FINAL REPORT

SYNTHESIZING COMMERCIAL SHIPPING (BARGE/TUG TRAINS) FROM AVAILABLE DATA FOR VESSEL COLLISION DESIGN

State Project No. 99700-3596-119 HPR Study No. 0510841 Contract No. BB-489

> Principal Investigator: Ton-Lo Wang, Ph.D., P.E. Co-Principal Investigator: Chunhua Liu, Ph.D.

Department of Civil & Environmental Engineering Florida International University Miami, FL 33199

> Prepared for: Research Center Florida Department of Transportation Tallahassee, FL 32399

TABLE OF CONTENTS

LI	LIST OF TABLES vii			
LI	IST OF FIGURES	viii		
1.	INTRODUCTION	1		
2.	TECHNOLOGY REVIEW	3		
	2.1 AASHTO SPECIFICATION DESIGN METHOD II	3		
	2.2 SIMILAR EFFORTS	9		
3.	FLORIDA VESSEL FLEET CHARACTERISTICS	11		
	3.1 PAST POINTS	11		
	3.2 VESSEL FLEET CHARACTERISTICS	13		
	3.2.1 TUGS AND BARGES	14		
	3.2.2 SELF-PROPELLED VESSELS	15		
	3.2.3 FOREIGN VESSELS	15		
	3.3 SYNTHESIZING RESULTS	16		
	3.3.1 ONE-YEAR DATA	17		
	3.3.2 THREE-YEAR DATA	18		
	3.4 FUTURE TRAFFIC PREDICTION	18		
	3.5 VESSEL TRANSIT SPEED	19		
4.	DATA VERIFICATION	21		
	4.1 REQUEST FOR BRIDGE TENDER LOGS	21		
	4.2 DATA COMPARISON BETWEEN TENDER LOGS AND WCSC	21		
	4.3 DATA VERIFICATION WITH ANNUAL SUMMARY	22		
5.	DESIGN EXAMPLE	24		
	5.1 BRIDGE DESCRIPTION	24		
	5.2 BASIC INPUT DATA	24		
	5.3 DESIGN SUMMARY	27		
	5.4 DISCUSSION OF SMALL SELF-PROPELLED VESSELS			
6.	SUMMARIES AND RECOMMENDATIONS	29		
	6.1 SUMMARIES	29		
	6.2 BASIC INPUT DATA	32		
Bl	BIBLIOGRAPHY			
A] A]	PPENDIX I FIFTY-TWO PAST POINTS AND THEIR MAPS PPENDIX II COMPETITIVE STATEMENT OF TRAFFIC AND PREDICTION OF FUTURE TRAFFIC INCREASE			

APPENDIX III SYNTHESIZED DATA APPENDIX IV DESIGN EXAMPLE BY MATHCAD

LIST OF TABLES

Table 1.	Summary of Past Points	.36
Table 2.	Tug Size and Displacement	.36
Table 3.	Barge Classification and Assigned Tug	.36
Table 4.	Raw Records of Phone Calls	.37
Table 5.	Summary of Towboat and Barge Transit Velocity	.38
Table 6.	Recommended Vessel Transit Velocity	.39
Table 7.	Summary of Requesting Tender Logs	.40
Table 8.	Comparison between Tender Logs and WCSC	.41
Table 9.	Requested Bridge Tender Logs	.42
Table 10	. Summary of Self-propelled Vessel Trips (1996)	.43
Table 11	. Channel and Bridge Characteristics	.44
Table 12	. Summary of Relationship between Sizes and DWT of Typical Ships	.45
Table 13	. Lateral Ultimate Strength of Each Bridge Pier	.46
Table 14	. Summation of Annual Frequency of Collapse	.46
Table 15	. Role of Small Self-propelled Vessels in Design (Upbound)	.47
Table 16	. Role of Small Self-propelled Vessels in Design (Downbound)	.49

LIST OF FIGURES

Figure 1. Flow Chart for AASHTO Design Method II	52			
Figure 2. Geometric Probability of Pier Collision	53			
Figure 3. Plan of Waterway/Channel/Bridge Piers	53			
Figure 4. Future Traffic Tonnage Prediction	54			
Figure 5. Annual Frequency of Collapse due to Upbound Vessel Group # 1, 2, 3, and 4	55			
Figure 6. Annual Frequency of Collapse due to Downbound Vessel				
Group # 1, 2, 3, and 4	56			

1. INTRODUCTION

During the period of 1960 to 1993, major ship collisions with bridges have happened nearly 30 times in the world. Several most catastrophic failures of these collisions include the collapse of the Sunshine Skyway Bridge (1980) with loss of 35 lives, Volga River Railroad Bridge (1983) with loss of 176 lives, and the Alabama railroad Bridge (1993) with loss of 44 lives (Lexington Herald-Leader 1993 and Mastaglio 1997). Even though there is no loss of life involved, severe strike can cause traffic close for hours, such as the accident of the U.S. 51 and 62 bridge over the Ohio River on April 23, 1995 (Lexington Herald-Leader 1995). Since 1960, the number of U.S. bridges that cross major waterways at coastal ports has increased 33% while the number of vessels in the world has increased threefold. This fact means an increasing possibility of disastrous collisions worldwide as a result. Furthermore, inadequate attention is often given to a bridge's relationship with waterborne traffic and bridges are placed over the navigation channel that does not accommodate the modern ships and barges/tugs that regularly exceed 800 ft (243.84m) in length and 100 ft (30.48m) in width. The risk is compounded when strong winds or difficult current conditions create a challenging environment for steering.

Only after the catastrophe of the Sunshine Skyway Bridge (1980) has action been taken in the U.S. to standardize protection procedures for bridges. Many bridges each year are designed to resist vessel impact loads according to the American Association of State Highway and Transportation Officials (AASHTO) *Guide specification and commentary for vessel collision design of highway bridges* (1991). The guide specification provides three vessel impact design method, called method I, II, and III. Method I is a semi-deterministic procedure that allows the designer to select a design vessel for collision impact. Method II is a probability-based technique in which the design vessel is selected based on accurate vessel traffic data. Method III employs a cost-effective analysis procedure to select the design vessel for collision impact and closely parallels techniques used in Method II. Most bridges are designed using Method I because it is simple and easy to use. Although more difficult to apply than Method I, design Method II is recommended by the AASHTO *Guide Specification* (1991) for most bridges. However, the guide specification provides very little guidance on the application of design Method II to bridges susceptible to barge/tug impact since it focuses mainly on ship impact design.

The objective of this project is to establish the commercial shipping traffic for all bridges located over navigable waterways in Florida. Knowing the commercial shipping traffic, a risk analysis can be performed which optimizes the vessel collision design. This data will be developed on a statewide basis so that the commercial vessel traffic can be provided to the design teams. This work will result in reducing bridge design and construction cost by use of consistent data for all bridge sites and uniform application of the risk analysis approach. It is estimated that 401 bridge sites are qualified for this synthesization process.

2. TECHNOLOGY REVIEW

2.1 AASHTO GUIDE SPECIFICATION DESIGN METHOD II

When performing vessel impact risk analysis according to design Method II, the AASHTO *Guide Specification and Commentary for Vessel Collision Design of Highway Bridges* (1991) requires the following data: (1) vessel characteristics; (2) waterway characteristics; (3) bridge characteristics; (4) design impact speed; and (5) probability of aberrancy, etc. According to FDOT's technical needs, our major work focus on performing, collecting, and processing data from available sources on items (1) and (4).

Figure 1 demonstrates the design flowchart of Method II in the AASHTO *Guide Specification* (1991). To apply this design code to the new bridges in Florida, it is necessary to discuss these data together with the inland waterway situations within this state. Following the design Method II procedure, the FDOT has developed a risk analysis software in the environment of Mathcad for vessel impact resistant design.

Design Vessel Acceptance Criteria

The AASHTO *Guide Specification* (1991) defines the acceptance criteria for two bridge classifications: regular and critical bridges. For regular bridges, the acceptable annual frequency

of collapse for the total bridge elements, AF, should be equal to , or less than, 0.1 in 100 years (AF = 0.001). For critical bridges, the acceptable annual frequency of collapse, AF, should be equal to , or less than, 0.01 in 100 years (AF = 0.0001). The design Method II suggests that this acceptable annual frequency of collapse for the total bridge be distributed over the number of pier and span elements located within the waterway, or within the distance $3 \times LOA$ (LOA is the length overall of ship or barge tow) on each side of the inbound and outbound vessel transit paths if the waterway is wide. This distribution results in a reasonable risk over each bridge pier and span element. It is recommended that the failure probability be distributed to achieve a uniform risk level over all bridge components.

Annual Frequency of Collapse

According to the design Method II, the annual collapse frequency of the *j* th bridge component shall be computed by

$$AF_{j} = \sum_{i=1}^{n} N_{i} \cdot PA_{j} \cdot PG_{i,j} \cdot PC_{i,j}$$
(1)

where

 AF_j = annual frequency of the *j*th bridge component collapse due to vessel collision, $j = 1, \dots, m$, and *m* is the total number of bridge components susceptible to vessel collision;

)

 N_i = annual number of the *i*th vessel group classified by type, size, and loading condition which can strike the bridge element, $i = 1, \dots, n$, and *n* is the total number of classified vessel groups;

 PA_i = probability of vessel aberrancy at the *j* th bridge component;

 $PG_{i,j}$ = geometric probability of a collision of an aberrant vessel in the *i* th group with the *j* th bridge component; and

 $PC_{i,j}$ = probability of the *j* th bridge component collapse due to a collision with an aberrant vessel in the *i* th group

Vessel Characteristics

In the design Method II of the AASHTO *Guide Specification* (1991), the sizes, annual passages, displacement capacity, and draft at movement of every vessel passing under the specific bridge should be determined. It is recommended that a detailed database maintained by U.S. Army Corps of Engineers Waterborne Commerce Statistics Center, New Orleans, LA, be utilized for collecting relevant vessel traffic data at a particular bridge site. To request waterborne traffic information from this database, coordinates of the specific bridge location, namely past point, shall be provided to the WCSC. The experts at WCSC firstly locate the past point through the Geographical Information System (GIS), then survey data for this point from its adjacent waterway joints. According to the WCSC classification system, inland navigation vessels are classified into six types: (1) self propelled (dry cargo); (2) self propelled (tanker); (3) towboat;

(4) non-self propelled (dry cargo); (5) non-self propelled (tanker); and (6) other. Among these vessels, types 1 and 2 with power system stand for ships, and types 4 and 5 without power system stand for barges. In most inland and intracoastal waterways of Florida, the statistically significant vessel traffic is typically barge flotilla traffic. When flotillas are dominant in waterway traffic, one of the difficulties in the application of design Method II lies in that there are tremendous variation in flotilla sizes and barge types and sizes. Through contacting with local barge and ship companies, it was informed that the flotillas in Florida mainly comprise one tug and one barge combination, except for the north-west part of the state where there are transit flotillas consisted of one tug and several barges to meet the need of heavy waterway transportation. A FORTRAN computer program was written to synthesize the requested data from the WCSC database and to classify the barges into different groups.

Probability of Aberrancy

The probability of aberrancy is a vessel casualty probability to the bridge, caused by human errors, poor environmental conditions, and mechanical failures, etc. The AASHTO *Guide Specification* (1991) recommends that *PA* be determined on the basis of historical accident data for a particular bridge site. Otherwise, an alternative estimation can be used for the bridge location:

$$PA = BR \cdot R_B \cdot R_C \cdot R_{XC} \cdot R_D \tag{2}$$

where

BR = aberrancy base rate derived from historical accident data from several U.S. waterways: for ship 0.6×10^{-4} and for barges 1.2×10^{-4} ; and

 R_B, R_C, R_{XC}, R_D = correction factors for bridge location, current acting parallel and perpendicular to vessel transit path, and vessel traffic density, respectively.

Geometric Probability

The geometric probability is a conditional probability that a vessel will hit a bridge pier or span given that it has lost control in the vicinity of the bridge as shown in Figure 2. The AASHTO *Guide Specification* (1991) recommends that the geometric probability be computed based on a normal distribution of vessel accidents about the centerline of the vessel transit path and the standard deviation be taken as LOA. These recommendations primarily come from investigation of accident data from ship vessels. However, little research has been made for the distribution form of barge accidents over an inland waterway. It is suggested that the distribution type of ship or barge accidents be investigated to acquire its more accurate description and the distribution type be determined in association with channel profile characteristics and vessel draft at movement. In the situation that the vessel draft of the *i* th group is greater than the water depth of channel at the *j* th bridge pier, $PG_{i,j}$ is zero, rather than the shadow area as shown in Figure 2. Other distribution types can also be applied, such as Lognormal type or Extreme I type, depending on the actual profile of water depths in waterway.

Probability of Collapse

The probability of collapse means a measure of risk of the bridge failure once it has been struck by an astray vessel.

$$PC = \begin{cases} 0.1 + 9(0.1 - H/P) & \text{for } 0.0 \le H/P < 0.1\\ (1 - H/P)/9 & \text{for } 0.1 \le H/P < 1.0\\ 0.0 & \text{for } H/P \ge 1.0 \end{cases}$$
(3)

where

H = ultimate bridge element strength; and

$$P$$
 = vessel impact force.

The definition of probability of collapse in Eq. (3) is based on the historical damage statistics caused between two colliding ships at sea (Fujii 1978). This definition does not reflect the structural design philosophy of bridge components. From the viewpoint of structural reliability analysis (e.g., LRFD Bridge Design Specifications 1994), *PC* does not equal zero, for H/P > 1.0, since both ultimate strength *H* and vessel impact force *P* are actually random variables due to inevitable construction and theoretical errors. In the case that *H* and *P* are two independent normal distributed variables (mean values: 1100 and 1000, standard deviations: 50 and 50, respectively, unit: kips), the probability of failure under the limit state H - P = 0 is 0.08, rather than zero.

Vessel Collision Force

The ship collision equivalent static impact force on pier shall be computed by the following:

$$P_{s} = 220(DWT)^{1/2} (V/27) \text{ kips}$$
(4)

where

DWT = deadweight tonnage of ship (tonnes); and

V = ship impact speed (fps).

The barge collision equivalent static impact force on pier shall be determined by the following:

$$P_{B} = \begin{cases} 4112 \cdot a_{B} \cdot R_{B} & \text{for } a_{B} < 0.34; \\ (1349 + 110 \cdot a_{B}) \cdot R_{B} & \text{for } a_{B} \ge 0.34 \end{cases}$$
 kips (5)

where

 $R_B = \text{ratio of } B_B / 35;$

 B_B = barge width (ft); and

 $a_B = [(1 + KE/5672)^{1/2} - 1] \cdot (10.2/R_B)$, barge bow damage depth (ft), and KE is vessel collision energy (kip-ft).

2.2 SIMMILAR EFFORTS

In recent years, theoretical analyses and field tests on the structural protection design of bridge against ship collision have been performed (Arita et al 1994, Hansen et al 1994, Kuzmanovic and Sanchez 1992, Poepsel and Dowd 1995, Rambech and Dahl 1994, and Whitney et al 1996). Risk modeling of vessel impact on bridges are investigated (Bein 1993, Grabowski and Wallace 1993, Gravesen et al 1995, and Knott 1996) for the purpose of structural design. A cable-stayed bridge over the Ohio River at Maysville, Kentucky, was given as a detailed design example by design Method II (Whitney et al 1996). In the example, a probability-based approach is recommended to be adopted to calculate the number of barges comprising a flotilla due to the large variation in the flotillas. However, the efforts are needed to collect and process the necessary waterway traffic information in Florida for the vessel collision resistant evaluation of existing bridges or new bridge designs using Method II.

3. FLORIDA VESSEL FLEET CHARACTERISTICS

In the famous waterways, such as Mississippi River System and Kentucky Waterways, vessel characteristics can be acquired from the information contained in the *Waterborne Transportation Lines of the United States* database (Whitney et al 1996). However, there are various complicated waterways in Florida, including canals, rivers, and intracoastal areas etc. In the project, past points are selected all over the Florida waterways to obtain the vessel traffic data. These past points are sent to the Navigation Data Center (NDC) of U.S. Army Corps of Engineers in order to request data. A Fortran program is developed to process these data according to the fixed format, which is formed by FDOT.

3.1 PAST POINTS

The U.S. Army Corps of Engineers is responsible for the operation and maintenance of the Nation's waterway system to insure efficient and safe passage of commercial and recreational vessels. The support and management of economically sound navigation projects is dependent upon reliable navigation data. The Water Resources Support Center's Navigation Data Center (NDC) is responsible for establishing and maintaining a variety of navigation-oriented databases. These include databases of waterborne commerce, domestic commercial vessels, port facilities, lock facilities and lock operations, and navigation dredging projects.

The NDC's main office in Alexandria, Virginia, houses all but the waterborne commerce and vessels databases. These databases are operated and maintained by the NDC's Waterborne Commerce Statistics Center (WCSC) in New Orleans, Louisiana. Although organizations within

the Corps of Engineers are the primary users, the data and information are available to all government agencies, organizations, and individuals.

The FDOT Data, the table "Bridges with Navigation Control" and the bridge location maps marked with the bridge numbers in Florida, have been studied to decide the past points. The selection of past points is primarily based on the following two principles:

- Basically each major river/canal of every county possesses one past point;
- Bridge site of a moveable structural type is an optional past point.

When these points have been approved by FDOT, a total number of 52 bridge locations has been chosen as past points to represent 540 bridges with navigation control all over Florida. The coordinates of these past points are shown in **Appendix I**. In **Appendix I**, a Florida map distributed with the 52 past points is also drawn by using the Geographical Information System (GIS). In addition to the requested data, the WCSC sent a set of maps with detailed geographical information on each past point as shown in **Appendix I**. One-year and three-year data for these points has been requested and purchased from the WCSC. Contacted persons and address are listed as follows:

Mr. Ed Drinkert at Tel: (504) 862-1429 FAX: (504) 862-1423
or
Ms. Charlotte Cook at Tel: (504) 862-1473 FAX: (504) 862-1423
Waterborne Commerce Statistics Center
Navigation Data Center
U.S. Army Corps of Engineers

P. O. Box 61280

New Orleans, LA 70161-1280

According to the *Waterborne Commerce Of The United States 1997 parts 1 thru 5*, annual tonnages may significantly vary in some waterway areas in Florida. This means one-year data may lead to unreasonable statistical results. Consequently, all 52 past points have been distributed into different waterway areas listed in the book (see **Appendix II**), e.g., past points 3, 5, 6, 7, 14, 28, 33, 34, 36, 44, 45, 47, 48, 50, 51, and 52 belong to the area INTRACOASTAL WATERWAY, JACKSONVILLE TO MIAMI, FL. To be conservative, the latest three-year waterborne traffic data for these points, i.e., Calendar Years 1994, 1995, and 1996, are requested from the Waterborne Commerce Statistics Center. These points with three-year data, which have been selected according to the *Waterborne Commerce Of The United States 1997*, include the follows: 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 20, 21, 22, 28, 32, 33, 34, 35, 36, 37, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, and 52.

A summary of points with one-year or three-year data is listed in Table 1.

3.2 VESSEL FLEET CHARACTERISTICS

After request for data of 52 past points has been accomplished by the Waterborne Commerce Statistics Center (WCSC), these points were processed and the results were carefully reviewed. It is found that most of them have reasonable data. However, a few points have only several lines of data record, such as point 38. In this case, the WCSC has been contacted to check the requested point location and its data again. Accordingly, point 38 was found to be a waterway that was a dead-end and probably has no through traffic.

The processed data format has been developed by FDOT. Therefore, every point processing follows this format. A FORTRAN program is written to process this data. When unreasonable data information is found, for example, 999.99 ft in width and 9999.99 ft in length in lines 3,4, and 7 of file "ww1049.txt", the information was replaced by the vessel with the same or close empty and loaded drafts and vessel type.

3.2.1 Tug and barges

Tug and barge(s) are usually operated together as a flotilla on waterways. Based on the WCSC's data, it is impossible to judge the tug type correspondent to a specific barge train. To simplify the processed results, tugs operated on the Florida's waterways are classified by FDOT into three types: small, medium, and large. Their sizes and capacities are shown in Table 2. The barge vessel traffic is classified by its draft and corresponding tug size is assigned to the loaded groups in Table 3.

In the process of synthesizing data, free tugs are found on some past points. In such a case, these free tugs are classified into one vessel group. In lieu of adopting the classified tug type in Table 2, a statistic of actual tug traffic information is made to reflect actual traffic.

3.2.2 Self-propelled Vessels:

Generally, self-propelled vessels on each past point are assigned into only one group. However, some points are found to have predominant self-propelled vessel traffic. According to the FDOT comments, these self-propelled vessels are sub-grouped according to their drafts. The assignment by the five-group method similar to barges classification has been tried, but the majority of self-propelled vessel trips has been found to fall into only one group, i.e., the sub-grouping generates little effects on the design results and appears to be not necessary. Therefore, the draft interval between vessel groups is decreased from 3 ft to 2 ft. In practice, it is found that this change generates a better vessel grouping result. Past points that encounter the sub-grouping include the follows: 06, 07, 09, 10, 11, 12, 14, 20, 22, 32, 37, 40, 42, 43, and 49.

In the case of determining collision force on pier, calculation formula for ships is different from that for barges. Information of ship's deadweight tonnage is needed to obtain ship collision force on pier. Typical ship characteristics listed in Tables 3.5.2-1, 3.5.2-2, and 3.5.2-1 of the *Guide Specification* (1991) are reviewed and the relationship between DWT and ship sizes is summarized (Detailed discussions refer to Section 5.2 BASIC INPUT DATA in the report).

3.2.3 Foreign Vessels

Approximately on ten points, foreign vessels have been found: 06, 07, 08, 13, 23, 25, 30, 36, and 39. Basically, these foreign vessels have been added into the same domestic vessel types by trips.

In the case of only foreign vessels in one vessel group, vessel size and displacement can not be obtained from the requested data. It is found through research that almost every foreign vessel has 2 ft lightdraft and 20 ft loaddraft, i.e., these vessels are identical. As a simplified method, the vessel size is determined according to typical vessels with similar lightdraft and loaddraft in Tables 3.5.2-1, 3.5.2-2 and 3.5.2-3 of the AASHTO *Guide specification and commentary for vessel collision design of highway bridges*(1991).

Width:

(41.7+42.0+43.3)/3 = 42.33 ft

Length:

(282+279+289)/3 = 283.33 ft

Total vessel and cargo *displacement* in tons is calculated as:

$$Length \times width \times 1.03 \times draft \times 63/2000 \text{ tons}$$
(6)

where

length = vessel overall length;

width = vessel overall width;

draft = draft of vessel at movement; and

1.03 = modification coefficient

3.3 SYNTHESIZING RESULTS

To synthesize the requested data, a FORTRAN program is written to process these data and obtain useful input information for the Design Method II. The latest data we can request from the WCSC are those of CY1996. Corresponding to the requirement of FDOT, data in CY2000 as the final results, which are transferred from those in CY1996, are listed in **Appendix III**.

3.3.1 One-year Data

The past points, on which one-year data are requested, include the following 20 points: 1, 2, 8, 13, 15, 16, 17, 18, 19, 23, 24, 25, 26, 27, 29, 30, 31, 38, 39, and 41. These points are determined by *Waterborne Commerce Of The United States 1997 parts 1 thru 5*. In the waterway areas, to which the 20 points belong, annual tonnage has shown slight variation in the recent ten years. Synthesized vessel characteristics are tabulated as shown in **Appendix III**. The definition of each column of the tables listed in **Appendix III** is explained as follows:

Column A: All kinds of vessels contained in the requested data are placed in groups by draft as shown in Table 3. In Florida waterways, these vessel types include barge train, tug, and self-propelled vessels.

Column B: Compute the weighted average draft for each group defined (weight value is the number of trips).

Column C: List the total number of barges in each group.

Column D: List the number of barges per trip. This number will be equal to the total number of barges divided by the total number of tug trips for a given direction. Some points have more tug trips than barge trips, thus an additional vessel group of free tugs is added to the total vessel groups.

Column E: Compute and list the number of barge train or self-propelled vessel trips for each vessel group.

Column F,G: Compute the weighted average width and length for each vessel group.

Column H: Compute the weighted average of actual displacement of single barge or selfpropelled vessel based on Eq. (6).

Column I: Assign tugs to each barge group as shown in Table 3.

3.3.2 Three-year Data

The past points, on which three-year data are requested, include the following 32 points: 3, 4, 5, 6^a, 7^a, 9, 10^b, 11^b, 12^b, 14, 20, 21, 22, 28, 32, 33^c, 34^c, 35^c, 36, 37^d, 40^d, 42^e, 43^e, 44^f, 45^f, 46, 47^g, 48^g, 49, 50, 51^h, 52^h (Past point numbers with the same letter "a" have the same or very close data; "b", "c", so on). These points are determined by *Waterborne Commerce Of The United States 1997 parts 1 thru 5*. In the waterway areas, to which the 32 points belong, annual tonnage has turned out to be significantly fluctuating in the recent ten years. Synthesized vessel characteristics are tabulated as shown in **Appendix III**. An average of three-year data is taken for every vessel group on every point.

3.4 FUTURE TRAFFIC PREDICTION

Relevant Department of the U. S. Army Corps of Engineers was contacted to inquire about the future waterborne traffic in Florida. It is found that no data for future waterborne traffic projection in Florida is available. Hence, the book *Waterborne Commerce Of The United States* 1997 has been employed to address the prediction of future waterborne traffic increase rate (See **Appendix II**). Fifty-two past points have been located in different waterway areas. Traffic increase rates in these areas have been predicted under the condition that a trend of straight line will be followed in the future. Some areas are found to have negative increase rates and some points are not located in these areas listed in the book. In these cases, the entire Florida tonnage increase is adopted for these points. In **Appendix II**, annual increase rate for CY2000 is listed for every waterway areas. In the project, it is assumed that vessel characteristics remain the same during the life expectation of bridges, and the possible future increase is reflected in the increase of vessel trips. The waterborne traffic for the year *y* after CY2000 can be predicted by the following formulation under the assumption of linear increase:

basic data ×
$$[1.0 + increase rate × (y - 2000)]$$
 (7)

where

y = target year; and

basic data = CY2000's data

3.5 VESSEL TRANSIT SPEED

Vessel transit velocity varies with many factors including its power or the power of its tugboat, weather condition, traffic condition, channel characteristics (straight or curve), and its loading condition, etc. Therefore, it is onerous to gather accurate data for a particular bridge site from available database. Herein, one approximate approach is adopted to make an estimation of vessel transit velocity on waterways in Florida. In the book *Waterborne Transportation Lines of the United States (WTLUS), Calendar year 1995, volume 1 through 3*, vessel companies associated with Florida waterways have been reviewed and selected. Efforts have been made to obtain the information on transit velocity of the vessels operated on Florida's inland waterways. Acquired responses from these vessel companies are shown in Table 4. The obtained data are summarized in Table 5 and recommended vessel transit velocity is shown in Table 6. In Table 6, vessel operation condition and waterway channel condition are taken into account to classify the transit velocity in more detailed cases. According to the data provided by the U.S. Coast Guard, typical flotilla transit velocities are between 4 and 6 knots.

4. DATA VERIFICATION

The objective of this section is to make sure the synthesized results are reasonable. Two kinds of resources are available to verify the requested data from the WCSC: (1) Bridge tender logs maintained by FDOT; and (2) *Section 2 Trips and Drafts of Vessels* in the book *Waterborne Commerce Of The United States* 1997.

4.1 REQUEST FOR BRIDGE TENDER LOGS

Florida Department of Transportation maintains tender logs for every movable bridge in Florida. Totally, maintenance offices of seven FDOT districts have been contacted and bridge tender logs for points 04, 06, 09, 10, 14, 20, 34, 36, 37, 43, 45, 48, 50, and 52 have been requested. Requested results are summarized in Table 7.

4.2 DATA COMPARISON BETWEEN TENDER LOGS AND WCSC

Some bridge tender logs turn out to be not clear because they were sent either in the form of annual accumulation, or in the form of "Power", "Trawler", and "Fish", instead of standard vessel types as "P", "C", "T", and "G". Finally, there are only a number of bridge tender logs available and useful, e.g., past the points 6, 20, 37, 43, and 52. Table 8 demonstrates the 1996 tug and barge trips from both bridge tender logs and the WCSC.

In Table 8, it can be found that vessel trips from bridge tender logs and the WCSC are generally not in good accordance, except a few cases. When bridge tender log for point 43 is processed, it

is found that there are many local waterborne traffic, namely pleasure craft, which may not be included in the WCSC data. The two completely different approaches to acquire data account for the major reason why there is significant discrepancy between two data sources. Other reasons leading to the difference may include incorrect information given by tug/barge company to WCSC, the human assumption of flotilla combination, etc.

After the processing of requested data, it is found that traffic on some points contain primarily self-propelled vessels, e.g., points 37 and 43. Table 9 demonstrates a comparison of trips of tug and barge trains with trips of self-propelled vessels between tender logs and WCSC.

To investigate the specific vessel type that possesses the majority of self-propelled vessels, more detailed information on vessel types was requested from the WCSC. A summary of annual trips of points 6, 9, 11, 22, 36, 37, 43, 47, and 48 in CY1996 of self-propelled vessels is shown in Table 10. From Table 10, it is found that passenger vessel trips constitute most of the vessel traffic. These passenger vessels are the same as the pleasure crafts, which appear to be the majority of traffic in bridge tender logs. It has been determined at several sites that the predominant self-propelled vessel is one of the following: passenger, crew boat, or excursion.

4.3 DATA VERIFICATION WITH ANNUAL SUMMARY

The book Waterborne Commerce of the United States (WCUS) 1997 contains one part that summarize the annual vessel trips in various waterway areas in the U.S. In Section 2: Trips and Drafts of Vessels, the summary of annual trips of different vessels in various Florida areas has been carefully selected. All these areas have been selected and the areas with questionable points (i.e., points 05, 21, 28, 33, 34, 35, 36, 44, 45, 47, 48 and 50), which carry heavy self-propelled vessels, have been studied. Points 05, 28, 33, 34, 35, 36, 44, 45, 47, 48 and 50 are located in intracoastal waterway, Jacksonville to Miami, Florida and the summary demonstrates that annual upbound trip number of self propelled vessels is 2495 plus 531, i.e., 3026, while annual upbound trip number of non-self propelled vessels is 85 plus 288, i.e., 373 (see page 313). The former trip number is much larger than the latter. Point 21 does not belong to any area listed. However, it is connected with Ft Pierce harbor in Florida, through a long distance intracoastal waterway. In Ft Pierce harbor, similar results are found between self propelled and non-self propelled vessels, i.e., for upbound 202 to 5 (see page 317). For the downbound direction, a similar phenomenon is observed, too. Therefore, the annual summary provides us a verification for those requested data from the Waterborne Commerce Statistics Center (WCSC), which contain heavy self-propelled vessels.

5. DESIGN EXAMPLE

A numerical example is presented hereby to demonstrate the procedure of the AASHTO Design Method II and to examine the design results by using the requested data.

5.1 BRIDGE DESCRIPTION

The following vessel impact resistant design shown in Figure 3 is an illustrative example bridge, which is supposed to intersect the Indian River in Florida. The coordinates of this bridge site, i.e., past point # 3, are latitude 28°24'12" and longitude 80°43'54". This location was selected as a past point to obtain waterborne traffic data from the WCSC. The vessel characteristics and annual trip frequency are classified into several groups on the basis of data requested from the WCSC. When requesting data in this project, it is informed that the latest data available from the WCSC are those of Calendar Year 1996. Because the annual traffic tonnage in this waterway varies significantly around CY1996 (*Waterborne Commerce of the United States* 1997), three-year data (i.e., 1994, 1995 and 1996) are requested and an average is taken for every vessel characteristic.

5.2 BASIC INPUT DATA

In the process of synthesizing vessel characteristics data, it is difficult to obtain the vessel displacement capacity because incomplete data records are sometimes encountered, especially in the case of foreign vessels. The WCSC database uses a large number to substitute any

incomplete information, such as "9999999", "99999.9", or "999.9". Therefore, the vessel displacement capacity including self weight and cargo is approximately calculated by Eq. (6) according to the fact that buoyant objects displace an amount of water equal to their weight.

Other necessary data for collision risk analysis are assumed as follows:

- 1. This is a critical bridge and the corresponding acceptable risk of bridge collapse is 0.0001 (a return period is 1 in 10,000 years);
- There are a total number of 14 piers on both sides of channel. Each bridge pier and its super structure approximately represent 1/14 of the replacement cost of the bridge. Hence, each pier will be apportioned about 7.14 percent of the total acceptable annual frequency 0.0001, i.e., the annual frequency of collapse for a pier would be around 7.14×10⁻⁶;
- 3. Navigation channel width is 125ft;
- 4. Locations of bridge piers, width of bridge piers, and water depth at these pier locations are shown in Table 11;
- 5. The design impact speeds for each vessel group are taken from Table 6; and
- 6. For the simplicity of calculation, tugs are classified into three groups and assigned to barge groups by barge draft at movement as shown in Table 3.

This bridge is designed in accordance with Method II prescribed in the AASHTO *Guide Specification* (1991). Since the waterway characteristics are not symmetric and upbound and downbound waterborne traffic are not the same, each direction traffic is taken separately to perform the risk analysis for the whole bridge structure. In the design practice, it is difficult to distribute the assigned annual frequency of collapse for each pier exactly to 7.14×10^{-6} . In this example, the annual frequency of collapse for each pier is adjusted to no more than 7.14×10^{-6} , the return period is 140056 years.

The AASHTO *Guide Specification* (1991) gives no guidance for the consideration of possible future barge traffic growth during the design life of the bridge. In the example, an increase rate of waterborne traffic tonnage in a 50-year period is predicted from the accumulated data listed in the Part I and Part II of *Waterborne Commerce of the United States* (1995, 1996, and 1997). The records for past point # 3 over the Indian River were reviewed and demonstrated in Figure 4. Due to the large diversity of annual traffic tonnage, a linear relationship, which best fits the annual short tons (2000 pounds) from CY1982 to CY1996, has been derived to indicate the increase rate. From this fitted result, the annual increase rate at this point is 0.0153 based on the CY2000. Under this growth rate, the possible traffic 50 years later, i.e., in the CY2050, will be $1+50\times0.0153 = 1.765$ times of the traffic in the CY2000. It is assumed that the vessel sizes and capacities are invariable, therefore, this tonnage growth is reflected by the increase of annual frequency of vessel trips.

When computing ship collision force, the deadweight tonnage of ships is needed (see *Guide Specification* Section 3.9). Similar to Eq. (6), it can be estimated by the following relationship:

 $DWT = 0.447 \times Length \times width \times fully loaded draft \times 63/2205$ tonnes (8)

where 0.447 = ratio of DWT (tonnes) divided by displacement (tonnes), in which displacement can be calculated by Eq. (6) without a modification coefficient of 1.03.

A detailed explanation of the ratio in Eq. (8), 0.447, refers to Table 12. Table 12 provides a comparison of typical ship characteristics between deadweight tonnage below 20,000 DWT (in Tables 3.5.2-1, 3.5.2-2, and 3.5.2-3 of the *Guide Specification* (1991), unit: tonnes) and calculated results from Eq. (8). It is found that ratio of DWT divided by Eq. (6) without multiplying a modification coefficient 1.03 falls in the range between 0.349 to 0.511. An average, 0.447, is taken as a ratio of DWT divided by Eq. (6) without multiplying an modification coefficient 1.03. Ship's DWT is also computed by 0.447×Displacement, and displacement is defined in Eq. (6) without multiplying a modification coefficient 1.03. In **Appendix III**, these data are listed in Column (I) as design input data.

5.3 DESIGN SUMMARY

According to the design Method II procedure of AASHTO *Guide Specification* (1991), the annual frequency of collapse under a given set of lateral ultimate strength shown in Table 13 is examined by the MathCad software. The summation of annual frequency of collapse of each bridge pier due to all upbound and downbound traffic turns out to be less than the assigned frequency 7.14×10^{-6} as shown in Table 14. Figures 5 and 6 demonstrate the calculated upbound and downbound annual frequency of collapse due to different vessel groups, respectively. From Figures 5 and 6, it can be found that the annual frequency of collapse of each bridge pier is different under upbound and downbound traffic. For the whole structure, the total annual

frequency of collapse is 3.604×10^{-5} (upbound) + 5.380×10^{-5} (downbound) = 8.984×10^{-5} , and the corresponding return period is $1/8.984 \times 10^{-5} = 11,131$ years. The return period is more than 10,000 years, therefore the bridge strength is acceptable. The detailed design example for both upbound and downbound direction by MathCad software is shown in **Appendix IV**.

5.4 DISCUSSION OF SMALL SELF-PROPELLED VESSELS

The AASHTO *Guide Specification* (1991) is not applicable to special purpose vessels, wood, or fiberglass constructed vessels, ships smaller than 1,000 DWT, naval vessels, nor to recreational vessels (see *Section 3.2 Applicability of Specification*). From the processed data, it is found that in the cases of waterborne traffic dominated by the self-propelled vessels, these vessels are generally very small ships with DWT less than 1000 tonnes.

To further investigate the influence of these small ships in the impact resistant design, the data in the aforementioned example are utilized in the following analysis. Due to the difference in upbound and downbound traffic, self-propelled vessels with 522.73 DWT (upbound) and 1479.69 DWT (downbound) are investigated respectively. There are totally four cases studied: number of annual trips in CY2050 equals to 0, 6, 600, and 6000. Among these cases, no difference is observed from the upbound outputs (522.73 DWT) as shown in Table 15, while apparent difference is observed from the downbound outputs (1479.69 DWT) as shown in Table 15, while apparent difference is observed from the downbound outputs (1479.69 DWT) as shown in Table 16. Therefore, the participation of small ships with DWT much less than 1,000 does not lead to any difference in impact resistant design and can be neglected in engineering applications. This result conforms to the AASHTO *Guide Specification* (1991).

6. SUMMARIES AND RECOMMENDATIONS

6.1 SUMMARIES

In the AASHTO *Guide Specification* (1991), Design Method II is a more difficult approach to apply than Design Method I because it needs much more waterborne traffic data at the bridge site. The objective to establish a complete set of database of waterborne traffic in the entire state makes it more economical to perform vessel impact resistant bridge design. In this project, major efforts have focused on the request, synthesization, and verification of waterborne traffic on inland and intracoastal waterways within Florida.

To obtain waterborne traffic data all over Florida, the first step is to select certain discrete points to represent the whole inland and intracoastal waterways within the state. Waterborne traffic on any specific point can be interpolated from these selected points, namely past points. Totally, fifty-two past points are chosen and approved by FDOT. Most of these past points are distributed along the intracoastal waterway areas of Florida.

The fifty-two past points are sent to the NDC's Waterborne Commerce Statistics Center (WCSC) in New Orleans, Louisiana to request one-year waterborne traffic. Since some points are found to have significant change on annual tonnages around the CY1996, three-year data have been

requested on these points and an average is taken for every vessel characteristic. All the data in CY1996 on every past point are transferred into the data in CY2000.

These requested data are verified by two ways: bridge tender logs and annual summary of waterborne traffic. Several past points, which are actually movable bridge sites, are selected by FDOT as examples to request tender logs. These points are located over all the seven districts of FDOT. It is found that the trip records from bridge tender logs are not in good accordance with requested data from the WCSC. This discrepancy is mainly caused by two completely different systems of collecting data. However, it is found that trip distribution of the requested data is similar with the annual summary from the WCUS (1997).

The phenomenon of predominant self-propelled vessels is found for a considerable number of past points in some South Florida areas. The majority of these self-propelled vessels is small size vessel: 65 ft in length, 20ft in width, and DWT less than 300. Detailed data of some typical points are requested from the WCSC. The type of most self-propelled vessels is one of the following: passenger vessel; crew boat; and excursion.

Generally, the design life span of highway bridges is 75 years. It is necessary to take into account the future increase of waterborne traffic. Since no specific future tonnage projection in Florida is available, the book, *Waterborne Commerce Of The United States* (1997), has been utilized to predict future waterborne traffic increase rate. Traffic increase rates in the areas with selected past points have been predicted by a straight trend line. In the cases of the areas with
negative increase rates or the isolated past points, which do not belong to any areas listed in the book, the entire Florida tonnage increase rate is adopted for these points.

Vessel companies in association with Florida waterways have been contacted to obtain the information on transit velocity of the vessels operated on Florida's inland waterways. The obtained data are summarized and typical vessel transit velocity is recommended based on vessel operation condition and waterway channel condition. The recommended flotilla transit velocity is in accordance with the data provided by the U.S. Coast Guard.

In the present study, the procedure of barge collision resistant design according to the AASHTO *Guide Specification* (1991) is reviewed and required input data for Design Method II are summarized. On this basis, a design example with 14 bridge piers is provided by using the requested waterborne vessel traffic. Due to the difference of waterway traffic between upbound and downbound, the bridge is analyzed separately for both directions and a total annual frequency of collapse is summarized.

In the project, annual trip number of self-propelled vessels in small size on some past points in South Florida areas is found extremely large. Therefore, the influence of these small vessels on impact resistant design is investigated by using the MathCad Software. It is found that these small vessels with DWT less than 1000 turn out to have little effect on the bridge pier design.

6.2 RECOMMENDATIONS

In the course of requesting annual waterborne traffic data from the WCSC, it is found that annual traffic tonnage in some waterways might have significant fluctuations in the past ten years, especially in the intracoastal areas. In such situations, it is recommended that statistics of vessel characteristics be made on the basis of at least 3-year waterborne traffic data.

Under the assumption of linear increase model, future traffic projection in Florida's inland and intracoastal waterways has been predicted based on their annual tonnage summary. In addition to the synthesized data, every past point has been given an increase rate in CY2000 and an approach is also suggested for the calculation of future traffic prediction in a specific year. Consequently, it is recommended that future traffic increase rate for a specific bridge site be chosen from the closest one among existing past points.

Various typical vessel transit speeds have been investigated from major vessel companies, which operate vessels on Florida's waterways. It is recommended that vessel transit velocity be assigned by its type, operation condition, and the channel characteristics, on which it is operated.

The AASHTO *Guide Specification* (1991) provides the acceptable annual frequency of collapse for all bridge components that may encounter vessel collision. It is recommended that the failure probability be distributed to achieve a uniform risk level over all bridge components. In the case study, it is found that a number of piers close to the navigation centerline need much more ultimate horizontal strength than those piers far from the navigation centerline when a uniform risk is achieved over all the bridge piers. As a result, the construction cost by vessel impact resistant requirement may appear to be higher than that by structural requirements from strength and serviceability limit state. In this case, the risk distribution can be determined based on the discretion from bridge owner and designer.

In some South Florida areas, the predominant self-propelled vessels are generally in small size and with DWT less than 1000. According to the AASHTO *Guide Specification* (1991), the specifications are not applicable to ships smaller than 1000 DWT. As shown in the design example, it is recommended that these small vessels be neglected in impact resistant design.

BIBLIOGRAPHY

Arita, K., Ando, T., and Nakai, T. (1994). "Tests on buffer equipment for use as protection against ship collision", *Senpaku Gijutsu Kenkyusho Hokoku/Papers of Ship Research Institute*, Vol. 31, No. 2, pp. 1-18.

Bein, P. (1993). "Risk modeling of vessel impacts on a multispan bridge." *Structures under shock and impact II*. Matt MacDonald Group, U.K., pp. 265-275.

Grabowski, M, and Wallace W. A. (1993). "An expert system for maritime pilots: Its design and assessment using gaming", *Management Science*, Vol. 39, no. 12, pp. 1506-1520.

Gravesen, H., Hommel, D. L., and Madsen, O.A. (1995). "Modeling of ship impact on Storebaelt West Bridge." Proc., *International Conference on Offshore Mechanics and Arctic Engineering - OMAE.*, ASME, Vol. 1, New York, NY. pp. 435-449.

Guide specification and commentary for vessel collision design of highway bridges, Volume I: Final report. (1991). Am. Assoc. of State Hwy. And Transp. Officials (AASHTO). Washington, D. C.

Hansen, N. E., Thomsen, R., Stogren, L., and Stemdorff, M. J. (1994). "Artificial islands as protection against ship impact." Proc., *International Offshore and Polar Engineering Conference*, Vol. 4, Golden, CO. pp. 408-415.

Lexington Herald-Leader. (1993). (July 18), A1.

Lexington Herald-Leader. (1995). (April 24), B3.

LRFD Bridge Design Specifications—SI units, 1st Ed. (1994). Washington, D. C.

Knott, M. A. (1996). "Risk analysis of ship and barge collision loads on bridges." Proc., *Probabilistic Mechanics and Structural and Geotechnical Reliability*, ASCE, New York, NY. pp. 724-727.

Kuzmanovic, B. O. and Sanchez, M. R. (1992), "Design of Bridge Pier Pile Foundations For Ship Impact", *Journal of Structural Engineering*, ASCE, Vol. 118, No. 8, pp. 2151-2167.

Mastaglio, L. (1997). "Bridge bashing", Civil Engineering, ASCE, Vol. 67, No. 4, pp. 38-40.

Poepsel, P. H. and Dowd, W.M. (1995). "Elastic-plastic response of deep foundations and soil for ship impact loading: Apalachicola River Bridge, Florida." Proc., *Ports '95 Conference on Port Engineering and Development for the 21st Century*, ASCE, Vol. 2, New York, NY. pp. 1227-1238.

Performance monitoring system database. (1992). Navigation Data Center, U.S. Army Corps of Engineers, Washington, D.C.

Rambech, J. F. and Dahl, T. (1994). "Capacity of stiffened tubular cross section subject to concentrated load impact from ship collision." Proc., *International Conference on Offshore Mechanics and Arctic Engineering - OMAE.*, ASME, Vol. 1, New York, NY. pp. 449-461.

Waterborne Commerce Of The United States (1997). The Water Resources Support Center, U.S. Army Corps of Engineers, Fort Belvoir, Virginia.

Waterborne Transportation Lines of the United States (1996). Navigation Data Center, U.S. Army Corps of Engineers, Washington, D.C.

Whitney, M. W. (1996), "Barge collision design of highway bridges", *Journal of Bridge Engineering*, ASCE, Vol. 1, No. 2, pp. 47-58.

Points with One-year Data	Points with Three-year Data				
1, 2, 8, 13, 15, 16, 17, 18, 19, 23, 24, 25,	3, 4, 5, 6 ^a , 7 ^a , 9, 10 ^b , 11 ^b , 12 ^b , 14, 20, 21,				
26, 27, 29, 30, 31, 38, 39, 41	22, 28, 32, 33 ^c , 34 ^c , 35 ^c , 36, 37 ^d , 40 ^d , 42				
	^e , 43 ^e , 44 ^f , 45 ^f , 46, 47 ^g , 48 ^g , 49, 50, 51 ^h ,				
	52 ^h				
Total number: 20	Total number: 32				
Total past points = 52					
Note: a. past point numbers with the same letter "a" have the same or very close data;					
"b", "c", so on.					

Table 1.Summary of Past Points

Table 2.
Tug Size and Displacement

Tug size	Draft (ft)	Displacement (ton)	Width (ft)	Length (ft)
SMALL	4	65	20	50
MED	7	130	30	100
MED	7	130	30	100
LARGE	9	220	35	120
LARGE	9	220	35	120

Table 3.

Barge Classification and Assigned Tug

Group No.	Draft	Tug
1	<=3 ft	SMALL
2	>3 ft <=6 ft	MED
3	>6 ft <=9 ft	MED
4	>9 ft <=12 ft	LARGE
5	>12 ft	LARGE

Table 4.

Raw Records of Phone Calls

Company	Principal	Waterways between	Vessel Transit Speed	Vessel
	Commodities	Which or on Which	_	Description
	Carried	Operated		_
Afram Carriers, Inc.	Bagged food	Pensacola, Port	Barge:	General cargo
P.O. BOX	stuffs, military	Canaveral	Canal 5 MPH	carrier
Groves TX 77619	cargo		Intracoastal 4-6 MPH	
Phone: (713) 435-1000	-			
American barge and	Construction	Florida Gulf Coast to	Barge:	General Cargo
Boat Services, Inc.	equipment and	Brownsville, TX;	2-3 knots	Carrier; Deck
5440 West Tyson Ave,	materials	Florida East Coast	Speed on river is faster	Barge
Tampa, FL 33611		and Bahamas to	than that in intracoastal	
Phone: (813) 839-8441		Norfolk, VA	waterway.	
Blessey Marine	Petro chemicals,	Intracoastal	Canal: Loaded barge	Pushboat;
Services, Inc.	dirty oils	waterway (Texas to	6.5MPH, Empty barge 8	Tugboat; Dry
P.O.Box 28212		Florida)	MPH	Covered
Harahan LA 70183			Intracoastal waterway is	Barge; Double
Phone: (504) 734-1156			the same as canal.	Hull Tank
				Barge; Other
				Tank Barge
Callais & Loumiet	Towing	Brownsville, TX to	River: Barge Average	Tugboat;
Towing, Inc.		Panama City, FL	5MPH, Range 1-7 MPH	Pushboat
120 WEST 108 ST.			Intracoastal: Average 3-4	
CUT OFF LA 70345			MPH, MAX6 MPH	
Phone: (504) 632-5537				
Central Oil Co., Inc.	Bunker C # 6	Tampa Bay	Barge: MAX 8 knots	Double Hull
1001 Mccloskey Blvd.	Oil and Diesel #		Ship: MAX 12 knots	Tank Barge
Tampa, FL 33605	2 Oil			
Phone: (813) 651-3785				
Transfer to:				
Bay Operation Office				
Phone: (813) 247-1552				
Chatham Towing	Bunker C,	Inland Waterway –	Tug & barge: 7MPH	Pushboat;
Company, Inc.	Diesel,	Jacksonville, FL to	loaded, 8-9 MPH empty	Single Hull
P.O.Box 576	Gasoline,	Norfolk, VA		Tank Barge
Savannah GA 31402	Etc.			
Phone: (912) 236-1331				

To be continued

Continued

Coastal Tug and Barge,	Towing and	Altantic Introcoastal	Barge: Average 5-8 MPH	Pushboat;
Inc.	Bulk Petroleum	Waterway;	Intracoastal: 5-6 MPH	Tugboat;
P.O.BOX 025500	Products	Okeechobee	Canal: 5-6 MPH	Single Hull
Miami, FL 33102-5500		Waterway; Miami	Loaded and empty barges	Tank Barge;
Phone: (305) 551-5200		Harbor; Port	are almost in the same	Double Hull
		Everglades; Palm	speed.	Tank Barge;
		Beach; Port		Other Tank
		Canaveral; Boca		Barge
		Grande; Tampa, FL		
Zdiamond Services	Equipment/Tow	Inland Waterways,	Barge:	Tugboat;
Corp.	ing	Gulf of Mexico	Loaded 5 knots	Dry Open
P.O.Box 1286		From Brownsville,	Empty 5.5 knots	Barge;
Morgan City LA 70381		TX to Florida		Deck Barge
Phone: (504) 631-2187				

Table 5.Summary of Towboat and Barge Transit Velocity

On River & Good Operation Condition	\cong 6.4 knots
On Intracoastal Waterway or Canal & Average Operation Condition	\cong 5 knots

Note:

Good operation condition: straight waterway channel, empty barge, powerful towboat, clear

traffic, and good weather, etc.;

Average operation condition: curve waterway channel, loaded barge, mid-class power towboat,

crowded traffic, and/or bad weather, etc.;

Table 6.

Recommended Vessel Transit Velocity

Vessel Type	Operation Condition	Recommended Velocity
	Straight Navigation Channel and Clear	
Barge/Tug Train	Traffic	
	Curve Navigation Channel and/or	6 ^A
	Crowded Traffic	
Self-propelled Vessel	Straight Navigation Channel and Clear	10 ^A
(majority: passenger	Traffic	
vessels)	Curve Navigation Channel and/or	8 ^A
	Crowded Traffic	
	Straight Navigation Channel and Clear	10 ^A
Free Tug	Traffic	
	Curve Navigation Channel and/or	8 ^A
	Crowded Traffic	

Note:

- A. Vessel velocities presented in the table are for empty vessels operating on wide river or unrestricted channels. For other conditions, modify the values shown by following corrections:
 - 1. For loaded barge/tug combinations reduce the velocity by one knot;
 - 2. For loaded self-propelled vessels, the velocity remain the same;
 - 3. For barge/tug combinations operating on narrow canals or restricted intracoastal waterways reduce the velocity by one knot; and
 - 4. For self-propelled vessels operating on narrow canals or restricted intracoastal waterways reduce the velocity by two knots.
 - Annual mean water current velocity is taken as 0.4 knots. When involved in the current velocity, vessel transit velocity is 0.4 knots less for upbound direction and 0.4 knots more for downbound direction.

District	Past Points ^a	Contact Person	TEL/FAX Number	Content	Result
1	9, 43	Pepe Garcia Luis Juarbe	SC 542-6050 Fax (813) 744-8251 (813) 744-6050	Have contacted Pepe Garcia	Point 43 received (9/28/98) It is not in the standard format of vessel types, such as "P", "C", "T", and "G".
2	45	Bud Rosher	SC 862-7000 Fax (904) 961-7095	Agreed to send log for past point 45	Received (6/6/98)
7	37	Don Kapadia Brian Bennett	SC 512-1227 Fax SC 512-1233 (813) 570-5101 Fax SC 513-3050	Sent request for past point 37	Received (6/9/98) It can not be processed due to no standard vessel types as "P", "C", "T", and "G".
4	6 , 34, 36, 48, 50	Ray Radman	SC 436-4167 Fax SC 436-4697	Will send monthly log if requested, said may have to pay because information would be 2000 pages for one pt. Per year.	Sent yearly log summary for pts 6, 34, 36, but no sub-category of vessel types
5	4, 20 , 52	Ronnie Kneale	SC 383-5252 Fax SC 383-5469	Requested logs for pts 52, 20	Received (5/21/98)
6	10, 14	Susan Stamm Harvey Shone Legal Dept.	(305) 470-5355 (305) 470-5458 Fax (305) 470-5610	Told to contact legal department (305) 470-5435 Sent request letter/fax 6/2/98	Only pt 10 Received (7/01/98) It can not be processed due to no standard vessel types as "P", "C", "T", and "G".

Table 7.Summary of Requesting Tender Logs

Note: a. Past points in bold are strongly recommended by FDOT to check requested data.

Past	Bridge	Direction	Tug & Barge	Tug & Barge	Commercial	Commercial	Note
the	Number		Trips by	Trips by	Trips by	Trips by	
Points			Tender Logs	WCSC	Tender Logs	WCSC	
20	110063	Upbound	184	227	53	422	
		Downbound	182	227	45	422	
		Upbound	27	7	-	1532	can not be processed due to
10	900047	Downbound	30	7	-	1532	no standard vessel types as
							"P", "C", "T", and "G".
		Upbound	1	57	-	3566	can not be processed due to
37	150049		(from 7/1-12/31)				no standard vessel types as
		Downbound	3	80	-	3566	"P", "C", "T", and "G".
			(from 7/1-12/31)				
6	860034	Upbound	-	52	-	489	Only yearly log summary
		Downbound	-	73	-	490	
		Upbound	65	77	-	4808	
43	170021		(from 1/1-6/30)				
		Downbound	71	96	-	4808	
			(from 1/1-6/30)				

Table 8.Comparison between Tender Logs and WCSC

Note: UPBOUND: NORTH OR EAST; DOWNBOUND: SOUTH OR WEST

Past the	Bridge Number	Direction	Tug & Barge Trips by	Commercial Trips by	Power Vessel Trips by	Percentage of (4) Divided by	Note
Points			Tender Logs	Tender Logs	Tender Logs	(5) or (6)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
		Upbound	184	-	-	-	T/B trip number is similar
20	110063						to the WCSC data 227
		Downbound	182	-	-	-	T/B trip number is similar
							to the WCSC data 227
52	790172	Upbound	358	1285	-	27.9%	
		Downbound	354	1195	-	29.6%	
45	780074	Upbound	197	448	-	44.0%	
		Downbound	201	526	-	38.2%	
		Upbound	65	-	1409	1:22	
43	170021		(from 1/1-6/30)		(from 1/1-6/30)		
		Downbound	71	-	1409	1:20	
			(from 1/1-6/30)		(from 1/1-6/30)		

Table 9.Requested Bridge Tender Logs

Note: UPBOUND: NORTH OR EAST; DOWNBOUND: SOUTH OR WEST

In addition, points 10 and 37 have not significant annual tug/barge trips. Point 10: upbound 27, downbound 30; Point 37: upbound 1 (from 7/1-12/31), downbound 3 (from 7/1-12/31).

Table 10.

Summary of Self-propelled Vessel Trips (1996)

	Point	Passenger	Fish	Shellfish	Machinery	Foreign	Total Trips
6	Downbound	2+17+455+1+1+4+=480	-	-	-	10	490
6	Upbound	2+15+455+1+5 = 478	-	-	2	9	489
9	Downbound	187 + 206 + 48 + 504 + 1619 + 1379 + 1 = 3944	0	0	1	-	3945
9	Upbound	187 + 206 + 48 + 504 + 1619 + 1379 = 3943	-	0	2	-	3945
11	Downbound	56+292+37+320+827 = 1532	0	0	-	-	1532
11	Upbound	56+292+37+320+827 = 1532	-	-	-	-	1532
22	Downbound	187+157+706+48+504+1619+1379+1 =	0	0	1	-	4602
		4601					
22	Upbound	187+0+706+48+504+1619+1379 = 4443	0	0	157+2 = 159	-	4602
37	Downbound	62+504+1619+1379+1 = 3565	-	-	1		3566
					(empty)		
37	Upbound	62+504+1619+1379 = 3564	0	-	2		3566
					(empty)		
43	Downbound	187+206+706+48+504+1619+1379+1 =	0	0	157 + 1 = 158		4808
		4650					
43	Upbound	187 + 206 + 706 + 48 + 504 + 1619 + 1379 = 4649	0	-	157+2 = 159		4808
36	Downbound	3+1+1+2 = 7	-	-	-	10	17
36	Upbound	2+1+4 = 7	-	-	2	9	18
47	Downbound	3+1+2=6	0	-	3	-	9
47	Upbound	4+1+1 = 6	0	-	6	-	12
48	Downbound	2+1+2=5	-	-	1	-	6
48	Upbound	3+1+1 = 5	-	-	4	-	9

Table 11.Channel and Bridge Characteristics

Items	Pier 1	Pier 2	Pier 3	Pier 4	Pier 5	Pier 6	Pier 7	Pier 8	Pier 9	Pier10	Pier11	Pier12	Pier13	Pier14
Pier locations ^a (ft)	102	240	384	528	672	768	864	102	240	384	528	672	768	864
Pier width (ft)	30	40	40	40	40	40	40	30	40	40	40	40	40	40
Water depth at pier ^b (ft)	12	12	10	10	10	8	8	16	16	13	13	13	10	10

Note: a. It means the distance from the centerline of channel to the centerline of pier;

b. It means the distance from existing mudline to mean high water.

Length	Width	Fully Loaded Draft	DWT	Eq. (6)/1.03	Ratio of (d)	Note
(ft)	(ft)	(f t)	(tonne)	(tonne)	divided by (e)	
(a)	(b)	(c)	(d)	(e)	(f)	(g)
200	29.2	14.1	1000	2358	0.424	Bulk Carrier
289	41.7	22.3	3000	7696	0.390	Bulk Carrier
341	48.9	21.3	5000	10171	0.492	Bulk Carrier
459	61.4	26.6	10,000	21468	0.466	Bulk Carrier
515	70.5	29.5	15,000	30672	0.489	Bulk Carrier
558	77.8	31.5	20,000	39160	0.511	Bulk Carrier
187	30.8	13.8	1000	2276	0.439	Product Carrier/Tanker
279	42.0	19.4	3000	6510	0.461	Product Carrier/Tanker
335	48.2	22.6	5000	10450	0.479	Product Carrier/Tanker
456	62.3	26.6	10,000	21640	0.462	Product Carrier/Tanker
515	71.2	29.5	15,000	30976	0.484	Product Carrier/Tanker
561	78.1	32.2	20,000	40401	0.495	Product Carrier/Tanker
190	31.2	13.8	1000	2343	0.427	Freighter/Container
282	43.3	19.4	3000	6784	0.442	Freighter/Container
338	50.5	22.3	5000	10900	0.459	Freighter/Container
472	63.6	26.9	10,000	23124	0.433	Freighter/Container
617	84.3	30.8	16,000	45876	0.349	Freighter/Container
643	90.6	34.4	20,000	57387	0.349	Freighter/Container
					Average 0.447	-

 Table 12.

 Summary of Relationship between Sizes and DWT of Typical Ships

Note: 1 tonne = 2205 pounds

Table 13.Lateral Ultimate Strength of Each Bridge Pier

Piers	Pier 1	Pier 2	Pier 3	Pier 4	Pier 5	Pier 6	Pier 7	Pier 8	Pier 9	Pier10	Pier11	Pier12	Pier13	Pier14
Ultimate Strength (kip)	3230	2960	2650	2250	1650	750	240	3230	2960	2680	2270	1750	850	230

Table 14.Summation of Annual Frequency of Collapse

]	Items	Pier 1	Pier 2	Pier 3	Pier 4	Pier 5	Pier 6	Pier 7	Pier 8	Pier 9	Pier10	Pier11	Pier12	Pier13	Pier14
SumAFc _j	Upbound	0.42	1.88	3.02	3.41	3.30	3.69	3.07	0.42	1.88	2.59	3.24	3.33	3.45	2.32
$(\times 10^{-6})$	Downbound	6.54	4.80	3.43	3.40	2.97	2.94	3.15	6.48	4.75	3.47	3.48	2.85	2.78	2.76
Sun	$n(\times 10^{-6})$	6.96	6.68	6.45	6.81	6.27	6.63	6.22	6.90	6.63	6.06	6.72	6.18	6.23	5.08

Number of Annual Trips in CY2050	, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	Desig	n Summa	ry	
0	N ₁ 37.59 33.22 8.15 18.18 49.51 0	x _j ft 102 240 384 528 672 768 864 102 240 384 528 672 768 864 864	^B P _j ft 30 40 40 40 40 40 40 40 40 40 40 40 40 40	H _j kip 3230 2960 2650 2250 1650 750 240 3230 2960 2680 2270 1750 850 230	SumAFc, 0.00000042 0.00000302 0.00000302 0.00000300 0.00000300 0.00000307 0.00000307 0.00000307 0.00000324 0.00000324 0.000003259 0.00000324 0.00000345 0.00000232	%Risk 1.17 5.22 8.38 9.47 9.16 10.24 8.53 1.17 5.22 7.19 9 9.23 9.57 6.45
6	N ₁ 37.59 33.22 8.15 18.18 49.51 6	x _j ft 102 240 384 528 672 768 864 102 240 384 528 672 768 864 528 672 768 864	B P ft 30 40 40 40 40 40 40 40 40 40 40 40 40 40	H _j kip 3230 2960 2650 2250 1650 750 240 3230 2960 2680 2270 1750 850 230	SumAFc; 0.0000042 0.00000302 0.0000302 0.0000330 0.0000330 0.00000307 0.00000307 0.0000042 0.0000042 0.00000259 0.00000333 0.00000345 0.00000232	%Risk 1.17 5.22 8.38 9.47 9.16 10.24 8.53 1.17 5.22 7.19 9 9.23 9.57 6.45

Table 15.Role of Small Self-propelled Vessels in Design (Upbound)

600	N ₁ 37.59 33.22 8.15 18.18 49.51 600	x _j ft 102 240 384 528 672 768 864 102 240 384 528 672 768 864 864	B Pj ft 30 40 40 40 40 40 40 40 40 40 40 40 40 40	H _J kip 3230 2960 2650 2250 1650 750 240 3230 2960 2680 2270 1750 850 230	SumAFc 0.00000042 0.00000302 0.00000341 0.00000300 0.00000369 0.00000369 0.00000369 0.00000324 0.000003259 0.00000324 0.00000325 0.00000345 0.00000232	%Risk 1.17 5.22 8.38 9.47 9.16 10.24 8.53 1.17 5.22 7.19 9 9.23 9.57 6.45
6000	N 37.59 33.22 8.15 18.18 49.51 6000	x _j ft 102 240 384 528 672 768 864 102 240 384 528 672 768 864 864	B Pj ft 30 40 40 40 40 40 40 40 40 40 40 40 40 40	H _j kip 3230 2960 2650 2250 1650 750 240 3230 2960 2680 2270 1750 850 230	SumAFc _j 0.0000042 0.00000188 0.00000302 0.00000302 0.00000300 0.00000369 0.00000369 0.00000369 0.0000042 0.00000259 0.00000324 0.00000333 0.00000345 0.00000232	%Risk. 1.17 5.22 8.38 9.47 9.16 10.24 8.53 1.17 5.22 7.19 9 9.23 9.57 6.45

Number of Annual Trips in CY2050			Desig	n Summa	ry	·
0	N _i 55.77 18.8 20.69 1.25 50.76 0	x _j ft 102 240 384 528 672 768 864 102 240 384 528 672 768 864	B Pj ft 30 40 40 40 40 40 40 40 40 40 40 40 40 40	H _J kip 3230 2960 2650 2250 1650 750 240 3230 2960 2680 2270 1750 850 230	SumAFc 0.00000376 0.00000343 0.00000343 0.00000297 0.00000297 0.00000294 0.00000315 0.00000371 0.00000348 0.00000348 0.00000278 0.00000276	%Risk, 8:02 8.79 7.32 7.24 6.34 6.34 6.27 6.71 7.91 8.7 7.4 7.42 6.08 5.92 5.89
6	N _i 55.77 18.8 20.69 1.25 50.76 6	x _j ft 102 240 384 528 672 768 864 102 240 384 528 672 768 864	B p ft 30 40 40 40 40 40 40 40 40 40 40 40 40 40	H kip 3230 2960 2650 2250 1650 750 240 3230 2960 2680 2270 1750 850 230	SumAFc 0.00000566 0.00000459 0.00000343 0.00000340 0.00000297 0.00000294 0.00000294 0.00000315 0.00000347 0.00000347 0.00000348 0.00000278 0.00000278	%Risk. 10.97 8.88 6.65 6.58 5.76 5.7 6.1 10.86 8.8 6.72 6.74 5.53 5.38 5.35

Table 16.Role of Small Self-propelled Vessels in Design (Downbound)

49

Synthesizing Commercia	I Shipping from	Available Data for	Vessel Collision Design
------------------------	-----------------	--------------------	-------------------------

	1					
600	N ₁ 55.77 18.8 20.69 1.25 50.76 600	x _j ft 102 240 384 528 672 768 864 102 240 384 528 672 768 864	^B P _j ft 30 40 40 40 40 40 40 40 40 40 40 40 40 40	H _j kip 3230 2960 2650 2250 1650 750 240 3230 2960 2680 2270 1750 850 230	SumAFcj 0.00019360 0.00005031 0.00000343 0.00000340 0.00000297 0.00000294 0.00000294 0.00000294 0.00000315 0.00000276 0.00000278 0.00000276	%Risk. 37.31 9.69 0.66 0.65 0.57 0.57 0.61 37.3 9.69 0.67 0.67 0.67 0.55 0.54 0.53
6000	N ₁ 55.77 18.8 20.69 1.25 50.76 6000	x _j ft 102 240 384 528 672 768 864 102 240 384 528 672 768 864	B Pj ft 30 40 40 40 40 40 40 40 40 40 40 40 40 40	H _j kip 3230 2960 2650 2250 1650 750 240 3230 2960 2680 2270 1750 850 230	SumAFc, 0.00190211 0.00046594 0.00000343 0.00000297 0.00000297 0.00000294 0.00000294 0.00000295 0.00046589 0.00000347 0.00000347 0.00000278 0.00000278 0.00000276	%Risk, 39.9 9.77 0.07 0.07 0.06 0.06 0.06 0.07 39.9 9.77 0.07 0.07 0.07 0.06 0.06 0.06

Figure 1. Flow Chart for AASHTO Design Method II

Figure 2. Geometric Probability of Pier Collision

Figure 3. Plan of Waterway/Channel/Bridge Piers

Figure 4. Future Traffic Tonnage Prediction

Figure 5. Annual Frequency of Collapse due to Upbound Vessel Group # 1, 2, 3, and 4

Figure 6. Annual Frequency of Collapse due to Downbound Vessel Group # 1, 2, 3, and 4

APPENDIX I

FIFTY-TWO PAST POINTS AND THEIR MAPS

PAST POINTS IN FLORIDA

According to the data entitled "Bridges with Navigation Control", the total number of these bridges in Florida is 540. From these bridges, the past points in Florida has been selected and approved by FDOT. The basic ideas for the selection of past points are based on the following principles:

- Basically each major river/canal of every county possesses one past point;
- Bridge site of a moveable structural type is an optional past point.

As a result, a total number of 52 points has been chosen in the project as shown in Fig. I1 and Table I1. In Table I2, every bridge number with navigation control in Florida is sorted and assigned the past point to which it belongs. Some bridges do not belong to anyone of the 52 past points and they are listed in Table I3.

Table I1Fifty-Two Past Points in Florida

NO	PAST POINTS	BRIDGE NO. WITHIN THE POINTS	COUNTY
1	LAT 30D 11' 15"	460012	Bay
	LONG 85D 44' 12.1"		
2	LAT 30D 6' 26.3"	460019	Bay
	LONG 85D 36' 20"		
3	LAT 28D 24' 12"	700016	Brevard
	LONG 80D 43' 54"		
4	LAT 28D 24' 12''	700030	Brevard
_	LONG 80D 38' 00"		
5	LAT 28D 7 30"	700184	Brevard
-	LONG 80D 37 307	0.000.0	
6	LAT 26D 0' 36"	860034	Broward
7		0.001.4.4	
/	LAT 26D 11 24"	860144	Broward
0	$LONG \ 80D \ 0 \ 18$	960161	Decread
ð	LAT 25D 50 54	800101	Broward
0	LONG 80D 5 0	010020	Charlotta
9	LAT 20D 50 0.1 LONG 82D 21' 14 7"	010029	Charlotte
10	LONG 82D 21 14.7	900047	Monroe
10	LONG 80D 23' 18"	200047	WIOINOC
11	LAT 24D 57' 6"	900077	Monroe
	LONG 80D 35' 30"	500077	
12	LAT 24D 50' 24"	900098	Monroe
	LONG 80D 46' 48"		
13	LAT 25D 46' 9.2"	874262	Dade
	LONG 80D 11' 52.8"		
14	LAT 25D 47' 18"	874459	Dade
	LONG 80D 10' 42"		
15	LAT 29D 41' 5.6"	490003	Franklin
	LONG 84D 52' 32.2"		
16	LAT 30D 37' 43.3"	500086	Gadsen
	LONG 84D 53' 33.2"		
17	LAT 29D 52' 46.9"	510951	Gulf
	LONG 85D 13' 19.6"		
18	LAT 29D 59' 51.2"	510048	Gulf
	LONG 85D 22' 13"		
19	LAT 27D 56' 36"	100100	Hillsborough
	LONG 82D 27' 30"		

20	LAT 20D 1' 0"	110062 St. Johns	Lalva
20	LAI 29D I 0 LONG 81D 22' 0"	110005 St. Johns	Lake
01	LONG 81D 23 0	124044	Las
21	LAT 20D 55 42	124044	Lee
22	LONG 81D 30 0	120054	Manataa
LL	LAT 27D 32 0 LONG 82D 30' 36''	130034	Manatee
22	LONG 82D 59 50	720022	Duvol
23	LAT 50D 19 18 LONG 81D 30' 24"	720022	Duvai
24	LONG 81D 39 24	720061	Duvol
24	LAT 50D 25 46	720001	Duvai
25	LONG 81D 27 50	480035	Ecombia
23	LAT 50D 25 40.5	480033	Escalibia
26	LONG 87D 11 5.5	480118	Ecombia
20	LAT 50D 18 47	400110	Escalitora
27	LONG 87D 25 55.1	480130	Ecombia
21	LAT 50D 22 9.0 LONG 87D 9' 25 1"	480139	Escalibia
28	LONG 87D 7 25.1	734071	Flagler
20	LAT 29D 34 0	/340/1	Tagier
20	LONG BID 11 0	740055	Nassau
2)	LAT 50D 50 48	740033	INassau
30	LONG 81D 27 0	740088	Nassau
50	LAT 50D 57 50	740088	INassau
31	LOT 30D 25' 57 5"	570091	Okaloosa
51	LAT 50D 25' 57.5	570071	OKaloosa
32	LOT(3 00D 23 1.1	050044	Glades
52	LONG 81D 5' 30"	050044	Glades
33	LAT 26D 43' 5 58"	930157	Palm Beach
55	LONG 80D 2' 36 37"	200107	i unii Deuch
34	LAT 26D 49' 55 69"	930004	Palm Beach
51	LONG 80D 3' 36.71"		
35	LAT 26D 56' 45.68"	930005	Palm Beach
	LONG 80D 5' 4.82"		
36	LAT 26D 20' 23.08"	930060	Palm Beach
	LONG 80D 4' 19.44"		
37	LAT 27D 41' 30"	150049	Pinellas
	LONG 82D 43' 0"		
38	LAT 27D 55' 0"	150107	Pinellas
	LONG 82D 36' 54"		
39	LAT 27D 37' 15.3"	150189	Pinellas
	LONG 82D 39' 20.2"		
40	LAT 27D 55' 0"	150068	Pinellas
	LONG 82D 50' 0"		
41	LAT 29D 38' 42"	760043	Putnam
	LONG 81D 37' 30"		
42	LAT 27D 10' 48"	170064	Sarasota

	LONG 82D 29' 42.9"		
43	LAT 27D 22' 30"	170021	Sarasota
	LONG 82D 31' 36"		
44	LAT 30D 8' 0''	783080	St Johns
	LONG 81D 23' 6"		
45	LAT 29D 53' 30"	780074 Atlantic Ocean	St Johns
	LONG 81D 18' 24"		
46	LAT 29D 58' 48"	780056 St. Johns	St Johns
	LONG 81D 37' 42"		
47	LAT 27D 27' 35.04"	940094	St. Lucie
	LONG 80D 18' 53.65		
48	LAT 27D 28' 21.76"	940045	St. Lucie
	LONG 80D 19' 21.17"		
49	LAT 27D 12' 12.43"	890003	Martin
	LONG 80D 15' 40.65"		
50	LAT 27D 12' 21.21"	890060	Martin
	LONG 80D 11' 38.67"		
51	LAT 29D 12' 34.4"	794003	Volusia
	LONG 81D 0' 42"		
52	LAT 29D 20' 20''	790172 Atlantic Ocean	Volusia
	LONG 80D 54' 30"		

BRIDGE NO.	ASSIGNED PAST POINT
	BAY
460012	1
460019	2
460053	2
460077	1
460940	1
В	REVARD
700016	3
700028	4
700030	4
700031	4
700061	3
700069	4
700072	3
700077	5
700081	5
700110	3
700112	3
700115	3
700117	4
700137	3
700143	5
700147	5
700174	5
700181	5
700184	5
700201	3
703001	3
703002	3
703003	4
703004	3
704011	4
704015	4
704049	3
704063	5
B	ROWARD
860001	8
860002	8
860008	8
860011	7
860018	6

Table I2Bridge Number With Assigned Past Point

860024	6		
860034	6		
860035	6		
860038	8		
860043	6		
860060	7		
860061	6		
860063	8		
860109	8		
860144	7		
860146	7		
860152	7		
860157	7		
860160	6		
860161	6		
860209	8		
860213	8		
860222	7		
860230	6		
860259	7		
860275	7		
860278	7		
860284	8		
860319	8		
860427	8		
860428	8		
860429	8		
860430	8		
860431	8		
860466	6		
860467	6		
860546	8		
860591	8		
860592	8		
860920	6		
860941	7		
864028	8		
864071	8		
864072	8		
865748	8		
CALHOUN			
470029	16		
CHARLOTTE			
010029	9		
010035	9		

010050	9			
010057	9			
010058	9			
010092	9			
CLAY				
710006	23			
710009	23			
710011	23			
710028	23			
710045	23			
710049	23			
710050	23			
710058	23			
710059	23			
	DADE			
870071	14			
870077	13			
870082	14			
870085	14			
870147	13			
870298	13			
870301	13			
870302	13			
870356	13			
870453	13			
870479	13			
870551	14			
870554	14			
870592	14			
870593	14			
870606	14			
870607	14			
870613	14			
870658	14			
870659	13			
870660	13			
870661	13			
870662	13			
870731	13			
870759	13			
870763	13			
870772	13			
870799	14			
873002	14			
874002	13			
-	-			

S	vnthesizina	Commercial	Shippina	from A	Available	Data fe	or Vesse	el Collision	Desian
-			- 11 - 3						

874129	13
874130	13
874134	13
874135	13
874161	13
874262	13
874383	13
874459	14
874474	14
874544	14
874545	14
874663	14
874664	14
874998	14
875000	14
875001	14
875101	14
875103	14
876100	14
876414	14
876705	14
876708	14
876714	14
0/0/14	17
0/0/14	DUVAL
720005	DUVAL 23
720005 720006	DUVAL 23 23
720005 720006 720011	DUVAL 23 23 23
720005 720006 720011 720012	DUVAL 23 23 23 23 23 23 24
720005 720006 720011 720012 720014	DUVAL 23 23 23 23 24 24
720005 720006 720011 720012 720014 720016	DUVAL 23 23 23 24 24 23
720005 720006 720011 720012 720014 720016 720022	DUVAL 23 23 23 23 24 24 23 23
720005 720006 720011 720012 720014 720016 720022 720027	14 DUVAL 23 23 23 24 24 23 23 23 23 23 23 23 23 23 23 23
720005 720011 720012 720014 720022 720027 720032	DUVAL 23 23 23 23 24 23 23 23 23 23 23 23 23 23 23 23 23 23 23
720005 720006 720011 720012 720014 720022 720027 720032 720033	14 DUVAL 23 23 23 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
720005 720006 720011 720012 720014 720016 720022 720027 720032 720033 720042	14 DUVAL 23 23 23 24 23
720005 720006 720011 720012 720014 720022 720027 720032 720042 720043	14 DUVAL 23 23 23 24 23
720005 720011 720012 720014 720022 720027 720032 720033 720043 720044	14 DUVAL 23 23 23 24 24 23 24
720005 720006 720011 720012 720014 720022 720027 720032 720033 720042 720043 720052	14 DUVAL 23 23 23 24 23 23
720005 720011 720012 720014 720016 720022 720032 720033 720043 720052 720053	14 DUVAL 23 23 23 24 23 23
720005 720006 720011 720012 720014 720022 720022 720022 720032 720033 720043 720052 720053 720056	14 DUVAL 23 23 23 24 23 24 24
720005 720011 720012 720014 720022 720022 720032 720042 720043 720052 720053 720056 720057	14 23 23 23 23 24 23 24 23 24 23 24 23 24 24 24
720005 720011 720012 720014 720022 720027 720032 720033 720042 720043 720052 720053 720056 720059	14 DUVAL 23 23 23 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 24 23 24 23 24 23 24 24 24 24 24 24 24
720005 720006 720011 720012 720014 720022 720022 720032 720032 720042 720043 720052 720053 720056 720059 720060	14 DUVAL 23 23 23 24 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 24 23 24 24 24 24 24 24 24 24 24 24 24 24
720005 720006 720011 720012 720014 720022 720022 720032 720032 720042 720043 720052 720053 720056 720059 720060	14 DUVAL 23 23 23 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 24 23 24 24 24 24 24

S	vnthesizina Comn	nercial Shipping fr	om Available Data for	Vessel Collision Desian

720064	23							
720066	23							
720068	24							
720069	24							
720070	24							
720073	24							
720076	23							
720077	24							
720095	24							
720107	23							
720109	23							
720110	23							
720146	24							
720149	23							
720156	23							
720184	23							
720218	24							
720249	23							
720264	23							
720271	23							
720272	23							
720280	23							
720281	23							
720325	23							
720326	23							
720336	24							
720343	23							
720352	23							
720366	24							
720370	23							
720371	23							
720425	23							
720428	23							
720435	23							
720442	24							
720443	24							
720444	24							
720445	24							
720456	23							
720457	23							
720473	24							
720474	24							
720475	23							
720476	23							
720509	24							
S	vnthesizina	Commercial	Shippina	from Availabl	e Data for	⁻ Vessel Co	ollision Desi	ian
---	-------------	------------	----------	---------------	------------	------------------------	---------------	----------
			- 11 - 3					<u> </u>

720514	24
720518	23
720550	24
720568	24
720569	24
720570	23
720571	23
720933	24
720934	24
720940	23
720941	23
724159	23
724214	23
724275	23
724279	23
724308	23
E	SCAMBIA
480001	26
480035	25
480037	25
480045	25
480118	26
480123	27
480136	25
480137	25
480139	27
480140	26
F	LAGLER
734061	28
734062	28
734063	28
734064	28
734071	28
F	
490003	15
490004	15
490023	15
490031	15
490034	15 A DODEN
500096	
500085	10
500087	
050044	
050044	<u>52</u>
	GULF

510048	18
510052	17
510951	17
H	HENDRY
070013	32
070033	32
HI	GHLANDS
090016	32
HILL	SBOROUGH
100039	22
100045	19
100049	19
100068	19
100100	19
100104	22
100107	19
100135	19
100136	19
100299	19
100300	19
100301	19
100332	19
100333	19
100338	19
100352	19
100353	19
100358	19
100359	19
100500	19
100585	19
100920	19
105500	19
105501	19
105502	19
105503	19
105504	19
105602	19
105604	19
105606	19
IND	IAN RIVER
880005	48
880053	48
880077	48
880087	48
884028	48

J	JACKSON
530951	16
	LAKE
110007	20
110056	20
110063	20
110077	20
114079	20
	LEE
120002	21
120022	21
120028	21
120042	21
120050	21
120064	21
120083	21
120084	21
120088	21
120157	21
120158	21
124041	21
124043	21
124044	21
124065	21
126500	21
	LEON
550111	32
Ν	IANATEE
130006	22
130053	22
130054	22
130057	22
130103	22
130104	22
130132	22
	MARTIN
890002	50
890003	49
890005	50
890016	49
890038	49
890058	50
890060	50
890066	50
890093	50

890103	50
890107	49
890120	50
890132	50
890133	50
890134	50
890135	50
890143	50
894044	49
Ν	IONROE
900016	12
900045	12
900047	10
900077	11
900078	12
900094	12
900095	12
900096	12
900097	12
900098	12
900101	12
900103	12
900104	12
900106	12
900116	12
900117	12
900127	12
904025	12
904320	12
904490	12
904600	12
904603	12
904604	12
904606	12
904990	12
I	NASSAU
740008	30
740018	30
740031	30
740055	29
740070	29
740081	29
740082	29
740087	30
740088	30

740089	30			
OKALOOSA				
570017	31			
570018	31			
570034	31			
570054	31			
570082	31			
570091	31			
OKI	EECHOBEE			
910001	32			
910009	32			
910054	32			
(DRANGE			
755100	51			
PAI	LM BEACH			
930003	34			
930004	34			
930005	35			
930007	35			
930022	33			
930026	36			
930042	34			
930056	35			
930060	36			
930064	36			
930094	33			
930097	33			
930104	33			
930105	36			
930106	34			
930154	36			
930157	33			
930214	36			
930226	36			
930269	33			
930318	33			
930322	36			
930339	35			
930349	34			
930411	33			
934408	36			
934908	36			
	PASCO			
140005	40			
P	INELLAS			

S	vnthesizina Comme	ercial Shipping from	n Available Data for	Vessel Collision Design
-	,			

150001	40
150006	40
150027	40
150028	40
150030	37
150038	39
150044	40
150048	37
150049	37
150050	37
150052	37
150068	40
150074	40
150076	40
150107	38
150112	40
150135	37
150181	39
150182	39
150189	39
150201	37
150210	38
150211	39
150213	39
150214	39
154000	40
154199	40
154209	40
154259	38
154260	38
154355	40
155502	40
155522	40
157191	38
157501	40
157800	37
P	UTNAM
760002	41
760035	41
760043	41
760044	41
760045	41
/60046	
SAI	NTA KOSA
580058	25

580071	25	
580098	26	
580167	26	
580951	26	
SA	ARASOTA	
170021	43	
170036	42	
170052	43	
170054	42	
170057	42	
170058	42	
170061	43	
170064	42	
170065	43	
170142	42	
170158	43	
170910	42	
SI	EMINOLE	
770070	20	
S	T. JOHNS	
780003	45	
780009	46	
780042	46	
780055	46	
780056	46	
780062	45	
780074	45	
780075	45	
780076	45	
780077	45	
780089	45	
780090	45	
780097	45	
780098	46	
780099	45	
780920	45	
783080	44	
ST. LUCIE		
940009	47	
940045	48	
940046	48	
940094	47	
940139	48	
940144	48	
944011	48	

TAYLOR				
380087	15			
VOLUSIA				
790030	46			
790098	51			
790124	46			
790132	51			
790139	51			
790148	51			
790152	52			
790172	52			
790940	46			
794003	51			
794004	51			
794016	51			
794025	51			
V	WALTON			
600108	31			

Bridge NO.	County
020001	Citrus
030148	Collier
030184	Collier
290083	Columbia
290030	Columbia
300031	Dixie
300061	Dixie
310007	Gilchrist
050044	Glades
320016	Hamilton
320019	Hamilton
070013	Hendry
070033	
090016	Highlands
330009	LAFAYETTE
330027	
550111	Leon
350037	Madison
350054	Madison
350062	Madison
350001 Aurilla River	Madison
360055	Marion
364110	
364140	
364040	
910009	Okeechobee
910001	
910054	
370018	Suwannee
370023	Suwannee
370030	Suwannee
590016	Wakulla
610062	Washington
610047	

Table I3Unsorted Bridge Numbers

APPENDIX II

COMPETITIVE STATEMENT OF TRAFFIC AND PREDICTION OF FUTURE TRAFFIC INCREASE

ATLANTIC INTRACOASTAL WATERWAY BETWEEN NORFOLK, VA, AND THE ST. JOHNS RIVER (JACKSONVILLE DISTRICT) Past the points: 30 y = 10.2x - 19836 Annual total ANNUAL TOTAL TRAFFIC (THOUSAND SHORT TONS) Annual total Linear (Annual total) One Year Period Increase Rate Based on 1CY2000 YEAR

JACKSONVILLE HARBOR, FL Past the points: 23, 24

Year

0.0181

Year	Annual total			
	1982	1118		
	1983	482		
	1984	248		
	1985	202		
	1986	379		
	1987	. 291	:	
	1988	373		
	1989	673		
	1990	707		
	1991	891		
	1992	823		
	1993	1,220		
	1994	1,068		
	1995	527		
	1996	703		
One \	/oor E	Period Increase Rate		

One Year Period Increase Rate Based on 1CY2000

0.031

INTRACOASTAL WATERWAY, JACKSONVILLE TO MIAMI, FL Past the points: 3, 5, 6, 7, 14, 28, 33, 34, 35, 36, 44, 45, 47, 48, 50, 51, 52+A243+A335

Based on 1CY2000 0.0153

One Year Period Increase Rate Based on 1 CY2000 0.0267

GULF INTRACOASTAL WATERWAY, APALACHEE BAY TO PANAMA CITY, FL (INCLUDED IN GULF INTRACOASTAL WATERWAY CONSOLIDATED REPORT)

GULF INTRACOASTAL WATERWAY, PANAMA CITY TO PENSACOLA BAY, FL (INCLUDED IN GULF INTRACOASTAL WATERWAY CONSOLIDATED REPORT)

Past the points: 1, 27, 31 Year

GULF INTRACOASTAL WATERWAY, PENSACOLA BAY, FL TO MOBILE BAY, AL (INCLUDED IN GULF INTRACOASTAL WATERWAY CONSOLIDATED REPORT) Past the points: 26

Year

Annual total 11,107 1987 1988 10,826 1989 10,699 1990 10,947 1991 10,613 1992 10,588 1993 11,052 11,081 1994 1995 11,025 1996 11,156

One Year Period Increase Rate Based on 1CY2000 0.0022

OKEECHOBEE WATERWAY, FL Past the points: 21, 32, 49

Year	Annual total
198	5 409
198	6 1320
198	7 676
198	8 696
198	9 680
199	0 665
199	1 718
1 9 9	2 753
199	3 832
199	4 662
199	5 430
199	6 409

INTRACOASTAL WATERWAY, CALOOSAHATCHEE RIVER TO ANCLOTE RIVER, FL Past the points: 9, 22, 37, 40, 42, 43

APALACHICOLA, CHATTAHOOCHEE AND FLINT RIVERS, GA AND FL Past the points: 15, 16

Year	Annual total
1985	3488
1986	4098
1987	4,244
1988	4,227
1989	4,053
1990	1,593
1991	4,760
1992	1,690
1993	1,650
1994	1,466
1995	1,623
1996	1,379

y = -285.76x + 571659 6000 4000 ANNUAL TOTAL TRAFFIC (THOUSAND SHORT TONS) Annual total ٠ 2000 Linear (Annual total) 0 -2000 980 2000 2020 20/40 2060 -4000 -6000 -8000 -10000 -12000 -14000 YEAR

4

CANAVERAL HARBOR, FL Past the points: 4

One Year Period Increase Rate Based on CY2000 0.000733

INTRACOASTAL WATERWAY, MIAMI TO KEY WEST, FL Past the points: 11

Year	Annual total
1987	495
1988	432
1989	393
1990	305
1991	8
1992	1
1993	441
1994	664
1995	293
1996	267

Bridge NO: 460012	
Past the point: 01	

	Α	В	С	D	Ε	F	G	H	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.14	284.13	2.2	130.33	41.76	186.58	617.27	SMALL
2	$6 \ge D > 3$	5.15	147.75	2.2	68.19	51.86	288.48	2574.51	MED
3	$9 \ge D > 6$	8.68	2783.21	2.2	1285.53	45.67	236.97	3136.40	MED
4	$12 \ge D > 9$	10.48	251.30	2.2	116.18	50.89	283.92	4986.84	LARGE
5	Self Propelled	5.95			122.49	31.70	134.06	826.51	301.27
Σ			3466.39		1723.72				

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.00	2503.10	2.6	971.89	46.60	243.94	760.45	SMALL
2	$6 \ge D > 3$	5.06	92.37	2.6	35.92	48.91	250.61	2196.66	MED
3	$9 \ge D > 6$	7.61	125.21	2.6	48.24	36.78	153.21	1683.02	MED
4	$12 \ge D > 9$	10.41	17.45	2.6	7.18	60.00	270.24	5726.15	LARGE
5	Self Propelled	5.96			97.50	31.71	133.95	825.52	300.01
Σ			2738.12		1160.72				

Bridge NO: 460012 Past the point: 01

Bridge NO: 460019
Past the point: 02

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.14	119.59	1.6	72.19	50.85	224.83	837.72	SMALL
2	$6 \ge D > 3$	5.54	30.17	1.6	18.32	57.25	309.77	3296.88	MED
3	$9 \ge D > 6$	8.70	1368.30	1.6	829.60	51.40	255.25	3736.73	MED
4	$12 \ge D > 9$	10.56	178.85	1.6	108.82	52.08	290.05	5224.57	LARGE
6	Self Propelled	5.25			4.31	27.25	122.25	632.56	256.69
Σ			1696.91		1033.23				

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.01	1509.44	2.0	719.70	51.41	258.79	873.67	SMALL
2	$6 \ge D > 3$	5.04	48.48	2.0	23.70	58.82	310.47	3178.07	MED
3	$9 \ge D > 6$	8.22	48.48	2.0	22.63	44.48	243.81	3223.12	MED
4	$12 \ge D > 9$	11.42	64.64	2.0	31.25	68.60	254.73	6538.99	LARGE
5	Self Propelled	5.00			2.16	23.00	105.00	391.77	154.56
Σ			1671.05		799.43				

Bridge NO: 460019 Past the point: 02

Bridge NO: 700016 Past the point: 03

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.05	21.30	1.	21.30	46.61	176.19	611.57	SMALL
2	$6 \ge D > 3$	4.87	18.82	1.	18.82	64.55	246.30	2659.30	MED
3	$9 \ge D > 6$	7.62	4.62	1.	4.62	42.23	199.38	2081.49	MED
4	$12 \ge D > 9$	11.31	10.30	1.	10.30	46.90	199.79	3441.79	LARGE
5	Free Tugs	7.00			28.05	23.64	68.70	413.10	
6	Self Propelled	6.24			6.04	31.35	138.64	1061.57	522.73
Σ			55.04		89.12				

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.00	31.60	1.	31.60	47.25	195.10	632.17	SMALL
2	$6 \ge D > 3$	4.87	10.65	1.	10.65	69.80	243.62	2742.72	MED
3	$9 \ge D > 6$	7.33	11.72	1.	11.72	55.63	197.83	2885.72	MED
4	$12 \ge D > 9$	10.50	0.71	1.	0.71	72.10	250.00	6140.62	LARGE
5	Free Tugs	6.95			28.76	23.13	66.76	385.13	
6	Self Propelled	6.14			4.97	36.82	178.71	2495.32	1479.69
Σ			54.33		88.41				

Bridge NO: 700016 Past the point: 03

Bridge NO: 700030
Past the point: 04

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.50	2.20	1.	2.20	40.00	135.00	440.44	SMALL
2	$6 \ge D > 3$	5.33	1.10	1.	1.10	40.00	173.33	1206.95	MED
3	$9 \ge D > 6$	7.03	53.26	1.	53.26	49.13	274.14	3086.13	MED
4	$12 \ge D > 9$	11.26	6.98	1.	6.98	46.00	198.00	3328.37	LARGE
Σ			63.55		63.55				

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.38	22.41	1.	22.41	40.98	215.74	679.27	SMALL
2	$6 \ge D > 3$	5.87	97.34	1.	97.34	45.38	250.46	2215.27	MED
3	$9 \ge D > 6$	7.75	174.85	1.	174.85	48.32	268.68	3320.23	MED
4	$12 \ge D > 9$	10.00	5.51	1.	5.51	50.00	279.37	4532.03	LARGE
Σ			299.74		299.74				

Bridge NO: 700030 Past the point: 04

	Α	В	С	D	Ε	F	G	Η	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.05	21.30	1.	21.30	46.61	176.19	611.57	SMALL
2	$6 \ge D > 3$	4.87	18.82	1.	18.82	64.55	246.30	2659.30	MED
3	$9 \ge D > 6$	7.62	4.62	1.	4.62	42.23	199.38	2081.49	MED
4	$12 \ge D > 9$	11.31	10.30	1.	10.30	46.90	199.79	3441.79	LARGE
5	Free Tugs	7.00			28.05	23.52	68.91	411.85	
6	Self Propelled	3.67			1.07	19.83	79.97	222.54	139.67
	$4 \ge D > 2$								
7	Self Propelled	5.56			3.20	31.50	135.67	826.33	360.56
	$6 \ge D > 4$								
8	Self Propelled	9.00			1.78	38.00	179.20	1988.44	1037.27
	$10 \ge D > 8$								
Σ			55.04		89.12				

Bridge NO: 700184 Past the point: 05

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.00	21.60	1.	21.60	46.91	195.09	626.89	SMALL
2	$6 \ge D > 3$	4.87	10.65	1.	10.65	69.80	243.62	2742.72	MED
3	$9 \ge D > 6$	7.33	11.72	1.	11.72	57.39	206.67	3015.04	MED
4	$12 \ge D > 9$	10.50	0.71	1.	0.71	72.10	250.00	6140.62	LARGE
5	Free Tugs	6.95			28.76	23.29	67.04	388.41	
6	Self Propelled	3.75			1.42	20.88	84.97	244.77	157.41
	$4 \ge D > 2$								
7	Self Propelled	6.00			1.07	33.67	141.40	968.81	451.02
	$6 \ge D > 4$								
8	Self Propelled	7.00			1.78	38.20	165.12	1433.14	520.18
	$8 \ge D > 6$								
9	Self Propelled	9.00			0.71	70.00	456.15	11941.63	13427.23
	$10 \ge D > 8$								
Σ			54.33		88.41				

Bridge NO: 700184 Past the point: 05

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.13	19.17	1.	19.17	46.37	173.04	621.87	SMALL
2	$6 \ge D > 3$	4.76	18.11	1.	18.11	64.46	237.79	2504.17	MED
3	$9 \ge D > 6$	7.36	3.91	1.	3.91	42.18	205.64	2073.70	MED
4	$12 \ge D > 9$	11.23	11.01	1.	11.01	48.52	216.58	3913.02	LARGE
5	Free Tugs	7.17			9.59	23.04	65.53	409.34	
6	Self Propelled	5.42			391.28	28.51	91.50	493.85	172.21
	$6 \ge D > 4$								
7	Self Propelled	7.04			182.50	34.94	142.11	1142.61	448.17
	$8 \ge D > 6$								
8	Self Propelled	9.00			18.46	27.46	137.46	1120.18	436.74
	$10 \ge D > 8$								
Σ			52.20		657.23				

Bridge NO: 860034 Past the point: 06

	Α	В	С	D	Ε	F	G	Н	I
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.90	25.56	1.	25.56	47.99	198.63	627.06	SMALL
2	$6 \ge D > 3$	4.73	14.56	1.	14.56	60.63	215.42	2196.87	MED
3	$9 \ge D > 6$	7.49	13.85	1.	13.85	56.26	214.36	3082.43	MED
4	$12 \ge D > 9$	10.50	0.71	1.	0.71	72.10	250.00	6140.62	LARGE
5	Free Tugs	7.03			23.79	23.49	68.30	400.54	
6	Self Propelled	5.42			390.57	28.52	91.47	494.03	172.24
	$6 \ge D > 4$								
7	Self Propelled	7.04			182.15	34.96	142.13	1143.32	448.26
	$8 \ge D > 6$								
8	Self Propelled	9.00			17.40	27.77	145.76	1452.87	585.15
	$10 \ge D > 8$								
Σ			54.33		672.14				

Bridge NO: 860034 Past the point: 06

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.13	19.17	1.	19.17	46.37	173.04	621.87	SMALL
2	$6 \ge D > 3$	4.76	18.11	1.	18.11	64.46	237.79	2504.17	MED
3	$9 \ge D > 6$	7.36	3.91	1.	3.91	42.18	205.64	2073.70	MED
4	$12 \ge D > 9$	11.23	11.01	1.	11.01	48.52	216.58	3913.02	LARGE
5	Free Tugs	7.17			9.59	23.04	65.53	409.34	
6	Self Propelled	5.42			391.28	28.51	91.50	493.85	172.21
	$6 \ge D > 4$								
7	Self Propelled	7.04			182.50	34.94	142.11	1142.61	448.17
	$8 \ge D > 6$								
8	Self Propelled	9.00			18.46	27.46	137.46	1120.18	436.74
	$10 \ge D > 8$								
Σ			52.20		657.23				

Bridge NO: 860144 Past the point: 07

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBE	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF	R OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	BARGES	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)			PER TRIP				(TON)	(TONNE)
1	$3 \ge D$	1.90	25.56	1.	25.56	47.99	198.63	627.06	SMALL
2	$6 \ge D > 3$	4.73	14.56	1.	14.56	60.63	215.42	2196.87	MED
3	$9 \ge D > 6$	7.49	13.85	1.	13.85	56.26	214.36	3082.43	MED
4	$12 \ge D > 9$	10.50	0.71	1.	0.71	72.10	250.00	6140.62	LARGE
5	Free Tugs	7.03			23.79	23.49	68.30	400.54	
6	Self	5.42			390.57	28.52	91.47	494.03	172.24
	Propelled								
	$6 \ge D > 4$								
7	Self	7.04			182.15	34.96	142.13	1143.32	448.26
	Propelled								
	$8 \ge D > 6$								
8	Self	9.00			17.40	27.77	145.76	1452.87	585.15
	Propelled								
	$10 \ge D > 8$								
Σ			54.33		672.14				

Bridge NO: 860144 Past the point: 07

Bridge NO: 860008 Past the point: 08

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.95	25.61	1.	25.61	45.05	166.95	553.28	SMALL
2	$6 \ge D > 3$	5.00	14.34	1.	14.34	43.02	195.33	1511.99	MED
3	$12 \ge D > 9$	10.50	16.39	1.	16.39	59.00	329.00	6998.19	LARGE
4	Free Tugs	6.27			70.68	21.31	56.48	284.19	
5	Self Propelled	7.69			673.03	42.33	283.33	2989.93	3065.81
6	Other Vessels	6.64			90.15	42.33	283.33	2581.68	3069.88
Σ			56.34		890.20				

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.79	44.05	1.	44.05	44.05	197.62	525.70	SMALL
2	$6 \ge D > 3$	4.00	15.37	1.	15.37	15.37	77.00	269.81	MED
3	$9 \ge D > 6$	7.00	11.27	1.	11.27	11.27	150.00	1533.03	MED
4	Free Tugs	6.46			39.95	21.90	58.11	311.44	
5	Self Propelled	7.62			667.91	42.33	283.33	2962.71	3068.22
6	Other Vessels	6.21			84.00	42.33	283.33	2414.50	3069.24
Σ			70.68		862.55				

Bridge NO: 860008 Past the point: 08

Bridge NO: 010029
Past the point: 09

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.74	23.22	1.	23.22	42.72	195.49	474.70	SMALL
2	$6 \ge D > 3$	4.72	6.15	1.	6.15	42.61	170.14	1229.97	MED
3	Free Tugs	7.29			49.17	23.12	67.29	404.63	
4	Self Propelled	3.08			3527.01	13.35	45.24	75.38	29.82
	$4 \ge D > 2$								
5	Self Propelled	5.38			593.13	29.16	97.78	517.79	188.66
	$6 \ge D > 4$								
6	Self Propelled	9.00			1.02	39.33	178.67	2052.60	1064.74
	$10 \ge D > 8$								
Σ			29.71		4200.04				

Bridge NO: 010029
Past the point: 09

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.88	11.27	1.	11.27	43.25	186.71	494.86	SMALL
2	$6 \ge D > 3$	5.00	8.20	1.	8.20	43.12	186.38	1514.30	MED
3	$9 \ge D > 6$	8.00	9.56	1.	9.56	42.94	219.20	2480.21	MED
4	Free Tugs	7.19			48.83	24.26	74.10	439.24	
5	Self Propelled	3.08			3529.74	13.35	45.16	75.27	29.77
	$4 \ge D > 2$								
6	Self Propelled	5.38			593.47	29.17	97.85	518.60	189.01
	$6 \ge D > 4$								
7	Self Propelled	9.00			0.34	38.00	180.00	1997.31	1050.66
	$10 \ge D > 8$								
Σ			28.68		4201.06				

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.40	1.71	1.	1.71	41.00	194.00	331.91	SMALL
2	Free Tugs	6.62			2.73	16.85	44.28	209.34	
3	Self Propelled	3.81			292.30	19.00	64.70	152.13	70.81
	$4 \ge D > 2$								
4	Self Propelled	5.00			795.96	19.15	64.30	200.39	72.33
	$6 \ge D > 4$								
5	Self Propelled	9.00			12.98	30.26	89.45	797.40	317.35
	$10 \ge D > 8$								
6	Self Propelled	12.00			49.85	23.00	100.00	895.48	206.08
	$12 \ge D > 10$								
Σ			1.71		1155.52				

Bridge NO: 900047 Past the point: 10

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT D (FT)	AVE. DRAFT (FT)	NUMBER OF BARGES	NUMBER OF BARGES PER TRIP	NUMBER OF TRIPS	AVE. WIDTH (FT)	AVE. LENGTH (FT)	AVE. SINGLE UNIT DISPLACEMENT (TON)	TUG TYPE Or DWT (TONNE)
1	$3 \ge D$	3.00	0.34	1.	0.34	45.00	130.00	569.41	SMALL
2	Free Tugs	6.20			3.42	15.25	38.08	139.29	
3	Self Propelled $4 \ge D > 2$	3.81			292.30	19.00	64.70	152.13	70.81
4	Self Propelled $6 \ge D > 4$	5.00			795.96	19.15	64.30	200.39	72.33
5	Self Propelled $10 \ge D > 8$	9.00			12.98	30.26	89.45	797.40	317.35
6	Self Propelled $12 \ge D > 10$	12.00			49.85	23.00	100.00	895.48	206.08
Σ			0.34		1154.50				

Bridge NO: 900047 Past the point: 10
	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.40	1.71	1.	1.71	41.00	194.00	331.91	SMALL
2	Free Tugs	6.62			2.73	16.85	44.28	209.34	
3	Self Propelled	3.81			292.30	19.00	64.70	152.13	70.81
	$4 \ge D > 2$								
4	Self Propelled	5.00			795.96	19.15	64.30	200.39	72.33
	$6 \ge D > 4$								
5	Self Propelled	9.00			12.98	30.26	89.45	797.40	317.35
	$10 \ge D > 8$								
6	Self Propelled	12.00			49.85	23.00	100.00	895.48	206.08
	$12 \ge D > 10$								
Σ			1.71		1155.52				

Bridge NO: 900077 Past the point: 11

	Bridge NO: 9 Past the poi	900077 nt: 11		
С	D	Ε	F	
NUMBER	NUMBER	NUMBER	AVE.	

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAF'I	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	3.00	0.34	1.	0.34	45.00	130.00	569.41	SMALL
2	Free Tugs	6.20			3.41	15.25	38.08	139.29	
3	Self Propelled	3.81			292.30	19.00	64.70	152.13	70.81
	$4 \ge D > 2$								
4	Self Propelled	5.00			795.96	19.15	64.30	200.39	72.33
	$6 \ge D > 4$								
5	Self Propelled	9.00			12.98	30.26	89.45	797.40	317.35
	$10 \ge D > 8$								
6	Self Propelled	12.00			49.85	23.00	100.00	895.48	206.08
	12≥ <i>D</i> >10								
Σ			0.34		1154.50				

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.40	1.71	1.	1.71	41.00	194.00	331.91	SMALL
2	Free Tugs	6.62			2.73	16.85	44.28	209.34	
3	Self Propelled	3.81			292.30	19.00	64.70	152.13	70.81
	$4 \ge D > 2$								
4	Self Propelled	5.00			795.96	19.15	64.30	200.39	72.33
	$6 \ge D > 4$								
5	Self Propelled	9.00			12.98	30.26	89.45	797.40	317.35
	$10 \ge D > 8$								
6	Self Propelled	12.00			49.85	23.00	100.00	895.48	206.08
	$12 \ge D > 10$								
Σ			1.71		1155.52				

Bridge NO: 900098 Past the point: 12

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							TONS	(TONNE)
1	$3 \ge D$	3.00	0.34	1.	0.34	45.00	130.00	569.41	SMALL
2	Free Tugs	6.20			3.42	15.25	38.08	139.29	
3	Self Propelled	3.81			292.30	19.00	64.70	152.13	70.81
	$4 \ge D > 2$								
4	Self Propelled	5.00			795.96	19.15	64.30	200.39	72.33
	$6 \ge D > 4$								
5	Self Propelled	9.00			12.98	30.26	89.45	797.40	317.35
	$10 \ge D > 8$								
6	Self Propelled	12.00			49.85	23.00	100.00	895.48	206.08
	12≥ <i>D</i> >10								
Σ			0.34		1154.50				

Bridge NO: 900098 Past the point: 12

Bridge NO: 874262
Past the point: 13

	Α	B	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$6 \ge D > 3$	5.20	76.13	1.	76.13	72.00	300.00	3644.22	MED
2	Free tugs	7.46			1080.41	20.33	61.00	310.76	
3	Self Propelled	8.87			1616.70	42.33	283.33	3448.72	3068.20
Σ			76.13		2773.25				

Bridge NO: 874262	
Past the point: 13	

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$6 \ge D > 3$	5.12	91.81	1	91.81	72.00	300.00	3585.55	MED
2	Free Tugs	6.88			1065.86	25.58	78.58	451.32	
3	Self Propelled	9.27			1755.53	42.33	283.33	3604.25	3069.20
Σ			91.81		2913.20				

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.27	28.05	1.	28.05	44.64	187.64	656.70	SMALL
2	$6 \ge D > 3$	4.69	30.89	1.	30.89	54.04	209.41	1842.28	MED
3	$9 \ge D > 6$	7.50	7.10	1.	7.10	43.30	201.90	2130.33	MED
4	$12 \ge D > 9$	11.13	10.65	1.	10.65	48.60	217.20	3905.55	LARGE
5	Free Tugs	6.87			13.49	22.55	63.75	370.13	
6	Self Propelled	3.00			392.35	27.52	79.66	214.28	108.12
	$4 \ge D > 2$								
7	Self Propelled	5.00			0.71	23.00	105.00	391.77	154.56
	$6 \ge D > 4$								
8	Self Propelled	7.45			55.04	26.00	132.00	829.03	373.41
	$8 \ge D > 6$								
9	Self Propelled	9.00			13.49	28.00	139.47	1163.66	461.10
	$10 \ge D > 8$								
Σ			76.69		551.77				

Bridge NO: 874459 Past the point: 14

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.62	47.22	1.	47.22	45.17	201.04	503.15	SMALL
2	$6 \ge D > 3$	4.94	17.40	1.	17.40	56.26	206.88	2032.89	MED
3	$9 \ge D > 6$	7.30	14.20	1.	14.20	54.32	206.00	2819.87	MED
4	$12 \ge D > 9$	10.50	0.71	1.	0.71	72.10	250.00	6140.62	LARGE
5	Free Tugs	7.06			14.91	22.81	65.54	398.96	
6	Self Propelled	3.00			392.35	27.52	79.66	214.28	108.12
	$4 \ge D > 2$								
7	Self Propelled	7.44			51.84	26.00	132.00	828.27	373.41
	$8 \ge D > 6$								
8	Self Propelled	9.00			12.43	26.30	134.00	1035.21	388.84
	$10 \ge D > 8$								
Σ			79.89		550.71				

Bridge NO: 874459 Past the point: 14

Bridge NO: 490003	
Past the point: 15	

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.19	85.03	1.	85.03	51.02	215.90	835.26	SMALL
2	$6 \ge D > 3$	5.58	24.59	1.	24.59	58.58	316.08	3465.00	MED
3	$9 \ge D > 6$	8.35	116.78	1.	116.78	50.60	246.15	3432.86	MED
4	$12 \ge D > 9$	11.01	92.20	1.	92.20	54.07	318.88	6130.24	LARGE
5	Free Tugs	9.17			53.27	25.48	74.47	575.55	
6	Self Propelled	5.25			4.10	27.25	122.25	632.56	256.69
Σ			318.59		375.96				

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.05	252.00	1.9	135.22	50.86	266.81	921.18	SMALL
2	$6 \ge D > 3$	4.90	39.95	1.9	21.51	62.48	327.98	3460.86	MED
3	$9 \ge D > 6$	8.22	36.88	1.9	19.46	45.27	250.51	3412.00	MED
4	$12 \ge D > 9$	11.71	50.20	1.9	27.66	72.49	256.24	7074.56	LARGE
5	Self Propelled	5.00			2.05	23.00	105.00	391.77	154.56
Σ			379.03		205.90				

Bridge NO: 490003 Past the point: 15

Bridge NO: 500086
Past the point: 16

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.00	9.22	2.7	3.07	50.90	281.29	940.33	SMALL
2	$6 \ge D > 3$	5.33	3.07	2.7	1.02	47.67	263.37	2180.53	MED
3	$9 \ge D > 6$	8.14	135.22	2.7	51.22	47.04	239.00	3074.95	MED
4	$12 \ge D > 9$	10.00	3.07	2.7	1.02	41.33	229.20	3214.26	LARGE
Σ			154.26		56.34				

Bridge NO: 500086	,
Past the point: 16	

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.99	128.05	1.5	86.05	47.02	241.62	749.73	SMALL
2	$6 \ge D > 3$	6.00	5.12	1.5	3.07	35.00	196.00	1335.44	MED
3	$9 \ge D > 6$	7.00	2.05	1.5	2.05	35.00	197.50	1569.93	MED
Σ			135.22		91.17				

Bridge NO: 510951
Past the point: 17

	Α	В	С	D	Ε	F	G	H	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.00	1059.08	2.1	499.91	52.14	259.06	879.10	SMALL
Σ			1059.08		499.91				

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT D (FT)	AVE. DRAFT (FT)	NUMBER OF BARGES	NUMBER OF BARGES PER TRIP	NUMBER OF TRIPS	AVE. WIDTH (FT)	AVE. LENGTH (FT)	AVE. SINGLE UNIT DISPLACEMENT (TON)	TUG TYPE Or DWT (TONNE)
1	$3 \ge D$	2.00	9.70	2.2	4.31	53.77	289.17	1009.51	SMALL
2	$6 \ge D > 3$	5.00	1.077	2.2	1.077	54.10	297.50	2610.97	MED
3	$9 \ge D > 6$	8.81	1081.71	2.2	500.99	52.13	258.80	3868.12	MED
4	$12 \ge D > 9$	10.00	3.23	2.2	1.077	47.67	249.17	3954.50	LARGE
Σ			1095.72		507.46				

Bridge NO: 510951 Past the point: 17

Bridge NO: 510048
Past the point: 18

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.15	106.66	1.6	67.88	51.02	223.68	842.44	SMALL
2	$6 \ge D > 3$	5.54	30.17	1.6	19.39	57.25	309.77	3296.88	MED
3	$9 \ge D > 6$	8.70	1347.83	1.6	855.46	51.44	255.47	3742.56	MED
4	$12 \ge D > 9$	10.94	104.51	1.6	65.72	53.28	312.67	5932.40	LARGE
5	Self Propelled	5.25			4.31	27.25	122.25	632.56	256.69
Σ			1589.17		1008.45				

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.01	1441.56	2.0	732.63	51.51	259.15	876.88	SMALL
2	$6 \ge D > 3$	5.04	48.48	2.0	24.78	58.82	310.47	3178.07	MED
3	$9 \ge D > 6$	8.17	44.17	2.0	22.63	44.02	243.86	3207.51	MED
4	$12 \ge D > 9$	11.71	52.79	2.0	26.94	72.49	256.24	7074.56	LARGE
6	Self Propelled	5.00			2.16	23.00	105.00	391.77	154.56
Σ			1587.01		809.13				

Bridge NO: 510048 Past the point: 18

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.04	194.57	1.1	171.50	36.41	187.78	450.14	SMALL
2	$6 \ge D > 3$	5.18	128.38	1.1	112.33	69.17	445.97	5565.69	MED
3	$9 \ge D > 6$	8.11	385.13	1.1	336.99	53.57	301.92	4562.80	MED
4	$12 \ge D > 9$	10.79	79.23	1.1	71.21	64.10	269.86	6078.16	LARGE
5	<i>D</i> > 12	25.78	1009.96	1.1	881.58	79.66	482.31	33399.79	LARGE
6	Self Propelled	11.15			1548.54	44.17	230.36	13497.87	5797.69
	Domestic								
7	Self Propelled	22.37			1287.77	42.33	283.33	8697.63	3068.13
Σ	roreign		1797.27		4409.93				

Bridge NO: 100100 Past the point: 19

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.02	258.76	1.2	216.64	44.35	212.65	684.06	SMALL
2	$6 \ge D > 3$	5.14	569.67	1.2	472.39	72.62	427.99	5583.95	MED
3	$9 \ge D > 6$	8.26	329.97	1.2	276.81	51.55	296.21	4483.99	MED
4	$12 \ge D > 9$	10.81	51.15	1.2	43.13	80.84	416.46	11955.43	LARGE
5	<i>D</i> > 12	25.95	574.69	1.2	487.43	81.11	503.78	34596.68	LARGE
6	Self Propelled	8.92			1532.49	43.81	227.31	9683.13	5114.219
	Domestic								
7	Self Propelled	24.78			1303.82	42.33	283.33	9634.65	3067.52
	Foreign								
Σ			1784.23		4332.70				

Bridge NO: 100100 Past the point: 19

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPALCEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.00	14.06	1.	14.06	48.93	269.59	866.01	SMALL
2	$6 \ge D > 3$	5.97	180.12	1.	180.12	49.95	278.35	2699.02	MED
3	$9 \ge D > 6$	7.55	110.96	1.	110.96	50.02	283.92	3486.29	MED
4	$12 \ge D > 9$	11.50	0.76	1.	0.76	50.00	282.75	5280.83	LARGE
5	Free Tugs	7.61			8.36	23.54	62.42	364.99	
6	Self Propelled	4.00			85.88	40.53	100.88	539.43	244.12
	$4 \ge D > 2$								
7	Self Propelled	5.00			315.78	40.00	96.20	624.24	221.65
	$6 \ge D > 4$								
8	Self Propelled	7.00			2.28	24.00	64.80	353.21	129.39
	$8 \ge D > 6$								
9	Other Vessels	8.00			79.04	35.90	96.50	899.21	354.76
Σ			305.90		796.86				

Bridge NO: 110063 Past the point: 20

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.01	307.80	1.	307.80	49.89	279.05	906.22	SMALL
2	$6 \ge D > 3$	5.00	0.76	1.	0.76	47.60	226.30	1686.06	MED
3	$9 \ge D > 6$	7.00	0.38	1.	0.38	30.00	120.00	817.61	MED
4	Free Tugs	7.63			4.94	23.53	62.47	365.92	
5	Self Propelled	4.00			86.26	40.53	100.86	539.25	244.02
	$4 \ge D > 2$								
6	Self Propelled	5.00			315.40	40.00	96.20	624.24	221.65
	$6 \ge D > 4$								
7	Self Propelled	7.00			2.28	24.00	64.80	353.21	129.39
	$8 \ge D > 6$								
8	Other Vessels	8.00			79.04	35.90	96.50	899.21	354.76
Σ			308.94		796.86				

Bridge NO: 110063 Past the point: 20

Bridge NO: 124044
Past the point: 21

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.14	105.51	1.2	30.05	50.26	212.45	786.92	SMALL
2	$6 \ge D > 3$	5.95	610.54	1.2	173.81	45.37	226.81	2007.73	MED
3	$9 \ge D > 6$	7.78	232.54	1.2	66.24	46.72	232.12	2817.54	MED
4	$12 \ge D > 9$	11.01	92.20	1.2	26.29	54.07	318.88	6130.24	LARGE
5	Self	3.00			0.34	11.50	39.90	44.66	20.55
	Propelled								
	$4 \ge D > 2$								
6	Self	5.17			2.05	29.60	131.27	699.96	301.09
	Propelled								
	$6 \ge D > 4$								
7	Self	9.00			0.34	38.00	180.00	1997.31	1050.66
	Propelled								
	$10 \ge D > 8$								
Σ			346.93		299.13				

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.32	319.61	1.5	208.64	46.13	233.20	488.92	SMALL
2	$6 \ge D > 3$	4.87	17.76	1.5	11.61	58.20	290.57	2924.10	MEDIUM
3	$9 \ge D > 6$	8.22	12.29	1.5	7.85	45.27	250.51	3412.00	MEDIUM
4	$12 \ge D > 9$	11.71	16.73	1.5	10.93	72.49	256.24	7074.56	LARGE
5	Self Propelled	3.00			0.34	11.50	39.90	44.66	20.55
	$4 \ge D > 2$								
6	Self Propelled	5.00			1.02	25.53	117.53	497.14	207.90
	$6 \ge D > 4$								
7	Self Propelled	9.00			1.02	39.33	178.67	2052.60	1064.74
	$10 \ge D > 8$								
Σ			366.74		241.76				

Bridge NO: 124044 Past the point: 21

Bridge NO: 130054
Past the point: 22

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.73	23.90	1.	23.90	42.80	192.76	467.64	SMALL
2	$6 \ge D > 3$	4.72	6.15	1.	6.15	42.61	170.14	1229.97	MED
3	Free Tugs	7.25			47.81	23.08	67.27	401.34	
4	Self Propelled	3.03			3359.35	12.42	41.00	54.28	21.53
	$4 \ge D > 2$								
5	Self Propelled	5.39			633.76	31.48	111.86	618.36	231.18
	$6 \ge D > 4$								
6	Self Propelled	7.00			583.23	35.00	150.00	1192.35	416.65
	$8 \ge D > 6$								
7	Self Propelled	9.00			1.02	39.33	178.67	2052.60	1064.74
	$10 \ge D > 8$								
Σ			29.71		4655.22				

	Α	B	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D (FT)	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT (TON)	DWT (TONNE)
1	$3 \ge D$	1.86	11.95	1.	11.95	43.37	181.76	479.59	SMALL
2	$6 \ge D > 3$	5.00	8.20	1.	8.20	43.12	186.38	1514.30	MED
3	$9 \ge D > 6$	8.00	9.56	1.	9.56	42.94	219.20	2480.21	MED
4	Free Tugs	7.19			49.51	24.29	73.52	436.74	
5	Self Propelled $4 \ge D > 2$	3.03			3362.08	12.42	40.91	54.18	21.49
6	Self Propelled $6 \ge D > 4$	5.40			613.62	31.38	110.65	611.29	226.41
7	Self Propelled $8 \ge D > 6$	7.00			583.23	35.00	150.00	1192.35	416.65
8	Self Propelled $10 \ge D > 8$	9.00			0.34	38.00	180.00	1997.31	1050.66
Σ			29.71		4638.48				

Bridge NO: 130054 Past the point: 22

	Α	В	C	D	Ε	F	G	H	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.97	69.12	1.	69.12	46.16	252.35	783.41	SMALL
2	$6 \ge D > 3$	5.97	213.84	1.	213.84	46.24	257.77	2362.92	MED
3	$9 \ge D > 6$	7.99	166.32	1.	166.32	41.23	230.99	2525.85	MED
4	$12 \ge D > 9$	10.00	31.32	1.	31.32	35.95	194.36	2268.69	LARGE
5	<i>D</i> > 12	21.92	49.68	1.	49.68	80.11	424.46	24218.40	LARGE
6	Free Tugs	7.77			93.96	22.93	64.02	397.96	
7	Self Propelled	20.53			1877.04	39.42	239.08	6528.86	2148.70
Σ			530.28		2501.28				

Bridge NO: 720022 Past the point: 23

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							TONS	(TONNE)
1	$3 \ge D$	1.98	399.60	1.	399.60	44.17	245.46	722.06	SMALL
2	$6 \ge D > 3$	5.31	24.84	1.	24.84	67.70	344.82	4482.94	MED
3	$9 \ge D > 6$	8.92	29.16	1.	29.16	35.00	195.00	1975.22	MED
4	$12 \ge D > 9$	10.60	28.08	1.	28.08	50.00	270.00	5764.18	LARGE
5	<i>D</i> > 12	16.08	36.72	1.	36.72	80.67	428.50	18081.53	LARGE
6	Free Tugs	7.82			113.4	23.10	64.95	422.94	
7	Self Propelled	20.21			1820.88	39.37	238.13	6146.91	1940.10
Σ			518.40		2452.68				

Bridge NO: 720022 Past the point: 23

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.30	75.60	1.	75.60	43.82	229.25	805.64	SMALL
2	$6 \ge D > 3$	5.51	171.72	1.	171.72	48.27	257.27	2268.85	MED
3	$9 \ge D > 6$	8.21	102.60	1.	102.60	35.84	159.34	1535.80	MED
4	$12 \ge D > 9$	10.16	48.60	1.	48.60	40.03	209.71	3011.67	LARGE
5	Free Tugs	7.89			147.96	22.72	65.08	409.51	
6	Self Propelled	6.29			7.56	33.86	156.31	1192.55	550.69
Σ			398.52		406.08				

Bridge NO: 720061 Past the point: 24

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.02	304.56	1.	304.56	42.07	212.56	615.53	SMALL
2	$6 \ge D > 3$	5.27	11.88	1.	11.88	57.15	260.91	2800.07	MED
3	$9 \ge D > 6$	8.89	20.52	1.	20.52	35.00	195.00	1969.63	MED
4	$12 \ge D > 9$	10.23	14.04	1.	14.04	46.65	253.28	4629.95	LARGE
5	<i>D</i> > 12	14.80	5.40	1.	5.40	66.00	411.72	12910.67	LARGE
6	Free Tugs	7.80			118.80	22.44	63.14	373.35	
7	Self Propelled	6.43			7.56	33.43	165.74	1330.22	614.61
Σ			356.40		482.76				

Bridge NO: 720061 Past the point: 24

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.06	348.30	2.3	153.66	41.33	225.96	644.32	SMALL
2	$6 \ge D > 3$	5.47	52.24	2.3	23.56	47.42	246.71	2114.83	MED
3	$9 \ge D > 6$	8.32	284.78	2.3	126.00	44.62	233.10	2947.52	MED
4	$12 \ge D > 9$	10.44	62.49	2.3	27.66	49.85	265.05	4520.48	LARGE
5	<i>D</i> > 12	17.00	5.12	2.3	2.05	66.00	361.00	13141.59	LARGE
6	Self Propelled	17.29			56.34	42.33	283.33	6722.48	3067.55
Σ			752.93		389.27				

Bridge NO: 480035 Past the point: 25

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.99	523.47	2.2	238.69	44.58	232.44	697.29	SMALL
2	$6 \ge D > 3$	5.00	7.17	2.2	3.07	45.86	253.57	1878.08	MED
3	$9 \ge D > 6$	8.25	194.64	2.2	89.12	41.05	226.08	2573.90	MED
4	$12 \ge D > 9$	10.00	5.12	2.2	3.07	35.00	195.00	2214.37	LARGE
5	<i>D</i> > 12	23.00	5.12	2.2	3.07	66.00	361.00	17779.79	LARGE
6	Self Propelled	19.93			59.42	42.33	283.33	7748.94	3057.17
Σ			735.52		396.44				

Bridge NO: 480035 Past the point: 25

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.13	438.86	2.5	175.55	40.27	206.24	618.20	SMALL
2	$6 \ge D > 3$	5.28	281.48	2.5	113.00	45.61	252.41	2063.25	MED
3	$9 \ge D > 6$	8.65	3910.42	2.5	1562.76	42.95	228.54	2837.70	MED
4	$12 \ge D > 9$	10.36	379.34	2.5	151.33	49.89	274.08	4665.90	LARGE
5	Self Propelled	5.25			4.04	27.25	122.25	632.56	256.69
Σ			5010.10		2006.66				

Bridge NO: 480118 Past the point: 26

	Α	В	С	D	Ε	F	G	H	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.00	4389.64	2.8	1555.70	43.66	233.22	684.03	SMALL
2	$6 \ge D > 3$	4.64	150.32	2.8	53.47	46.07	260.06	1918.98	MED
3	$9 \ge D > 6$	8.01	288.54	2.8	100.89	39.96	198.39	2287.30	MED
4	$12 \ge D > 9$	10.70	10.09	2.8	4.04	66.60	274.60	6702.27	LARGE
5	Self Propelled	5.00			2.02	23.00	105.00	391.77	154.56
Σ			4838.59		1716.10				

Bridge NO: 480118 Past the point: 26

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.11	135.47	2.2	151.89	39.24	189.23	559.00	SMALL
2	$6 \ge D > 3$	5.21	218.60	2.2	97.50	44.96	252.06	2013.04	MED
3	$9 \ge D > 6$	8.62	2607.78	2.2	1163.80	45.06	235.62	3057.25	MED
4	$12 \ge D > 9$	10.35	299.67	2.2	133.42	50.09	275.21	4702.37	LARGE
5	Self Propelled	5.25			4.11	27.25	122.25	632.56	256.69
Σ			3466.77		1550.71				

Bridge NO: 480139 Past the point: 27

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.00	3096.29	2.7	1167.90	45.48	240.51	733.32	SMALL
2	$6 \ge D > 3$	5.06	92.37	2.7	33.87	48.91	250.61	2196.66	MED
3	$9 \ge D > 6$	7.64	129.31	2.7	49.26	37.18	156.07	1736.99	MED
4	$12 \ge D > 9$	10.70	10.26	2.7	4.11	66.60	274.60	6702.27	LARGE
5	Self Propelled	5.00			2.05	23.00	105.00	391.77	154.56
Σ			3328.23		1257.20				

Bridge NO: 480139 Past the point: 27

Bridge NO: 734071
Past the point: 28

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE.	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.05	36.93	1.	36.93	47.31	220.28	745.19	SMALL
2	$6 \ge D > 3$	4.87	19.17	1.	19.17	64.19	244.89	2632.50	MED
3	$9 \ge D > 6$	8.00	1.42	1.	1.42	41.25	187.50	2016.05	MED
4	$12 \ge D > 9$	11.40	3.55	1.	3.55	48.60	203.20	3657.30	LARGE
5	Free Tugs	7.18			22.01	23.53	67.25	409.63	
6	Self Propelled	3.67			1.07	19.83	79.97	222.54	139.67
	$4 \ge D > 2$								
7	Self Propelled	5.63			2.84	32.56	139.50	880.65	388.36
	$6 \ge D > 4$								
8	Self Propelled	9.00			1.78	38.00	179.20	1988.44	1037.27
	$10 \ge D > 8$								
Σ			61.07		88.77				

	Α	В	С	D	\mathbf{E}	\mathbf{F}	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(F T)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.19	26.63	1.	26.63	48.80	221.86	792.38	SMALL
2	$6 \ge D > 3$	5.00	13.14	1.	13.14	63.89	225.37	2420.04	MED
3	$9 \ge D > 6$	7.30	13.14	1.	13.14	54.67	199.65	2792.31	MED
4	$12 \ge D > 9$	10.50	0.71	1.	0.71	72.10	250.00	6140.62	LARGE
5	Free Tugs	7.04			27.70	23.08	66.21	381.04	
6	Self Propelled	3.75			1.42	20.88	84.97	244.77	157.72
	$4 \ge D > 2$								
7	Self Propelled	6.00			1.07	33.67	141.40	968.81	450.17
	$6 \ge D > 4$								
8	Self Propelled	7.00			1.78	38.20	165.12	1433.14	520.18
	$8 \ge D > 6$								
9	Self Propelled	9.00			0.71	70.00	456.15	11941.63	13427.22
	$10 \ge D > 8$								
Σ			53.26		86.28				

Bridge NO: 734071 Past the point: 28
	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.34	69.66	1.	69.66	44.01	232.03	824.40	SMALL
2	$6 \ge D > 3$	5.51	162.88	1.	162.88	48.43	258.14	2276.64	MED
3	$9 \ge D > 6$	8.21	97.32	1.	97.32	35.84	159.34	1535.80	MED
4	$12 \ge D > 9$	10.16	46.10	1.	46.10	40.03	209.71	3011.67	LARGE
5	Free Tugs	7.90			140.34	22.98	66.67	418.56	
6	Self Propelled	6.29			7.17	33.86	156.31	1192.55	550.69
Σ			375.96		523.47				

Bridge NO: 740055 Past the point: 29

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.03	286.83	1.	286.83	42.16	213.27	619.92	SMALL
2	$6 \ge D > 3$	5.27	11.27	1.	11.27	57.15	260.91	2800.07	MED
3	$9 \ge D > 6$	8.89	19.46	1.	19.46	35.00	195.00	1969.63	MED
4	$12 \ge D > 9$	10.23	13.32	1.	13.32	46.65	253.28	4629.95	LARGE
5	D > 12	14.80	5.12	1.	5.12	66.00	411.72	12910.67	LARGE
6	Free Tugs	7.91			112.68	22.71	63.98	416.90	
7	Self Propelled	6.43			7.17	33.43	165.74	1330.22	614.61
Σ			336.00		455.86				

Bridge NO: 740055 Past the point: 29

	Α	В	С	D	Ε	F	G	H	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.34	72.23	1.	72.23	44.14	232.58	830.10	SMALL
2	$6 \ge D > 3$	5.48	181.10	1.	181.10	49.69	260.38	2342.40	MED
3	$9 \ge D > 6$	8.33	54.98	1.	54.98	36.53	196.27	1940.08	MED
4	$12 \ge D > 9$	10.16	52.82	1.	52.82	40.03	209.71	3011.67	LARGE
5	Free Tugs	7.93			132.59	23.19	67.14	430.82	
6	Self Propelled	22.48			284.59	42.33	283.33	8740.39	3103.50
Σ			361.13		778.32				

Bridge NO: 740088 Past the point: 30

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.02	253.33	1.	253.33	43.51	231.45	684.68	SMALL
2	$6 \ge D > 3$	5.15	21.56	1.	21.56	63.83	278.50	3116.87	MED
3	$9 \ge D > 6$	8.89	22.64	1.	22.64	35.00	195.00	1969.63	MED
4	$12 \ge D > 9$	10.23	16.17	1.	16.17	46.65	253.28	4629.95	LARGE
5	<i>D</i> > 12	14.80	7.55	1.	7.55	66.00	411.72	12910.67	LARGE
6	Free Tugs	7.93			106.72	23.12	65.26	425.14	
7	Self Propelled	22.48			284.60	42.33	283.33	8740.39	3448.33
Σ			321.24		712.56				

Bridge NO: 740088 Past the point: 30

	1 40			
С	D	Ε	F	G
NUMBER	NUMBER	NUMBER	AVE.	AVE.

Bridge NO: 570091
Past the point: 31

	Α	В	С	D	Ε	F	G	Η	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.14	230.91	2.0	110.84	41.76	186.58	617.27	SMALL
2	$6 \ge D > 3$	5.15	120.08	2.0	57.47	51.86	288.48	2574.51	MED
3	$9 \ge D > 6$	8.67	2306.05	2.0	1108.38	45.52	236.43	3117.12	MED
4	$12 \ge D > 9$	10.38	254.52	2.0	122.13	50.73	280.08	4852.77	LARGE
5	Self Propelled	5.00			5.13	26.20	116.80	560.29	239.62
Σ			2911.56		1403.95				

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.00	2602.65	2.5	1035.52	46.57	243.99	759.29	SMALL
2	$6 \ge D > 3$	5.06	92.37	2.5	36.95	48.91	250.61	2196.66	MED
3	$9 \ge D > 6$	7.61	125.21	2.5	49.26	36.78	153.21	1683.02	MED
4	$12 \ge D > 9$	10.41	17.45	2.5	7.18	60.00	270.24	5726.15	LARGE
5	Self Propelled	4.67			3.08	22.67	101.67	351.60	153.57
Σ			2837.66		1131.99				

Bridge NO: 570091 Past the point: 31

Bridge NO: 050044
Past the point: 32

	Α	В	С	D	Ε	F	G	H	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.95	13.32	1.	13.32	44.53	189.12	536.18	SMALL
2	$6 \ge D > 3$	4.86	7.17	1.	7.17	43.32	179.18	1464.06	MED
3	$9 \ge D > 6$	8.08	4.10	1.	4.10	47.12	227.92	2893.79	MED
4	Free Tugs	7.45			45.76	24.90	75.96	484.64	
5	Self Propelled	3.14			43.03	15.70	51.31	115.05	46.26
Σ			8.20		37.90				

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.15	16.05	1.	16.05	43.30	183.04	557.99	SMALL
2	$6 \ge D > 3$	4.58	4.10	1.	4.10	44.78	170.50	1158.48	MED
3	$9 \ge D > 6$	7.00	0.68	1.	0.68	35.00	187.50	1490.44	MED
4	$12 \ge D > 9$	10.00	0.68	1.	0.68	72.00	460.00	10745.78	LARGE
5	Free Tugs	7.55			38.24	23.82	69.80	450.50	
6	Self Propelled	3.00			41.32	14.97	46.94	68.42	27.03
	$4 \ge D > 2$								
7	Self Propelled	5.00			1.02	25.53	117.53	497.14	207.90
	$6 \ge D > 4$								
8	Self Propelled	9.00			1.02	39.33	178.67	2052.60	1064.74
	$10 \ge D > 8$								
Σ			21.51		103.46				
	1		1			1			1

Bridge NO: 050044 Past the point: 32

	Α	В	С	D	\mathbf{E}	\mathbf{F}	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.12	21.30	1.	21.30	46.25	165.76	588.72	SMALL
2	$6 \ge D > 3$	4.75	18.46	1.	18.46	64.26	239.77	2501.97	MED
3	$9 \ge D > 6$	7.38	4.62	1.	4.62	45.31	203.23	2264.30	MED
4	$12 \ge D > 9$	11.23	11.01	1.	11.01	48.52	216.58	3913.02	LARGE
5	Free Tugs	7.16			19.53	22.07	62.48	379.32	
6	Self propelled	3.40			1.78	16.50	63.94	151.39	86.07
	$4 \ge D > 2$								
7	Self propelled	5.40			3.55	31.11	138.36	810.64	344.69
	$6 \ge D > 4$								
8	Self propelled	7.00			0.71	26.00	132.00	779.46	373.41
	$8 \ge D > 6$								
9	Self propelled	9.00			2.13	38.67	179.33	2024.96	1057.80
	$10 \ge D > 8$								
Σ			55.39		83.09				

Bridge NO: 930157 Past the point: 33

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.92	26.99	1.	26.99	48.15	193.07	613.31	SMALL
2	$6 \ge D > 3$	4.73	14.56	1.	14.56	60.63	215.42	2196.87	MED
3	$9 \ge D > 6$	7.47	14.91	1.	14.91	56.78	212.13	3091.41	MED
4	Free Tugs	7.00			31.60	22.92	66.53	383.48	
5	Self Propelled	3.57			2.49	18.64	74.24	197.12	119.76
	$4 \ge D > 2$								
6	Self Propelled	5.50			1.42	35.90	159.45	1036.44	472.09
	$6 \ge D > 4$								
7	Self Propelled	7.00			2.49	34.71	155.66	1246.37	493.73
	$8 \ge D > 6$								
8	Self Propelled	9.00			0.71	69.30	469.15	12044.59	13384.59
	$10 \ge D > 8$								
Σ			56.46		95.16				

Bridge NO: 930157 Past the point: 33

	Α	В	С	D	E	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.12	21.30	1.	21.30	46.25	165.76	588.72	SMALL
2	$6 \ge D > 3$	4.75	18.46	1.	18.46	64.26	239.77	2501.97	MED
3	$9 \ge D > 6$	7.38	4.62	1.	4.62	45.31	203.23	2264.30	MED
4	$12 \ge D > 9$	11.23	11.01	1.	11.01	48.52	216.58	3913.02	LARGE
5	Free Tugs	7.16			19.53	22.07	62.48	379.32	
6	Self propelled	3.40			1.78	16.50	63.94	151.39	86.07
	$4 \ge D > 2$								
7	Self propelled	5.40			3.55	31.11	138.36	810.64	344.69
	$6 \ge D > 4$								
8	Self propelled	7.00			0.71	26.00	132.00	779.46	373.41
	$8 \ge D > 6$								
9	Self propelled	9.00			2.13	38.67	179.33	2024.96	1057.80
	$10 \ge D > 8$								
Σ			55.39		83.08				

Bridge NO: 930004 Past the point: 34

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
		(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(F [*] I [*])							(TON)	(TONNE)
1	$3 \ge D$	1.92	26.99	1.	26.99	48.15	193.07	613.31	SMALL
2	$6 \ge D > 3$	4.73	14.56	1.	14.56	60.63	215.42	2196.87	MED
3	$9 \ge D > 6$	7.47	14.91	1.	14.91	56.78	212.13	3091.41	MED
4	Free Tugs	7.00			31.60	22.92	66.53	383.48	
5	Self Propelled	3.57			2.49	18.64	74.24	197.12	119.76
	$4 \ge D > 2$								
6	Self Propelled	5.50			1.42	35.90	159.45	1036.44	472.09
	$6 \ge D > 4$								
7	Self Propelled	7.00			2.49	34.71	155.66	1246.37	493.73
	$8 \ge D > 6$								
8	Self Propelled	9.00			0.71	69.30	469.15	12044.59	13384.59
	$10 \ge D > 8$								
Σ			56.46		95.16				

Bridge NO: 930004 Past the point: 34

	Α	В	С	D	E	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.12	21.30	1.	21.30	46.25	165.76	588.72	SMALL
2	$6 \ge D > 3$	4.75	18.46	1.	18.46	64.26	239.77	2501.97	MED
3	$9 \ge D > 6$	7.38	4.62	1.	4.62	45.31	203.23	2264.30	MED
4	$12 \ge D > 9$	11.23	11.01	1.	11.01	48.52	216.58	3913.02	LARGE
5	Free Tugs	7.16			19.53	22.07	62.48	379.32	
6	Self propelled	3.40			1.78	16.50	63.94	151.39	86.07
	$4 \ge D > 2$								
7	Self propelled	5.40			3.55	31.11	138.36	810.64	344.69
	$6 \ge D > 4$								
8	Self propelled	7.00			0.71	26.00	132.00	779.46	373.41
	$8 \ge D > 6$								
9	Self propelled	9.00			2.13	38.67	179.33	2024.96	1057.80
	$10 \ge D > 8$								
Σ			55.39		83.08				

Bridge NO: 930005 Past the point: 35

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D (FT)	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT (TON)	DWT (TONNE)
1	$3 \ge D$	1.92	26.99	1.	26.99	48.15	193.07	613.31	SMALL
2	$6 \ge D > 3$	4.73	14.56	1.	14.56	60.63	215.42	2196.87	MED
3	$9 \ge D > 6$	7.47	14.91	1.	14.91	56.78	212.13	3091.41	MED
4	Free Tugs	7.00			31.60	22.92	66.53	383.48	
5	Self Propelled $4 \ge D > 2$	3.57			2.49	18.64	74.24	197.12	119.76
6	Self Propelled $6 \ge D > 4$	5.50			1.42	35.90	159.45	1036.44	472.09
7	Self Propelled $8 \ge D > 6$	7.00			2.49	34.71	155.66	1246.37	493.73
8	Self Propelled $10 \ge D > 8$	9.00			0.71	69.30	469.15	12044.59	13384.59
Σ			56.46		95.16				

Bridge NO: 930005 Past the point: 35

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.13	18.82	1.	18.82	46.87	175.39	632.43	SMALL
2	$6 \ge D > 3$	4.76	18.11	1.	18.11	64.46	237.79	2504.17	MED
3	$9 \ge D > 6$	7.36	3.91	1.	3.91	42.18	205.64	2073.70	MED
4	$12 \ge D > 9$	11.23	11.01	1.	11.01	48.52	216.58	3913.02	LARGE
5	Free Tugs	7.19			9.23	23.17	65.92	414.04	
6	Self Propelled	3.00			1.07	11.50	39.90	44.66	20.55
	$4 \ge D > 2$								
7	Self Propelled	5.00			0.71	23.00	105.00	391.77	154.56
	$6 \ge D > 4$								
8	Self Propelled	7.10			6.75	34.17	207.67	1762.80	695.47
	$8 \ge D > 6$								
9	Self Propelled	9.00			3.20	34.44	163.56	1684.03	795.63
	$10 \ge D > 8$								
Σ			51.84		72.79				

Bridge NO: 930060 Past the point: 36

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE.	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.90	25.21	1.	25.21	48.50	200.18	633.92	SMALL
2	$6 \ge D > 3$	4.73	14.56	1.	14.56	60.63	215.42	2196.87	MED
3	$9 \ge D > 6$	7.49	13.85	1.	13.85	57.08	214.49	3139.23	MED
4	$12 \ge D > 9$	10.50	0.71	1.	0.71	72.10	250.00	6140.62	LARGE
5	Free Tugs	7.05			23.43	23.45	68.09	400.35	
6	Self Propelled	3.00			1.07	11.50	39.90	44.66	20.55
	$4 \ge D > 2$								
7	Self Propelled	7.25			2.84	26.00	132.00	807.30	373.41
	$8 \ge D > 6$								
8	Self Propelled	9.00			2.13	40.43	244.38	4682.97	2897.93
	$10 \ge D > 8$								
Σ			54.33		87.35				

Bridge NO: 930060 Past the point: 36

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.54	52.93	1.3	40.63	54.60	207.66	1069.11	SMALL
2	$6 \ge D > 3$	4.94	21.51	1.3	16.73	58.04	293.93	3018.56	MED
3	$9 \ge D > 6$	8.05	34.15	1.3	26.29	36.08	193.07	1848.43	MED
4	Self Propelled	3.02			3305.74	12.37	40.92	53.71	21.25
	$4 \ge D > 2$								
5	Self Propelled	5.00			289.91	31.98	106.04	550.08	195.44
	$6 \ge D > 4$								
6	Self Propelled	7.34			62.83	35.00	150.00	1249.75	448.35
	$8 \ge D > 6$								
7	Self Propelled	9.00			1.02	39.33	178.67	2052.60	1064.74
	$10 \ge D > 8$								
Σ			108.59		3743.16				

Bridge NO: 150049 Past the point: 37

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.06	47.46	1.1	45.07	36.26	170.05	424.26	SMALL
2	$6 \ge D > 3$	4.94	11.95	1.1	11.27	41.41	185.70	1381.34	MED
3	$9 \ge D > 6$	8.30	38.59	1.1	3.88	46.60	217.72	2883.11	MED
6	Self Propelled	3.02			3308.47	12.37	40.83	53.60	21.21
	$4 \ge D > 2$								
7	Self Propelled	5.00			290.01	32.00	106.18	551.70	196.14
	$6 \ge D > 4$								
8	Self Propelled	7.34			62.83	35.00	150.00	1249.75	448.35
	$8 \ge D > 6$								
9	Self Propelled	9.00			0.34	38.00	180.00	1997.31	1050.66
	$10 \ge D > 8$								
Σ			98.00		3755.11				

Bridge NO: 150049 Past the point: 37

Bridge NO: 150107
Past the point: 38 *

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	D > 12	19.00	1.00	1.	1.00	76.20	442.00	20762.45	LARGE
2	Free Tugs	18.00			3.01	46.40	149.80	4059.29	
Σ			1.00		4.01				

For future trip projections, annual trips of *n* years later in excess of 2000 multiply by $(1+n \times 0.000733)$.

Note:

* Past point # 38 is located on the dead-end of an inland waterway and, accordingly, only downbound data is available.

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.04	194.57	1.1	171.50	36.41	187.78	450.14	SMALL
2	$6 \ge D > 3$	5.18	128.38	1.1	112.33	69.17	445.97	5565.69	MED
3	$9 \ge D > 6$	8.11	385.13	1.1	336.99	53.57	301.92	4562.80	MED
4	$12 \ge D > 9$	10.79	79.23	1.1	71.21	64.10	269.86	6078.16	LARGE
5	<i>D</i> > 12	25.78	1009.96	1.1	881.58	79.66	482.31	33399.79	LARGE
6	Self Propelled	11.15			1548.54	44.17	230.36	13497.87	5797.69
	Domestic								
7	Self	22.37			1287.78	42.33	283.33	8697.63	3068.13
	Propelled								
	Foreign								
Σ			1797.27		4409.93				

Bridge NO: 150189 Past the point: 39

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.02	258.76	1.2	216.64	44.35	212.65	684.06	SMALL
2	$6 \ge D > 3$	5.14	569.67	1.2	472.39	72.62	427.99	5583.95	MED
3	$9 \ge D > 6$	8.26	329.97	1.2	276.81	51.55	296.21	4483.99	MED
4	$12 \ge D > 9$	10.81	51.15	1.2	43.13	80.84	416.46	11955.43	LARGE
5	<i>D</i> > 12	25.95	574.69	1.2	487.43	81.11	503.78	34596.68	LARGE
6	Self Propelled	8.92			1532.49	43.81	227.31	9683.13	5114.219
	Domestic								
7	Self Propelled	24.78			1303.82	42.33	283.33	9634.65	3067.52
	Foreign								
Σ			1784.23		4332.70				

Bridge NO: 150189 Past the point: 39

Bridge NO: 150068
Past the point: 40

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.54	52.93	1.3	40.63	54.60	207.66	1069.11	SMALL
2	$6 \ge D > 3$	4.94	21.51	1.3	16.73	58.04	293.93	3018.56	MED
3	$9 \ge D > 6$	8.05	34.15	1.3	26.29	36.08	193.07	1848.43	MED
4	Self Propelled	3.02			3305.74	12.37	40.92	53.71	21.25
	$4 \ge D > 2$								
5	Self Propelled	5.00			289.91	31.98	106.04	550.08	195.44
	$6 \ge D > 4$								
6	Self Propelled	7.34			62.83	35.00	150.00	1249.75	448.35
	$8 \ge D > 6$								
7	Self Propelled	9.00			1.02	39.33	178.67	2052.60	1064.74
	$10 \ge D > 8$								
Σ			108.59		3743.16				

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.06	47.46	1.1	45.07	36.26	170.05	424.26	SMALL
2	$6 \ge D > 3$	4.94	11.95	1.1	11.27	41.41	185.70	1381.34	MED
3	$9 \ge D > 6$	8.30	38.59	1.1	3.88	46.60	217.72	2883.11	MED
4	Self Propelled	3.02			3308.47	12.37	40.83	53.60	21.21
	$4 \ge D > 2$								
5	Self Propelled	5.00			290.01	32.00	106.18	551.70	196.14
	$6 \ge D > 4$								
6	Self Propelled	7.34			62.83	35.00	150.00	1249.75	448.35
	$8 \ge D > 6$								
7	Self Propelled	9.00			0.34	38.00	180.00	1997.31	1050.66
	$10 \ge D > 8$								
Σ			98.00		3755.11				

Bridge NO: 150068 Past the point: 40

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.00	25.08	1.	25.08	50.02	290.00	941.33	SMALL
2	$6 \ge D > 3$	6.00	148.20	1.	148.20	50.06	279.98	2728.30	MED
3	$9 \ge D > 6$	7.70	71.82	1.	71.82	50.02	282.86	3542.13	MED
4	Free Tugs	7.86			15.96	23.75	63.11	384.52	
5	Self Propelled	5.06			243.96	39.55	95.32	616.64	219.22
6	Other Vessels	8.00			237.12	35.90	96.50	899.21	354.76
Σ			245.10		742.14				

Bridge NO: 760043 Past the point: 41

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.00	245.10	1.	245.10	50.04	281.85	915.25	SMALL
2	$6 \ge D > 3$	6.00	1.14	1.	1.14	45.00	188.60	1652.16	MED
3	Free Tugs	7.87			13.68	23.78	63.13	385.33	
4	Self Propelled	5.06			243.96	39.55	95.32	616.64	219.22
5	Other Vessels	8.00			237.12	35.90	96.50	899.21	354.76
Σ			246.24		741.00				

Bridge NO: 760043 Past the point: 41

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.73	23.90	1.	23.90	42.80	192.76	467.64	SMALL
2	$6 \ge D > 3$	4.76	5.81	1.	5.81	42.47	172.51	1257.66	MED
3	Free Tugs	7.25			48.15	23.07	67.14	400.65	
4	Self Propelled	3.09			3580.28	13.38	45.26	75.60	29.98
	$4 \ge D > 2$								
5	Self Propelled	5.39			633.76	31.48	111.86	618.36	231.18
	$6 \ge D > 4$								
6	Self Propelled	7.00			583.23	35.00	150.00	1192.35	416.65
	$8 \ge D > 6$								
7	Self Propelled	9.00			1.02	39.33	178.67	2052.60	1064.74
	$10 \ge D > 8$								
Σ			29.71		4876.14				

Bridge NO: 170064 Past the point: 42

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.86	11.95	1.	11.95	43.49	182.61	486.32	SMALL
2	$6 \ge D > 3$	5.00	8.20	1.	8.20	43.12	186.38	1514.30	MED
3	$9 \ge D > 6$	8.00	9.56	1.	9.56	42.94	219.20	2480.21	MED
4	Free Tugs	7.19			49.51	25.04	73.91	449.88	
5	Self Propelled	3.09			3583.01	13.38	45.17	75.48	29.93
	$4 \ge D > 2$								
6	Self Propelled	5.40			613.62	31.38	110.65	611.29	226.41
	$6 \ge D > 4$								
7	Self Propelled	7.00			583.23	35.00	150.00	1192.35	416.65
	$8 \ge D > 6$								
8	Self Propelled	9.00			0.34	38.00	180.00	1997.31	1050.66
	$10 \ge D > 8$								
Σ			29.71		4859.75				

Bridge NO: 170064 Past the point: 42

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.73	23.90	1.	23.90	42.80	192.76	467.64	SMALL
2	$6 \ge D > 3$	4.76	5.81	1.	5.81	42.47	172.51	1257.66	MED
3	Free Tugs	7.25			48.15	23.07	67.14	400.65	
4	Self Propelled	3.09			3580.28	13.38	45.26	75.60	29.98
	$4 \ge D > 2$								
5	Self Propelled	5.39			633.76	31.48	111.86	618.36	231.18
	$6 \ge D > 4$								
6	Self Propelled	7.00			583.23	35.00	150.00	1192.35	416.65
	$8 \ge D > 6$								
7	Self Propelled	9.00			1.02	39.33	178.67	2052.60	1064.74
	$10 \ge D > 8$								
Σ			29.71		4876.14				

Bridge NO: 170021 Past the point: 43

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	1.86	11.95	1.	11.95	43.49	182.61	486.32	SMALL
2	$6 \ge D > 3$	5.00	8.20	1.	8.20	43.12	186.38	1514.30	MED
3	$9 \ge D > 6$	8.00	9.56	1.	9.56	42.94	219.20	2480.21	MED
4	Free Tugs	7.19			49.51	25.04	73.91	449.88	
5	Self Propelled	3.09			3583.01	13.38	45.17	75.48	29.93
	$4 \ge D > 2$								
6	Self Propelled	5.40			613.62	31.38	110.65	611.29	226.41
	$6 \ge D > 4$								
7	Self Propelled	7.00			583.23	35.00	150.00	1192.35	416.65
	$8 \ge D > 6$								
8	Self Propelled	9.00			0.34	38.00	180.00	1997.31	1050.66
	$10 \ge D > 8$								
Σ			29.71		4859.75				

Bridge NO: 170021 Past the point: 43

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.04	40.48	1.	40.48	46.98	214.29	717.34	SMALL
2	$6 \ge D > 3$	4.87	19.17	1.	19.17	64.58	247.82	2654.70	MED
3	$9 \ge D > 6$	8.00	1.42	1.	1.42	41.25	187.50	2016.05	MED
4	$12 \ge D > 9$	11.40	3.55	1.	3.55	48.60	203.20	3657.30	LARGE
5	Free Tugs	7.04			28.41	23.09	64.72	384.38	
6	Self Propelled	4.00			0.71	24.00	100.00	311.47	215.04
	$4 \ge D > 2$								
7	Self Propelled	5.63			2.84	32.56	139.50	880.65	388.36
	$6 \ge D > 4$								
8	Self Propelled	9.00			1.78	38.00	179.20	1988.44	1037.27
	$10 \ge D > 8$								
Σ			21.54		32.78				

Bridge NO: 783080 Past the point: 44

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.19	26.63	1.	26.63	48.93	222.38	795.80	SMALL
2	$6 \ge D > 3$	5.14	15.62	1.	15.62	60.09	214.06	2221.18	MED
3	$9 \ge D > 6$	7.26	15.27	1.	15.27	53.53	193.93	2642.73	MED
4	$12 \ge D > 9$	10.50	0.71	1.	0.71	72.10	250.00	6140.62	LARGE
5	Free Tugs	6.91			33.38	22.75	63.84	358.14	
6	Self Propelled	4.00			1.07	24.00	100.00	311.47	215.04
	$4 \ge D > 2$								
7	Self Propelled	6.00			1.07	33.67	141.40	968.81	450.17
	$6 \ge D > 4$								
8	Self Propelled	7.00			1.78	38.20	165.12	1433.14	520.18
	$8 \ge D > 6$								
9	Self Propelled	9.00			0.71	70.00	456.15	11941.63	13427.22
	$10 \ge D > 8$								
Σ			58.59		95.87				

Bridge NO: 783080 Past the point: 44

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)					. ,	. ,	(TON)	(TONNE)
1	$3 \ge D$	2.04	40.48	1.	40.48	46.98	214.29	717.34	SMALL
2	$6 \ge D > 3$	4.87	19.17	1.	19.17	64.58	247.82	2654.70	MED
3	$9 \ge D > 6$	8.00	1.42	1.	1.42	41.25	187.50	2016.05	MED
4	$12 \ge D > 9$	11.40	3.55	1.	3.55	48.60	203.20	3657.30	LARGE
5	Free Tugs	7.04			28.41	23.09	64.72	384.38	
6	Self Propelled	4.00			0.71	24.00	100.00	311.47	215.04
	$4 \ge D > 2$								
7	Self Propelled	5.63			2.84	32.56	139.50	880.65	388.36
	$6 \ge D > 4$								
8	Self Propelled	9.00			1.78	38.00	179.20	1988.44	1037.27
	$10 \ge D > 8$								
Σ			21.54		32.78				

Bridge NO: 780074 Past the point: 45

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.19	26.63	1.	26.63	48.93	222.38	795.80	SMALL
2	$6 \ge D > 3$	5.14	15.62	1.	15.62	60.09	214.06	2221.18	MED
3	$9 \ge D > 6$	7.26	15.27	1.	15.27	53.53	193.93	2642.73	MED
4	$12 \ge D > 9$	10.50	0.71	1.	0.71	72.10	250.00	6140.62	LARGE
5	Free Tugs	6.91			33.38	22.75	63.84	358.14	
6	Self Propelled	4.00			1.07	24.00	100.00	311.47	215.04
	$4 \ge D > 2$								
7	Self Propelled	6.00			1.07	33.67	141.40	968.81	450.17
	$6 \ge D > 4$								
8	Self Propelled	7.00			1.78	38.20	165.12	1433.14	520.18
	$8 \ge D > 6$								
9	Self Propelled	9.00			0.71	70.00	456.15	11941.63	13427.22
	$10 \ge D > 8$								
Σ			58.59		95.87				

Bridge NO: 780074 Past the point: 45

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.05	2.66	1.	2.66	42.41	223.66	646.60	SMALL
2	$6 \ge D > 3$	5.93	226.76	1.	226.76	46.95	260.39	2404.05	MED
3	$9 \ge D > 6$	7.54	182.02	1.	182.02	44.42	250.00	2797.00	MED
4	$12 \ge D > 9$	10.23	4.94	1.	4.94	39.40	209.25	2830.35	LARGE
5	Free Tugs	7.50			45.98	22.60	61.00	339.21	
6	Self propelled	5.00			1.14	23.33	61.07	278.65	115.06
Σ			443.08		490.20				

Bridge NO: 780056 Past the point: 46

	Α	В	С	D	E	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.00	439.28	1.	439.28	45.61	253.62	769.13	SMALL
2	$6 \ge D > 3$	4.71	2.66	1.	2.66	37.87	157.67	928.22	MED
3	$9 \ge D > 6$	7.50	1.52	1.	1.52	36.30	165.05	1476.39	MED
4	$12 \ge D > 9$	10.00	1.52	1.	1.52	35.00	195.00	2214.37	LARGE
5	Free Tugs	7.51			42.94	22.61	60.97	339.78	
6	Self Propelled	4.67			1.14	23.33	61.07	237.03	104.87
Σ			444.60		489.06				

Bridge NO: 780056 Past the point: 46

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.05	19.63	1.	19.63	46.76	182.21	637.97	SMALL
2	$6 \ge D > 3$	4.90	18.11	1.	18.11	65.76	250.62	2738.33	MED
3	$9 \ge D > 6$	7.62	4.62	1.	4.62	42.23	199.38	2081.49	MED
4	$12 \ge D > 9$	11.31	10.30	1.	10.30	46.90	199.79	3441.79	LARGE
5	Free Tugs	6.95			26.63	23.64	68.61	414.44	
6	Self Propelled	3.50			1.42	17.75	69.95	178.07	105.37
	$4 \ge D > 2$								
7	Self Propelled	5.56			3.20	31.50	135.67	826.33	360.56
	$6 \ge D > 4$								
8	Self Propelled	9.00			1.78	38.00	179.20	1988.44	1037.27
	$10 \ge D > 8$								
Σ			52.20		85.57				

Bridge NO: 940094 Past the point: 47
CY2000 Vessel Group Traffic DOWNBOUND

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.01	30.18	1.	30.18	47.06	200.15	648.95	SMALL
2	$6 \ge D > 3$	4.87	10.65	1.	10.65	69.80	243.62	2742.72	MED
3	$9 \ge D > 6$	7.33	11.72	1.	11.72	57.63	206.79	3029.07	MED
4	$12 \ge D > 9$	10.50	0.71	1.	0.71	72.10	250.00	6140.62	LARGE
5	Free Tugs	6.92			30.54	22.88	65.48	378.26	
6	Self Propelled	3.60			1.78	19.00	75.96	204.75	125.65
	$4 \ge D > 2$								
7	Self Propelled	6.00			1.07	33.67	141.40	968.81	450.17
	$6 \ge D > 4$								
8	Self Propelled	7.00			1.78	38.20	165.12	1433.14	520.18
	$8 \ge D > 6$								
9	Self Propelled	9.00			0.71	70.00	456.15	11941.63	13427.22
	$10 \ge D > 8$								
Σ			53.26		89.12				

Bridge NO: 940094 Past the point: 47

For future trip projections, annual trips of *n* years later in excess of 2000 multiply by $(1 + n \times 0.0153)$.

CY2000 Vessel Group Traffic UPBOUND

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.05	19.63	1.	19.63	46.76	182.21	637.97	SMALL
2	$6 \ge D > 3$	4.90	18.11	1.	18.11	65.76	250.62	2738.33	MED
3	$9 \ge D > 6$	7.62	4.62	1.	4.62	42.23	199.38	2081.49	MED
4	$12 \ge D > 9$	11.31	10.30	1.	10.30	46.90	199.79	3441.79	LARGE
5	Free Tugs	6.95			26.63	23.64	68.61	414.44	
6	Self Propelled	3.50			1.42	17.75	69.95	178.07	105.37
	$4 \ge D > 2$								
7	Self Propelled	5.56			3.20	31.50	135.67	826.33	360.56
	$6 \ge D > 4$								
8	Self Propelled	9.00			1.78	38.00	179.20	1988.44	1037.27
	$10 \ge D > 8$								
Σ			52.20		85.57				

Bridge NO: 940045 Past the point: 48

For future trip projections, annual trips of *n* years later in excess of 2000 multiply by $(1+n \times 0.0153)$.

CY2000 Vessel Group Traffic DOWNBOUND

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.01	30.18	1.	30.18	47.06	200.15	648.95	SMALL
2	$6 \ge D > 3$	4.87	10.65	1.	10.65	69.80	243.62	2742.72	MED
3	$9 \ge D > 6$	7.33	11.72	1.	11.72	57.63	206.79	3029.07	MED
4	$12 \ge D > 9$	10.50	0.71	1.	0.71	72.10	250.00	6140.62	LARGE
5	Free Tugs	6.92			30.54	22.88	65.48	378.26	
6	Self Propelled	3.60			1.78	19.00	75.96	204.75	125.65
	$4 \ge D > 2$								
7	Self Propelled	6.00			1.07	33.67	141.40	968.81	450.17
	$6 \ge D > 4$								
8	Self Propelled	7.00			1.78	38.20	165.12	1433.14	520.18
	$8 \ge D > 6$								
9	Self Propelled	9.00			0.71	70.00	456.15	11941.63	13427.22
	$10 \ge D > 8$								
Σ			53.26		89.12				

Bridge NO: 940045 Past the point: 48

For future trip projections, annual trips of *n* years later in excess of 2000 multiply by $(1 + n \times 0.0153)$.

CY2000 Vessel Group Traffic UPBOUND

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.00	13.66	1.	13.66	43.75	183.26	520.46	SMALL
2	$6 \ge D > 3$	4.86	7.17	1.	7.17	43.32	179.18	1464.06	MED
3	$9 \ge D > 6$	8.08	4.10	1.	4.10	47.12	227.92	2893.79	MED
4	Free Tugs	7.40			46.10	23.80	70.85	454.44	
5	Self Propelled	2.00			28.00	14.00	74.00	67.23	27.84
	$2 \ge D$								
6	Self Propelled	3.00			41.32	14.97	46.94	68.42	27.03
	$4 \ge D > 2$								
7	Self Propelled	5.00			1.02	30.53	134.53	687.11	310.84
	$6 \ge D > 4$								
8	Self Propelled	9.00			0.68	37.30	191.00	2078.08	1043.04
	$10 \ge D > 8$								
Σ			8.31		47.35				

Bridge NO: 890003 Past the point: 49

For future trip projections, annual trips of *n* years later in excess of 2000 multiply by $(1+n \times 0.0058)$.

CY2000 Vessel Group Traffic DOWNBOUND

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D (FT)	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT (TON)	DWT (TONNE)
1	$3 \ge D$	2.18	17.07	1.	17.07	42.44	177.86	538.63	SMALL
2	$6 \ge D > 3$	4.58	4.10	1.	4.10	44.78	170.50	1158.48	MED
3	$9 \ge D > 6$	7.00	0.68	1.	0.68	35.00	187.50	1490.44	MED
4	$12 \ge D > 9$	10.00	0.68	1.	0.68	72.00	460.00	10745.78	LARGE
5	Free Tugs	7.78			43.37	23.71	69.10	464.37	
6	Self Propelled $2 \ge D$	2.00			28.34	14.00	74.00	67.23	27.84
7	Self Propelled $4 \ge D > 2$	3.00			41.32	14.97	46.94	68.42	27.03
8	Self Propelled $6 \ge D > 4$	5.00			1.02	25.53	117.53	497.14	207.90
9	Self Propelled $10 \ge D > 8$	9.00			1.02	39.33	178.67	2052.60	1064.74
Σ			22.54		137.61				

Bridge NO: 890003 Past the point: 49

For future trip projections, annual trips of *n* years later in excess of 2000 multiply by $(1 + n \times 0.0058)$.

CY2000 Vessel Group Traffic UPBOUND

	Α	В	С	D	Е	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.05	20.59	1.	20.59	46.67	178.65	622.09	SMALL
2	$6 \ge D > 3$	4.90	18.11	1.	18.11	65.76	250.62	2738.33	MED
3	$9 \ge D > 6$	7.57	4.97	1.	4.97	42.43	193.71	2020.41	MED
4	$12 \ge D > 9$	11.31	10.30	1.	10.30	46.90	199.79	3441.79	LARGE
5	Free Tugs	6.83			36.22	22.94	66.44	384.07	
6	Self Propelled	2.00			0.36	14.00	74.00	67.23	27.84
	$2 \ge D$								
7	Self Propelled	3.50			1.42	17.75	69.95	178.07	105.37
	$4 \ge D > 2$								
8	Self Propelled	5.50			2.84	32.19	142.00	875.84	371.46
	$6 \ge D > 4$								
9	Self Propelled	9.00			1.78	38.00	179.20	1988.44	1037.27
	$10 \ge D > 8$								
Σ			53.97		96.58				

Bridge NO: 890060 Past the point: 50

For future trip projections, annual trips of *n* years later in excess of 2000 multiply by $(1 + n \times 0.0153)$.

CY2000 Vessel Group Traffic DOWNBOUND

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.00	30.54	1.	30.54	46.82	196.18	629.24	SMALL
2	$6 \ge D > 3$	4.84	11.01	1.	11.01	68.58	239.64	2670.34	MED
3	$9 \ge D > 6$	7.32	12.07	1.	12.07	56.67	203.89	2946.93	MED
4	$12 \ge D > 9$	10.50	0.71	1.	0.71	72.10	250.00	6140.62	LARGE
5	Free Tugs			7.02	38.70	22.67	64.71	377.38	
6	Self Propelled	2.00			0.36	14.00	74.00	67.23	27.84
	$2 \ge D$								
7	Self Propelled	3.67			2.13	19.83	79.97	222.54	139.67
	$4 \ge D > 2$								
8	Self Propelled	6.00			0.71	37.50	169.60	1238.10	537.31
	$6 \ge D > 4$								
9	Self Propelled	7.00			0.78	38.20	165.12	1433.14	520.18
	$8 \ge D > 6$								
10	Self Propelled	9.00			0.71	70.00	456.15	11941.63	13427.22
	$10 \ge D > 8$								
Σ			54.33		98.71				

Bridge NO: 890060 Past the point: 50

For future trip projections, annual trips of *n* years later in excess of 2000 multiply by $(1+n \times 0.0153)$.

CY2000 Vessel Group Traffic UPBOUND

	Α	В	C	D	E	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.06	34.80	1.	34.80	47.81	225.30	769.08	SMALL
2	$6 \ge D > 3$	4.88	18.46	1.	18.46	65.43	251.21	2719.68	MED
3	$9 \ge D > 6$	8.00	1.42	1.	1.42	41.25	187.50	2016.05	MED
4	$12 \ge D > 9$	11.40	3.55	1.	3.55	48.60	203.20	3657.30	LARGE
5	Free Tugs	7.23			22.37	23.51	66.48	412.18	
6	Self Propelled	6.31			5.68	31.88	140.74	1103.44	548.69
Σ			58.23		86.28				

Bridge NO: 794003 Past the point: 51

For future trip projections, annual trips of *n* years later in excess of 2000 multiply by $(1 + n \times 0.0153)$.

CY2000 Vessel Group Traffic DOWNBOUND

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL DRAFT	AVE. DRAFT	NUMBER OF	NUMBER OF BARGES	NUMBER OF	AVE. WIDTH	AVE. LENGTH	AVE. SINGLE UNIT	TUG TYPE Or
	(FT)	(F1)	BAKGES	PER IRIP	IRIPS	(F1)	(F1)	(TON)	DWI (TONNE)
1	$3 \ge D$	2.18	25.56	1.	25.56	49.30	225.81	811.92	SMALL
2	$6 \ge D > 3$	4.97	12.43	1.	12.43	64.97	229.67	2492.41	MED
3	$9 \ge D > 6$	7.32	12.78	1.	12.78	55.79	205.86	2931.27	MED
4	Free Tugs	7.10			27.70	23.06	65.02	381.83	
5	Self Propelled	6.14			4.97	36.82	178.71	2495.32	1478.99
Σ			50.78		83.44				

Bridge NO: 794003 Past the point: 51

For future trip projections, annual trips of *n* years later in excess of 2000 multiply by $(1 + n \times 0.0153)$.

CY2000 Vessel Group Traffic UPBOUND

Bridge NO: 790172
Past the point: 52

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER	NUMBER	NUMBER	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	OF	OF BARGES	OF	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)	BARGES	PER TRIP	TRIPS	(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.06	34.80	1.	34.80	47.81	225.30	769.08	SMALL
2	$6 \ge D > 3$	4.88	18.46	1.	18.46	65.43	251.21	2719.68	MED
3	$9 \ge D > 6$	8.00	1.42	1.	1.42	41.25	187.50	2016.05	MED
4	$12 \ge D > 9$	11.40	3.55	1.	3.55	48.60	203.20	3657.30	LARGE
5	Free Tugs	7.23			22.37	23.51	66.48	412.18	
6	Self Propelled	6.31			5.68	31.88	140.74	1103.44	548.69
Σ			58.23		86.28				

For future trip projections, annual trips of *n* years later in excess of 2000 multiply by $(1+n \times 0.0153)$.

CY2000 Vessel Group Traffic DOWNBOUND

Bridge NO: 790172
Past the point: 52

	Α	В	С	D	Ε	F	G	Н	Ι
GROUP	VESSEL	AVE.	NUMBER OF	NUMBER OF	NUMBER OF	AVE.	AVE.	AVE.	TUG TYPE
	DRAFT	DRAFT	BARGES	BARGES	TRIPS	WIDTH	LENGTH	SINGLE UNIT	Or
	D	(FT)		PER TRIP		(FT)	(FT)	DISPLACEMENT	DWT
	(FT)							(TON)	(TONNE)
1	$3 \ge D$	2.18	25.56	1.	25.56	49.30	225.81	811.92	SMALL
2	$6 \ge D > 3$	4.97	12.43	1.	12.43	64.97	229.67	2492.41	MED
3	$9 \ge D > 6$	7.32	12.78	1.	12.78	55.79	205.86	2931.27	MED
4	Free Tugs	7.10			27.70	23.06	65.02	381.83	
5	Self Propelled	6.14			4.97	36.82	178.71	2495.32	1478.99
Σ			50.78		83.44				

For future trip projections, annual trips of *n* years later in excess of 2000 multiply by $(1+n \times 0.0153)$.

APPENDIX IV

DESIGN EXAMPLE BY MATHCAD

VESSEL IMPACT RISK ANALYSIS

EXAMPLE BRIDGE on past point # 03 upbound

Consider a total number of 14 brdige piers on both sides of channel.

Use barge group data in the project's final report to describe the vessel configurations in 2050. Transit velocities of each vessel group are based on Table 6 in the project's final report.

DESIGNER: Liu, Chunhua

NO.: SHEET: <u>1 of 13</u> DATE:18/01/99

Units: feet and tonnes as per 1991 AASHTO Vessel Collision Guide Specification.

DESIGN FOR BARGE & SHIP IMPACT TO SUBSTRUCTURE

Number of Piers Piers := 14

j := 1.. Piers

Determine the Bridge Characteristics:

Importance Classification (IC) (Section 3.3): Critical Bridge, Acceptable Risk of Bridge Collapse = .0001 (A return period of 1 in 10,000 years)

Bp= Bridge pier width, considering angle between channel and bridge centerline.

H = Ultimate horizontal substructure strength.

x = Distance from the centerline of channel to the centerline of the pier.

Note: The subscript " j " refers to the row number of the pier value in the input tables in MathCad. The piers are arranged in the tables corresponding to one side of the channel (double the risk):

Row	2	-	Pier 2
Row	3	-	Pier 3
Row	4	-	Pier 4
Row	5	-	Pier 5
Row	6	-	Pier 6
Row	7	-	Pier 7
Row	8	-	Pier 8
Row	9	-	Pier 9
Row	10	-	Pier 10
Row	11	-	Pier 11
Row	12	-	Pier 12
Row	13	-	Pier 13
Row	14	-	Pier 14

Pier 1

Row 1 -

1

2

4 5

6

7

9

10

11

x _j :=	^B Pj ^{∷=}	H j ≔
102·ft	30-ft	3230 · kip
240•ft	40.ft	2960 kip
384 ft	40-ft	2650 kip
528•ft	40 ft	2250 kip
572.ft	40.ft	1650 kip
768 (ft	40.ft	750 kip
364 · ft	40∙ft	240 kip
102.ft	30.ft	3230 · kip
240.ft	40.ft	2960 · kip
384 · ft	40.ft	2680-kip
528-ft	40.ft	2270-kip
672 · ft	40.ft	1750 kip
768 ft	40.ft	850 kip
864 ft	40.ft	230 kip

Determine Navigable Channel Characteristics (Sections 3.4 & 4.2):

j = Pier number

D_w = Water Depth from existing mudline to mean high water (Section 4.2.2).

C = Channel width as shown on Figures 4.2.1-1, 4.2.1-2, and 8.5.1-1.

 θ = Angle of channel turn or bend as shown in Figure 4.8.3.2-1.

region = Waterway region as shown in Figure 4.8.3.2-1 [1 = Straight, 2 = Transition, 3 = Turn/Bend].

V_c = Waterway current component acting parallel to the vessel transit path.

V_{XC} = Waterway current component acting perpendicular to the vessel transit path.

Determine Vessel Transit Path (Section 4.2.1):

Vessel transit path as shown in Figure 4.2.1-2 (and Figure 3.7-1 for impact speed distribution).

For this project bridge the centerline of vessel transit path is the same as the centerline of the channel, therefore the distance " x " shown above is the distance from the center of each bridge pier to the centerline of vessel transit path.

 x_{C} = Distance from edge of channel to centerline of vessel transit path. (Use one-half of the channel width).

x _ := 62.5 ft

Determine Vessel Fleet Characteristics Sections (3.5 & 4.4):

Number of different Self Prope	lled Vessels	SPTypes :=	5 t:	= 1 SPTypes	3		
Wp = displacement of tug, ferry,	etc		Wp _t :=	Dp _t :=	Bp, :=	Lp, :=	
Dp = Draft of tug,ferry, etc		л П	65-ton	4.0-ft	20 ft	50-ft	
Bp = Width of tug, ferry, etc		2	30-ton	7.0.ft	30-ft	100-ft	
Lp = Length of tug, ferry, etc		3 2	220-ton	9.0-ft	35-ft	120.ft	
		4 4 13 5 575	.00-ton	6.24·ft	23.64-ft 31.35-ft	68.70-ft 138.64-ft	
Vessel Characteristics and Cor	nfiguation	Vessels := 6	i	:= 1 Vessels	6		
VT = vessel speed in channel	:	'n,=)b _i :=	Bb::=	_b, := _ NB, ::	Wb, := SPT,	N, :=
Db = Draft of barge	1 6.6	5-knot 2.05	-ft 46.6	61 ft 176.19	9.ft [1] [611.57 ton 1	37 59
Bb = Width of barge	2 6.6	iknot 4.87	ft 64.(55 ft 246.30).ft 1 2	659.30 ton 2	33.22
Lb = Length of a single barge	3 6.6	iknot 7.62	ft 42.2	23-ft 199.38	3.ft 1 2	081.49 ton 2	8.15
NB = number of barges long (\underline{U} ic	<u>or none)</u> 5 9.6	knot 7.0	-ft 23.6	68.70	$\frac{1}{2}$	413.10·ton 4	49.51
SPT = Power Type (defined above, 0 for none)	6 9.6	iknot C	•ft	0-ft	Dift 0 :	575.00 [,] ton 5	10.66
N _i = number of trips							
				Annua	No. of Vessel	Transits ∑N =	157.31
	B _{B.} ≔ if∫N8	B _i > 0, Bb _i , Bp	(SPT.)]				
B _B = vessel width	-i L		()]		-		
	B _B '=[46	.61 64.55 4	12.23 46.9	9 23.64 31.	35] ∙ft		
D _{Lt} = power vessel draft	D _{Lpi} ≔ if∫ S	PT _i =0,0·ft,D	Dp _{(SPTi})				
	$D_{1n} = [4]$	7797	6.24]•ft				
D., = harge draft							
		ⁱ ^{-0,0} 1,01	'i)				
	D _{Lb} ^T = [2.	05 4.87 7.0	62 11.31	7 0]•ft			
D _{Lv} = vessel draft	D _{Lv} = if(D	Lp, > D Lb, , D	Lp, , D Lb,)			
	$D_{LV}^{T} = [4]$	 7 7.62 11	1.31 7 6.	.24]•ft			
			. 0.1-	-			
LOA = length overall	LOA _i := Lb _i ·I	VB ⁱ + It SPL	> U, LP _{(SPT}	$\left[i \right], 0 \cdot \pi$			

LOA^T = [226.19 346.3 299.38 319.79 137.4 138.64]•ft

As vessel becomes abberant, tug will separate when tug draft = water depth and the barge group will separate into individual barg case 1 - barge group intact (tug draft > water depth) case 2 - abberrant barge, use one barge w/o tug (tug draft < water depth)

 $D_{L} = \text{Draft of barge or vessel (ft)} \qquad D_{L_{i,j}} := \text{if} \left(D_{w_{j}} > D_{Lv_{i}}, D_{Lv_{i}}, \text{if} \left(D_{w_{j}} > D_{Lb_{i}}, D_{Lb_{i}}, 0 \cdot \text{ft} \right) \right)$

4	4	4	4	4	4	4	4	4	4	4	4	4	4	
7	7	7	7	7	7	7	7	7	7	7	7	7	7	
7.62	7.62	7.62	7.62	7.62	7.62	7.62	7.62	7.62	7.62	7.62	7.62	7.62	7.62	.4
11.31	11.31	0	0	0	0	0	11.31	11.31	11.31	11.31	11.31	0	0	•11
7	7	7	7	7	7	7	7	7	7	7	7	7	7	
6.24	6.24	6.24	6.24	6.24	6.24	6.24	6.24	6.24	6.24	6.24	6.24	6.24	6.24	

 $D_w^T = [12 \ 12 \ 10 \ 10 \ 10 \ 8 \ 8 \ 16 \ 16 \ 13 \ 13 \ 13 \ 10 \ 10] \cdot ft$

WLv = vessel displacement assumming only one column of barges will impact the pier

 $WLv_i := Wb_i \cdot NB_i + if(SPT_i > 0, Wp_{SPT_i}, 0 \cdot tonne)$

W = displacement of vessel

 $\mathsf{W}_{i,j} := \mathsf{if}\left(\mathsf{D}_{\mathsf{W}_{j}} > \mathsf{D}_{\mathsf{LV}_{i}}, \mathsf{WLv}_{i}, \mathsf{if}\left(\mathsf{D}_{\mathsf{W}_{j}} > \mathsf{D}_{\mathsf{Lb}_{i}}, \mathsf{Wb}_{i}, .001 \cdot \mathsf{tonne}\right)\right)$

0.614 0.614 0.614 0.614 0.614 0.614 0.614 0.614 0.614 0.614 0.614 0.614 0.614 0.614 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.006 2.006 2.006 2.006 2.006 2.006 2.006 2.006 2.006 2.006 2.006 2.006 2.006 2.006 ∘10³ tonne W = 0 0 3.321 0 0 0 0 3.321 3.321 3.321 3.321 3.321 0 3.321 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.749 0.522 0.522 0.522 0.522 0.522 0.522 0.522 0.522 0.522 0.522 0.522 0.522 0.522 0.522

Determine Design Impact Speed (V) (Section 3.7):

V_{min} = The minimum impact speed, Vmin, at 3xLOA is equal to the yearly mean current of Croatan Sound.

V min := 0.4 knot

x _{Li} := 3·LOA_i

 x_L = Distance equal to 3xLOA from centerline of vessel transit path

Note: The 3xLOA is computed for each vessel catagory. (The use of a single LOA based on the Method I design vessel, was a simplification included in the AASHTO Guide Spec to reduce the hand computation effort).

s = transition slope between V_T and V_{min}

$$\mathbf{s}_{i,j} := \frac{\mathbf{V} \mathbf{T}_i - \mathbf{V} \min}{\mathbf{X} \mathbf{L}_i - \mathbf{X} \mathbf{C}}$$

between V_T and V_{min}

V = design impact velocity

$$\mathsf{V}_{i,j} \coloneqq \mathsf{if}\left[\mathsf{x}_{j} \leq \mathsf{x} \mathsf{C}, \mathsf{V} \mathsf{T}_{i}, \mathsf{if}\left[\mathsf{x}_{j} \leq \mathsf{x} \mathsf{L}_{i}, \mathsf{V} \mathsf{T}_{i} - (\mathsf{x}_{j} - \mathsf{x} \mathsf{C}) \cdot \mathsf{s}_{i,j}, \mathsf{V} \mathsf{min}\right]\right]$$

ĺ	10.48	8.13	5.68	3.23	0.79	0.68	0.68	10.48	8.13	5.68	3.23	0.79	0.68	0.68]
	10.72	9.24	7.7	6.15	4.61	3.58	2.55	10.72	9.24	7.7	6.15	4.61	3.58	2.55	
V	10.65	8.92	7.12	5.31	3.51	2.31	1.1 ·	10.65	8.92	7.12	5.31	3.51	2.31	1.1	ft
v -	10.69	9.07	7.39	5.71	4.03	2.91	1.79	10.69	9.07	7.39	5.71	4.03	2.91	1.79	sec
ĺ	14.46	8.33	1.93	0.68	0.68	0.68	0.68	14.46	8.33	1.93	0.68	0.68	0.68	0.68	
	14.48	8.41	2.08	0.68	0.68	0.68	0.68	14.48	8.41	2.08	0.68	0.68	0.68	0.68	

Vessel Impact Speeds at each Bridge Pier

Determine Probability of Aberrancy (PA) (Section 4.8.3.2):

BR = Aberrancy base rate (barges):	$BR_{i} := \begin{vmatrix} 1.2 \cdot 10^{-4} & \text{if } NB_{i} \neq 0 & \text{for barges} \\ 0.6 \cdot 10^{-4} & \text{if } NB_{i} = 0 & \text{for ships} \end{vmatrix}$	
R _B = Correction factor for bridge location:	$R_B := if\left(region=1, 1, if\left(region=2, 1 + \frac{\theta}{90 \cdot deg}, 1 + \frac{\theta}{45 \cdot deg}\right)\right)$)R _B = 1
R _C = Correction factor for currents acting parallel to vessel transit path:	$R_{C} := 1 + \frac{V_{C}}{16.89 \cdot \frac{ft}{sec}}$ (Note: Eqs for Rc and Rxc were modified to convert	R _C = 1.04
R _{XC} = Correction factor for crosscurrents acting perpendicular to vessel transit path:	$R_{XC} := 1 + \frac{V_{XC}}{1.689 \cdot \frac{ft}{sec}}$ from knots to fps)	R _{XC} = 1
R _D = Correction factor for vessel traffic density:	R _D := 1	
PA = Probability of Abberrancy	$PA_{i} \coloneqq BR_{i} \cdot (R_{B}) \cdot (R_{C}) \cdot (R_{XC}) \cdot (R_{D})$	
PA ^T = [0.0001248 0.000124	48 0.0001248 0.0001248 0.0001248 0.0000624]	

Determine Geometric Probability (PG) (Section 4.8.3.3):

Channel pier impact width location on 'bell curve' for first barge group.

Determine Vessel Collision Energy (KE) (Section 3.8):

PG =

$$C_{H} = Hydrodynamic mass coefficient: C_{I_{i,j}} := if \left(UK_{c_{i,j}} \ge 0.5 \cdot D_{L_{i,j}}, 1.05, if \left(UK_{c_{i,j}} \le 0.10 \cdot D_{L_{i,j}}, 1.25, 1.05 + \frac{.5 \cdot D_{L_{i,j}} - UK_{c_{i,j}}}{.5 \cdot D_{L_{i,j}} - .1 \cdot D_{L_{i,j}}} \cdot .2 \right)$$

$$KE = Vessel Collision Energy KE_{i,j} := \frac{C_{H_{i,j}} W_{i,j} \cdot \left(V_{i,j} \right)^{2}}{2 \cdot g}$$

$$KE_{i,j} := \frac{C_{H_{i,j}} W_{i,j} \cdot \left(V_{i,j} \right)^{2}}{2 \cdot g}$$

$$C_{H} = \begin{bmatrix} 1.05 & 1.0$$

ſ	2423	1460	713	231	14	10	10	2423	1460	713	231	14	10	10]
	10468	7778	5580	3566	2001	1366	693	10468	7778	5396	3448	1935	1207	613	
	8190	5746	3984	2220	968	457	105	8190	5746	3657	2038	889	418	96	1.1. 64
NE =	16246	11716	0	0	0	0	0	14201	10241	7623	4550	2266	0	0	∣∘κip∙π
-	5637	1870	104	13	13	14	14	5637	1870	100	12	12	13	13	
	3933	1327	81	9	9	9	9	3933	1327	81	9	9	9	9	

Determine Ship Collision Force on Pier (P_B) (Section 3.9):

The Ship collision force on the piers (P_S) (Section

P_S = Ship Collision Force $P_{S_{i,j}} := (220) \cdot \sqrt{\frac{DWT_i}{tonne}} \cdot \left(\frac{V_{i,j}}{27}\right) \cdot \left(\frac{\sec \cdot kip}{ft}\right)$

Determine Barge Collision Force on Pier (P_B) (Section 3.12):

Determine the Barge Bow Damage Depth a_B (Section 3.13):

 $a_{B} = \text{Barge Bow} \\ \text{Damage Depth} \qquad a_{B_{i,j}} := \left[\sqrt{\left[1 + \frac{\text{KE}_{i,j}}{(5672 \cdot (\text{kip} \cdot \text{ft}))} \right]} - 1 \right] \cdot \left[\frac{10.2 \cdot \text{ft}}{\left(\frac{\text{B}}{35 \cdot \text{ft}} \right)} \right]$

The barge collision force on the piers (P_B)

P_B = Barge Collision Force

$$P_{B_{i,j}} := if \left[a_{B_{i,j}} < 0.34 \cdot ft, \left(4112 \cdot \frac{kip}{ft} \right) \cdot \left(a_{B_{i,j}} \right) \cdot \left(\frac{B_{B_i}}{35 \cdot ft} \right), \left[1349 \cdot (kip) + \left(110 \cdot \frac{kip}{ft} \right) \cdot \left(a_{B_{i,j}} \right) \right] \cdot \frac{B_{B_i}}{35 \cdot ft} \right]$$

	2015	1933	1865	846	51	37	37	2015	1933	1865	846	51	37	37]
	3259	3094	2946	2798	2671	2616	2490	3259	3094	2933	2789	2665	2602	2207	
D	2260	2098	1970	1829	1720	1657	385	2260	2098	1945	1814	1712	1519	352	alcin
РΒ=	2891	2650	0	0	0	0	0	2786	2565	2403	2192	2013	0	0	∘кір
	1373	1083	382	47	47	53	53	1373	1083	369	45	45	47	47	
	1546	1333	299	32	32	35	35	1546	1333	299	32	32	32	32	

Use Ship Collision Force if Number of Barges = 0, otherwise use Barge Collision Force

 $\mathsf{P}_{i,j} \coloneqq \mathsf{if}\left(\mathsf{NB}_i = 0, \mathsf{P} \mathsf{S}_{i,j}, \mathsf{P} \mathsf{B}_{i,j}\right)$

Determine Probability of Collapse (PC) (Section 4.8.3.4):

case 1: For $0.0 \le \frac{H}{P}$ and $\frac{H}{P} \le 0.1$ PC1_{i,j} := $0.1 + 9 \cdot \left(.1 - \frac{H_j}{P_{i,j}}\right)$ case 2: For $0.1 \le \frac{H}{P}$ and $\frac{H}{P} \le 1.0$ PC2_{i,j} := $\frac{\left(1 - \frac{H_j}{P_{i,j}}\right)}{9}$

case3: For $\frac{H}{P} \ge 1.0$ PC3_{i,j} := 1.10⁻⁹⁹

	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
	0.001	0.005	0.011	0.022	0.042	0.079	0.132	0.001	0.005	0.01	0.021	0.038	0.075	0.1
	0	0	0	0	0.005	0.061	0.042	0	0	0	0	0	0.049	0.039
PC =	0	0	0	0	0	0	0	0	0	0	0	0.015	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0]

Determine the Calculated Annual Frequency of Collapse (AFc) (Section 4.8.3):

PS := 1 PS = PROBABILITY OF SCOUR

AFc = Annual Frequency of Collapse per vessel per pier

$$\mathsf{AFc}_{i,j} \coloneqq (\mathsf{N}_i) \cdot (\mathsf{PA}_i) \cdot (\mathsf{PG}_{i,j}) \cdot (\mathsf{PC}_{i,j}) \cdot (\mathsf{PS})$$

SumAFc = Annual Frequency of Collapse per pier

SumAFc_j :=
$$\sum_{i = 1}^{Vessels} AFc_{i,j}$$

1

2

3

4

5

6

7

8

9.

10

11

12

13 14 SumAFc.

0.0000042

0.00000188

0.00000302

0.00000341

0.0000033

0.0000369

0.0000307

0.00000042

0.00000188

0.00000259

0.0000324

0.00000333

0.00000345 0.00000232

Total = Annual Frequency of Collapse

ReturnPeriod := _____1 Piers

 $\sum ~ {\sf SumAFc}_j$

ReturnPeriod = number of years between collapse events

The total bridge return period for these 13 piers (in years) is:

%Risk = percentage of the total risk for each pier

Total% = total risk percentage (should equal 100 percent)

ReturnPeriod = 27745

DESIGN SUMMARY

Barge and Pier Data

LOA _i		H	Dw	, x	^B P	i
ft	N _i	kip	ft	ft	ft	<u>·</u>
226.19	37.59	3230	12	102	30	W = barge + Tug + cargo
346.3	33.22	2960	12	240	40	LOA= length of vessel
299.38	8.15	2650	10	384	40	N= number of one way passages the barge makes in a year
319.79	18.18	2250	10	528	40	n= pier ultimate strengtn Dw= water denth
137.4	49.51	1650	10	672	40	x= distance center line channel to center line nier
138.64	10.66	750	8	768	40	Bp= pier width
L	L	240	8	864	40	V= velocity of the barge at this pier
		3230	16	102	30	PG= geometric probability that this pier may be 'hit'
		2960	16	240	40	KE= kinetic energy of vessel and hydrodynamic mass
		2680	13	384	40	PB= force from an impact with this pier
		2270	13	528	40	PC=probability of collapse if hit
		1750	13	672	40	AF= probability of collapse taking all factors into account.
		850	10	768	40	
		230	10	864	40	
		L		L		

Geometric & Probability Variables

	10.48	8.13	5.68	3.23	0.79	0.68	0.68	10.48	8.13	5.68	3.23	0.79	0.68	0.68]
	10.72	9.24	7.7	6.15	4.61	3.58	2.55	10.72	9.24	7.7	6.15	4.61	3.58	2.55	
V -	10.65	8.92	7.12	5.31	3.51	2.31	1.1	10.65	8.92	7.12	5.31	3.51	2.31	1.1	ft
v =	10.69	9.07	7.39	5.71	4.03	2.91	1.79	10.69	9.07	7.39	5.71	4.03	2.91	1.79	sec
	14.46	8.33	1.93	0.68	0.68	0.68	0.68	14.46	8.33	1.93	0.68	0.68	0.68	0.68	
	14.48	8.41	2.08	0.68	0.68	0.68	0.68	14.48	8.41	2.08	0.68	0.68	0.68	0.68	

			~ ~ ~	~											٦
	1.49	0.93	0.47	0.15	0.01	0.01	0.01	1.49	0.93	0.47	0.15	0.01	0.01	0.01	
	3.8	2.99	2.26	1.53	0.9	0.63	0.33	3.8	2.99	2.2	1.48	0.87	0.56	0.29	
•	4.76	3.54	2.58	1.52	0.69	0.33	0.08	4.76	3.54	2.39	1.4	0.64	0.31	0.07	
a B =	7.35	5.72	0	0	0	0	0	6.64	5.14	4.04	2.61	1.39	0	0	• π
	6.22	2.31	0.14	0.02	0.02	0.02	0.02	6.22	2.31	0.13	0.02	0.02	0.02	0.02	
	3.43	1.26	0.08	0.01	0.01	0.01	0.01	3.43	1.26	0.08	0.01	0.01	0.01	0.01	

	2423	1460	713	231	14	10	10	2423	1460	713	231	14	10	10	1
	10468	7778	5580	3566	2001	1366	693	10468	7778	5396	3448	1935	1207	613	
KE -	8190	5746	3984	2220	968	457	105	8190	5746	3657	2038	889	418	96	
	16246	11716	0	0	0	0	0	14201	10241	7623	4550	2266	0	0	∘kip∙ft
	5637	1870	104	13	13	14	14	5637	1870	100	12	12	13	13	
	3933	1327	81	9	9	9	9	3933	1327	81	9	9	9	9	
														-	

	0.122	0.087	0.037	0.01	0.002	0.001	0	0.122	0.087	0.037	0.01	0.002	0.001	0
	0.104	0.095	0.065	0.038	0.019	0.01	0.005	0.104	0.095	0.065	0.038	0.019	0.01	0.005
PG -	0.091	0.079	0.048	0.023	0.009	0.004	0.002	0.091	0.079	0.048	0.023	0.009	0.004	0.002
10-	0.091	0.082	0.053	0.028	0.012	0.006	0.003	0.091	0.082	0.053	0.028	0.012	0.006	0.003
	0.118	0.041	0.004	0	0	0	0	0.118	0.041	0.004	0	0	0	0
l	0.134	0.047	0.005	0	0	0	0	0.134	0.047	0.005	0	0	0	0

	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
	0.001	0.005	0.011	0.022	0.042	0.079	0.132	0.001	0.005	0.01	0.021	0.038	0.075	0.1
PC -	0	0	0	0	0.005	0.061	0.042	0	0	0	0	0	0.049	0.039
10-	0	0	0	0	0	0	0	0	0	0	0	0.015	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	2015	1933	1865	846	51	37	37	2015	1933	1865	846	51	37	37]
	3259	3094	2946	2798	2671	2616	2490	3259	3094	2933	2789	2665	2602	2207	
D	2260	2098	1970	1829	1720	1657	385	2260	2098	1945	1814	1712	1519	352	
Рв=	2891	2650	0	0	0	0	0	2786	2565	2403	2192	2013	0	0	°kip
	1373	1083	382	47	47	53	53	1373	1083	369	45	45	47	47	
	1546	1333	299	32	32	35	35	1546	1333	299	32	32	32	32	

Determine MINIMUM Barge Collision Force on Pier (P_R) (Section 3.12):

D _{wi} := 10 ft	Design water depth	
d _{L,} := 2·ft	The empty barge draft	
w _i := 181.4 tonne	An empty 35x195 foot hopper barge displacement	200 ton = 181.4 ∘tonne
V _{min} := 0.4·knot	The drifting barge impact speed = annual mean current	1⋅knot = 1.689 ∘ <u>ft</u> sec

First, Determine Barge Collision Energy (KE) (Section 3.8):

UK = Underkeel clearance:

CH = Hydrodynamic mass

 $\begin{aligned} & \mathsf{UK}_{\mathbf{c}_{i,j}} := \mathsf{D}_{\mathbf{w}_{i}} - \mathsf{d}_{\mathbf{L}_{i}} \\ & \mathsf{C}_{\mathsf{H}_{i,j}} := \mathsf{if} \left(\mathsf{UK}_{\mathbf{c}_{i,j}} \ge 0.5 \cdot \mathsf{d}_{\mathsf{L}_{i}}, 1.05, \mathsf{if} \left(\mathsf{UK}_{\mathbf{c}_{i,j}} \le 0.10 \cdot \mathsf{d}_{\mathsf{L}_{i}}, 1.25, 1.05 + \frac{.5 \cdot \mathsf{d}_{\mathsf{L}_{i}} - \mathsf{UK}_{\mathbf{c}_{i,j}}}{.5 \cdot \mathsf{d}_{\mathsf{L}_{i}} - .1 \cdot \mathsf{d}_{\mathsf{L}_{i}}} \right) \right) \end{aligned}$

KE_{min} = Barge MIN Collision Energy

coefficient:

$$\mathsf{KE}_{\min_{i,j}} \coloneqq \frac{\mathsf{C}_{\mathsf{H}_{i,j}} \mathsf{w}_{i} (\mathsf{V}_{\min})^{2}}{2 \cdot \mathsf{g}} \qquad \max(\mathsf{KE}_{\min}) = 3 \cdot \mathsf{ftkip}$$

 $min(KE_{min}) = 3 \cdot ftkip$

Second, Determine the MINIMUM Barge Bow Damage Depth a_B (Section 3.13):

$$a_{\min_{i,j}} \coloneqq \left[\sqrt{1 + \frac{KE_{\min_{i,j}}}{5672 \cdot (kip \cdot ft)}} - 1 \right] \cdot \left[\frac{10.2 \cdot ft}{\left(\frac{B_{B_i}}{35 \cdot ft}\right)} \right] \qquad \max(a_{\min}) = 0.004 \cdot ft \\ \min(a_{\min}) = 0.0015 \cdot ft$$

The MINIMUM barge collision force on the pier (P_B) is then:

$$\mathbf{P}_{\min_{i,j}} \coloneqq if \left[\mathbf{a}_{\min_{i,j}} < 0.34 \cdot ft, \left(4112 \cdot \frac{kip}{ft} \right) \cdot \left(\mathbf{a}_{\min_{i,j}} \right) \cdot \left(\frac{\mathbf{B}}{35 \cdot ft} \right), \left[1349 \cdot kip + \left(110 \cdot \frac{kip}{ft} \right) \cdot \left(\mathbf{a}_{\min_{i,j}} \right) \right] \cdot \frac{\mathbf{B}}{35 \cdot ft} \right]$$
$$\max \left(\mathbf{P}_{\min} \right) = 11 \cdot kip$$
$$\min \left(\mathbf{P}_{\min} \right) = 11 \cdot kip$$

knot=1.689
$$\cdot \frac{\text{ft}}{\text{sec}}$$
 ton=2000 $\cdot \text{lbf}$

kN≡1000 · newton

12

kip≡1000 · lbf

tonne=2205 · lbf

VESSEL IMPACT STUDY

DESIGNER:

M&N NO.: _ SHEET: DATE:___

Method II Analysis Summary

	x,	B _{Pi}	H _i		
	ft	ft	kip	SumAFc _i	%Risk _i
Pier No. / Location	102	30	3230	0.0000042	1.17
	240	40	2960	0.0000188	5.22
Row 1 - Pier 1	384	40	2650	0.0000302	8.38
Row 2 - Pier 2 Row 3 - Pier 3	528	40	2250	0.0000341	9.47
Row 4 - Pier 4	672	40	1650	0.0000330	9.16
Row 5 - Pier 5	768	40	750	0.0000369	10.24
Row 6 - Pier 6	864	40	240	0.0000307	8.53
Row 7 - Pier 7	102	30	3230	0.0000042	1.17
Row 9 - Pier 9	240	40	2960	0.0000188	5.22
Row 10 - Pier 10	384	40	2680	0.0000259	7.19
Row 11 - Pier 11	528	40	2270	0.0000324	9
Row 12 - Pier 12	672	40	1750	0.0000333	9.23
Row 13 - Pier 13	768	40	850	0.0000345	9.57
ROW 14 - Pier 14	864	40	230	0.0000232	6.45
	L	L		L	L

Final Report-- Appendix IV

VESSEL IMPACT RISK ANALYSIS

EXAMPLE BRIDGE on past point # 03 downbound

Consider a total number of 14 brdige piers on both sides of channel.

Use barge group data in the project's final report to describe the vessel configurations in 2050. Transit velocities of each vessel group are based on Table 6 in the project's final report.

DESIGNER: Liu, Chunhua

NO.: SHEET: 1 of 13 DATE:18/01/99

Units: feet and tonnes as per 1991 AASHTO Vessel Collision Guide Specification.

DESIGN FOR BARGE & SHIP IMPACT TO SUBSTRUCTURE

Number of Piers Piers := 14

j := 1.. Piers

Determine the Bridge Characteristics:

Importance Classification (IC) (Section 3.3): Critical Bridge, Acceptable Risk of Bridge Collapse = .0001 (A return period of 1 in 10,000 years)

Bp= Bridge pier width, considering angle between channel and bridge centerline.

H = Ultimate horizontal substructure strength.

x = Distance from the centerline of channel to the centerline of the pier.

Note: The subscript " j " refers to the row number of the pier value in the input tables in MathCad. The piers are arranged in the tables corresponding to one side of the channel (double the risk):

-	Pier 1
-	Pier 2
-	Pier 3
-	Pier 4
-	Pier 5
-	Pier 6
-	Pier 7
-	Pier 8
-	Pier 9
-	Pier 10
	Pier 11
-	Pier 12
-	Pier 13
-	Pier 14

j

j	×j :=	B _P ;≍	H.=
1	102.ft	30.ft	3230-kip
2	240-ft	40-ft	2960 kip
3	384 · ft	40.ft	2650 kip
4	528-ft	40.ft	2250-kip
5	672-ft	40.ft	1650 kip
6	768-ft	40.ft	750 · kip
7	864 ft	40.ft	240 · kip
8	102.ft	30.ft	3230 · kip
9	240 ft	40.ft	2960 · kip
10	384 · ft	40.ft	2680-kip
11	528 ft	40.ft	2270-kip
12	672 · ft	40, ft	1750 kip
13	768 ft	40.ft	850 kip
14	864-ft	40.ft	230 · kip

Determine Navigable Channel Characteristics (Sections 3.4 & 4.2):

j = Pier number

D_w = Water Depth from existing mudline to mean high water (Section 4.2.2).

C = Channel width as shown on Figures 4.2.1-1, 4.2.1-2, and 8.5.1-1.

 θ = Angle of channel turn or bend as shown in Figure 4.8.3.2-1.

region = Waterway region as shown in Figure 4.8.3.2-1 [1 = Straight, 2 = Transition, 3 = Turn/Bend].

V_c = Waterway current component acting parallel to the vessel transit path.

 V_{XC} = Waterway current component acting perpendicular to the vessel transit path.

Determine Vessel Transit Path (Section 4.2.1):

Vessel transit path as shown in Figure 4.2.1-2 (and Figure 3.7-1 for impact speed distribution).

For this project bridge the centerline of vessel transit path is the same as the centerline of the channel, therefore the distance " x " shown above is the distance from the center of each bridge pier to the centerline of vessel transit path.

 x_{C} = Distance from edge of channel to centerline of vessel transit path. (Use one-half of the channel width).

x c := 62.5 ft

Determine Vessel Fleet Characteristics Sections (3.5 & 4.4):

Number of different Self Prope	Iled Vessels SPTypes := 5 t := 1 SPTypes
Wp = displacement of tug, ferry,	etc $Wp_t := Dp_t := Bp_t := Lp_t :=$
Dp = Draft of tug,ferry, etc	1 65 ton 4.0 ft 20 ft 50 ft
Bp = Width of tug, ferry, etc	2 130 ton 7.0 ft 30 ft 100 ft
Lp = Length of tug, ferry, etc	3 220 · ton 9.0 · ft 35 · ft 120 · ft 4 385.13 · ton 6.95 · ft 23.13 · ft 66.76 · ft 5 1627.66 · ton 6.14 · ft 36.82 · ft 178.71 · ft
Vessel Characteristics and Cor	figuation Vessels := 6 i := 1 Vessels
 VT = vessel speed in channel Db = Draft of barge Bb = Width of barge Lb = Length of a single barge NB = number of barges long (<u>0 fc</u>) Wb = displacement of barge or DWT of ship 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
SPT = Power Type (defined above, 0 for none)	
N _i = number of trips	Annual No. of Vessel Transits $\Sigma N = 156.04365$
IVTi = vessel type: 1: ship 0: oth	er Bp := if[NB ≥ 0, Bb, Bp (a==)]
B _B = vessel width	$B_{B}^{T} = \begin{bmatrix} 47.25 & 69.8 & 55.63 & 72.1 & 23.13 & 36.82 \end{bmatrix} \cdot \text{ft}$
D _{Lt} = power vessel draft	$D_{Lp_i} = if \left[SPT_i = 0, 0 \cdot ft, Dp_{(SPT_i)} \right]$ $D_{Lp}^{T} = \left[4 \ 7 \ 7 \ 9 \ 6.95 \ 6.14 \right] \cdot ft$
D _{Lb} = barge draft	$D_{Lb_{i}} = if(NB_{i}=0, 0.ft, Db_{i})$ $D_{Lb}^{T} = \begin{bmatrix} 2 & 4.87 & 7.33 & 10.5 & 6.95 & 0 \end{bmatrix} \cdot ft$
D _{Lv} = vessel draft	$D_{Lv_{i}} = if \left(D_{Lp_{i}} > D_{Lb_{i}}, D_{Lp_{i}}, D_{Lb_{i}} \right)$ $D_{Lv}^{T} = \left[4 \ 7 \ 7.33 \ 10.5 \ 6.95 \ 6.14 \right] \cdot ft$
LOA = length overall	$LOA_{i} := Lb_{i} \cdot NB_{i} + if \left[SPT_{i} > 0, Lp_{(SPT_{i})}, 0 \cdot ft \right]$ $LOA^{T} = \left[245.1 343.62 297.83 370 133.52 178.71 \right] \cdot ft$

As vessel becomes abberant, tug will separate when tug draft = water depth and the barge group will separate into individual barg case 1 - barge group intact (tug draft > water depth) case 2 - abberrant barge, use one barge w/o tug (tug draft < water depth)

 $D_{L} = \text{Draft of barge or vessel (ft)} \qquad D_{L_{i,j}} := \text{if} \left(D_{w_{j}} > D_{Lv_{i}}, D_{Lv_{i}}, \text{if} \left(D_{w_{j}} > D_{Lb_{i}}, D_{Lb_{i}}, 0.\text{ft} \right) \right)$

 $D_{W}^{T} = [12 \ 12 \ 10 \ 10 \ 10 \ 8 \ 8 \ 16 \ 16 \ 13 \ 13 \ 13 \ 10 \ 10] \cdot ft$

WLv = vessel displacement assumming only one column of barges will impact the pier

 $WLv_i := Wb_i \cdot NB_i + if(SPT_i > 0, Wp_{SPT_i}, 0 \cdot tonne)$

W = displacement of vessel

 $\mathsf{W}_{i,j} \mathrel{\mathop:}= \mathsf{if}\left(\mathsf{D}_{w_j} > \mathsf{D}_{\mathsf{L}v_i}, \mathsf{WLv}_i, \mathsf{if}\left(\mathsf{D}_{w_j} > \mathsf{D}_{\mathsf{L}b_i}, \mathsf{Wb}_i, .001 \cdot \mathsf{tonne}\right)\right)$

	0.632	0.632	0.632	0.632	0.632	0.632	0.632	0.632	0.632	0.632	0.632	0.632	0.632	0.632]
	2.606	2.606	2.606	2.606	2.606	2.606	2.606	2.606	2.606	2.606	2.606	2.606	2.606	2.606	-
\M -	2.735	2.735	2.735	2.735	2.735	2.735	2.735	2.735	2.735	2.735	2.735	2.735	2.735	2.735	403
vv =	5.769	5.769	0	0	0	0	0	5.769	5.769	5.769	5.769	5.769	0	0	°10 tonne
	0.699	0.699	0.699	0.699	0.699	0.699	0.699	0.699	0.699	0.699	0.699	0.699	0.699	0.699	
	1.476	1.476	1.476	1.476	1.476	1.476	1.476	1.476	1.476	1.476	1.476	1.476	1.476	1.476	

Determine Design Impact Speed (V) (Section 3.7):

 V_{min} = The minimum impact speed, Vmin, at 3xLOA is equal to the yearly mean current of Croatan Sound.

V min := 0.4 knot

x _{Li} := 3·LOA

x_L = Distance equal to 3xLOA from centerline of vessel transit path

Note: The 3xLOA is computed for each vessel catagory. (The use of a single LOA based on the Method I design vessel, was a simplification included in the AASHTO Guide Spec to reduce the hand computation effort).

s = transition slope between V_T and V_{min}

$$\mathbf{s}_{i,j} \coloneqq \frac{\mathbf{V}_{i} - \mathbf{V}_{min}}{\mathbf{X}_{i} - \mathbf{X}_{c}}$$

. .

V = design impact velocity

$$V_{i,j} := if \left[x_j \leq x_C, V_{T_i}, if \left[x_j \leq x_{L_i}, V_{T_i} - (x_j - x_C) \cdot s_{i,j}, V_{min} \right] \right]$$

	11.8	9.38	6.85	4.32	1.79	0.68	0.68	11.8	9.38	6.85	4.32	1.79	0.68	0.68]
	12.02	10.33	8.57	6.82	5.06	3.88	2.71	12.02	10.33	8.57	6.82	5.06	3.88	2.71	
V	11.94	9.97	7.92	5.88	3.83	2.46	1.1	11.94	9.97	7.92	5.88	3.83	2.46	1.1	ft
V =	12.05	10.5	8.87	7.24	5.62	4.54	3.45	12.05	10.5	8.87	7.24	5.62	4.54	3.45	° sec
	15.59	8.7	1.5	0.68	0.68	0.68	0.68	15.59	8.7	1.5	0.68	0.68	0.68	0.68	
	16.16	11.24	6.1	0.97	0.68	0.68	0.68	16.16	11.24	6.1	0.97	0.68	0.68	0.68	

Vessel Impact Speeds at each Bridge Pier

Determine Probability of Aberrancy (PA) (Section 4.8.3.2):

BR = Aberrancy base rate (barges):	$BR_{i} := \begin{vmatrix} 1.2 \cdot 10^{-4} & \text{if } NB_{i} \neq 0 & \text{for barges} \\ 0.6 \cdot 10^{-4} & \text{if } NB_{i} = 0 & \text{for ships} \end{vmatrix}$	
R _B = Correction factor for bridge location:	$R_B := if\left(region=1, 1, if\left(region=2, 1 + \frac{\theta}{90 \cdot deg}, 1 + \frac{\theta}{45 \cdot deg}\right)\right) R_B = 1$	
R _C = Correction factor for currents acting parallel to vessel transit path:	$R_{C} := 1 + \frac{V_{c}}{16.89 \cdot \frac{ft}{sec}}$ (Note: Eqs for Rc and Rxc were modified to convert)4
R _{XC} = Correction factor for crosscurrents acting perpendicular to vessel transit path:	$R_{XC} := 1 + \frac{V_{XC}}{1.689 \cdot \frac{ft}{sec}}$ from knots to fps) $R_{XC} = 1$	
R _D = Correction factor for vessel traffic density:	R _D := 1	
PA = Probability of Abberrancy	$PA_{i} := BR_{i} \cdot (R_{B}) \cdot (R_{C}) \cdot (R_{XC}) \cdot (R_{D})$	
$PA^{T} = [0.0001248$	0.0001248 0.0001248 0.0001248 0.0001248 0.0000624]	

Determine Geometric Probability (PG) (Section 4.8.3.3):

 $\mathsf{PG}_{i,j} \coloneqq \mathsf{cnorm} \left(\mathsf{x}_{2_{i,j}} \right) - \mathsf{cnorm} \left(\mathsf{x}_{1_{i,j}} \right)$

t := 0,.01.. 4

PG = Geometric Probability

PG =
$$\begin{bmatrix} 0.115 & 0.088 & 0.042 & 0.014 & 0.003 & 0.001 & 0 & 0.115 & 0.088 & 0.042 & 0.014 & 0.003 & 0.001 & 0 \\ 0.111 & 0.1 & 0.068 & 0.039 & 0.019 & 0.011 & 0.006 & 0.111 & 0.1 & 0.068 & 0.039 & 0.019 & 0.011 & 0.006 \\ 0.108 & 0.092 & 0.056 & 0.027 & 0.01 & 0.005 & 0.002 & 0.108 & 0.092 & 0.056 & 0.027 & 0.01 & 0.005 & 0.002 \\ 0.106 & 0.098 & 0.071 & 0.044 & 0.023 & 0.014 & 0.008 & 0.106 & 0.098 & 0.071 & 0.044 & 0.023 & 0.014 & 0.008 \\ 0.118 & 0.038 & 0.003 & 0 & 0 & 0 & 0 & 0.118 & 0.038 & 0.003 & 0 & 0 & 0 & 0 \\ 0.126 & 0.07 & 0.018 & 0.002 & 0 & 0 & 0 & 0.126 & 0.07 & 0.018 & 0.002 & 0 & 0 & 0 \end{bmatrix}$$

Channel pier impact width location on 'bell curve' for first barge group.

Determine Vessel Collision Energy (KE) (Section 3.8):

UK = Underkee clearance	el	U	K c _{i,j} :=	if (D _L ,	> 0∙ft, [j	⁰ w _j - C) L _{i,j} , 0∙	ft)							
C _H = Hydrodyn mass coefficiei	namic nt:	C	H _{i,j} ^{:= it}	fUK c _i	≥0.5·⊑ j	۲ _{۱,j} , 1.	05, if (U	K _{ci,j} ≤	≦0.10·[) ر _{ا ، ب}	1.25, 1.0	.5. 5 + <u></u> .5·[D _{Li,j} - I D _{Li,j}	UK _{c_{i,j}. 1·D _{L_{i,j}.}}	.2
KE = Vessel Collision Energ	ЭУ	К	C E _{i,j} :=	H _{i,j} ·W _i 2·	,j [.] (V _{i,j}) g	2									
[·	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	
	1.05	1.05	1.086	1.086	1.086	1.229	1.229	1.05	1.05	1.05	1.05	1.05	1.086	1.086	
	1 05	1.05	1.118	1.118	1.118	1.25	1.25	1.05	1.05	1.05	1.05	1.05	1.118	1.118	

1.05

1.05

[3170	2002	1067	424	73	10	10	3170	2002	1067	424	73	10	10]
	13537	10007	7125	4503	2479	1656	807	13537	10007	6891	4354	2398	1463	713	
KE -	14023	9789	6580	3617	1534	710	141	14023	9789	6180	3398	1441	635	126	deine fit
	35283	26753	0	0	0	0	0	30155	22865	18368	12253	7372	0	0	∘кір∙п
	6111	1902	58	12	12	13	13	6111	1902	57	11	11	12	12	
l	13867	6706	1977	50	24	27	27	13867	6706	1977	50	24	24	24]

Determine Ship Collision Force on Pier (P_B) (Section 3.9):

The Ship collision force on the piers (P_S) (Section

DWT = Deadweight $DWT_i := if[NB_i=0, Wp_{(SPT_i)}, 0 \cdot tonne]$ tonnage of ship

P_S = Ship Collision Force

$P_{S_{i,j}} := (220) \cdot \sqrt{\frac{DWT_i}{tonne}} \cdot \left(\frac{V_{i,j}}{27}\right) \cdot \left(\frac{\sec \cdot kip}{ft}\right)$

max(P _S) = 5058.38871972 •kip

Determine Barge Collision Force on Pier (P_B) (Section 3.12):

Determine the Barge Bow Damage Depth a_B (Section 3.13):

 $a_{B} = \text{Barge Bow} \\ \text{Damage Depth} \qquad a_{B_{i,j}} := \left[\sqrt{\left[1 + \frac{\text{KE}_{i,j}}{(5672 \cdot (\text{kip} \cdot \text{ft}))}\right]} - 1 \right] \cdot \left[\frac{10.2 \cdot \text{ft}}{\left(\frac{\text{B}}{\text{B}_{i}}\right)} \right]$

The barge collision force on the piers (P_B)

P_B = Barge or ship Collision Force

$$P_{B_{i,j}} := if \left[a_{B_{i,j}} < 0.34 \cdot ft, \left(4112 \cdot \frac{kip}{ft} \right) \cdot \left(a_{B_{i,j}} \right) \cdot \left(\frac{B_{B_i}}{35 \cdot ft} \right), \left[1349 \cdot (kip) + \left(110 \cdot \frac{kip}{ft} \right) \cdot \left(a_{B_{i,j}} \right) \right] \cdot \frac{B_{B_i}}{35 \cdot ft} \right]$$

	2100	2004	1922	1541	268	38	38	2100	2004	1922	1541	268	38	38]
	3633	3434	3254	3071	2913	2844	2767	3633	3434	3238	3060	2907	2827	2560	
п	3113	2875	2671	2458	2287	2212	516	3113	2875	2644	2441	2279	2205	462	
PB=	4672	4340	0	0	0	0	0	4477	4174	3967	3652	3358	0	0	∘кір
	1387	1066	216	44	44	49	49	1387	1066	209	42	42	44	44	
	2380	1955	1600	183	90	98	98	2380	1955	1600	183	90	90	90	

Use Ship Collision Force if Number of Barges = 0, otherwise use Barge Collision Force

 $\mathsf{P}_{i,j} \coloneqq \mathsf{if}\left(\mathsf{NB}_{i}=0,\mathsf{P}|\mathsf{S}_{i,j},\mathsf{P}|\mathsf{B}_{i,j}\right)$

Determine Probability of Collapse (PC) (Section 4.8.3.4):

case 1 : For $0.0 \le \frac{H}{P}$ and $\frac{H}{P} \le 0.1$ case 2: For $0.1 \le \frac{H}{P}$ and $\frac{H}{P} \le 1.0$ case 3: For $\frac{H}{P} \ge 1.0$ PC1_{i,j} := $0.1 + 9 \cdot \left(.1 - \frac{H_j}{P_{i,j}}\right)$ PC2_{i,j} := $\frac{\left(1 - \frac{H_j}{P_{i,j}}\right)}{9}$ PC3_{i,j} := $1 \cdot 10^{-99}$

$$\begin{array}{l} \mathsf{PC} = \mathsf{Probability of} \\ \mathsf{Collapse} \end{array} \qquad \qquad \mathsf{PC}_{i,j} \coloneqq \mathsf{if} \left(\frac{\mathsf{H}_j}{\mathsf{P}_{i,j}} < 0.1, \mathsf{PC1}_{i,j}, \mathsf{if} \left(\frac{\mathsf{H}_j}{\mathsf{P}_{i,j}} < 1.0, \mathsf{PC2}_{i,j}, \mathsf{PC3}_{i,j} \right) \right) \end{array}$$

	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
	0.012	0.015	0.021	0.03	0.048	0.082	0.22	0.012	0.015	0.019	0.029	0.044	0.078	0.191
	0	0	0.001	0.009	0.031	0.073	0.059	0	0	0	0.008	0.026	0.068	0.056
10-	0.034	0.035	0	0	0	0	0	0.031	0.032	0.036	0.042	0.053	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.04	0.018	0	0	0	0	0	0.04	0.018	0	0	0	0	0

Determine the Calculated Annual Frequency of Collapse (AFc) (Section 4.8.3):

PS := 1 **PS = PROBABILITY OF SCOUR**

AFc = Annual Frequency of Collapse per vessel per pier

$$\mathsf{AFc}_{i,j} := (\mathsf{N}_i) \cdot (\mathsf{PA}_i) \cdot (\mathsf{PG}_{i,j}) \cdot (\mathsf{PC}_{i,j}) \cdot (\mathsf{PS})$$

AFc_{i,j}

SumAFc = Annual Frequency of Collapse per pier

Total = Annual Frequency

of Collapse

Vessels SumAFc; := i = 1

Pier

No.

		1	SumAFc
	TotalAFc = $\sum_{j=1}^{\text{Piers}} \text{SumAFc}_{j}$	2 3 4 5	0.00000654 0.0000048 0.00000343
years	ReturnPeriod := $\frac{1}{\frac{\text{Piers}}{\sum_{j=1}^{j} \text{SumAFc}_{j}}}$	6 7 8 9 10 11 12	0.0000034 0.00000297 0.00000294 0.00000315 0.00000648 0.00000475
od for	ReturnPeriod = 18588	13 14	0.00000347 0.00000348 0.00000285
	%Risk _j := $\frac{SumAFc_j}{TotalAFc}$ 100		0.00000276
age	Total% = $\sum_{j=1}^{\text{Piers}} \text{%Risk}_{j}$ Total% = 100	T	⁻ otalAFc = 0.000053

ReturnPeriod = number of between collapse events

The total bridge return period these 13 piers (in years) is:

%Risk = percentage of the total risk for each pier

Total% = total risk percenta (should equal 100 percent)

7•10⁻⁶

6•10⁻⁶

5•10⁻⁶

4•10⁻⁶

3•10⁻⁶

2•10⁻⁶

1•10⁻⁶

0 ¥

1

SumAFc

38

2

3

5

4

6

7

j

9

8

10

11

12

22

14

DESIGN SUMMARY

Barge and Pier Data

LOA		Н _і	D w	×,	^В Рі	
ft	N	kip	ft	ft	ft	
ft 245.1 343.62 297.83 370 133.52 178.71	N _i 55.774 18.7972 20.6858 1.2532 50.7614 8.7721	kip 3230 2960 2650 2250 1650 750 240 3230	ft 12 10 10 10 8 8 8 16	ft 102 240 384 528 672 768 864 102 240	ft 30 40 40 40 40 40 40 40 30	W = barge + Tug + cargo LOA= length of vessel N= number of one way passages the barge makes in a year H= pier ultimate strength Dw= water depth x= distance center line channel to center line pier Bp= pier width V= velocity of the barge at this pier PG= geometric probability that this pier may be 'hit' KE= kinetic energy of vessel and hydrodynamic mass
		2680 2270 1750 850 230	13 13 13 10 10	384 528 672 768 864	40 40 40 40 40	aB= depth of damage to barge PB= force from an impact with this pier PC=probability of collapse if hit AF= probability of collapse taking all factors into account.

Geometric & Probability Variables

	11.8	9.38	6.85	4.32	1.79	0.68	0.68	11.8	9.38	6.85	4.32	1.79	0.68	0.68	
	12.02	10.33	8.57	6.82	5.06	3.88	2.71	12.02	10.33	8.57	6.82	5.06	3.88	2.71	
V	11.94	9.97	7.92	5.88	3.83	2.46	1.1	11.94	9.97	7.92	5.88	3.83	2.46	1.1	ft
V =	12.05	10.5	8.87	7.24	5.62	4.54	3.45	12.05	10.5	8.87	7.24	5.62	4.54	3.45	sec
	15.59	8.7	1.5	0.68	0.68	0.68	0.68	15.59	8.7	1.5	0.68	0.68	0.68	0.68	
Į	16.16	11.24	6.1	0.97	0.68	0.68	0.68	16.16	11.24	6.1	0.97	0.68	0.68	0.68	

	1.88	1.23	0.68	0.28	0.05	0.01	0.01	1.88	1.23	0.68	0.28	0.05	0.01	0.01]
	4.3	3.39	2.57	1.74	1.02	0.7	0.35	4.3	3.39	2.5	1.69	0.99	0.62	0.31	
_	5.54	4.18	3.01	1.8	0.82	0.39	0.08	5.54	4.18	2.86	1.7	0.77	0.35	0.07	.4
a _B =	8.35	6.89	0	0	0	0	0	7.49	6.15	5.24	3.85	2.56	0	0	•11
	6.81	2.4	0.08	0.02	0.02	0.02	0.02	6.81	2.4	0.08	0.02	0.02	0.02	0.02	
	8.3	4.63	1.56	0.04	0.02	0.02	0.02	8.3	4.63	1.56	0.04	0.02	0.02	0.02	

	3170	2002	1067	424	73	10	10	3170	2002	1067	424	73	10	10]
	13537	10007	7125	4503	2479	1656	807	13537	10007	6891	4354	2398	1463	713	
KE -	14023	9789	6580	3617	1534	710	141	14023	9789	6180	3398	1441	635	126	I dia fi
NE =	35283	26753	0	0	0	0	0	30155	22865	18368	12253	7372	0	0	∘кір∙п
	6111	1902	58	12	12	13	13	6111	1902	57	11	11	12	12	
	13867	6706	1977	50	24	27	27	13867	6706	1977	50	24	24	24	

PG	=

	0.115	0.088	0.042	0.014	0.003	0.001	0	0.115	0.088	0.042	0.014	0.003	0.001	0
	0.111	0.1	0.068	0.039	0.019	0.011	0.006	0.111	0.1	0.068	0.039	0.019	0.011	0.006
	0.108	0.092	0.056	0.027	0.01	0.005	0.002	0.108	0.092	0.056	0.027	0.01	0.005	0.002
G =	0.106	0.098	0.071	0.044	0.023	0.014	0.008	0.106	0.098	0.071	0.044	0.023	0.014	0.008
	0.118	0.038	0.003	0	0	0	0	0.118	0.038	0.003	0	0	0	0
	0.126	0.07	0.018	0.002	0	0	0	0.126	0.07	0.018	0.002	0	0	0]

PC =	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
	0.012	0.015	0.021	0.03	0.048	0.082	0.22	0.012	0.015	0.019	0.029	0.044	0.078	0.191
	0	0	0.001	0.009	0.031	0.073	0.059	0	0	0	0.008	0.026	0.068	0.056
	0.034	0.035	0	0	0	0	0	0.031	0.032	0.036	0.042	0.053	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.04	0.018	0	0	0	0	0	0.04	0.018	0	0	0	0	0

P _B =	2100	2004	1922	1541	268	38	38	2100	2004	1922	1541	268	38	38]∘kip
	3633	3434	3254	3071	2913	2844	2767	3633	3434	3238	3060	2907	2827	2560	
	3113	2875	2671	2458	2287	2212	516	3113	2875	2644	2441	2279	2205	462	
	4672	4340	0	0	0	0	0	4477	4174	3967	3652	3358	0	0	
	1387	1066	216	44	44	49	49	1387	1066	209	42	42	44	44	
	2380	1955	1600	183	90	98	98	2380	1955	1600	183	90	90	90	
Determine MINIMUM Barge Collision Force on Pier (P_B) (Section 3.12):

D _{wi} ≔ 10∙ft	Design water depth	
d _{L,} ≔ 2 ft	The empty barge draft	
w _i := 181.4∙tonne	An empty 35x195 foot hopper barge displacement	200 · ton = 181.4 ∘tonne
V _{min} := 0.4·knot	The drifting barge impact speed = annual mean current	1⋅knot = 1.689 ∘ <u>ft</u> sec

First, Determine Barge Collision Energy (KE) (Section 3.8):

UK = Underkeel clearance:UK
$$c_{i,j} := D w_i - d L_i$$
CH = Hydrodynamic mass
coefficient:C $H_{i,j} := if \left(UK c_{i,j} \ge 0.5 \cdot d L_i, 1.05, if \left(UK c_{i,j} \le 0.10 \cdot d L_i, 1.25, 1.05 + \frac{.5 \cdot d L_i - UK c_{i,j}}{.5 \cdot d L_i - .1 \cdot d L_i} \cdot .2 \right) \right)$ KEmin = Barge MIN
Collision EnergyKE $min_{i,j} := \frac{C H_{i,j} \cdot w_i \cdot (V min)^2}{2 \cdot g}$ Max(KE min) = 3 \cdot ftkip

Second, Determine the MINIMUM Barge Bow Damage Depth a_B (Section 3.13):

$$a_{\min_{i,j}} := \left[\sqrt{1 + \frac{KE_{\min_{i,j}}}{5672 \cdot (kip \cdot ft)}} - 1 \right] \cdot \left[\frac{10.2 \cdot ft}{\left(\frac{B_{i}}{35 \cdot ft}\right)} \right] \qquad \max(a_{\min}) = 0.0041 \cdot ft \\ \min(a_{\min}) = 0.0013 \cdot ft$$

The MINIMUM barge collision force on the pier (P_B) is then:

$$P_{\min_{i,j}} := if \left[a_{\min_{i,j}} < 0.34 \cdot ft, \left(4112 \cdot \frac{kip}{ft} \right) \cdot \left(a_{\min_{i,j}} \right) \cdot \left(\frac{B_{B_i}}{35 \cdot ft} \right), \left[1349 \cdot kip + \left(110 \cdot \frac{kip}{ft} \right) \cdot \left(a_{\min_{i,j}} \right) \right] \frac{B_{B_i}}{35 \cdot ft} \right]$$
$$\max \left(P_{\min} \right) = 11 \cdot kip$$
$$\min \left(P_{\min} \right) = 11 \cdot kip$$

kN≡1000 newton knot≡1.689 ton≡2000 lbf kip≡1000 lbf tonne≡2205 lbf

 $min(KE_{min}) = 3 \cdot ftkip$

VESSEL IMPACT STUDY

DESIGNER:

M&N NO.: _ SHEET: DATE:___

Method II Analysis Summary

		× _i	В _{Рі}	н _і		
	N _i	ft	ft	kip	SumAFc	%Risk
Pier No. / Location	55.77	102	30	3230	0.00000654	12.15
	18.8	240	40	2960	0.00000480	8.92
Row 1 - Pier 1	20.69	384	40	2650	0.0000343	6.38
Row 2 - Pier 2 Bow 2 - Pier 3	1.25	528	40	2250	0.0000340	6.31
Row 4 - Pier 4	50.76	672	40	1650	0.00000297	5.52
Row 5 - Pier 5	8.77	768	40	750	0.00000294	5.47
Row 6 - Pier 6	L	864	40	240	0.00000315	5.85
Row 7 - Pier 7		102	30	3230	0.00000648	12.05
Row 8 - Pier 8		240	40	2960	0.00000475	8.84
Row 10 - Pier 10		384	40	2680	0.00000347	6.45
Row 11 - Pier 11		528	40	2270	0.00000348	6.46
Row 12 - Pier 12		672	40	1750	0.00000285	5.3
Row 13 - Pier 13		768	40	850	0.0000278	5.16
Row 14 - Pier 14		864	40	230	0.0000276	5.14

Pier Strength / Design Impact Force (k)