0.60	6					_							+
	(LF)	4-Active corrosion	1-Spot blast, clean &					LF	18.63	0.60	6												+
	(LF)	2-Minor corrosion	1-Clean & paint					LF	18.63	0.60	6												+
	(LF)	3-Some section loss	1-Clean & paint					LF	18.63	0.60	6												+
02 131 Paint Stl Deck Truss	(LF)	2-Paint distress	2-Clean & paint					LF	18.63	0.60	6												1
02 131 Paint Stl Deck Truss	(LF)	3-Rust formation	1-Spot blast, clean &					LF	18.63	0.60	6												
	(LF)	4-Active corrosion	1-Spot blast, clean &					LF	18.63	0.60	6												
	(LF)	2-Minor corrosion	1-Clean & paint					LF	18.63	0.60	6												
	(LF)	3-Some section loss	1-Clean & paint					LF	18.63		6												
	(LF)	2-Paint distress	2-Clean & paint					LF	18.63	0.60	6												
02 141 Paint Stl Arch	(LF)	3-Rust formation	1-Spot blast, clean &	_				LF	18.63	0.60	6												_
02 141 Paint Stl Arch	(LF)	4-Active corrosion	1-Spot blast, clean &					LF	18.63	0.60	6												_
	(EA) (EA)	2-Surface rust	1-Clean & coat					LF LF	18.63 18.63	0.60	6												_
	(EA) (LF)	3-Moderate deteriorati 2-Minor corrosion	1-Clean & coat	_					18.63	0.60	6												+
	(LF) (LF)	3-Some section loss	1-Clean & paint 1-Clean & paint	+				LF	18.63	0.60	9							+					+
	(LF)	2-Paint distress	2-Clean & paint	IF	21.84	0.31	2	LF	18.63	0.60	6							-					+
	(LF)	3-Rust formation	1-Spot blast, clean &	LF	21.84	0.31	2	LF	18.63	0.60	6							-					+
	(LF)	4-Active corrosion	1-Spot blast, clean &	LF	21.84	0.31	2	LF	18.63	0.60	6					-		1					+
	(EA)	2-Minor corrosion	1-Clean and paint					LF	18.63	0.60	6							1					+
02 160 Unpnt Stl Pin/Hanger	(EA)	3-Some section loss	1-Clean & paint					LF	18.63		6							1					+
02 161 Paint Stl Pin/Hanger	(EA)	2-Paint distress	2-Clean & paint	MH	22.82	N/A	1	LF	18.63	0.60	6							1					+
	(EA)	3-Rust formation	1-Spot blast, clean an					LF	18.63	0.60	6												
02 161 Paint Stl Pin/Hanger	(EA)	4-Active corrosion	1-Spot blast, clean an					LF	18.63	0.60	6												
02 201 Unpnt Stl Column	(EA)	2-Rust formation	1-Clean & paint					LF	18.63	0.60	6												
02 201 Unpnt Stl Column	(EA)	3-Some section loss	1-Clean & paint					LF	18.63	0.60	6												_
2 202 Paint Stl Column	(EA)	2-Paint distress	2-Clean & paint	МН	22.16	0.21	16	LF	18.63	0.60	6					-		I					+
	(EA)	3-Rust formation	1-Spot blast, clean &	+				LF	18.63	0.60	6					-	L	I					+
	(EA) (EA)	4-Active corrosion 2-Rust formation	1-Spot blast, clean & 1-Clean & paint	+				LF LF	18.63 18.63	0.60	6							I					+
	<u> </u>	3-Surface pitting		+				LE			0							<u> </u>					+
	· /	2-Rust formation	1-Clean & paint 1-Clean & paint	+				LF	18.63	0.60	6							+					+
		3-Some section loss	1-Clean & paint 1-Clean & paint	+				LF	18.63		6							1					+
		2-Paint distress	2-Clean & paint	+ +				LF	18.63		6							1					+
		3-Rust formation	1-Spot blast, clean &					LF	18.63		6					-		1					+
	(LF)	4-Active corrosion	1-Spot blast, clean &	+				LF	18.63		6							1					+
		2-Minor deterioration	1-Clean & paint					LF	18.63		6					-		1					+
			1-Clean and Restore Co					LF	18.63		6							1					+
		3-Rust prevalent	1-Clean and Restore Co					LF	18.63		6							1					+
02 386 Fender/Dolphin Uncoa		2-Surf Rust	1-Clean and paint					LF	18.63		6					-		1					+
		3-Minor Loss	1-Clean and paint	+ +				LF	18.63								1						+

_						MMS E	LEMENT	UNIT COST	T (AN		AS# GRC	UP UNI	T COST	АКВА	AR ELEMENT UNI	T COST	(ANOV	AKBA	R AS# GRC	OUP UNIT CO	DCP	ELEMENT UN	IT COST	(ANO	DCP AS# G	ROUP	P UNIT
2# E	lom#	Element	Units	Condition State	Action	S Unit			# of	fS			# of Data					Akbar			f DCP			# of	DCP		# V. Da
302			(SF)	3-Minor Loss	1-Clean and paint	Unit	AVG.	C.V.	Data		AVG. 28.62	C.V. 0.49	Dala	Unit	AVG.	C.V.	Data	Unit	AVG.	C.V. Data		AVG.	C.V. I	Data	Unit AVG.	. C.1	V. Da
302		Drain. Syst Metal	(EA)	3-Surf Rust	1-Spot paint	мн	20.55	N/A	1	LF	18.63	0.60	6								_					+	
		Drain. Syst Metal		4-Surf Pits	1-Spot paint					LF	18.63	0.60	6														
				2-Surf Rust	1-Clean and paint					LF	18.63	0.60	6								_						
302 302		Walls Uncoated Sign Member Horiz	(LF) (LF)	3-Minor Loss 2-Paint Dist	1-Clean and paint 2-Clean and paint					LF LF	18.63 18.63	0.60	6								_						
302			(LF)	3-Surf Rust	1-Spot paint					LF	18.63	0.60	6													+	_
302			(LF)	4-Surf Pits	1-Clean and paint					LF	18.63	0.60	6													+	
302			(LF)	3-Surf Rust	1-Spot Paint					LF	18.63	0.60	6														
302			(LF)	4-Surf Pits	1-Spot Paint					LF	18.63	0.60	6														
302 302			(EA) (EA)	2-Surf Rust 3-Minor Loss	1-Clean and paint					LF LF	18.63 18.63	0.60	6													+	
302			(EA)	3-Surf Rust	1-Clean and paint 1-Spot Paint					LF	18.63	0.60	6													+	
302			(EA)	4-Surf Pits	1-Spot Paint					LF	18.63	0.60	6													+	
302			(EA)	3-Surf Rust	1-Spot Paint					LF	18.63	0.60	6														
302			(EA)	4-Surf Pits	1-Spot paint					LF	18.63	0.60	6														
302 302		Hopkins Frame Hopkins Frame	(EA) (EA)	3-Surf Rust 4-Surf Pits	1-Spot paint	MH	26.37	0.21	3	B LF	18.63 18.63	0.60	6								1		<u> </u>			+	
302			(EA) (EA)	2-Min Deter	1-Spot paint 1-Clean and paint	MH	23.83	0.19	33	LF B LF	18.63	0.60	6								1		\vdash			+-	—
302			(EA)	3-Surf Rust	1-Spot paint	MH	23.55	0.13		5 LF	18.63	0.60	6								1		\vdash			+-	
302	562	Counterweight Suppor	(EA)	4-Surf Pits	1-Spot paint					LF	18.63	0.60	6														
302		Acc Ladd & Plat	(EA)	3-Surf Rust	1-Spot paint	MH	23.53	0.22	50		18.63	0.60	6														
302			(EA)	4-Surf Pits	1-Spot paint					LF	18.63	0.60	6														
303 303			(LF) (LF)	3-Delams/spalls 3-Delams/spalls	1-Clean steel & patch 1-Clean rebar & patch,					LF	42.24 42.24	1.08 1.08	29													+	
303			(LF)	3-Delams/spalls	1-Clean steel & patch,	LF	46.50	1.06	22	LF	42.24	1.08	29													+	_
303			(LF)	3-Delams/spalls	1-Clean rebar & patch,	LF	94.64	N/A	1	LF	42.24	1.08	29													-	-
		P/S Conc Stringer	(LF)	3-Delams/spalls	1-Clean steel & patch,					LF	42.24	1.08	29														
		R/Conc Stringer	(LF)	3-Delams/spalls	1-Clean rebar & patch,					LF	42.24	1.08	29														
303 303		P/S Conc Arch	(LF)	3-Delams/spalls	1-Clean steel & patch,					LF LF	42.24 42.24	1.08 1.08	29														_
303			(LF) (LF)	3-Delams/spalls 3-Delams/spalls	1-Clean rebar & patch, 1-Clean steel and patc					LF	42.24	1.08	29													+	_
303			(LF)	3-Delams/spalls	1-Clean rebar & patch,					LF	42.24	1.08	29													+	_
303		P/S Conc Column	(EA)	3-Delams/spalls	1-Clean steel & patch	MH	18.88	0.35	41		42.24	1.08	29													+	_
		R/Conc Column	(EA)	3-Delams/spalls	1-Clean rebar & patch,	MH	18.42	0.33	64	LF	42.24	1.08	29														
			(LF)	3-Delams/spalls	1-Clean rebar & patch,	LF	23.21	N/A	1	LF	42.24	1.08	29														_
303 303			(LF) (EA)	3-Delams/spalls	1-Clean rebar & patch,	MH	42.87 20.59	1.11 0.30		LF LF	42.24 42.24	1.08 1.08	29 29													+	
303			(EA)	3-Delams/spalls 3-Delams/spalls	1-Clean rebar & patch, 1-Clean steel & patch,		20.59	0.30	30		42.24	1.08	29								-					+	
303			(EA)	3-Delams/spalls	1-Clean rebar & patch,					LF	42.24	1.08	29													+	
303			(EA)	3-Exposed Stl	1-Clean and patch					LF	42.24	1.08	29													+	_
		P/S Conc Cap	(LF)	3-Delams,spalls	1-Clean steel & patch,	MH	25.12	0.13	3	B LF	42.24	1.08	29														
303		R/Conc Cap	(LF)	3-Delams/spalls	1-Clean rebar & patch,	LF	31.59	1.16	21	LF	42.24	1.08	29														_
303 303			(EA) (LF)	3-Mod Deter 3-Delam/spalls pres	1-Clean and patch		41.07	1.12	25	LF LF	42.24 42.24	1.08 1.08	29														
303			(SF)	3-Exposed Stl	1-Clean rebar & patch, 1-Clean and patch	LF	44.41	1.09		SF	33.10	0.85	41								-						
311			(LF)	2-Minor leakage	1-Patch/reset/clean jo	LF	26.90	0.49		LF	52.49	0.92	261					LF	20.95	1.38 2	2				LF 36.60	0 0.3	34
311	302	Compressn Joint Seal	(LF)	2-Minor deterioration	1-Patch/rem/reseal/cln	LF	56.90	0.89	202	LF	52.49	0.92	261					LF	20.95	1.38 2	2				LF 36.60		34
331			(EA)	2-Min Deter	1-Clean and lubricate					MH	26.78		1023												EA 102.30		38
331 331		Speed Reducers Shafts	(EA) (EA)	2-Min Deter	1-Clean and lubricate					MH MH	26.78		1023 1023												EA 102.30 EA 102.30	-	38
331			(EA)	2-Min Deter 2-Min Deter	1-Clean and lubricate 1-Clean and lubricate					MH		0.450	1023								-				EA 102.30 EA 102.30		98
331		Brakes	(EA)	2-Min Deter	1-Clean/Lubricate/Oil					MH	26.78		1023												EA 102.30		
331		Live Load Shoes	(EA)	2-Min Deter	2-Realign and/or shim					MH			1023												EA 102.30	0 0.9	98
331			(EA)	2-Min Deter	1-Clean and lubricate					MH	26.78	0.450	1023												EA 102.30		98
331			· /	2-Min Deter	1-Clean and lubricate					МН	26.78	0.450	1023												EA 102.30	0.0	98
400			(SF)	2-Minor deterioration	1-Surface clean					SF	5.04	1.10	115 115					EA	3,193.50		1				SF 0.37		71
400		Steel Deck/Conc Grid Paint Stl Box Girder	(SF) (LF)	2-Minor deterioration 1-No corrosion	1-Surface clean 1-Surface clean					LF	5.04 11.31	1.10 1.25	3					EA EA	3,193.50 3,193.50		4				SF 0.37 SF 0.37	7 0.7	
				2-Paint distress	1-Surface clean					LF	11.31	1.25	3					EA	3,193.50		4		\vdash			7 0.7	
400	107	Paint Stl Opn Girder	(LF)	1-No corrosion	1-Surface clean					LF	11.31	1.25	3					EA	3,193.50	0.88	4				SF 0.37	7 0.7	71
				2-Paint distress	1-Surface clean					LF	11.31		3					EA	3,193.50		4					7 0.7	
				1-No corrosion	1-Surface clean					LF	11.31		3					EA	3,193.50		4		──┤			7 0.7	
				2-Paint distress 1-No corrosion	1-Surface clean 1-Surface clean					LF LF	11.31 11.31	1.25 1.25	3					EA EA	3,193.50 3,193.50		+		\vdash			7 0.7 7 0.7	
				2-Paint distress	1-Surface clean					LF	11.31		3					EA	3,193.50		4		├ ──┤			7 0.7	
400	126	P/Stl Thru Truss/Top		1-No corrosion	1-Surface clean					LF	11.31		3					EA	3,193.50		4		<u>├</u> ──┤			7 0.7	
400	126	P/Stl Thru Truss/Top	(LF)	2-Paint distress	1-Surface clean					LF	11.31	1.25	3					EA	3,193.50	0.88	4				SF 0.37	7 0.7	71
400	131	Paint Stl Deck Truss	(LF)	1-No corrosion	1-Surface clean					LF	11.31	1.25	3					EA	3,193.50	0.88	4					7 0.7	
100	131	Paint Stl Deck Truss	(LF)	2-Paint distress	1-Surface clean					LF	11.31	1.25	3				1	EA	3,193.50	0.88	4		1		SF 0.37	7 0.7	
				1-No corrosion	1-Surface clean					LF	11.31	1.25						EA	3,193.50	0.00				\rightarrow	SF 0.37		71

					S) Group)	MMC				MMC	A 6# CDC		TCOPT					A 6# 000					T (ANO		A 6# C	-
						MIM		UNIT COST		MM	AS# GRO			AKBAR ELEMENT UN	11 COST			AS# GROU	JP UN			I UNIT COS	1		AS# GROU	PUNIT
S#	Elem	# Element	Units	Condition State	Action	S Unit	AVG.	C.V.	# of Data	S Unit	AVG.	C.V.	# of Data	Akbar Unit AVG.	C.V.		kbar nit	AVG.	c.v.	# of Data	DCP Unit AVG.	C.V.	# of Data	DCP Unit	AVG. C.	V. Data
400		2 Paint Stl Floor Beam	(LF)	1-No corrosion	1-Surface clean		7170.	0.7.		LF	11.31	1.25	3	- · · · · · · · · · · · · · · · · · · ·	0.7.		EA	3,193.50		4	AV0.			SF	0.37 0.	
400		2 Paint Stl Floor Beam	(LF)	2-Paint distress	1-Surface clean					LF	11.31	1.25	3					3,193.50		4				SF	0.37 0.	
400	16	1 Paint Stl Pin/Hanger	(EÁ)	1-No corrosion	1-Surface clean					SF	5.04	1.10	115			E	EA	3,193.50	0.88	4				SF	0.37 0.	71 1
400		61 Paint Stl Pin/Hanger	(EA)	2-Paint distress	1-Surface clean					SF	5.04	1.10	115				EA		0.88	4				SF	0.37 0.	
400		2 Paint Stl Column	(EA)	1-No corrosion	1-Surface clean					SF	5.04	1.10	115				EA		0.88	4				SF	0.37 0.	
400		2 Paint Stl Column		2-Paint distress	1-Surface clean					SF	5.04	1.10	115				EA		0.88	4				SF	0.37 0.	
400 400		Paint Stl Cap Paint Stl Cap	(LF) (LF)	1-No corrosion 2-Paint distress	1-Surface clean 1-Surface clean	_				LF	11.31 11.31	1.25	3					3,193.50 3,193.50		4				SF SF	0.37 0.	
400		7 Drain. Syst Metal	(EA)	1-Excellent	1-Surface clean					SF	5.04	1.10	115				EA		0.88	4				SF	0.37 0.	
400		7 Drain. Syst Metal	(EA)	2-Paint dist	1-Surface Clean					SF	5.04	1.10	115				EA		0.88	4			-	SF	0.37 0.	
400		8 Drain. Syst Other	(EA)	2-Min Deter	1-Surface clean	MH	19.93	0.33	75		5.04	1.10	115				EA		0.88	4				SF	0.37 0.	
400		8 Drain. Syst Other	(EA)	3-Mod Deter	1-Surface clean					SF	5.04	1.10	115				EA	3,193.50	0.88	4				SF	0.37 0.	
400		37 Sign Member Horiz	(LF)	2-Paint Dist	1-Surface clean					LF	11.31	1.25	3				EA	3,193.50		4				SF	0.37 0.	
400		88 Sign Member Vertical	(LF)	1-Excellent	1-Surface Clean					LF	11.31	1.25	3					3,193.50		4				SF	0.37 0.	
400		88 Sign Member Vertical	(LF)	2-Paint Dist	1-Surface Clean	_				LF	11.31	1.25	3					3,193.50		4			_	SF	0.37 0.	
400 400		6 Painted High Mast L. 6 Painted High Mast L.	(EA) (EA)	1-Excellent 2-Paint Dist	1-Surface clean 1-Surface clean	+ +				SF SF	5.04 5.04	1.10	115				EA EA		0.88	4				SF SF	0.37 0.	
400		7 Galvan. High Mast L.	(EA)	1-Excellent						SF	5.04	1.10	115				EA		0.88	4				SF	0.37 0.	
400		7 Galvan. High Mast L.	(EA)	2-Paint Dist	1-Surface Clean 1-Surface clean					SF	5.04	1.10	115				EA	3,193.50		4			-	SF	0.37 0.	
400		0 Hopkins Frame	(EA)	1-Excellent	1-Surface clean					SF	5.04	1.10	115				EA		0.88	4			-	SF	0.37 0.	
400	55	0 Hopkins Frame	(EA)	2-Paint Dist	1-Surface clean					SF	5.04	1.10	115			E	EA	3,193.50	0.88	4				SF	0.37 0.	
400	56	2 Counterweight Suppor	(EA)	1-Excellent	1-Surface clean					SF	5.04	1.10	115			E	EA	3,193.50	0.88	4				SF	0.37 0.	.71 1
400		2 Counterweight Suppor	(EA)	2-Paint Dist	1-Surface clean					SF	5.04	1.10	115				EA	3,193.50	0.88	4				SF	0.37 0.	
400		3 Acc Ladd & Plat	· /	1-Excellent	1-Surface clean					SF	5.04	1.10	115				EA		0.88	4				SF	0.37 0.	
400		3 Acc Ladd & Plat		2-Paint Dist	1-Surface clean	05	05.00			SF	5.04	1.10	115				EA	3,193.50		4				SF	0.37 0.	.71 1
401		2 Bare Concrete Deck 2 Bare Concrete Deck	(SF) (SF)	1-No damage 2-Distress <= 2%	2-Miscellaneous Maint 1-Repair spalled/delam	SF	25.88	1.15	54	SF CE	24.24 24.24	1.07	160				SY SY	2.71	0.34	120			_			
401		2 Bare Concrete Deck	(SF)	3-2 to 10 % distress	1-Repair spalled areas	_				SF	24.24	1.07	160				SY		0.34	120			_			
401		2 Bare Concrete Deck	(SF)	4-10 to 25% distress	1-Repair spalled areas					SF	24.24	1.07	160				SY		0.34	120			_			
401		3 Unp Conc Deck/AC Ovl		1-No damage	1-Miscellaneous Maint	SF	24.20	1.06	55	SF	24.24	1.07	160				SY	2.71	0.34	120						-
401	1	4 P Conc Deck/AC Ovly	(SF)	1-No damage	1-Miscellaneous Maint					SF	24.24	1.07	160			5	SY	2.71	0.34	120						-
401		8 P Conc Deck/Thin Ovl		2-Distress <= 2%	1-Repair spalls/delams					SF	24.24	1.07	160				SY	2.71	0.34	120						
401		8 P Conc Deck/Thin Ovl	(SF)	3-2-10% distress	1-Repair spalls/delams					SF	24.24	1.07	160				SY	2.71	0.34	120						
401		8 P Conc Deck/Thin Ovl		4-10-25% distress	1-Repair spalls/delams	_				SF SF	24.24	1.07	160				SY		0.34	120			_			
401 401		2 P Conc Deck/Rigid Ov 2 P Conc Deck/Rigid Ov		2-Distress <= 2%	1-Repair spalls/delams	_				SF	24.24	1.07	160				SY		0.34	120			_			
401			(SF) (SF)	3-Distress 2-10% 4-Distress 10-25%	1-Repair spalls/delams 1-Repair spalls/delams	_				SF	24.24 24.24	1.07	160				SY SY	2.71		120			_			
401		Conc Deck/Coatd Bars		2-Distress <=2%	1-Patch spalls/delams					SF	24.24	1.07	160				SY		0.34	120			-			
401		6 Conc Deck/Coatd Bars		3-Distress 2-10%	1-Repair spalled areas					SF	24.24	1.07	160				SY	2.71	0.34	120						-
401		6 Conc Deck/Coatd Bars		4-10-25% distress	1-Repair spalled areas					SF	24.24	1.07	160				SY		0.34	120						-
401	2	27 Conc Deck/Cathodic	(SF)	2-Distress <=2%	1-Patch spalls/delams					SF	24.24	1.07	160				SY	2.71	0.34	120						
401		27 Conc Deck/Cathodic		3-2 to 10% distress	1-Repair spalled areas					SF	24.24	1.07	160				SY	2.71		120						
401		28 Steel Deck/Open Grid	(SF)	1-No corrosion	1-Miscellaneous Maint	SF	30.46	0.71	3	SF	24.24	1.07	160				SY	2.71	0.34	120						
401		29 Steel Deck/Conc Grid	(SF)	1-No corrosion	1-Miscellaneous Maint	SF	31.85	N/A	1	SF SF	24.24	1.07	160				SY		0.34	120						
401 401		0 Corrug/Orthotpc Deck 0 Corrug/Orthotpc Deck	(SF) (SF)	1-No deterioration 2-Minor deterioration	1-Miscellaneous Maint 1-Seal cracks and/or r	_				SF	24.24 24.24	1.07	160				SY SY	2.71	0.34	120			_			
401		1 Timber Deck	(SF)	1-No decay	1-Miscellaneous Maint					SF	24.24	1.07	160				SY		0.34	120			-			
401		2 Timber Deck/AC Ovly	(SF)	1-No deterioration	1-Miscellaneous Maint					SF	24.24	1.07	160				SY	2.71	0.34	120						
401		2 Timber Deck/AC Ovly	(SF)	2-Minor deterioration	1-Repair potholes					SF	24.24	1.07	160				SY		0.34	120						-
401	3	88 Bare Concrete Slab	(SF)	1-No damage	2-Miscellaneous Maint	SF	10.45	1.23	10	SF	24.24	1.07	160				SY	2.71	0.34	120						-
401		88 Bare Concrete Slab	(SF)	2-Distress <=2%	1-Repair spalled/delam					SF	24.24	1.07	160				SY	2.71	0.34	120						
401		88 Bare Concrete Slab	(SF)	3-2-10% distress	1-Repair spalled areas					SF	24.24	1.07	160				SY		0.34	120						
401		88 Bare Concrete Slab		4-10-25% distress	1-Repair spalled areas					SF	24.24	1.07	160				SY	2.71		120						
401		9 Unp Conc Slab/AC Ovl		1-No damage	1-Miscellaneous Maint	SF	29.75	1.01	11	SF	24.24	1.07	160				SY SY	2.71	0.34	120						
401		0 P Conc Slab/AC Ovly 4 P Conc Slab/Thin Ovl	(SF) (SF)	1-No damage	1-Miscellaneous Maint	_				SF	24.24 24.24	1.07	160				SY SY	2.71	0.34	120			_			
401		4 P Conc Slab/Thin Ovl	(SF)	2-Distress under 2%	1-Repair spalls/delams					SE	24.24	1.07	160				SY	2.71	0.34	120			-			
401		4 P Conc Slab/Thin Ovl	(SF)	3-2-10% distress	1-Repair spalls/delams					SF	24.24	1.07	160				SY	2.71	0.34	120			_			
401			(SF)	4-10-25% distress	1-Repair spalls/delams					SF	24.24	1.07	160				SY		0.34	120						
401	4	8 P Conc Slab/Rigid Ov		2-Distress under 2%	1-Repair spalls/delams					SF	24.24	1.07	160			5	SY	2.71	0.34	120						
401		8 P Conc Slab/Rigid Ov		3-2-10% distress	1-Repair spalls/delams					SF	24.24	1.07	160				SY	2.71		120						
401		8 P Conc Slab/Rigid Ov	(SF)	4-10-25% distress	1-Repair spalls/delams					SF	24.24	1.07	160				SY	2.71		120						
401		2 Conc Slab/Coatd Bars			1-Patch spalls/delams					SF	24.24	1.07	160				SY	2.71								
401		2 Conc Slab/Coatd Bars			1-Repair spalled areas					SF	24.24	1.07	160				SY	2.71								
401		2 Conc Slab/Coatd Bars			1-Repair spalled areas					SF SF	24.24	1.07	160 160				SY	2.71		120			_	\vdash		
401 401				2-Distress under 2% 3-2-10% distress	1-Patch spalls/delams 1-Repair spalled areas	+				SF	24.24 24.24	1.07 1.07	160				SY SY	2.71 2.71						+		
401				4-10-25% distress	1-Repair spalled areas 1-Repair spalled areas					SF	24.24	1.07	160				SY SY	2.71					-			
401		4 Timber Slab		1-No decay	1-Repair spalled areas 1-Miscellaneous Maint	+				SF	24.24	1.07	160				SY SY	2.71								
401				1-No deterioration	1-Miscellaneous Maint					SF	24.24	1.07	160				SY	2.71		120						
401				2-Minor deterioration	1-Repair potholes					SF	24.24	1.07	160				SY	2.71		120			-			+
			(SF)														SY									

			Ibcategory (A	e, e.e												1									
					MMS	ELEMENT	UNIT COST	r (AN	MMS	AS# GRO		r cost	AKBAR ELEMENT U	NIT COS	T (ANO\	AKBAR	AS# GRC				IT COS	T (ANO	DCP AS# GF	ROUP	UNIT C
\S#	Elem# Element	Units	Condition State	Action	S Unit	AVG.	C.V.	# of Data	S Unit	AVG.	C.V.	# of Data	Akbar Unit AVG	. C.V		Akbar Unit	AVG.	1 1	# of D0 Data Ur	it AVG.	C.V.	# of Data	DCP Unit AVG.	. c.v.	# of Data
401	98 Conc Deck on PC Pane	(SF)	3-2-10 % Distress	1-Spalls & Delams					SF	24.24	1.07	160				SY	2.71		120						
401	98 Conc Deck on PC Pane		4-10-25 % Distress	1-Spalls & Delams					SF	24.24	1.07	160				SY	2.71		120						
401 401	99 PS Conc Slab 99 PS Conc Slab	(SF) (SF)	2-Dist <2% 3-Dist 2-10%	1-Repair	SF	22.62	0.98	21	SF SF	24.24	1.07	160 160			_	SY SY	2.71		120						
401	99 PS Conc Slab	(SF)	4-Dist 10-25%	1-Repair Spl/Delam 1-Repair Spl/Delam	_				SF	24.24 24.24	1.07	160			_	SY	2.71	0.34	120					+	+
402		(SF)	3-Rust formation	1-Surface clean+restor					SF	914.08		1				0.		0.01							-
402		(SF)	3-Rust formation	1-Surface clean+restor					SF	914.08		1													
402		(SF)	3-Rust formation	1-Surface clean+restor					SF	914.08		1													
402 402		(LF) (LF)	1-No corrosion 1-No corrosion	1-Miscellaneous Maint 2-Miscellaneous Maint	_				LF LF	2.86 2.86	0.45	3													
402		(LF)	1-No corrosion	1-Miscellaneous Maint					LF	2.86	0.45	3												-	+
402		(LF)	1-No corrosion	2-Miscellaneous Maint					LF	2.86	0.45	3												-	-
402		(LF)	1-No corrosion	1-Miscellaneous Maint					LF	2.86	0.45	3													
402		(LF)	1-No corrosion	2-Miscellaneous Maint					LF	2.86	0.45	3			_										
402		(LF) (LF)	1-No corrosion 1-No corrosion	1-Miscellaneous Maint 2-Miscellaneous Maint	-				LF LF	2.86 2.86	0.45	3								_				+	+
402		(LF) (LF)	1-No corrosion	1-Miscellaneous Maint	+				LF	2.86	0.45	3		-	-					-	1	-		+	+
402		(LF)	1-No corrosion	2-Miscellaneous Maint	1				LF	2.86	0.45	3										1		+	-
402		(LF)	1-No corrosion	1-Miscellaneous Maint					LF	2.86	0.45	3													
402		(LF)	1-No corrosion	2-Miscellaneous Maint					LF	2.86	0.45	3			_										
402 402		(LF) (LF)	1-No corrosion 1-No corrosion	1-Miscellaneous Maint 2-Miscellaneous Maint	+				LF LF	2.86 2.86	0.45	3								_				+	+
402		(EA)	1-No corrosion	1-Miscellaneous Maint					SF	914.08	0.45	1			_									+	+
402		(EA)	1-No corrosion	1-Miscellaneous Maint					SF	914.08		1												-	-
402		(EA)	2-Surface rust forming	1-Clean & Restore Coat					SF	914.08		1													
402		(EA)	3-Rust prevalent	1-Clean & Restore Coat					SF	914.08		1													
402 402		(LF) (LF)	1-No corrosion 1-No corrosion	1-Miscellaneous Maint 2-Miscellaneous Maint	_				LF LF	2.86 2.86	0.45	3													
402		(EA)	1-No corrosion	1-Miscellaneous Maint					SF	914.08	0.45	1												-	
402		(EA)	1-No corrosion	2-Miscellaneous Maint					SF	914.08		1												+	-
402		(EA)	1-No corrosion	1-Miscellaneous Maint					SF	914.08		1													
402		(EA)	1-No corrosion	2-Miscellaneous Maint					SF	914.08		1													
402 402		(EA) (LF)	1-No corrosion 1-No corrosion	1-Miscellaneous Maint 1-Miscellaneous Maint					SF LF	914.08 2.86	0.45	1			_										
402		(LF) (LF)	1-No corrosion	2-Miscellaneous Maint					LF	2.86	0.45	3			_									+	+
402		(LF)	1-No deterioration	1-Miscellaneous Maint					LF	2.86	0.45	3												-	-
402		(EA)	1-Excellent	1-Miscellaneous Maint					SF	914.08		1													
402		(EA)	1-Excellent	1-Miscellaneous Maint					SF	914.08		1													
402 402		(LF) (LF)	1-No corrosion 2-Rust formation	1-Miscellaneous Maint 1-Clean and Coat	_				LF LF	2.86 2.86	0.45	3													
402		(LF) (LF)	3-Active corrosion	1-Clean and Coat					LF	2.86	0.45	3			_									+	+
402		(LF)	1-No corrosion	1-Miscellaneous Maint					LF	2.86	0.45	3												-	-
402		(LF)	1-Excellent	1-Miscellaneous Maint					LF	2.86	0.45	3													
402		(SF)	1-Excellent	1-Miscellaneous Maint					SF	914.08		1													
402 402		(SF) (EA)	1-Excellent 1-Excellent	1-Miscellaneous Maint 2-Miscellaneous Maint					SF SF	914.08 914.08		1			_										
402		(EA) (LF)	1-Excellent	2-Miscellaneous Maint					LF	2.86	0.45	3			_									+	+
402		(LF)	1-Excellent	1-Miscellaneous Maint					LF	2.86	0.45	3												-	-
402		(LF)	1-Excellent	2-Miscellaneous Maint					LF	2.86	0.45	3													
402		(LF)	2-Paint Dist	2-Clean and restore					LF	2.86	0.45	3													
402 402		(EA) (EA)	1-Excellent 1-Excellent	1-Miscellaneous Maint 2-Miscellaneous Maint	_				SF SF	914.08 914.08		1													
402		(EA)	2-Paint Dist	2-Clean and restore					SF	914.08		1												-	+
402	J	(EA)	1-Excellent	2-Miscellaneous Maint	1				SF	914.08		1								-				+	+
402		(EA)	2-Paint Dist	2-Clean and restore					SF	914.08		1													
402		(EA)	1-Excellent	1-Miscellaneous Maint					SF	914.08		1													
402 402		(EA) (EA)	2-Paint Dist 2-Paint Dist	2-Clean and restore 2-Clean and restore	MH	36.92 36.92	0.15	2	SF SF	914.08 914.08		1								_				+	+
402		(EA) (EA)	2-Paint Dist	2-Clean and restore 2-Clean and restore	MH	36.92	0.15	- 2	SF	914.08		1		-						-	+	-		+	+
403			1-No Damage	2-Miscellaneous Maint	1				SF	49.63	1.06	441				SF	41.47	0.78	7				SF 30.73	3 1.25	5 13
403			1-No Damage	1-Miscellaneous Maint					SF	49.63	1.06	441				SF		0.78	7				SF 30.73	3 1.25	5 13
403		(LF)	1-No deterioration	1-Miscellaneous Maint	LF	21.49	0.15	3	LF	32.11	0.88	336				SF		0.78	7					0.17	
403 403		(LF) (LF)	2-Minor cracks/spalls 1-No deterioration	1-Seal cracks minor pa	IF	4.22	N/A	4	LF LF	32.11 32.11	0.88	336 336				SF SF		0.78	7	_				0.17	
403		(LF) (LF)	2-Minor cracks/spalls	1-Miscellaneous Maint 1-Seal cracks minor pa		4.22	N/A	- 1	LF	32.11	0.88	336		-		SF		0.78	7	-	+	-		0.17	
403	109 P/S Conc Open Girder	(LF)	1-No deterioration	1-Miscellaneous Maint	LF	33.54	0.90	217	LF	32.11	0.88	336		1	-	SF		0.78	7	-	1			0.17	
403	109 P/S Conc Open Girder	(LF)	2-Minor cracks/spalls	1-Seal cracks minor pa					LF	32.11	0.88	336				SF	41.47	0.78	7				LF 36.70	0.17	7 7
403		(LF)	1-No deterioration	1-Miscellaneous Maint	LF	22.16	0.60	18	LF	32.11	0.88	336				SF		0.78	7					0.17	
403 403		(LF)	2-Minor cracks/spalls	1-Seal cracks minor pa					LF LF	32.11	0.88	336 336				SF SF		0.78	7					0.17	
403		(LF) (LF)	1-No deterioration 2-Minor cracks/spalls	1-Miscellaneous Maint 1-Seal cracks minor pa	-				LF	32.11 32.11	0.88 0.88	336				SF		0.78	7			-		0.17	
-00		(LF) (LF)	1-No deterioration	1-Miscellaneous Maint	-				LF	32.11	0.88	336				SF	41.47			1	1	1		0.17	

					MMS	BELEMENT		T (AN	MMS	AS# GRO		T COST	ТАК	BAR ELEMENT UNIT	r cost	(ANOV	AKBAR	AS# GRO	DUP U	NIT CO	DCP	ELEMENT U	NIT COS	T (ANO	DCP /	\S# GF	OUP	
					MM				MIM							Ĺ							1	# of	DCP			#
# E	lem# Element	Units	Condition State	Action	S Unit	AVG.	C.V.	# of Data	-	AVG.	C.V.	# 0i Data	f Akb Unit		C.V.	# of Data	Akbar Unit	AVG.	C.V.	# o Data		AVG.	C.V.	# 0/ Data	Unit	AVG.	C.V.	D +
03	116 R/Conc Stringer	(LF)	2-Minor cracks/spalls	1-Seal cracks minor pa			-		LF	32.11	0.88	336	5		-		SF	41.47		3	7	-	-		LF	36.70		
03		(LF)	1-No deterioration	1-Miscellaneous Maint					LF	32.11	0.88	336	5				SF	41.47			7		-		LF	36.70	0.17	
03		(LF)	2-Minor cracks/spalls	1-Seal cracks minor pa					LF	32.11	0.88	336	5				SF		0.78		7				LF	36.70		
03	144 R/Conc Arch	(LF)	1-No deterioration	1-Miscellaneous Maint	LF	22.79	0.44	2	2 LF	32.11		336	6				SF		0.78		7				LF	36.70		
03	144 R/Conc Arch	(LF)	2-Minor cracks/spalls	1-Seal cracks minor pa					LF	32.11		336	6				SF		0.78		7				LF	36.70		
03		(LF)	1-No deterioration	1-Miscellaneous Maint					LF	32.11	0.88	336	5				SF		0.78		7			<u> </u>	LF	36.70		_
03		(LF)	2-Minor cracks/spalls	1-Seal cracks minor pa	IF				LF	32.11	0.88	336	5				SF		0.78		7			<u> </u>	LF	36.70		
)3)3		(LF) (LF)	1-No deterioration	1-Miscellaneous Maint 1-Seal cracks minor pa	LF	8.82	N/A	1	LF	32.11	0.88	336 336	2				SF SF	41.47	0.78		7				LF	36.70	0.17	-
03	204 P/S Conc Column	(EA)	2-Minor cracks/spalls 1-No deterioration	1-Seal cracks minor pa 1-Miscellaneous Maint	мн	20.78	0.39	398		32.11 49.63	0.88	441	1				SF		0.78		7					36.70 36.70	0.17	-
)3		(EA)	2-Minor cracks/spalls	1-Seal cracks minor pa	IVII I	20.70	0.55	330	SF	49.63		441					SF	41.47			7				LF	36.70		+
03	205 R/Conc Column	(EA)	1-No deterioration	1-Miscellaneous Maint	МН	20.36	0.40	923	3 SF	49.63		441					SF		0.78		7					36.70		-
03		(EA)	2-Minor cracks/spalls	1-Seal cracks minor pa		20.00	0.40	520	SF	49.63		441					SF		0.78		7				LE	36.70		-
)3		(EA)	1-Excellent	1-Miscellaneous Maint	MH	14.25	0.37	13	B SF	49.63		441					SF	41.47			7			+	LF	36.70		-
)3		(EA)	2-Min Ck/Spl	1-Seal and patch					SF	49.63		441	1				SF		0.78		7		-		LF	36.70		
3	207 P/S Conc Holl Pile	(EA)	3-Exposed Stl	1-Clean and Patch					SF	49.63		441	1				SF		0.78		7		-	1	LF	36.70		t
3	210 R/Conc Pier Wall	(LF)	1-No deterioration	1-Miscellaneous Maint	LF	28.67	0.76	26	LF	32.11	0.88	336	5				SF	41.47	0.78	3	7	1	-	1	LF	36.70		
3	210 R/Conc Pier Wall	(LF)	2-Minor cracks/spalls	1-Seal cracks minor pa					LF	32.11	0.88	336	6				SF	41.47	0.78	3	7				LF	36.70	0.17	Γ
		(LF)	1-No deterioration	1-Miscellaneous Maint	LF	31.99	0.89	319	LF	32.11	0.88	336	5				SF		0.78		7				LF	36.70	0.17	Γ
		(LF)	2-Minor cracks/spalls	1-Seal cracks minor pa					LF	32.11	0.88	336	6				SF		0.78		7				LF	36.70	0.17	ſ
		(EA)	1-No deterioration	1-Miscellaneous Maint	EA	20.08	0.36	106	SF	49.63		441	1				SF	41.47			7				LF	36.70		ſ
		(EA)	2-Minor cracks/spalls	1-Seal cracks minor pa					SF	49.63		441					SF		0.78		7				LF	36.70		ľ
		(EA)	1-No deterioration	1-Miscellaneous Maint				_	SF	49.63		441	1				SF		0.78		7				LF	36.70		L
			2-Minor cracks/spalls	1-Seal cracks minor pa					SF	49.63		441	1				SF		0.78		7				LF	36.70		
		(EA)	1-No deterioration	1-Miscellaneous Maint					SF	49.63		441	1				SF		0.78		7				LF	36.70		
		(EA)	2-Minor cracks/spalls	1-Seal cracks minor pa					SF	49.63		441					SF	41.47			-				LF	36.70		L
		(EA)	1-Excellent	1-Miscellaneous Maint					SF	49.63		441					SF	41.47			-				LF	36.70		L
_		(EA)	2-Min Ck/Spl	1-Seal and patch					SF	49.63		441					SF		0.78		<u></u>				LF	36.70		L
	233 P/S Conc Cap	(LF)	1-No deterioration	1-Miscellaneous Maint					LF	32.11	0.88	336	5				SF SF		0.78		/				LF LF	36.70		L
_	233 P/S Conc Cap	(LF)	2-Minor cracks/spalls 1-No deterioration	1-Seal cracks minor pa		24.20	0.00	264	LF LF	32.11	0.88	336 336	2				SF				7					36.70		L
		(LF)		1-Miscellaneous Maint		31.29	0.90	204	+ LF	32.11 32.11	0.88	336	,				SF		0.78		7					36.70		ł
		(LF) (LF)	2-Minor cracks/spalls	1-Seal cracks minor pa 1-Miscellaneous Maint	1.6	96.48	N/A				0.88	336					SF		0.78		7					36.70		╞
		(EA)	1-No deterioration 2-Min Ck/Spl	1-Miscellaneous Maint 1-Seal and patch	MH	19.68	0.33	54		32.11 49.63	0.88	441					SF	41.47	0.78		7				LF	36.70 36.70	0.17	╞
	298 Pile Jacket Bare	(EA)	3-Mod Deter	1-Sear and patch		19.00	0.33	54	SF	49.63		441					SF	41.47			7					36.70		╞
		(EA)	2-Min Ck/Spl	1-Seal and patch	МН	21.81	0.20	a	SF	49.63		441					SF	41.47		_	7				LF	36.70		⊦
╞		(LF)	1-No deterioration	1-Miscellaneous Maint	IF	32.06	0.20	262		32.11	0.88	336					SF		0.78		7					36.70	0.17	┝
		(LF)	2-Minor cracks/spalls	1-Seal cracks minor pa	-	02.00	0.04		LF	32.11	0.88	336					SF		0.78		7				LE	36.70		ł
		(LF)	1-Excellent	1-Miscellaneous Maint	LE	34.54	0.96	18	B LF	32.11	0.88	336					SF	41.47		_	7			+	LF	36.70		H
		(LF)	2-Min Ck/Stl	1-Seal and patch		001	0.00		LF	32.11	0.88	336	5				SF		0.78		7		+		LF	36.70		t
⊢	387 P/S Fender/Dolphin	(LF)	3-Exposed Stl	1-Clean and patch					LF	32.11	0.88	336	5				SF		0.78		7				LF	36.70		H
		(LF)	1-Excellent	1-Miscellaneous Maint					LF	32.11	0.88	336	5				SF		0.78		7		+		LF	36.70		t
_		(LF)	2-Min Ck/Spl	1-Seal and patch					LF	32.11	0.88	336	5				SF		0.78		7		-		LF	36.70	0.17	t
t	388 R/Conc Fender/Dolphi	(LF)	3-Exposed Stl	1-Clean and patch					LF	32.11	0.88	336	5				SF	41.47	0.78	3	7		-		LF	36.70	0.17	t
	394 R/Conc Abut Slope Pr	(SF)	1-Excellent	1-Miscellaneous Maint	SF	51.51	0.98	163	SF	49.63	1.06	336	6				SF	41.47	0.78	5	7		-		SF	30.73	1.25	t
	394 R/Conc Abut Slope Pr	(SF)	2-Min Ck/Spl	1-Seal and patch					SF	49.63	1.06	336	5				SF	41.47	0.78	3	7				SF	30.73	1.25	ľ
	475 R/Conc Walls	(LF)	1-Excellent	1-Miscellaneous Maint	LF	32.28	0.96	89	LF	32.11	0.88	336	5				SF	41.47	0.78	3	7				LF	36.70	0.17	Γ
	475 R/Conc Walls	(LF)	2-Min Ck/Spl	1-Seal and patch					LF	32.11	0.88	336	5				SF	41.47	0.78	3	7				LF	36.70	0.17	Γ
		(LF)	3-Exposed Stl	1-Clean and patch					LF	32.11	0.88	336	5				SF		0.78		7				LF	36.70		Γ
		(EA)	1-Excellent	1-Miscellaneous Maint					SF	49.63		441	1				SF		0.78		7				LF	36.70		
		(EA)	2-Min Ck/Spl	1-Seal and patch					SF	49.63		441	1				SF	41.47			7				LF	36.70		
		(EA)	3-Exposed Stl	1-Clean and patch					SF	49.63		441	1				SF	41.47			7				LF	36.70		
	499 H. M. L. P. Found.	(EA)	1-Excellent	1-Miscellaneous Maint					SF	49.63		441					SF		0.78		7			<u> </u>	LF	36.70		L
	499 H. M. L. P. Found.	(EA)	2-Min Ck/Spl	1-Seal and patch					SF	49.63		441					SF		0.78		-				LF	36.70		ļ
_	499 H. M. L. P. Found.	(EA)	3-Exposed Stl	1-Clean and patch			0.40		SF	49.63		441					SF		0.78		/				LF	36.70		Ļ
		(EA)	2-Min Ck/Spl	1-Seal and patch	MH	20.80	0.19	30) SF	49.63		441					SF				-				LF	36.70		ł
		(EA)	3-Exposed Stl	1-Clean and patch 1-Miscellaneous Maint	_				SF	49.63	1.06	441	4	-			SF	41.47	0.78					+	LF	36.70	0.17	ł
_	111 Timber Open Girder 117 Timber Stringer	(LF) (LF)	1-No decay 1-No decay	1-Miscellaneous Maint 1-Miscellaneous Maint	_								+								-			+	⊢		<u> </u>	ł
_		(LF)	1-No decay	1-Miscellaneous Maint 1-Miscellaneous Maint									+			-				-	1			+	++			ł
_									+ +				+	-					-		1			+	++			ł
			1-No decay 1-No decay	1-Miscellaneous Maint 1-Miscellaneous Maint									+			-				-	1			+	++			ł
		(LF)	1-No decay	1-Miscellaneous Maint					+				+								-			+	+−+			ł
_		(EA)	1-No decay	1-Miscellaneous Maint	_								+							-	+	1		+	++			ł
_		(LF)	1-No decay	1-Miscellaneous Maint	-								1						-		+	1	+	+	++			ł
_		(LF)	1-Sound condition	1-Miscellaneous Maint	-				+				+				\vdash			-	1			+	++			ł
		(LF)	1-No decay	1-Miscellaneous Maint	+						+ +		1						-		1	1	+	+	\vdash			ł
-		(LF)	1-Excellent	1-Miscellaneous Maint	+						+ +		1						-		1	1	+	+	\vdash			t
-		(LF)	1-Excellent	1-Miscellaneous Maint	-				+				+				\vdash			-	1			+	++			ł
-		(LF)	1-No deterioration	1-Miscellaneous Maint	+				+				1								1	1		+	\vdash			t
		(LF)	1-No deterioration	1-Miscellaneous Maint					+ +				1						-	-	1	1	+	+	\vdash			t
		(LF)	1-No deterioration	1-Miscellaneous Maint					-				1						1	1			1	1 1	+		<u> </u>	

	Came / Collor	i Ou	bcategory (A														1									
					MMS	ELEMENT	UNIT COST	(ANG		S# GRO	UP UN	T COST	AKBAR ELE	MENT UN	IT COST	(ANOV	AKBAR	AS# GRO	OUP UI		DCP	ELEMENT UNI	r cost (P AS# G	ROUP UNI
S#	Elem# Element	Units	Condition State	Action	S Unit	AVG.	C.V.	# of S Data		AVG.	C.V.	# of Data	Akbar Unit	AVG.	C.V.		Akbar Unit	AVG.	C.V.		DCP Unit	AVG.		tof DC Data Uni		. C.V. E
405 405	243 Misc Culvert	(LF) (LF)	1-No deterioration	1-Miscellaneous Maint																						
105 105	333 Other Bridge Railing 390 Other Fender/Dolphin	(LF)	1-No deterioration 1-Excellent	1-Miscellaneous Maint 1-Miscellaneous Maint																						
05	396 Other Abut Slope Pro	(SF)	1-Excellent	1-Miscellaneous Maint																						+
405	398 Drain. Syst Other	(EA)	1-Excellent	1-Miscellaneous Maint																						
405	477 Other Walls	(LF)	1-Excellent	1-Miscellaneous Maint																						
406		(LF)	1-Excellent	1-Miscellaneous Maint																						
411	300 Strip Seal Exp Joint 301 Pourable Joint Seal	(LF) (LF)	1-No leakage 1-No deterioration	1-Miscellaneous Maint						3.89	0.75	72														
+11 111		(LF)	1-No deterioration	1-Miscellaneous Maint 1-Miscellaneous Maint						3.89	0.75	72														+
111	303 Assembly Joint/Seal	(LF)	1-No deterioration	1-Miscellaneous Maint					LF	3.89	0.75	72														+
411	304 Open Expansion Joint	(LF)	1-No deterioration	1-Miscellaneous Maint					LF	3.89	0.75	72														
111		(LF)	1-Excellent	1-Miscellaneous Maint					LF	3.89	0.75	72														
113	310 Elastomeric Bearing	(EA)	1-No deterioration	1-Miscellaneous Maint					MH	19.19	0.41	33														
413	311 Moveable Bearing	(EA)	1-No deterioration	1-Miscellaneous Maint					MH	19.19	0.41	33														+
413 413	312 Enclosed Bearing 313 Fixed Bearing	(EA) (EA)	1-No deterioration	1-Miscellaneous Maint					мн мн	19.19 19.19	0.41	33 33														+
413	313 Fixed Bearing 314 Pot Bearing	(EA) (EA)	1-No deterioration	1-Miscellaneous Maint 1-Miscellaneous Maint					MH MH	19.19	0.41	33					<u>├</u> ──		<u> </u>							+
413	315 Disk Bearing	(EA)	1-No deterioration	1-Miscellaneous Maint 1-Miscellaneous Maint					MH	19.19	0.41	33														+
422		(EA)	1-Excellent	1-Miscellaneous Maint	мн	16.00	0.51		SF	31.40	0.91	6												HA	212.5	6 1.52
423	397 Drain. Syst Metal		2-Paint dist	2-Flush drainage syst					MH	19.00	0.43	64													1	
123	397 Drain. Syst Metal	(EA)	3-Surf Rust	2-Flush drainage syst					MH	19.00	0.43	64														
123	397 Drain. Syst Metal	(EA)	4-Surf Pits	2-Flush drainage syst					MH	19.00	0.43	64														
423	398 Drain. Syst Other		2-Min Deter	2-Flush drainage syst					MH	19.00	0.43	64														
123 131	398 Drain. Syst Other	(=)	3-Mod Deter	2-Flush drainage syst	мн	20.15	0.40		MH	19.00	0.43	64 30													070.0	7 0 70
31	540 Open Gearing 541 Speed Reducers	(EA) (EA)	1-Excellent 1-Excellent	1-Miscellaneous Maint 1-Miscellaneous Maint	MH	20.15	0.19 0.19	27 26		19.94 19.94	0.19	30												E/	272.9	
31	542 Shafts	(EA)	1-Excellent	1-Miscellaneous Maint	MH	20.15	0.19	27		19.94	0.13	30												EA		
31	543 Shaft Brgs and Coupl	(EA)	1-Excellent	1-Miscellaneous Maint	MH	20.15	0.19	27		19.94	0.19	30												EA	272.9	
31	544 Brakes	(EA)	1-Excellent	1-Miscellaneous Maint	MH	20.13	0.19	26		19.94	0.19	30												EA	272.9	7 0.73
31	545 Emergency Drive	(EA)	1-Excellent	1-Miscellaneous Maint	MH	20.23	0.19	25	мн	19.94	0.19	30												EA	272.9	7 0.73
131	545 Emergency Drive	(EA)	2-Min Deter	1-Service System					мн	19.94	0.19	30												EA	272.9	7 0.73
131	546 Span Drive Motors	(EA)	1-Excellent	1-Miscellaneous Maint	MH	20.25	0.21	19	MH MH	19.94	0.19	30 30												E/	212.0	7 0.73 7 0.73
31 31	546 Span Drive Motors 547 Hydraulic Power Unit	(EA) (EA)	2-Min Deter 1-Excellent	1-Maintain and/or Serv 1-Miscellaneous Maint	мн	20.48	0.23		MH	19.94 19.94	0.19	30												E/		
+31 131	547 Hydraulic Power Unit	(EA)	2-Min Deter	1-Maintain and/or serv	IVILI	20.40	0.23		MH	19.94	0.19	30												EA		
131	548 Hydraulic Piping Sys	(EA)	1-Excellent	1-Miscellaneous Maint	мн	20.48	0.23		мн	19.94	0.19	30												E/	272.9	
131	548 Hydraulic Piping Sys	(EA)	2-Min Deter	1-Perform maintenance				-	мн	19.94	0.19	30												EA	272.9	7 0.73
131	549 Hydraulic Cylinders	(EA)	1-Excellent	1-Miscellaneous Maint	MH	20.48	0.23	5	MH	19.94	0.19	30												EA	272.9	7 0.73
131	549 Hydraulic Cylinders	(EA)	2-Min Deter	1-Maintain and service					мн	19.94	0.19	30												EA	272.9	7 0.73
131	550 Hopkins Frame	(EA)	1-Excellent	2-Miscellaneous Maint	MH	17.64	0.14		MH	19.94	0.19	30												E/	212.0	7 0.73 7 0.73
131	560 Locks	(EA)	1-Excellent	1-Miscellaneous Maint	MH	20.18	0.20	21	MH MH	19.94 19.94	0.19	30												EA	272.9	
131 131	560 Locks 561 Live Load Shoes	(EA) (EA)	2-Min Deter 1-Excellent	1-Perform maintenance 1-Miscellaneous Maint	мн	19.87	0.20	25		19.94	0.19	30												E/	272.9	7 0.73
131	562 Counterweight Suppor	(EA)	1-Excellent	2-Miscellaneous Maint	MH	20.38	0.20	17		19.94	0.13	30												EA	272.9	
131	563 Acc Ladd & Plat	(EA)	1-Excellent	2-Miscellaneous Maint	MH	20.01	0.19	28		19.94	0.19	30												EA	272.9	7 0.73
131	564 Counterweight	(EA)	1-Excellent	1-Miscellaneous Maint	MH	20.34	0.21	19	мн	19.94	0.19	30												EA	272.9	7 0.73
131	565 Trun/Str and Cur Trk	(EA)	1-Excellent	1-Miscellaneous Maint	MH	20.18	0.20	21		19.94	0.19	30												EA	272.9	7 0.73
131	570 Transformers	(EA)	1-Excellent	1-Miscellaneous Maint	MH	20.69	0.18	13		19.94	0.19	30												EA	212.0	7 0.73
431 431		each	1-Excellent	1-Miscellaneous Maint	MH	21.26	0.21	14 22		19.94 19.94	0.19	30 30												E/	212.0	
131	572 Conduit & Junc. Box 573 PLCs	(EA) (EA)	1-Excellent 1-Excellent	1-Miscellaneous Maint 1-Miscellaneous Maint	MH	20.20 21.80	0.20	6		19.94	0.19	30												E/		
31	573 PLCs	(EA)	2-Min Deter	1-Clean and maintain	NUL 1	21.00	0.21		MH	19.94	0.13	30												EA	272.9	
131	574 Control Console	(EA)	1-Excellent	1-Miscellaneous Maint	мн	20.34	0.21	18	MH	19.94	0.19	30												EA	272.9	7 0.73
31	574 Control Console	(EA)	2-Min Deter	1-Clean and maintain				-	MH	19.94	0.19	30												EA	272.9	7 0.73
31	580 Navigational Lights	(EA)	1-Excellent	1-Miscellaneous Maint	MH	20.20	0.20	22		19.94	0.19	30												EA		7 0.73
31	580 Navigational Lights		2-Min Deter	1-Clean and maintain					MH	19.94	0.19	30												EA	212.0	7 0.73
31 31	581 Operator Facilities	(EA)	1-Excellent	1-Perform maintenance	MH	20.26	0.20	20	MH MH	19.94 19.94	0.19	30 30												E/		7 0.73 7 0.73
31 31	582 Lift Bridge Spec. Eq 582 Lift Bridge Spec. Eq	(EA) (EA)	1-Excellent 2-Mod Deter	1-Perform maintenance 1-Perform maintenance					MH MH	19.94	0.19	30					<u>├</u> ──		<u> </u>						272.9	
31		(EA) (EA)	1-Excellent	1-Perform maintenance	мн	19.51	0.16		MH	19.94	0.19	30												E/		
31	583 Swing Bridge Spec. E	(EA)	2-Mod Deter	1-Perform maintenance		13.31	0.10		MH	19.94	0.19	30											-+	EA	272.9	7 0.73
31	590 Resistance Barriers	(EA)	1-Excellent	1-Perform maintenance	мн	19.24	N/A		MH	19.94	0.19	30				-							+	E/	272.9	
31	590 Resistance Barriers	(EA)	2-Mod Deter	1-Perform maintenance					MH	19.94	0.19	30												EA	272.9	7 0.73
31	591 Warning Gates	(EA)	1-Excellent	1-Perform maintenance	MH	20.25	0.21	19		19.94	0.19	30												EA	272.9	7 0.73
31	591 Warning Gates	(EA)	2-Mod Deter	1-Perform maintenance		_			MH	19.94	0.19	30												EA		7 0.73
131	592 Traffic Signals	(EA)	1-Excellent	1-Perform maintenance	MH	20.25	0.21	19		19.94	0.19	30													272.9	
31	592 Traffic Signals		2-Mod Deter	1-Perform maintenance					MH	19.94	0.19	30					<u></u>	40.47	4.05	0.55			\rightarrow	EA	272.9	7 0.73
46	320 P/S Conc Appr Slab 321 R/Conc Approach Slab	(EA)	1-No deterioration	1-Miscellaneous Maint 1-Miscellaneous Maint					SF SF	22.47 22.47	1.25 1.25	250 250					SY SY		1.05							+

Final Report

Appendix E Deterioration and Action Effectiveness Questionnaire

Instructions

This questionnaire asks a set of structured questions about each element appearing in the FDOT bridge inventory. We are asking each respondent to provide an educated estimate in answer to each of the following questions, by filling in the boxes in the questionnaire.

Please answer based on **your own personal experience** in observing the condition of bridge elements over the years. If you have no experience with an element, leave its page blank. For example, if you have not worked with moveable bridges, then leave all moveable bridge elements blank.

Often there will be several elements that have similar deterioration experience. If you believe that all of the answers for a given element will be the same as for an earlier element that you already filled in, then all you need to do is enter the earlier element's number in the topmost box on the page, leaving the rest blank.

Please assume that each element is in the **Severe** environment. Base your answers on **typical** behavior of the element, not best-case or worst-case. Consider only bridges on the **state system**, not local bridges.

The questionnaire shows element and condition state definitions, and the list of feasible actions, as given in the Pontis database used in the study. In some cases the Field Guide definitions may be slightly different, usually just a matter of grammar and spelling. In such cases, the **Field Guide** takes precedence.

Do nothing cases

The first line of each condition state is labeled DO NOTHING. In the **unshaded** box, please answer the following question:

If 100 typical units of this element are in this state today, after **how many years** will 50 units have deteriorated to the indicated (next-worse) condition state, with the remaining 50 units still in today's state, if no action is taken?

Note that the inspection units for each element are indicated in parentheses after the element name at the top of the page.

For the final condition state of each element, the unshaded box is labeled "fail". For this box, the question should be interpreted as follows:

If 100 typical units of this element are in this state today, after **how many years** will 50 units have deteriorated to the point where they **no longer serve their intended function**, with the remaining 50 units still in today's state, if no action is taken?

For primary elements such as girders, an element ceases to serve its intended function if the bridge must be load-posted. For secondary elements such as joints, the element ceases to serve its intended function when its failure causes damage to other elements. In all cases, "failure" should be interpreted as significantly worse condition than the worst defined condition state for that element.

Do something cases

The remaining boxes under each condition state are to indicate the likelihood of each condition state occurring **immediately** following a maintenance, repair, or rehabilitation action. Please answer the following question for each box:

If 100 typical units of this element are in this condition state today, how many of them (out of 100) will be in the indicated condition state immediately after the indicated action is taken?

When answering this question, take into account typical experience with quality control, as well as the typical suitability of the action for that condition state. For example, if a concrete element is both cracked and spalled, and the action is "crack sealing," then only a portion of the deterioration will be addressed by the action, with the remaining portion (the spalls) unchanged.

If you believe that a certain condition state is highly unlikely, enter zero. For elements with fewer than 5 condition states, some of the cells may be shaded. Leave these blank. The sum of all your answers along any one row must be 100.

If a row is labeled "unitary," that means that the action is defined as being applied to the entire element on a bridge, regardless of how much is deteriorated. For example, deck overlays are unitary because decks are always overlaid all at once.

Other environments

At the bottom of each page, please indicate how you would expect the answers to your questions to differ in Moderate or Benign environments. For example, if you think decks will move from one state to the next only half as fast in a Benign environment as in a Severe environment, please indicate this in a note at the bottom of the page.

Also please indicate whether you think the do-something answers would vary by environment.

Thank you very much for your help!

		Do Nothing		Do Somethi	ng	Median	Years (Out of S	tate	
	Chata	Average	Deenenee	Average	Deereree		_	-		
# Element	State		Response		Response	1	2	3	4	5
# Element	Count	Variation	Rate		Rate	00.0	45.0	40.5	4.0	0.5
12 Concrete Deck - Bare	5	0.38	100%	0.17	100%	20.0	15.0	10.5	4.8	2.5
13 Concrete Deck - Unprotected w/ AC Overlay 28 Steel Deck - Open Grid	5 5	0.45	95% 70%	0.33 0.51	100% 72%	9.3 10.7	6.3 6.3	4.3 6.3	2.8	2.3
29 Steel Deck - Open Ghd 29 Steel Deck - Concrete Filled Grid	5	0.34	70% 70%	0.51	72%	15.0	0.3 9.7	0.3 4.7	5.0 5.3	3.5 4.0
31 Timber Deck - Bare	4	0.40	19%	0.43	25%	10.0	10.0	5.0	5.5	4.0
32 Timber Deck - w/ AC Overlay	4	0.00	19%	0.00	25%	5.0	3.0	12.0		
38 Concrete Slab - Bare	5	0.39	70%	0.00	25 <i>%</i> 75%	21.7	16.7	10.0	4.3	2.5
39 Concrete Slab - Unprotected w/ AC Overlay	5	0.00	70%	0.22	75%	7.3	4.3	3.3	2.3	2.5
54 Timber Slab	4	0.00	19%	0.00	25%	10.0	10.0	5.0	2.0	
55 Timber Slab - w/ AC Overlay	4	0.00	19%	0.00	25%	5.0	3.0	12.0		
98 Concrete Deck on Precast Deck Panels	5	0.45	95%	0.32	100%	18.3	13.0	8.8	4.0	2.3
99 Prestressed Concrete Slab (Sonovoid)	5	0.39	95%	0.51	97%	5.3	8.8	15.0	11.0	4.7
101 Unpainted Steel Closed Web/Box Girder	4		0%		0%				-	
102 Painted Steel Closed Web/Box Girder	5	0.46	95%	0.25	100%	10.3	5.8	7.5	5.5	3.7
104 P/S Conc Closed Web/Box Girder	4	0.57	69%	0.27	70%	15.3	19.0	12.7	4.0	
105 Reinforced Concrete Closed Webs/Box Girder	4	0.17	44%	0.27	50%	30.0	15.0	10.0	6.0	
106 Unpainted Steel Open Girder/Beam	4	0.00	25%	0.00	25%	25.0	20.0	10.0	5.0	
107 Painted Steel Open Girder/Beam	5	0.31	100%	0.09	100%	11.5	6.3	5.3	4.0	3.5
109 P/S Conc Open Girder/Beam	4	0.37	100%	0.07	100%	41.3	16.3	8.0	3.3	
110 Reinforced Conc Open Girder/Beam	4	0.35	94%	0.35	100%	22.3	18.8	8.8	5.0	
111 Timber Open Girder/Beam	4	0.00	19%	0.00	25%	5.0	15.0	5.0		
112 Unpainted Steel Stringer	4		0%		0%					
113 Painted Steel Stringer	5	0.34	95%	0.27	100%	10.3	7.5	6.5	4.0	3.0
116 Reinforced Conc Stringer	4	0.00	19%	0.00	25%	25.0	10.0	5.0		
117 Timber Stringer	4		0%		0%					
120 Unpainted Steel Bottom Chord Thru Truss	4		0%		0%					
121 Painted Steel Bottom Chord Thru Truss	5	0.06	45%	0.09	47%	11.0	5.0	4.5	4.5	4.0
125 Unpainted Steel Thru Truss (excl. bottom chord)	4		0%		0%					
126 Painted Steel Thru Truss (excl. bottom chord)	5	0.04	45%	0.09	47%	12.0	5.0	4.5	4.5	4.0
131 Painted Steel Deck Truss	5	0.04	45%	0.09	47%	12.0	5.0	4.5	4.5	4.0
135 Timber Truss/Arch	4		0%		0%					
140 Unpainted Steel Arch	4		0%		0%					
141 Painted Steel Arch	5	0.09	50%	0.08	50%	13.5	5.0	4.5	4.5	4.5
143 P/S Conc Arch	4		0%		0%					
144 Reinforced Conc Arch	4	0.17	44%	0.29	50%	30.0	10.0	7.5	5.0	
146 Cable - Uncoated (not embedded in concrete)	4		0%		0%					
147 Cable - Coated (not embedded in concrete)	5		0%		0%					
151 Unpainted Steel Floor Beam	4		0%		0%					
152 Painted Steel Floor Beam	5	0.27	75%	0.10	75%	13.3	6.3	4.3	3.7	3.3
155 Reinforced Conc Floor Beam	4	0.22	44%	0.25	50%	32.5	15.0	7.5	6.0	
156 Timber Floor Beam	4	0.00	0%	0.00	0%	40.0	4.0		5.0	
161 Painted Steel Pin and/or Pin and Hanger Assembly	5	0.00	25%	0.00	25%	10.0	4.0	3.0	5.0	6.0
201 Unpainted Steel Column or Pile	4	0.04	0%	0.00	0%	40.0		5.0	4.0	0.0
202 Painted Steel Column or Pile	5	0.31	95%	0.26	100%	10.8	6.3	5.3	4.0	3.0
204 P/S Conc Column or Pile 205 Reinforced Conc Column or Pile	4	0.30	100%	0.19	95%	22.5	8.0	3.8	2.3	
205 Reinforced Conc Column of Pile 206 Timber Column or Pile	4	0.19 0.21	100% 75%	0.20 0.28	100% 75%	27.5 11.7	14.0 4.7	9.0	4.5 1.3	
207 Hollow Core Pile	4	0.21	75% 75%	0.28	75%	23.3	4.7 5.7	2.7 3.3	2.3	
210 Reinforced Conc Pier Wall	4	0.21	100%	0.21	100%	25.3	12.8	9.0	6.0	
211 Other Material Pier Wall 215 Reinforced Conc Abutment	4 4	0.00 0.35	25% 100%	0.00 0.31	25% 100%	10.0 32.5	5.0 14.5	5.0 10.8	5.0 7.8	
215 Reinforced Conc Abutment 216 Timber Abutment	4	0.35	100% 50%	0.31	50%	32.5 17.5	14.5 8.0	5.0	7.8 4.0	
217 Other Material Abutment	4	0.23	50% 25%	0.19	50% 25%	17.5	8.0 5.0	5.0 10.0	4.0 10.0	
220 Pile Cap/Footing	4	0.00	100%	0.00	100%	23.8	10.3	8.8	6.5	
230 Unpainted Steel Cap	4	0.00	0%	0.52	0%	20.0	10.5	0.0	0.0	
230 Onpainted Steel Cap 231 Painted Steel Cap	4 5	0.15	0% 50%	0.13	39%	10.0	5.5	4.5	4.5	7.0
233 P/S Conc Cap	5	0.15	50%	0.13	39% 45%	30.0	5.5 15.0	4.5 9.0	4.5 7.0	1.0
234 Reinforced Conc Cap	4	0.30	100%	0.10	100%	31.3	17.5	11.3	6.5	
235 Timber Cap	4	0.20	50%		50%	17.5	8.0	5.0	4.0	
	т	0.20	5070	5.10	0070		0.0	0.0		

		Do Nothing		Do Somethi	ng	Median	Years (Out of S	state	
	State	Average	Response	Average	Response	4	0	2	4	~
# Element	Count	Variation	Rate	Variation	Rate	1	2	3	4	5
240 Metal Culvert	4	0.32	50%	0.19	45%	20.0	7.5	5.0	3.5	
241 Reinforced Concrete Culvert	4	0.26	94%	0.29	90%	23.8	14.3	8.8	5.3	
243 Other Culvert	4		0%		0%					
290 Channel	4	0.37	69%	0.29	75%	13.3	13.3	8.3	4.5	
298 Pile Jacket without Cathodic Protection	4	0.30	75%	0.27	75%	7.3	7.0	5.0	4.3	
299 Pile Jacket with Cathodic Protection 300 Strip Seal Expansion Joint	4	0.61	50% 75%	0.18	45% 75%	8.5 4.7	5.0 2.3	3.5 1.3	3.5	
301 Pourable Joint Seal	3	0.41	100%	0.13	100%	4.8	3.0	1.5		
302 Compression Joint Seal	3	0.36	100%	0.16	100%	4.8	2.5	1.8		
303 Assembly Joint/Seal (modular)	3	0.25	50%	0.14	50%	5.0	4.5	3.5		
304 Open Expansion Joint	3	0.38	75%	0.10	69%	15.0	7.7	3.7		
310 Elastomeric Bearing	3	0.14	100%	0.24	100%	32.5	16.3	10.0		
311 Moveable Bearing (roller, sliding, etc.)	3	0.42	100%	0.10	94%	15.0	11.3	9.3		
312 Enclosed/Concealed Bearing 313 Fixed Bearing	3 3	0.00 0.20	25% 100%	0.00 0.18	25% 100%	15.0 18.8	10.0 12.5	6.0 6.8		
314 Pot Bearing	3	0.20	50%	0.10	50%	10.0	12.5	7.0		
320 P/S Concrete Approach Slab w/ or w-o/AC Ovly	4	0.00	25%	0.00	21%	20.0	10.0	10.0	10.0	
321 Reinforced Conc Approach Slab w/ or w/o AC Ovly	4	0.33	100%	0.15	92%	20.8	17.5	15.0	7.3	
330 Metal Bridge Railing - Uncoated	4	0.00	25%	0.00	17%	10.0	5.0	10.0	10.0	
331 Reinforced Conc Bridge Railing	4	0.33	100%	0.31	100%	23.8	20.0	15.0	9.8	
332 Timber Bridge Railing	3	0.00	25%	0.00	25%	10.0	15.0	5.0		
333 Other Bridge Railing 334 Metal Bridge Railing - Coated	3 5	0.39 0.25	75% 75%	0.11	69%	28.3	18.3	8.3 6.7	E 0	47
386 Fender Dolphin System Metal Uncoated	э 4	0.25	75% 0%	0.03	75% 0%	13.3	8.0	0.7	5.0	4.7
387 Fender Dolphin System Prestressed Concrete	4	0.35	75%	0.23	70%	23.3	6.7	6.0	3.3	
388 Fender Dolphin System Reinforced Concrete	4	0.20	50%	0.11	45%	22.5	8.0	5.5	4.5	
389 Fender Dolphin System Timber	4	0.61	75%	0.25	63%	13.3	8.0	5.0	4.3	
390 Fender Dolphin System Other Material	4	0.00	25%	0.00	17%	15.0	10.0	10.0	5.0	
393 Bulkhead/Seawall Metal Uncoated	4		0%		0%					
394 Abutment Slope Protection Reinforced Concrete	4	0.30	94%	0.29	95%	16.3	11.3	10.3	4.7	
395 Abutment Slope Protection Timber	4	0.22	0%	0.16	0%	11 0	12.2	7.0	4.0	
396 Abutment Slope Protection Other Material 397 Drainage System Metal Coated	4 5	0.32 0.61	100% 75%	0.16 0.29	92% 70%	11.8 11.0	13.3 8.7	7.0 5.3	4.0 5.0	4.3
398 Drainage System Other Material	4	0.52	50%	0.23	46%	10.0	10.0	8.5	5.5	4.5
399 Other Expansion Joint	3	0.00	25%	0.00	19%	10.0	10.0	5.0	0.0	
474 Wingwall/Retaining Wall Metal Uncoated	4	0.00	25%	0.00	20%	10.0	15.0	10.0	5.0	
475 Wingwall/Retaining Wall Reinforced Concrete	4	0.29	94%	0.27	90%	27.5	20.0	11.3	6.7	
476 Wingwall/Retaining Wall Timber	4	0.00	25%	0.00	17%	5.0	10.0	15.0	10.0	
477 Wingwall/Retaining Wall Other Material	4	0.00	25%	0.00	20%	10.0	15.0	15.0	10.0	
478 Mechanically Stabilized Earth Wall	4 5	0.48	25%	0.03	25%	10.0	27.5	10.0	6.5	<u> </u>
487 Overlane Sign Structure Horizontal Member Metal Co 488 Overlane Sign Structure Vertical Member Metal Coat	ວ 5	0.37 0.37	50% 50%	0.11 0.09	41% 39%	15.0 15.0	10.0 10.0	10.0 10.0	6.5 6.5	5.5 5.5
489 Overlane Sign Structure Foundation	4	0.23	50%	0.03	45%	37.5	22.5	17.5	7.5	0.0
495 High Mast Light Poles Metal Uncoated	4	0.44	50%	0.18	45%	15.0	7.5	3.5	3.0	
496 High Mast Light Poles Metal Coated	5	0.00	25%	0.00	14%	15.0	10.0	10.0	5.0	5.0
497 High Mast Light Poles Galvanized	5	0.00	25%	0.00	14%	20.0	15.0	15.0	10.0	10.0
498 High Mast Light Poles Other Material	4	0.00	25%	0.00	20%	10.0	10.0	10.0	5.0	
499 High Mast Light Pole Foundations	4	0.32	50%	0.32	50%	30.0	20.0	12.5	5.0	
540 Open Gearing 541 Speed Reducers	4	0.58 0.28	75%	0.24 0.20	75%	3.7 6.7	9.0 9.3	5.3 4.7	3.7 4.3	
542 Shafts	4 4	0.28	75% 75%	0.20	75% 75%	10.7	9.3 9.0	4.7 7.7	4.3 5.7	
543 Shaft Bearings and Shaft Couplings	4	0.34	75%	0.27	75%	4.0	4.7	4.0	3.0	
544 Brakes	4	0.46	75%	0.28	75%	4.3	3.7	2.7	2.7	
545 Emergency Drive and Back Up Power System	4	0.58	75%	0.08	70%	7.0	7.3	6.0	5.3	
546 Span Drive Motors	4	0.65	75%	0.18	70%	7.3	5.3	2.7	2.3	
547 Hydraulic Power Units	4	0.42	75%	0.34	70%	4.0	4.0	3.0	2.7	
548 Hydraulic Piping System	3	0.28	75%	0.30	75%	6.7	4.7	3.3		
549 Hydraulic Cylinders/Motors/Rotary Actuators	4	0.41	75%	0.28	70%	3.7	4.0	3.0	2.7	4 7
550 Hopkins Frame 560 Span Locks/Toe Locks/Heel Stops/Tail Locks	5 4	0.53	75% 75%	0.45	75% 75%	10.7 2.0	7.7 2.3	5.7 3.3	5.0 2.3	4.7
561 Live Load Shoes/Strike Plates/Buffer Cylinders	4	0.50	75% 75%	0.18	75%	2.0 7.7	2.3 11.7	5.0	2.0	
562 Counterweight Support	5	0.47	75%		75%	10.7	9.0	8.0	5.0	3.0
0 11	-					-			-	-

Final Report

		Do Nothing		Do Somethi	ng	Median	Years (Dut of S	state	
# Element	State Count	Average Coef of Variation	Response Rate		Response Rate		2	3	4	5
563 Access Ladder & Platforms	5	0.39	75%	0.43	75%	10.7	7.7	6.3	4.7	3.7
564 Counterweight	4	0.28	75%	0.37	75%	16.7	11.7	10.0	6.7	
565 Trunnion/Straight and Curved Track	4	0.65	75%	0.24	75%	10.3	9.3	7.3	5.3	
570 Transformers & Thyristors	3	0.68	75%	0.22	69%	8.7	5.0	2.3		
571 Submarine Cable	3	0.34	75%	0.24	75%	16.7	6.7	3.7		
572 Conduit & Junction Boxes	3	0.15	75%	0.25	50%	10.0	4.7	4.0		
573 Programmable Logic Controllers	3	0.76	75%	0.24	75%	7.0	7.3	5.3		
574 Control Console	3	0.78	75%	0.18	75%	7.0	4.7	5.3		
580 Navigational Light System	3	0.79	75%	0.24	75%	6.1	5.0	4.3		
581 Operator Facilities	3	0.20	75%	0.10	75%	16.7	13.3	8.3		
582 Lift Bridge Specific Equipment	3	0.00	25%	0.00	25%	3.0	5.0	4.0		
583 Swing Bridge Specific Equipment	3		0%		0%					
590 Resistance Barriers	3	0.56	75%	0.15	70%	6.3	5.0	3.0		
591 Warning Gates	3	0.33	75%	0.15	70%	4.7	4.0	3.0		
592 Traffic Signal	3	0.13	50%	0.15	45%	8.5	11.0	4.5		