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SI (MODERN METRIC) CONVERSION FACTORS
APPROXIMATE CONVERSONSTO S UNITS

SYMBOL | WHENYOUKNOW | MULTIPLY BY | TOFIND | svmBOL
LENGTH
in inches 254 millimeters mm
ft feet 0.305 meters m
yd yards 0914 meters m
mi miles 1.61 kilometers km
AREA
in? square inches 645.2 square millimeters mm’
ft? square feet 0.093 square meters m’
yo? square yard 0.836 square meters m’
ac acres 0.405 hectares ha
mi? square miles 2.59 square kilometers km?
VOLUME
fl oz fluid ounces 29.57 milliliters mL
gal gallons 3.785 liters L
ft® cubic feet 0.028 cubic meters m’
yd? cubic yards 0.765 cubic meters m’
NOTE: volumes greater than 1000 L shall be shown in m®
MASS
oz ounces 28.35 grams g
Ib pounds 0.454 kilograms kg
T short tons (2000 1b) 0.907 Megagrams Mg (or "t")
TEMPERATURE (exact degrees)
°F Fahrenheit 5(F-32)/9 or (F-32)/1.8 Celsius °C
ILLUMINATION
fc foot-candles 10.76 lux Ix
fl foot-Lamberts 3.426 candela/m? cd/m?
FORCE and PRESSURE or STRESS
kip 1000 pound force 445 Kilonewtons kN
Ibf pound force 4.45 newtons N
Ibffin? pound force per square inch  |6.89 kilopascals kPa
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EXECUTIVE SUMMARY

During bridge construction, flexible support conditions provided by steel-reinforced
neoprene bearing pads supporting precast, prestressed concrete girders may allow the girders to
become unstable, rolling about an axis parallel to the span of the girders. Additionally, skew
and/or slope angles significantly reduce bearing pads roll stiffness, which reduces girder
buckling capacity under gravity and wind loading conditions.

In this project, roll stiffnesses for bearing pads under skewed and sloped conditions were
determined from experimental data gathered using a test device designed to measure such values.
The test device reproduced the forces and deformations that act on a bearing pad in the field
while simultaneously permitting axial load, skew angle, and slope angle to be controlled
independently, so that the effect of each on bearing pad roll stiffness could be quantified. In total,
108 bearing pad tests were performed on three different standard types of bearing pad, with
varying severities of imposed skew and slope angle.

Full-scale girder buckling tests, designed and conducted to experimentally quantify the
influence of bearing pad roll stiffness on girder buckling capacity, were also included in this
project. The pads used to support each end of the test girder during the buckling tests were the
same pads previously tested to determine roll stiffness. In total, nine girder buckling tests were
conducted, with various skew and slope conditions imposed on the bearing pads.

Following completion of the experimental tests, analytical (finite element) models of the
experimental test conditions were developed and validated by comparing buckling capacities
quantified from analytical simulations to experimental test results. Analytical buckling capacities
were found to differ from experimental test results by no more than 15% over a range of ideal,
skewed, and sloped bearing pad support conditions. Based on this favorable level of agreement,
the analytical modeling and analysis techniques employed in this study were deemed suitable for
use in developing bracing recommendations for long-span concrete girders supported on
reinforced elastomeric bearing pads.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

Precast, pretensioned concrete bridge girders in simple span construction are typically
supported on reinforced neoprene bearing pads (Figure 1.1a). Neoprene bearing pads transfer
vertical load from the girder to the support and allow lateral movement of the girder, which can
be caused by thermal expansion and contraction. The self-weight of the girder is gradually
applied to the bearing pad during girder placement. Before diaphragm or deck installation, the
girder may become unstable and rotate about an axis parallel to the span of the girder (Figure
1.1b). Bearing pad roll stiffness, combined with the effects of bracing stiffness and torsional
buckling, dictates the point of girder instability under girder self-weight (gravity) loading. In the
case of girders supported by reinforced neoprene bearing pads, the roll stiffness of the end
restraints can be severely reduced by skew angle (Figure 1.2) and slope angle (Figure 1.3).
According to the Precast Concrete Institute (PCI) Bridge Design Manual (2003), skew angle is
defined as the angle between the centerline of a support and a line normal to the roadway
centerline (Figure 1.2). Slope angle is defined as the vertical angle between the bottom surface of
the girder and the top surface of the bearing pad (Figure 1.3), and may be produced by camber
(induced by eccentric prestressing of the girder), construction tolerances, bridge grade, or a
combination of all three. Previous analytical research (Consolazio et al. 2007) was conducted to
analytically quantify the roll stiffness of bearing pads under various angles of skew and slope. In
that study, it was found that the roll stiffness of bearing pads—and therefore the buckling
capacity of bridge girders—is significantly reduced by the imposition of skew and slope angles.

CGirder

Rolling motion about
centerline of bearing
pad along axis parallel

to the girder span
/4\ Bearing pad

a) b)

Girder

Figure 1.1. Description of physical system: a) Girder supported on bearing pads during
bridge construction; b) Rolling motion of girder that occurs during instability (buckling)
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Figure 1.2. Plan view of girder, pad, and support with skew angle defined
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/
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Figure 1.3. Elevation view of girder, pad, and support with slope angle defined

1.2 Objective

The research presented in this report was conducted to experimentally expand upon the
previous analytical research (Consolazio et al. 2007) conducted to determine the effect of
imposed skew and slope angles on the roll stiffness of bearing pads and the buckling capacity of
girders supported on bearing pads. There were two distinct phases of the work presented in this
report: isolated roll stiffness tests, and girder buckling tests. In the isolated roll stiffness tests, roll
stiffnesses for bearing pads under skew and slope conditions were determined from experimental
data gathered using a test device designed to measure such values. In the second phase, a full-
scale girder buckling test program was designed and conducted to experimentally quantify the
influence of bearing pad roll stiffness on girder buckling capacity. The pads used to support each
end of the test girder were the same pads previously tested—to determine roll stiffness—in the
first (roll stiffness) phase of this study.

1.3 Scope

In the first phase of this study, an experimental test device was developed to enable
determination of bearing pad roll stiffness under the types of loading conditions that arise during
bridge construction. The bearing pad test device reproduced the forces acting on a bearing pad in
the field while simultaneously permitting axial load, skew angle, and slope angle to be controlled
independently, so that the effect of each on bearing pad roll stiffness could be quantified. A total
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of 108 tests were performed on three different standard types of bearing pad, with varying
severity of imposed skew and slope angle.

The second phase of this study, included the design and construction of: a full-scale test
girder; a vertical loading system; and end supports that enabled various combinations of slope
and skew to be imposed on the supporting bearing pads. In total, nine (9) buckling tests were
conducted, with various skew and slope conditions imposed on the supporting bearing pads.

All experimental tests, including both the first phase isolated bearing pad tests and second
phase full-scale girder buckling tests, were performed at the Florida Department of
Transportation (FDOT) Marcus H. Ansley Structures Research Center in Tallahassee, Florida.

Analytical (finite element) models of the experimental test conditions were developed
and used to simulate the experimental buckling tests. Validation of the models was then carried
out by comparing buckling capacities quantified from analytical simulations to experimental test
results.



CHAPTER 2
BACKGROUND

2.1Literaturereview

Although the roll stiffness of a bearing pad is important in regard to girder instability
during the construction process, most research to date has focused on bearing pad stiffnesses that
relate to the final constructed configuration of the bridge. The influence of roll stiffness of
bearing pads on girder instability during the construction stage has not been adequately explored.
Similarly, several research programs have conducted experimental tests to investigate girder
instability, but focused primarily on lateral torsional buckling. The effect of reduced bearing pad
roll stiffness—due to skew and slope angles—on girder buckling capacity has not yet been
quantified in the literature.

2.2 Bearing pad properties

Isolated experimental bearing pad tests have been conducted to quantify bearing pad
stiffness parameters, such as the effect of shear strain rate on the shear modulus of bearing pads
(Allen et al., 2010), stress capacities and stress-strain limits of cotton duck bridge bearing pads in
shear, compression, and rotation (Lehman et al., 2005), and long term load effects on bearing
performance (Doody and Noonan, 1999). Muscarella and Yura (1995) also experimentally
analyzed isolated bearing pads to determine the shear, compressive, and rotational stiffnesses,
with emphasis on the difference in behavior of flat and tapered bearings. However, the rotational
stiffness they calculated was about an axis perpendicular to the span of the girder, or a rotation
induced by service loads, as opposed to girder instability during construction. Similarly,
Vidot-Vega et al. (2009) experimentally determined the rotational stiffness of multiple bearing
pads resisting moment in series due to rotation about an axis perpendicular to the span of the
girder, using a test device comprised of a continuous span over the support, pertaining to the
final constructed configuration of the bridge.

Using analytical modeling, Yazdani et al. (2000) computed bearing pad shear, axial, and
roll stiffnesses to determine the effect of neoprene bearing pads on the performance of fully
constructed precast prestressed concrete bridges. Green et al. (2001) focused on the effect of
skew angle on the performance of the final constructed bridge, examining the deflection and
tensile stresses in girders with varying severity of skew, also through the use of analytical
models. The current study, therefore, is unique in that it focused on experimentally evaluating
the influence of imposed skew and slope angles on the roll stiffness—about an axis parallel to
the girder span—of bearing pads as related to girder instability during the construction process.

2.3 Girder buckling

As previously stated, several experimental tests have been conducted to investigate girder
instability, including lateral torsional buckling testing of steel I-shapes (Yura and Phillips, 1992),
lateral-torsional buckling behavior of fiber reinforced polymer I-shaped cross-sections (Stoddard,
1997), and lateral stability of slender rectangular reinforced concrete beams (Kalkan, 2009).
Deaver (2003) investigated torsional bracing by simulating buckling of a two-beam system with
midspan bracing. Mast examined the lateral bending stability of prestressed concrete beams
when they are suspended from lifting loops (Mast 1989) and supported below by elastomeric
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bearing pads and on trucks and tractors (Mast 1993). Lateral-torsional buckling and rollover
instability of prestressed concrete girders supported on bearing pads was investigated by Hurff
(2010). However, Hurff focused on the instability due to girder self-weight eccentricity caused
by fabrication imperfections (prestress eccentricity, cracking, solar radiation) and support
conditions (unlevel bearing surface).

The current study, therefore, is unique in that experimental tests were performed to
quantify the influence of bearing pad roll stiffness on the buckling capacity of a test girder,
which was supported on bearing pads with known roll stiffnesses under skewed and sloped
conditions.



CHAPTER 3
BEARING PAD ROLL STIFFNESSDETERMINATION

3.1 Experimental test setup

In this study, an experimental test device (Figure 3.1) was developed to enable
determination of bearing pad roll stiffness under the types of loading conditions that arise during
bridge construction. A key aspect in the design of the test device was the need to maintain a
constant axial load on the bearing pad (to simulate constant gravity-induced girder reactions) as
roll rotation of the pad occurred. Equally important, the test device was designed to be capable of
simulating girder support conditions in which skew, slope, or combined skew and slope were
present.

A structural tube within the device represented the bridge girder axis and was used to
impose, and hold constant, the slope angle and the axial load on the pad. Two 5 in. thick steel
bearing plates at the center of the test device, which were effectively rigid in comparison to the
stiffness of the bearing pad, represented the bottom surface of the girder and the top surface of
the bridge abutment, respectively. Simulating a skewed alignment between girder and bearing
pad was achieved by positioning the pad at the desired skew angle (relative to the axis of the
tube) between the steel bearing plates. To simulate girder roll-off, load was applied to the
outriggers of the test frame, which rotated the device about the centerline of the bearing pad,
parallel to the axis of the tube. Hinges located below the ends of the tube allowed the testing
frame to rotate freely. As constructed, the test device was capable of imposing desired
combinations of axial load, skew angle, and slope angle on the bearing pad for the purpose of
evaluating pad roll stiffness. Detailed fabrication plans for the bearing pad test device are
provided in Appendix A.

Each bearing pad test conducted in this study consisted of three stages: positioning,
clamping, and rolling. In the positioning stage, the bearing pad and test device were configured
to impose the desired skew and slope angles on the pad. Subsequently, axial load was gradually
applied to the bearing pad—by applying clamp loads to the top surfaces of both ends of the
tube—until a target axial load on the pad was achieved (Figure 3.2a). Holding the axial load
constant, a moment was then applied to the test device—through application of vertical roll loads
acting at the ends of the outriggers (Figure 3.2b)—to produce a roll rotation on the pad, thereby
simulating the unrestrained rolling motion of a girder during instability (buckling) in the field.
For each test thus performed, bearing pad roll stiffness was quantified by determining the slope
of the linear relationship between moment imposed on the pad, and the resulting measured roll
angle.

Rotations and loads imposed on the pad during each of these stages were identified using
coordinate axes defined in Figure 3.1. Examining the global x-y-z coordinate system, both the x-
and y-axes were level (horizontal), had their origins at the top surface of the undeformed bearing
pad, and were aligned with the centerlines of the outriggers and tube, respectively. The global z-
axis was aligned vertically; positive upward.
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Figure 3.2. Load application to bearing pad test device:
a) Clamp loads during clamping stage; b) Roll loads during roll stage



3.2 Instrumentation

Multiple instrumentation devices were used during the roll stiffness tests to measure
applied load (load cells), roll and slope angles (inclinometer) and displacement (displacement
sensors). In many tests, redundant instrumentation was used to verify primary measurements and
provide a additional readings in the event of sensor failure. A naming convention for the
instrumentation was developed to reflect the instrument type and its specific location on the
bearing pad test device. Each instrument name was of the form of T-Loc, where “T” indicated
the type of instrument, and “Loc” indicated the location of the instrument. The previously
described global coordinate system (Figure 3.1) and its associated quadrants were used as a basis
for naming each location. An overview of the instrumentation plan is shown in Figure 3.3.

3.2.1Load cdls

As summarized in Figure 3.4, each load cell name began with the letter “L” to indicate
that load was being measured, and ended with the position of the load cell within the bearing pad
test device. Position of axial load cells was indicated by quadrant (e.g., L1 was located in
quadrant 1, L23 was located between quadrants 2 and 3) while position of clamp and roll load
cells was indicated by axis (e.g., Lypos was located at the positive y-axis of the test device).

Axial load cells (Interface, model 1232, 100 kip capacity), which were used to measure
total axial load applied to the bearing pad, were located below the steel bearing plates and were
arranged in a statically determinate “tripod” configuration (labeled L1, L23, and L4; Figure 3.5)
to ensure that contact between load cells and bearing plates was maintained at all times. Using a
tripod configuration also enabled the location of the bearing pad pressure resultant to be
determined, relative to the center of the bearing pad, at any point during a roll stiffness test.
Clamp load cells (Geokon, model 3000, 200 kip capacity), located at the ends of the tube along
the y-axis (labeled Lypos and Lyneg; Figure 3.3) provided a redundant measure of axial load
applied to the bearing pad. Washer load cells (Interface, model LW25100, 30 kip capacity) were
used to measure vertical roll loads applied to the ends of the outriggers and to compute roll
moments imposed on the bearing pad (labeled Lxpos and Lxneg; Figure 3.3). A washer load cell
(Interface, model LW25100, 30 kip capacity) was also used to measure any shear force
inadvertently imposed on the bearing pad in the sloped testing configuration. Note that no shear
force was detected during any experiments conducted.

3.2.2 Inclinometer

A dual axis inclinometer (FRABA Posital CanOPEN, +/-0.087 rad. range, 17 prad.
resolution) was used to measure both the slope and roll angles imposed on the bearing pad, about
the x-axis and y-axis, respectively. As the roll loads (and corresponding moments) were applied,
the inclinometer measured the roll angle imposed on the bearing pad (about the y-axis). To
ensure accurate readings, the inclinometer was mounted to the top bearing plate, which was
effectively rigid and would not deform under applied loads.
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Figure 3.4. Naming convention for load cells used in roll stiffness tests

Figure 3.5. Tripod of axial load cells

3.2.3 Displacement transducers

Displacement transducers [TML models CDP-50 and CDP-100, which have 50 mm and
100 mm (2 in. and 4 in.) strokes respectively] were used to measure both relative and absolute
displacements of the two bearing plates along each axis of the test device (Figure 3.6).
Horizontal transducers—along the x-axis and y-axis—were mounted to stands and measured
absolute displacement. Vertical transducers—along the z-axis—measured relative displacement
between the two plates. As summarized in Figure 3.7, each displacement transducer name began
with “Dx, Dy, or Dz” to indicate the axis along which the displacement was being measured,
followed by the position of the transducer within the bearing pad test device. The position of
horizontal transducers is indicated by plate. For example, sensor Dx1 measured horizontal
displacement of the top plate along the x-axis and Dx2 measured the x-axis displacement of the
bottom plate. The position of vertical transducers was indicated by quadrant, not plate (e.g., Dzl
was used to measure relative displacement between the top and bottom plates along the z-axis,
located in quadrant 1).

Redundancy in roll angle measurement was achieved by using vertical (Dz) displacement
transducers to measure relative vertical displacements between the steel bearing plates. Knowing
the horizontal distance between the displacement transducers, the roll angle imposed on the
bearing pad was calculated from the relative displacement measurements and used to confirm the
inclinometer reading. Horizontal displacement transducers (Dx and Dy) were also used to
monitor horizontal movements of the bearing plates to confirm that shear deformations generated
in the bearing pad remained negligibly small during testing.
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Figure 3.6. Displacement transducers
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CHAPTER 4
BEARING PAD TEST PROCEDURE

4.1 Introduction

As noted earlier, each bearing pad roll stiffness test conducted in this study involved
three distinct stages: positioning, clamping, and rolling. In this chapter, the procedure for
performing each stage is described.

4.2 Positioning stage

Each test began by positioning the test device on the bearing pad so as to produce the
desired slope and skew angles. Slope angle was defined as the vertical angle (Figure 4.1)
between the y-axis (aligned with the sloped tube) and the y-axis (defined previously). Slope was
imposed on the bearing pad by rotating the upper portion test device (the portion above the
bearing pad) about the global x-axis of the system. In non-sloped tests, the tube was positioned
level (horizontal) and the y- and y-axes were identical.

Once the desired slope angle was imposed, the elevation of the y-negative end of the tube
(Figure 4.1) was “locked-off” at the correct height, such that it remained constant throughout the
test. A threaded rod connected the tube to the clevis and plate system acting as a hinge, which
was anchored to the floor. To lock off the height of the tube, a nut was threaded down snugly
against the top of the y-negative end of the tube (Figure 4.2). Note that the line passing through
the y-positive and y-negative hinges was also sloped, and aligned with the y-axis, ensuring that
the top portion of the test device rolled about the y-axis, thereby mimicking girder motion during
a buckling/overturning event (Figure 4.1). A rotating head laser level, located in quadrant 1, was
used to position the hinges at the correct heights (Figure 4.3). The laser is initially leveled at the
height of the undeformed bearing pad, and subsequently rotated to indicate a horizontal axis. For
non-sloped tests, the hinges were positioned at the same height as the top of the pad (along the
y-axis). For sloped tests, the hinges were offset to achieve the desired slope (aligned with the
¥-axis).

Skew angle was imposed, during insertion of the bearing pad between the bearing plates,
by rotating the bearing pad about the z-axis (Figure 4.4). Skew angle was defined as the angle
between the long axis of the bearing pad and the x-axis of the test device. When positioning the
bearing pad at the desired skew angle, the bearing pad was also centered at the z-axis as
illustrated in Figure 4.4.
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Figure 4.1. Elevation view of test device: imposing slope (positioning stage)
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Figure 4.2. Photograph of y-negative end of bearing pad test device
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Figure 4.3. Rotating head laser, used to set height of hinges during positioning stage
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Figure 4.4. Imposing skew during the positioning stage; 0 deg. and 45 deg. skew shown
(see Section A-A, Figure 4.1)
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4.3 Clamping stage

During the clamping stage, axial load was gradually applied to the bearing pad by
applying clamp loads to the top surfaces of both ends of the tube (Figure 4.5). At the beginning
of the clamping stage, the piston of the hollow core hydraulic jack on the y-positive end was
fully retracted, and the y-negative end of the tube was “locked-off”. A threaded rod and nut
connected the tube to the hinge, which was anchored to the floor (Figure 4.6). As the piston was
subsequently extended, the y-positive end of the tube moved in the negative z-direction
(downward), while the movement of the y-negative end of the tube remained restrained. This
caused the load produced by the hydraulic jack on the y-positive end of the tube to be mirrored at
the y-negative end. While applying the clamp loads using restrained movement, a slight increase
of the slope on the pad occurred but was accounted for in advance (during the positioning stage)
such that the tube was at the correct slope at the end of the clamping stage. Full application of the
target axial load—read by the triad of load cells L1, L23, and L4—signified the end of the
clamping stage, after which the load was held constant for the remainder of the test (to within an
acceptable deviation from the target axial load of +/-5% of the target axial load).

Since the clamp loads were applied perpendicular to the top surface of the tube
(Figure 4.5), the potential existed for inducing a shear load on the bearing pad (in the y-direction)
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when the test device was configured with a non-zero slope angle. Therefore, to properly simulate
field conditions (where no shear load would be induced), a shear restraint rod (Figure 4.7) was
used to prevent the top frame from moving in the y-direction relative to the bottom bearing plate.
A washer load cell, located in-line with the shear restraint device, was used to monitor the
amount of shear being diverted from the bearing pad. Measured load cell data showed that an
insignificant amount of shear was being rerouted to the restraint device. Further, the horizontal
displacement transducers along the y-axis (Dy1 and Dy2) on the bearing plates showed that there
was no significant relative movement between the two plates, indicating that there was no shear
in the bearing pad. The combination of no relative movement between the plates and no shear
load detected in the restraint device indicated that no significant shear load was induced in the
pads during testing.

— -~
— -~

_-~  y-component RN
g ‘l N
/ AN
[ Clamp load (applied :ﬁz-component \k
|, perpendicular to tube) ) \
N j= Slope A Nut
\\\ ' angle /// \
Locking nu \\\\\\\\_ e Load cell
Load cell \\\\\\ Hollow core
T~ hydraulic jack
< -
ClampJ { Slope angle o ! Washer load cell
load h

K___ o -
I_‘n"i Bearing pad Fﬁﬁ 1= ._|
LHinge \\Axial load cells Hinge /

(L1,L23,L4) Shear restraint device

Figure 4.5. Elevation view of test device: applying axial load (clamping stage)
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4.4 Rolling stage

Girder roll (rotation) in the field, as would occur during buckling, was simulated in the
laboratory by rolling the test device about an axis parallel to the longitudinal axis of the bottom
of the tube, aligned with the center of the bearing pad, referred to as the y-axis (Figure 4.1).
Equal and opposite vertical roll loads were applied to the ends of the outriggers to impose
moment about the centerline of the bearing pad (Figure 4.8). At the beginning of the rolling
stage, no roll loads were applied to the ends of the outriggers. As the rolling stage progressed,
moment and corresponding roll rotation were increased in a stepwise manner, allowing the
change of roll rotation to be measured at each load increment.

Individual roll loads were applied iteratively to induce moment on the bearing pad, first
gradually increasing the upward load to the x-negative outrigger until a specific target was
reached, and then by increasing the downward load to the x-positive outrigger until the loads
being read by both roll load cells (Lxpos and Lxneg) were equal. A representative load time
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history measured by the roll load cells (Lxpos and Lxneg) during a roll stiffness test is shown in
Figure 4.10. Throughout the roll stage of each test, the method of roll load application was
load-controlled. A hydraulic jack provided the upward load to the x-negative outrigger
(Figure 4.9a), which was increased gradually until a specific load difference was read between
the two roll load cells. With the hydraulic jack locked off, the displacement of the x-negative end
of the outrigger was maintained while load was applied to the x-positive end of the outrigger. A
nut was threaded downward to bear against the end of the x-positive outrigger (Figure 4.9b); the
downward displacement produced was dependent upon the number of turns of the nut. As the nut
was turned, load increased in load cell Lxpos and load decreased in load cell Lxneg
(Figure 4.10). By turning the nut until both roll load cells read equal loads (to within an
acceptably small tolerance), a pure moment was induced on the bearing pad about its centerline.
When the loads in both roll load cells were equal, a data point was recorded to indicate pure
moment application to the bearing pad (Figure 4.10). Multiple sets of moment and roll angle
were imposed using this iterative process, allowing moment to be measured as a function of roll
rotation, to ultimately determine the roll stiffness of a bearing pad.

During the rolling stage, an increase in axial load occurred as the tube “lifted off” of the
bearing pad. To maintain constant axial load during the clamp stage (to within the acceptable
tolerance of +/-5% of the target axial load), the piston of the hollow core jack was manually
adjusted (extended or retracted).

A representative load-time history graph of axial load during a roll stiffness test
(measured by the tripod of load cells L1, L23 and L4) for a non-sloped case is shown in
Figure 4.11. Data points are shown, which indicate a pure moment applied to the bearing pad.
The first data point on the graph marks the end of the clamping stage, before the rolling stage
(axial load fully applied, zero moment applied). As shown, at the first data point, approximately
50% of the axial load was distributed to load cell L23 and 25% of the load was distributed to
each of the load cells L1 and L4. This distribution indicated that the resultant position of the
axial load was centered within the bearing pad. As the roll stage progressed, load decreased in
load cell L23 and increased in both L1 and L4. This action indicated that, as the roll loads were
increased, the resultant of the axial load became increasingly eccentric towards the x-positive
edge of the bearing pad. The tests ended when the bearing pad moment-roll graph significantly
softened or the load measured by load cell L23 dropped below 15% of the total axial load
applied.
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Figure 4.8. Applying loads to outriggers during rolling stage

Figure 4.9. Photographs of ends of outriggers during rolling stage:
a) Hydraulic jack, x-negative end; b) Displacement system, x-positive end
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CHAPTER 5
BEARING PAD TEST SPECIMENSAND DETAILS

5.1 Bearing padstested

Composite bearing pad details for prestressed concrete girder cross-sections are specified
in the Florida Department of Transportation (FDOT) Design Sandards, Index No. 20500 (FDOT
2010a). The three different pad sizes (denoted A, B, and C; Figure 5.1, Table 5.1) tested for roll
stiffnesses in this study were those typically used in conjunction with the American Association
of State Highway and Transportation Officials (AASHTO) Type V and VI sections as well as the
Florida Bulb-Tee sections (FDOT 2010a). Basing the standard bearing pad sizes on girder cross-
section, the AASHTO Type V and VI and Florida Bulb-Tee sections are often used in long-span
configurations, making them more prone to girder instability than the smaller sections. Two
specimens of each pad type were tested, for a total of six specimens (denoted Al, A2, B1, B2,
C1, and C2), so that the repeatability of the test results could be evaluated.

Although the FDOT Design Sandards (FDOT 2010a) specify required shear moduli for
the standard bearing pads, the AASHTO LRFD Bridge Design Specifications Table 14.7.5.2-1
(AASHTO 2004) provides a relationship between shear modulus and durometer hardness. To
determine whether the bearing pads acquired for this study were manufactured in accordance
with the FDOT requirements, the durometer hardness of each specimen was measured. The
measured values were then compared to the equivalent durometer hardnesses that were
determined to match the shear moduli specified by FDOT. It was found that each specimen had a
measured durometer hardness equal to or exceeding the FDOT requirements (Table 5.1), except
specimen C2. In addition to confirming durometer hardness, prior to the end of the test program,
external elastomer cover material around the edges of bearing pads C1 and C2 was trimmed off
to visually confirm the thicknesses of the internal elastomer layers (Figure 5.2). Both of the
bearing pads modified through this trimming process—referred to as pads Clmod and C2mod to
distinguish from the original, unchanged pads C1 and C2—had internal elastomer layers of
uniform thickness that were within +/-0.12 in. of the tolerance suggested by the National
Cooperative Highway Research Program (NCHRP) Report 449 (Yura et al. 2001) and AASHTO
M251 (1997).
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Figure 5.1. Identification of bearing pad dimensions (see Table 5.1 for actual
dimensional values)

Table 5.1. Bearing pad dimensions, shear modulus, and
durometer hardness for each specimen

Bearing pad type
A B C
Bearing pad length, L (in.) 11 14 12
Bearing pad width, W (in.) 24 24 23
Bearing pad height, H (in.) 1-29/32 2-9/16 2-9/16
Number of internal plates 3 4 4
Shear modulus (psi) 110 110 150
Equivalent durometer hardness (Grade) 50 50 60
Bearing pad specimen Al A2 B1 B2 Cl C2
Measured durometer hardness (Grade) 53 50 53 52 61 53
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Figure 5.2. Modified type C bearing pad, Perimeter elastomer cut away to enable visual
confirmation of steel shim thicknesses and locations

5.2 Test matrix

Each bearing pad specimen was first tested under non-skewed, non-sloped conditions and
then tested under different combinations of skew and slope to determine the effect of each on
bearing pad roll stiffness. Girder camber construction tolerances are capable of producing an end
slope of approximately 0.02 rad, but bridge grade can potentially increase this value if not
properly offset by sloping the beam seat. The maximum skew angle that is recommended by the
FDOT before a circular bearing pad should be considered is 45 deg. Therefore, maximum slope
angle tested was conservatively taken as 0.04 rad. (based on camber, construction tolerance, and
bridge grade) and the maximum skew angle tested was 45 deg. At the extreme, a combination of
both 0.04 rad. of slope and 45 deg. of skew was tested. Intermediate slope angles of 0.02 rad. and
0.03 rad. were also included in the study to quantify roll stiffness reduction as a function of slope
severity.

The naming system used to identify each configuration tested was T-x-y, where x=skew
angle (deg.), and y=slope angle (rad.). For example, test configuration T-45-04 refers to a test
performed at a 45 deg. skew angle and a 0.04 rad. slope angle. Bearing pad specimen identifiers
(A1, A2, B1, B2, C1, C2) were also combined with configuration indicators to identify specific
tests. For example, A1-45-04 refers to a test performed on bearing pad specimen A1l at a 45 deg.
skew angle and a 0.04 rad. slope angle. When discussing an averaged value—such as roll
stiffness—between two specimens, A-45-04 refers to the average value of all tests performed on
A1-45-04 and A2-45-04.

Using this naming convention, the skewed and sloped test conditions that were conducted
on each bearing pad are presented in Table 5.2, in which an “X” indicates that tests were
performed in that given configuration. Multiple (2-5) test repetitions were performed in each
configuration and on each specimen to ensure repeatability of the test device and results. A total
of 108 isolated bearing pad roll stiffness tests were performed. Individually determined axial
load levels were assigned to each bearing pad type (A, B, C) to ensure similar bearing pad axial
pressures, regardless of bearing pad size. Also, while all pad configurations were tested under
high axial load (pressure), for cases B1-0-0, B2-0-0, and C1-0-0, additional low load (pressure)
tests were also performed.
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Table 5.2. Configurations tested for each specimen

Bearing pad specimen

Al A2 Bl B2 Cl C2
Low axial load level (kip) - - 67 67 69 -
High axial load level (kip) 92 92 101 101 97 97
Test Configuration T-0-0 X X X, X*
Test Configuration T-0-02 X X X*
Test Configuration T-0-03 X X*
Test Configuration T-0-04 X
Test Configuration T-45-0 X X X
Test Configuration T-45-02 X X X
Test Configuration T-45-04 X X X

* test configuration performed on modified bearing pad
5.3 Repeated axial compression

Prior to conducting this study, it was not known whether repeated loading, which is
known to cause softening of neoprene when loaded in shear (Gent 2001), would affect the roll
stiffness results obtained. Cyclic softening of neoprene under shear loading is called the Mullins
effect and is recognized by the American Society for Testing and Materials (ASTM) as a
phenomenon that must be accounted for when experimentally determining the shear modulus of
a bearing pad (ASTM 2003). Although there is no ASTM requirement for testing a bearing pad
cyclically in compression, it was deemed necessary to do so in this study to determine if a similar
effect occurred when testing for roll stiffness. Multiple tests were performed on each bearing pad
specimen, and in each configuration, however significant softening of the bearing pad was never
observed. Therefore, it was concluded that no axial softening phenomenon, similar to the Mullins
effect for shear, was present at the axial load levels used in this test program.

5.4 Variation of axial compression load

As noted previously, selected roll stiffness tests were performed at both low and high
axial loads to determine whether variations in axial load would affect bearing pad roll stiffness.
The low and high loads assigned to each bearing pad type were chosen to approximate the self-
weight end reactions of the Florida Bulb-Tee 72 and 78 sections, at the longest length reasonable
for current design practice (Consolazio et al. 2007). At the maximum practical span length of
140 ft, the end reaction of the Florida Bulb-Tee 72 was used as the low axial load, whereas the
end reaction of a Florida Bulb-Tee 78 with a span of 160-180 ft was used as the high axial load.
Roll stiffness test results indicated that, over an axial load range that is typical of field
conditions, bearing pad roll stiffness varied only moderately as a function of axial load level
(average roll stiffness at low load was approximately 22% smaller than roll stiffness at high
load). Ultimately, the high axial load level was chosen for the remainder of the test program, to
represent the self-weight of a long-span Florida Bulb-Tee 78.
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CHAPTER 6
BEARING PAD TEST RESULTS

6.1 Results

For a given girder cross-section, span length, and bearing pad type, girder stability is
greatest when bearing pad roll stiffness is maximized. Ideal conditions for maximizing bearing
pad roll stiffness correspond to the T-0-0 (non-skewed, non-sloped) configuration included in the
test program. Confirming the ideal nature of the non-skewed, non-sloped configuration, the T-0-
0 test results for each pad always had a higher initial roll stiffness than pads tested in the most
severe non-ideal configuration, T-45-04 (45 deg. skew, 0.04 rad. slope). In Figure 6.1, a
representative set of moment-rotation results, obtained from testing of pad B2 in the T-0-0 and
T-45-04 configurations, illustrates the extent to which roll stiffness may be reduced by the
introduction of non-ideal conditions. Performed on the same bearing pad specimen and at the
same axial load level, the tests that generated the results shown in Figure 6.1 differed only in
skew and slope. As will be demonstrated later, intermediate configurations (e.g. T-45-0, skewed
but not sloped) had, on average, roll stiffnesses that fell between the two extreme cases (ideal:
T-0-0 and severe: T-45-04).

Moment-rotation curves obtained for all roll stiffness test performed in this study,
grouped by bearing pad specimen, are presented in Figure 6.2. Generally, the moment-rotation
curves for the intermediate cases fell between the two extreme cases (T-0-0 and T-45-04), with
good repeatability of the data within each specimen and configuration. Whereas tests with zero
slope generally exhibited both linear and nonlinear portions of the moment-rotation curve, most
of the tests with non-zero slope exhibited moment-rotation curves that remained essentially
linear throughout the entire test.

70
60 ® ® T.0-0Linear portion
O O T-0-0 Nonlinear portion
~ 50 T-0-0 Linear regression
"a A A T45-04 Linear portion
2 40 — 7 T-45-04 Linear regression
E 30
£ s
= 20 o A
oA KlA k -45-04
10 o
0
0 0.005 0.01 0.015 0.02 0.025

Roll (rad.)

Figure 6.1. Representative moment-rotation curves, configurations T-0-0 and T-45-04
(obtained from testing bearing pad B2)
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Figure 6.2. Moment-rotation curves for all tests, grouped by pad specimen:
a) pad Al; b) pad A2; c¢) pad B1; d) pad B2; e) pad C1; f) pad C2
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6.2 Data curvefitting

As shown in Figure 6.1, data from the ideal case exhibit an initial, linear roll stiffness that
is followed by an apparent softening (reduction in stiffness) at larger roll angles. This stiffness
reduction corresponds to the upper bearing plate of the test device gradually losing contact with
the pad and eventually “rolling off” the pad. With regard to the calculation of girder buckling
capacity, it is the initial, linear roll stiffness of the bearing pad—and therefore the slope of the
initial, linear portion of the moment-rotation (roll) curve—that is of primary importance. Hence,
an algorithm was established to consistently determine the number of points contained within the
initial, linear portion of each moment-rotation data set obtained.

For a single data set, Gaussian kernel smoothing was used to trend the data, removing the
oscillations between data points (Figure 6.3). Subsequently, tangent lines were generated (using
finite difference expressions for derivatives) for the smoothed curve at the x-values
corresponding to the data points of the original data set. Separately, a linear regression line was
generated using a truncated data set that included only the points that fell below 50% of the
maximum moment recorded for that data set, excluding the first point (points 2-7 for the example
data set, as shown in Figure 6.3a). The first data point was excluded in the linear regression line
generation because of potential ‘take-up’ in the bearing pad test device that could affect the
correct fitting of the regression line (particularly in the combined skewed, sloped cases). Then,
the slope of the linear regression line was compared to the slope of the tangent line at the last
point considered in the truncated data set. For example, for the data set presented in Figure 6.3a,
the slope of the linear regression line fit through points 2-7 was compared to the slope of the
tangent line at point 7. If the two slopes differed by less than 15%, an additional point was added
to the truncated data set, and the regression was recomputed. For example, if points 2-7 were
used to generate the first regression line (Figure 6.3a), points 2-8 were used to generate the next
regression line (Figure 6.3b). This procedure of generating regression lines, and using an
additional data point for each iteration, was repeated until the slopes of the two lines differed by
greater than 15%. The points used to generate the last regression line with slope within 15% of
the tangent slope were then considered to represent the linear portion of the curve. Figure 6.3¢
illustrates the difference in slopes once the moment-rotation curve begins to soften as the test
device rolls off the pad. The roll stiffness (k;) of each bearing pad was defined as the slope of the
linear regression line through the initial, linear portion of the moment-rotation curve (Figure 6.1).
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6.3 Location of pressureresultants on bearing pads

Initial roll stiffness, as well as whether a bearing pad exhibited linear or nonlinear
behavior, depended upon the location of pressure resultants on the bearing pad. Under conditions
of combined skew and slope, significant reductions in roll stiffness were clearly evident from the
test data. Such reduction of stiffness occurred due to the eccentricity of the pressure resultant of
the axial load on the bearing pad. As the bearing pad test device rolled on a bearing pad, the
pressure distribution on the pad became more concentrated on the side of the pad that
corresponds to the direction of roll. This caused the location of the pressure resultant to move as
well, becoming increasingly eccentric from the centerline of the test device (representing a
girder) with increasing roll angle.

Figure 6.4 presents pressure distributions and pressure resultant locations at various
stages of roll angle leading ultimately to girder instability. In the non-skewed configurations
(Figure 6.4a and Figure 6.4b) a large eccentricity between the girder centerline and the pressure
resultant is available to resist overturning moment applied during girder roll. In contrast,
although the skewed, non-sloped case (Figure 6.4c) begins with a concentric loading similar to
the non-skewed, non-sloped case (Figure 6.4a), a smaller eccentricity develops during girder roll,
thereby decreasing the roll stiffness. The smallest available eccentricity occurred under the
skewed, sloped configuration (Figure 6.4d), which also produced the least roll stiffness. For
configurations in which the moment-rotation curves were nonlinear, the eccentricity was most
important at intermediate roll angles where the response transitioned from linear to nonlinear. At
the point of girder instability, the instantaneous eccentricity was an indicator of the secant
stiffness at the corresponding roll angle, which was why the non-skewed cases (with larger
eccentricities) exhibited larger overall stiffnesses than did the skewed cases (recall Figure 6.2).
The presence of an eccentric pressure distribution at the end of the rolling stage of tests
conducted in the non-skewed, non-sloped configuration (Figure 6.4a) is evidenced by bulging at
the edge of the pad, as shown in Figure 6.5.

Linearity of the moment-rotation curve from each test was controlled by the portion of
the bearing pad that remained in contact with the girder as it became unstable. In sloped
configurations, a larger portion of the bearing pad—opposite the direction of girder roll—
remained in contact with the girder than in the non-sloped configurations. Losing contact with
the girder on the side of the pad opposite the direction of girder roll caused nonlinearity in the
moment-rotation curve.
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Figure 6.5. Bulging of the internal elastomer layers during roll stiffness test

6.4 Data trends

Individual roll stiffnesses, determined from each test conducted in this study, are shown
in Figure 6.6, together with mean values computed for each combination of bearing pad type,
skew, and slope. For convenience, the mean roll stiffness for each combination of pad type,
skew, and slope are also reproduced in Figure 6.7. Table 6.1 presents corresponding roll stiffness
reductions due to combinations of skew and slope as compared to the ideal T-0-0 configuration.
Excluding the A-0-02 mean results, within each bearing pad type, the ideal case (T-0-0) had the
largest roll stiffness, and the extreme skew and slope case (T-45-04) had the smallest roll
stiffness, with intermediate configurations producing roll stiffnesses falling between the two.
Examining Figure 6.7, the roll stiffness of the type C bearing pads was generally decreased after
the modification of the bearing pads (C-0-0 to Cmod-0-0), which can be attributed to the

trimming of the outer layer of rubber.
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Figure 6.6. Bearing pad roll stiffnesses for all configurations tested
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Figure 6.7. Mean bearing pad roll stiffnesses for all configurations tested

Table 6.1. Mean roll stiffness and reduction in roll stiffness due to
non-ideal (skewed, sloped) conditions

Roll stiffness, kip-ft./rad.
[Roll stiffness reduction]

Configuration Pad A Pad B Pad C Pad Cmod
T-0-0 7004 11427 9737 6079
[0%)] [0%)] [0%)] [38%]*
T-0-02 8597 7282 i 5810
[-23%)] [36%] [4%]
5291 5490
T-0-03 - -
[54%)] [10%]
5360
T-0-04 - - -
[23%]
4067 5661 4490
T-45-0 -
[42%] [50%] [54%]
T-45-02 1740 1610 1764 i
[75%] [86%] [82%]
T-45-04 1339 1416 1372
[81%)] [88%] [86%]

*indicates roll reduction due to modification of pad, ideal configuration

6.4.1 Effect of skew and slope combined

The combination of skew and slope produced the most severe reduction of roll stiffness.
When slope was combined with skew, the average reductions of roll stiffness—relative to the
ideal T-0-0 case—for configurations T-45-02 and T-45-04 were 81% and 85%, respectively.
This indicates that reducing the slope angle from 0.04 rad. to 0.02 rad. had little benefit if skew
was also present. Furthermore, comparisons of results from test configurations T-45-02 and
T-45-04 for each pad type (i.e., A-45-02 vs. A-45-04, B-45-02 vs. B-45-04, C-45-02 vs.
C-45-04) reveal that the roll stiffnesses decreased only slightly when moving from the T-45-02
to the T-45-04 condition.
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6.4.2 Effect of skew

Comparing test results for configurations T-0-0 to T-45-0 in Figure 6.7, it is evident that
significant reductions in bearing pad roll stiffness resulted from the presence of skew only,
regardless of specific bearing pad type (A, B, C). Average roll stiffness reduction due to skew
alone for all of the bearing pad types was 49%, with little variation in percent reduction when
comparing different pad types.

6.4.3 Effect of sope

There was an inconclusive trend in the roll stiffness reduction due to imposed slope angle
alone. A reduction in roll stiffness due to increasing slope was observed in the type B bearing
pads (i.e. the roll stiffness decreased from B-0-0 to B-0-02, and from B-0-02 to B-0-03).
However, for the modified type C bearing pads, when comparing the ideal (Cmod-0-0)
configuration to sloped configurations (Cmod-0-02 and Cmod-0-03), insignificant reductions of
stiffness resulted from imposed slope angle. [Note that roll stiffness reductions due to slope
alone, as produced by configurations Cmod-0-02 and Cmod-0-03, were calculated in comparison
to Cmod-0-0 (as opposed to C-0-0)]. Roll stiffness reduction due to slope was also inconclusive
due to results obtained from the type A bearing pads, where the roll stiffness increased from
A-0-0 to A-0-02, but decreased from A-0-0 to A-0-04. However, this apparent anomaly may be
related to the fact that the range of scatter in the data obtained for configuration A-0-02 was
greater than that of any other configuration tested on the type A bearing pads (Figure 6.6).
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CHAPTER 7
INTRODUCTION TO GIRDER BUCKLING TESTS

7.1 Introduction

The point at which a girder may reach instability in the field, during construction of a
bridge, is dictated by several factors, including cross-sectional properties of the girder, span
length, geometric imperfections such as sweep, and bearing pad roll stiffness. As discussed
previously in Chapter 6, bearing pad roll stiffness is significantly reduced when skew, slope, or a
combination of the two is imposed on a pad. In a previous analytical study (Consolazio et al.
2007), it was shown that imposition of skew and/or slope—resulting in reduced bearing pad roll
stiffness—Ileads to decreased girder buckling capacity. In the phase of the present study that is
described in this and following chapters, a full-scale girder buckling test program was designed
and conducted to experimentally quantify the influence of bearing pad roll stiffness on girder
buckling capacity.

7.2 Scope of test program

The scope of the experimental girder buckling test program included the design and
construction of: a full-scale test girder; a vertical loading system (consisting of gravity load
simulators); and end supports that enabled various combinations of slope and skew to be
imposed on the supporting bearing pads (Figure 7.1). The pads used to support each end of the
test girder were the same pads previously tested—to determine roll stiffness—in the first phase
of this study (described in previous chapters). Rigid end supports elevated the test girder
approximately 8 ft. above the lab floor to provide vertical clearance for gravity load simulators
that were positioned beneath the beam (Figure 7.1). Each gravity load simulator (described in
detail later) applied vertical load to the test girder in a manner that did not introduce any lateral
stiffness (restraint). In total, nine (9) buckling tests were conducted, with various skew and slope
conditions imposed on the supporting bearing pads. Analytical models corresponding to the test
setup were developed and used to simulate the experimental buckling tests. Validation of the
models was then carried out by comparing buckling capacities quantified from analytical
simulations to experimental test results.
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Test girder

Applied load (P)

Gravity load
simulators

End block

Figure 7.1. Overview of test setup

7.3 Experimental constraints
7.3.1 Length of test girder

Buckling tests were performed inside the FDOT M. H. Ansley Structures Research
Center laboratory where the available length the strong floor permitted a maximum physical test
girder length of 102 ft. With the overall (end to end) girder length limited to 102 ft., the effective
girder span length—as measured from center of bearing pad to center of bearing pad—had to be
a few feet shorter to accommodate pad skew at each end of the girder (Figure 7.2). For each pad
skew angle tested, both bearing pads had to be completely contained within the footprint of the
girder end blocks (i.e., no part of the pad was permitted to protrude beyond the end of the
physical length of girder). For reasons that will be discussed in detail later, the type A bearing
pads (described previously in Chapter 5) were used to support the ends of the girder during the
buckling tests. Rotating the type A bearing pad to the maximum skew angle of 45 deg. and
allowing 5/8 in. clearance between the corner of the pad and edge of the girder end block
(Figure 7.2), required that the center of the bearing pad be located 13 in. from the edge of the test
girder, making the span length 99 ft.-10 in., or approximately 100 ft.
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Type A bearing pad End block
5/8” 45 deg. (maximum bearing\
Aﬁk fpad skew angle tested)

Span length (99°-10”)

Physical length (102”)

Figure 7.2. Physical length and span length defined

7.3.2 Loading conditions

Under field loading conditions, girder buckling is induced by the self-weight of the
girder, which consists of a uniformly distributed vertical load acting through the center of gravity
of the girder cross-section. To emulate such field loading conditions in the laboratory, ideally a
uniform load would be applied, with no lateral restraint, through the center of gravity of the
girder. In this study, devices called ‘gravity load simulators’ (described in detail later) were
designed, fabricated, and used to apply vertical loads—without lateral restraint—to the test
girder. Since such devices apply point loads rather than uniformly distributed loads, the uniform
field loading condition was approximated in the laboratory using two point loads located
approximately at the third points of the girder span (Figure 7.1).

Originally, two possible loading conditions were investigated to determine the level of
error that would be introduced by replacing the ideal uniform loading condition with point loads:
a single concentrated load applied at midspan, and two equal concentrated loads applied at the
third points. For each of the three loading conditions of interest (uniform load, midspan point
load, and third point loads), moment diagrams for a simply supported beam, each with the same
maximum moment, are presented in Figure 7.3. As shown, the shape of the uniformly loaded
moment diagram is most closely matched by the pair of concentrated loads as opposed to the
single concentrated load. In fact, the areas under the moment diagrams produced by uniform load
and third point loads are exactly equal. Therefore, two point loads were applied to the test girder
using gravity load simulators located approximately at the third points of the girder (applying
loads at the precise third points was not practical due to laboratory strong floor anchor point
locations).
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Gravity induced self-weight loads on the girder act, by definition, through the center of
gravity of the cross-section. Applying laboratory loads through the center of gravity, however,
would have required the introduction of holes through the web of the test girder, creating issues
such as the potential for localized crushing of the concrete in the web, or cracking. To avoid
these concerns, the point loads were instead applied at the centerline of the top surface of the test
girder (Figure 7.1). Finite element analyses of both the center of gravity loading scenario and the
top surface loading scenario were conducted to determine if the buckling loads corresponding to
each loading scenario were sufficiently in agreement. Analysis results indicated minimal
difference in buckling loads, therefore it was deemed acceptable to load the test girder at the top
surface of the top flange.

7.3.3 Elastic buckling

The buckling tests conducted in this study were performed for the purposes of
experimentally demonstrating sensitivity of buckling capacity to changes in bearing pad roll
stiffness, and to collect data for validation of numerical models. Furthermore, to establish
confidence in the experimental data, it was desirable to demonstrate repeatability of the test
results. Given these objectives, cracking of the concrete girder (particularly partial section
cracking) was undesirable as it might have obscured the influence of the pad roll stiffness and
would have been very challenging to reproduce analytically. Additionally, section cracking could
have lead to differences in beam response from one test repetition to the next (for a fixed bearing
pad configuration). American Concrete Institute (ACI) 318-11 Table R18.3.3 states that if a
girder enters the transition zone (i.e., the zone between the uncracked and fully cracked
conditions), then cracked section properties must be used to determine girder deflection. Since
deflection was a key parameter measured during each laboratory buckling tests, it was desirable
to design the test girder to buckle elastically so that partially cracked section properties would
not need to be used in interpreting the test results. Elastic behavior also ensured repeatability of
the tests (which will be clearly demonstrated later in this report) and ensured that the only factor
influencing buckling capacity was bearing pad roll stiffness.
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CHAPTER 8
GIRDER BUCKLING ANALYSIS

8.1 Introduction

To facilitate the design of a test girder cross-section that would buckle elastically at a
span length of approximately 100 ft., finite element models of the girder and support system
were developed using the finite element code ADINA (ADINA 2011). Girder models employing
a variety of different trial cross-sectional shapes were analyzed under the planned experimental
test loading conditions to arrive at a cross-sectional shape that was expected to buckle elastically
at a span length of 100 ft. This chapter describes the finite element models and the analysis
procedures that were used to quantify girder buckling load and arrive at a suitable girder cross-
sectional shape.

8.2 Finite element model of experimental test setup

As noted previously, buckling tests were performed on a full-scale test girder using a
vertical loading system consisting of gravity load simulators and load frames. For reasons that
will be discussed later in this report, it was necessary to construct the test girder in a segmental
manner. Consequently, three component types, each with a distinct cross-sectional shape, were
used to form the overall girder: precast segments, closure strips, and end blocks (Figure 8.1).
Gravity load simulators were used to apply vertical load to the top of the test girder at the closure
strip locations.

Precast segment

Load frame

Closure strip
Gravity load simulator

Precast segment

Load frame

End block

Gravity load simulator

Bearing pad

Figure 8.1. Test setup overview
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To determine a girder cross-sectional shape that would buckle elastically at a 100 ft span,
buckling capacity analyses were carried out by conducting large displacement analyses on
system-level models (Figure 8.2) that combined beam elements (representing the test girder) and
spring elements (representing the bearing pad). In this approach, loads were incrementally
applied to the structure, and at each level of loading, static equilibrium of the structure (stability)
was solved for in the deformed configuration of the structure (i.e., taking into account the
changes of geometry that occurred as a result of the loads). In order to use such an approach to
solve buckling problems, member imperfections (e.g., sweep) must be introduced into the initial
configuration of the structure. Sweep imperfection of the girder was introduced by
superimposing a second order lateral parabolic shape on the girder with maximum sweep
occurring at midspan. Inclusion of sweep in the girder model accounted for construction
imperfections and also aided in initiating girder instability under the applied loads.

Concrete components of the test girder were modeled using a linear elastic material
model. During the test girder cross-sectional shape development stage of this project, a
representative elastic modulus of 4,770 ksi was used for the concrete. This modulus was later
updated to reflect results of modulus tests on concrete cylinders from the test girder.

To achieve both computational efficiency and accuracy, a combination of standard
Hermitian beam elements and warping beam elements was used to model the girder. Warping
effects (resulting from torsion) were accounted for by means of an additional warping degree of
freedom in the warping beam elements. In contrast, plane sections remained planar in the
Hermitian beam elements. The slender precast segments and closure strips were modeled with
warping beam elements to capture warping effects (in case such effects were important). The
relatively rigid end blocks were modeled using Hermitian elements. Regardless of type of
element (Hermitian or warping), resultant cross-sectional properties were varied along the length
of the test girder, depending on the section (precast segment, closure strip, or end block) present
at each location (Figure 8.2). The girder elements were geometrically located at the center of
gravity (C.G.) of the test cross-section. The eccentricity between the bearing pad (described
below) and the C.G. of the section was represented in the model using rigid links (Figure 8.3).
Similarly, rigid elements extended upward to loading points at the top surface of the physical
beam. Vertical point loads were applied to these locations to simulate vertical loads applied by
each gravity load simulator.

Each bearing pad in the system model was represented using a set of six (6) spring
elements consisting of three translational springs and three rotational springs (Figure 8.2).
Translational springs—representing the shear stiffness of the bearing pad (along the x-axis or
y-axis) and axial stiffness (along the z-axis)—were linear and based on stiffness results from
previous research (Consolazio et al. 2007). Similarly, rotational springs representing pad
torsional stiffness (about the z-axis) and roll about an axis perpendicular to the span of the beam
(about the x-axis) were modeled as linear springs, with stiffnesses determined from results of
previous research (Consolazio et al. 2007). In contrast, rotational springs about the y-axis (i.e.,
the roll axis) were nonlinear, derived from roll stiffness results (moment-roll curves) quantified
in Chapter 6, from the isolated bearing pad experiments.
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Figure 8.2. Test girder buckling system model
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Loads acting on the girder model included uniform self-weight (gravityw loading), which
acted through the center of gravity of the section (Figure 8.4a), and concentrated vertical loads
applied to the top of the section at the two closure strip locations (Figure 8.4b). To analyze the
girder for the purpose of quantifying buckling capacity, loads were applied to the model in two
stages (Figure 8.5). The uniform loading was increased in small steps (increments) from zero to
the full self-weight of the girder, then held constant while the magnitude of the applied point
loads was incrementally increased. At each incremental load step, girder displacements were
computed by numerically satisfying static equilibrium of the girder in the deformed geometric
configuration. Each buckling simulation was complete once equilibrium could no longer be
established, indicating that structural instability (buckling) had occurred.
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Figure 8.5. Load procedure for buckling analysis

41



CHAPTER 9
TEST-GIRDER CROSS-SECTION DEVELOPMENT

9.1 Introduction

Under ideal circumstances, buckling tests would be performed on a typical section used
in long-span girder construction. During the course of this project, the standard section for
long-span construction was updated from the Florida Bulb-Tee (FBT) to the current Florida
I-beam (FIB). Using the same pad types tested in the roll stiffness experiments, finite element
buckling analyses were performed with the cross-sectional properties of several of the FBT and
FIB sections. In the case of the non-skewed, non-sloped bearing pad orientations, the load
required to buckle either type of section at the available test span length of 100 ft would cause
significant cracking in the girder. To avoid violating one of the initial test setup constraints (the
girder must remain in the uncracked zone), alternative cross-sections were explored that would
buckle elastically in the laboratory at a 100 ft. span length. Preliminary analysis indicated that
the resulting test cross-section would need to be significantly more slender than a typical FBT or
FIB section. To limit stresses induced during transportation, the test girder was composed of
three individual prestressed precast segments, that were transported on a flatbed truck.

Using segmental construction, post-tensioning was used to form a continuous test girder
of the prestressed precast segments, closure strips, and end blocks (Figure 9.1). At the junction
between each precast segment was a closure strip, which served as a means of connecting the
precast segments together and also served as the location at which concentrated point loads
would be applied. End blocks were used to provide sufficient bearing surface areas for the
bearing pads located at the ends of the test girder, and to provide anchorage points for the
post-tensioning. The remainder of this chapter details each component of the segmental test
girder and summarizes the basis for design of each component. Complete construction drawings
for the test girder can be found in Appendix B.

Closure strips: provide sectio
for post-tensioning bar couplers,
and location of concentrated

nitrd Prestressed strand (cast
loads application

into precast segments)

Post-tensioning bars continuous
throughout test girder (composed
of precast segments, closure pours,

Bar coupler and end blocks)

End blocks: provide sufficient bearing
surfaces for pads, and provide an
anchorage point for post-tensioning

———— Prestressed strand
Post-tensioning bars

Figure 9.1. Exploded view of test girder with prestressing shown
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9.2 Precast segment cross-section design
9.2.1 Design of girder cross-section

Several analytical tools were used in the test girder design process to determine
cross-sectional properties of trial cross-sections (Mathcad), predict buckling loads (the finite
element analysis software package ADINA), and calculate stresses throughout the test girder
using the predicted buckling loads (Mathcad). The procedure for designing the test girder
cross-section is summarized in Figure 9.2. Beginning with the standard Florida Bulb-Tee
cross-section, a buckling analysis was performed. The strong and weak axis internal moments
obtained from the buckling analysis (due to the loads required to cause buckling) were used to
calculate concrete stresses along the length of the test girder, which also accounted for stresses
due to prestressing. These stress calculations were performed at various stages in the life of the
test girder: during prestressing, during transport, and during testing. The calculated stresses at
each stage were compared to the transition zone tensile and compressive stress limits required by
the FDOT Structures Design Guideline (FDOT, 2012) §4.3.1.C.3 and ACI318-11 §18.3.3,
§18.4.1, and §18.4.2. If the calculated stress at any point exceeded these stress limits, then the
trial cross-section design was rejected and a new cross-section was developed. A separate cross-
sectional analysis program was used to determine cross-section properties (e.g., moments of
inertia, torsional constant, warping constant) of trial sections by specifying the cross-section
geometry. The cross-sectional properties of the new trial section were subsequently incorporated
into the buckling model, and the process of determining the internal moments and checking
stresses was repeated.

Following this iterative process, several different test cross-sections were designed and
evaluated to check for exceedance of permissible stress limits. For each iteration, the
cross-section was altered to decrease the buckling capacity of the test girder, thereby decreasing
the stresses in the test girder. In general, for long-span slender flexural elements, buckling
capacity is highly sensitive to the weak axis moment of inertia (I;) and torsional constant (J), in
that decreasing either property decreases the buckling load. Hence, maintaining a large strong
axis moment of inertia (Iy)—and therefore maintaining a large strong-axis moment capacity of
the test girder—was necessary to avoid cracking under the applied buckling load.

The process of increasing slenderness and reducing buckling capacity was initiated with
the standard FBT78 cross-section, where portions of the protruding top and bottom flanges were
removed (Figure 9.3). An iterative trimming process was carried out in which each subsequent
section was designed to be less wide than the previous iteration, while the height remained
unchanged, effectively reducing the buckling load while maintaining strong axis moment
capacity. Once the flanges were completely removed and the cross-section was still predicted to
crack under the applied buckling load, the web thickness was trimmed as well.
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After several iterations, the slenderness of the cross-section became an issue in regard to
limiting stresses during transport. Typically, if a girder is 100 ft long, it is transported by
spanning between a truck and a trailer thus acting as a simply supported beam (Figure 9.4).
Braces are provided at the ends to tie the girder to the truck or trailer and to brace it against
overturning. In this manner, long-span prestressed girders can be brought to a job site as a single
piece. However, the test girder cross-section in this project was designed to be very slender
(relative to a typical bridge girder), and would have been damaged in transport if the test girder
were cast and transported as a single 100 ft unit. Consequently, the girder was designed to
consist of three segments of approximately equal length to facilitate transport without damage.

= ©

Figure 9.4. Transport of bridge girders (photo courtesy of Dr. Robert I. Carr)

To further optimize the section, the trimming approach was continued until only
minimum concrete cover (as per ACI 318-11 §7.7.3) was provided to the post-tensioning in the
bottom flange. The final precast segment test cross-section (Figure 9.5) was thin (compared to a
typical bridge girder) but as tall as a FBT78, with a small weak axis moment of inertia and
torsional constant, coupled with a large strong axis moment of inertia to prevent cracking during
buckling. Section properties for the final girder cross-section are summarized in Table 9.1.
DYWIDAG galvanized steel duct (2.05 in. outer diameter) cast in each girder segment formed a
conduit to accommodate DYWIDAG post-tensioned bar (1 in. diameter), extending through the
full length of the test girder (Figure 9.1). Pretensioned strands (0.6 in. diameter) were cast in
each precast segment, which provided additional compression at the bottom of the segments to
prevent cracking during transport and testing. The pretensioned strand at the top of the section
was lightly stressed, and served primarily to hang shear reinforcement hooks prior to casting the
concrete segments. Mild reinforcement running along the length of each segment was placed
throughout the depth of the section.
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Figure 9.5. Final precast segment cross-section

Table 9.1. Section properties of precast segments

Section property name Section property value
Area A 405.0 (in.%)
Height of centroid y 38.39 (in.)
Moment of inertia I, 246,400 (in.*)
Moment of inertia I, 1,136 (in.")
Torsional constant J 3,765 (in.")

9.3 Design of closurestrip cross-section

The primary function of the closure strips was to provide adequate cover for
post-tensioned bar couplers and bar coupler housings that were placed between each precast
segment. Typically in segmental construction using post-tensioned bars (as opposed to strands),
the maximum length of bar available is less than the span length, and it therefore becomes
necessary to couple post-tensioned bars together to form longer continuous bars. This approach
was required in the case of the project test girder, because the total girder length was 100 ft and
the DYWIDAG post-tensioned bar was only available in mill lengths up to 60 ft. Acrylic bar
coupler housings (3.2 in. outer diameter) were fabricated and cast in the closure strips to form a
conduit sufficiently large to accommodate DYWIDAG post-tensioned bar couplers (2 in.
diameter). The width of the closure strip (9.5 in.) was controlled by minimum concrete cover
requirements for the bar coupler housings, per ACI 318-11 §7.7.3 (Figure 9.6). Closure strip
cross-sectional properties are presented in Table 9.2. As noted earlier, concentrated vertical loads
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were applied to the top of the test girder using gravity load simulators, at locations corresponding
approximately to the span length third points. In an effort to minimize localized cracking caused
by the application of concentrated point loads, closure strips were located at these loading
locations, which permitted the loads to be applied to a wider cross-section. Embedded steel
plates also served to prevent localized cracking at the top of the closure strips. Grout tubes were
provided for each post-tensioning duct at the closure strips.
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Figure 9.6. Final closure strip cross-section

Table 9.2. Section properties of closure strips

Section property name

Section property value

Area A

741.0 (in.%)

Height of centroid y

39.0 (in.)

Moment of inertia I,

375,700 (in.")

Moment of inertia I,

5,573 (in.")

Torsional constant J

20,640 (in.*)
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9.4 Design of end block cross-section

As noted previously, the end blocks were designed to allow sufficient bearing surface
areas for the bearing pads located at the ends of the test girder, and to provide anchorage points
for the post-tensioning. For each bearing pad skew angle tested, the bearing pads had to be
completely contained within the footprint of the girder end blocks (i.e., no part of the pad was
permitted to protrude beyond the width of the girder end block). Consequently, the width of the
end blocks (Figure 9.7) was selected so that the bearing pads had a large enough area to bear
completely against the end block even at the maximum skew angle tested—a 45 deg. skewed
configuration. The end block cross-sectional shape is presented in Figure 9.8, with cross-section
properties presented in Table 9.3.

Anchorage zone reinforcement required for the post-tensioning bars was cast into the end
blocks. In post-tensioned members, the anchorage zone is defined as the portion of the member
through which the concentrated prestressing force is transferred to the concrete and distributed
across the section (ACI 318-11 §2.2), and is the general expression for combined general and
local zones (AASHTO 2004). In this project, DY WIDAG Systems International (DSI) engineers
supplied specifications for local zone reinforcement (mild steel), including the bar sizes and
configuration, and concrete strength required before stressing the bars. Separately, general zone
reinforcement, was designed by the UF research team for the end blocks, and consisted of a cage
of hoops and ties in both vertical and horizontal orientations. Leveling plates were cast into the
concrete end blocks to provide a bearing surface for the anchor plates provided by DSI. Grout
tubes for the post-tensioning duct protruded from the exterior of the end blocks. Lifting loops
consisting of prestressing strand were cast in the end blocks and were designed to support and lift
the test girder into place for testing after post-tensioning was complete.

45 deg. (maximum bearing
Type A pad skew angle tested)

bearing pad

End block\ \

4L 4L
width =2°-4”

Figure 9.7. End block width, controlled by
bearing pad size and skew angle
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Figure 9.8. Final end block cross-section

Table 9.3. Section properties of end blocks

Section property name

Section property value

Area A 2,184 (in.?)
Height of centroid y 39.00 (in.)
Moment of inertia I, 1,107,000 (in.4)
Moment of inertia I, 142,700 (in.")
Torsional constant J 442,200 (in.")
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CHAPTER 10
TEST GIRDER CONSTRUCTION

10.1 Introduction

The test girder was constructed in a segmental manner, and consisted of three (3) precast
prestressed segments, two (2) closure strips, and two (2) end blocks. The precast segments were
cast at Dura-Stress Inc. in Leesburg, Florida, and shipped to the FDOT M.H. Ansley Structures
Research Center (referred to in this chapter as the FDOT laboratory) in Tallahassee, Florida.
Oriented as shown in Figure 10.1, the closure strips and end blocks were cast in place at the
FDOT laboratory, after which the test girder was post-tensioned and grouted. Cylinders cast
from batches of concrete placed in the end blocks and closure strips were tested for compressive
strength and modulus of elasticity. This chapter documents the construction of the test girder—
including the casting of each section and post-tensioning—and summarizes the material tests
performed on the cylinders cast from each batch of concrete.

North end block
(Poured 2011-08-30)

NORTH

<

EAST

Closure strip
(Poured 2011-08-30)

Precast segment: Exterior B

Closure strip (Poured 2011-05-19)

(Poured 2011-08-30)

Precast segment: Interior
(Poured 2011-05-23)

Precast segment: Exterior A
(Poured 2011-05-18)

South end block
(Poured 2011-08-26)

Figure 10.1. Casting dates for girder components and final orientation of
girder in FDOT laboratory

10.2 Precast segments

All three precast segments were cast on a single bed, with pretensioned strands spanning
continuously throughout all three precast segments (Figure 10.2). Each segment was cast
(Figure 10.3) on a separate day, within five days of each other (casting dates are indicated in
Figure 10.1). Although different concrete batches were used for each segment, the mix design
was the same for all segments, with a specified 28-day concrete compressive strength of
6,500 psi. For each precast segment concrete batch, eleven 4 in. x 8 in. (diameter x height)
cylinders were cast for later use in strength and modulus testing to determine the material
properties of the test girder at the time of buckling tests. Unstressed reinforcing bars were
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temporarily placed in the post-tensioning ducts to increase the stiffness of the ducts while placing
the concrete and to help maintain straight duct alignment (Figure 10.4). After concrete
placement, tarps were draped over each segment during the curing stage (Figure 10.5). Once the
concrete reached the specified strength (verified by testing cylinders from corresponding
batches) required for prestress transfer, the prestressed strands were cut and the segments were
left to cure without a tarp (Figure 10.6). Approximately two weeks after casting the last of the
three segments, Dura-Stress transported the segments on a flatbed trailer (Figure 10.7) to the
FDOT laboratory.

Figure 10.3. Placing concrete in the precast segment formwork
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Figure 10.4. Unstressed reinforcing bars placed in ducts to keep ducts
straight during placing of concrete

Figure 10.5. Tarp covers applied to each segment during curing
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a)

Figure 10.7. Precast segment arrival at the FDOT laboratory:
a) Segments on flatbed trailer; b) End view of segments

10.3 Closurestrips

Closure strips located at approximately the third points of the span of the test girder were
cast in place at the FDOT laboratory (casting dates are indicated in Figure 10.1). DYWIDAG bar
couplers and bar coupler housings (larger diameter duct, to provide space for the bar coupler)
were positioned within the closure strips (Figure 10.8). Bar coupler housings were fabricated
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from acrylic tube—cut in half lengthwise and clamped around duct-transition pieces—to provide
visual confirmation of the location of the couplers within the closure strips. Prior to placing the
concrete, the bar coupler housings were taped to ensure that no concrete seeped into the void
around the couplers (Figure 10.9). Mild reinforcing steel extending from the ends of the precast
segments overlapped inside the closure strips, providing additional continuity to the test girder
(Figure 10.9).

Formwork for the closure strips was fabricated at the FDOT laboratory (Figure 10.10),
and the closure strips were cast in place (Figure 10.11) between the precast segments. The
bottom of the formwork was built up to the same elevation as the bottom surface of the precast
segments, to ensure a flat, continuous bottom surface of the test girder. To protect the concrete at
the top of the closure strips against localized cracking (during subsequent girder testing during
which time concentrated loads would be applied at the closure strip locations), a steel plate was
cast at the top of each closure strip, embedded flush with the top surface of the concrete
(Figure 10.12).

Grout tubes were connected to the coupler housings (Figure 10.9) and passed through
holes in the formwork, allowing the tubes to be accessible after the concrete had cured and the
formwork had been removed (Figure 10.13). Both closure strips were poured on the same day
(2011-08-30), from the same batch of concrete. The concrete poured in the closure strips (and
end blocks) had a specified 28-day concrete compressive strength of 8,000 psi and utilized
Propex Fibermesh® 150 reinforcing fibers (Figure 10.14) to aid in preventing localized section
cracking, particularly at the bottom of the girder. Ten 4 in. x 8 in. cylinders were cast from the
closure strip batch of concrete for later use in strength and modulus testing.

Figure 10.8. Duct couplers located within closure strips (bottom flange of girder)
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Figure 10.10. Closure strip formwork

55



Figure 10.11. Placing concrete into the closure strip formwork

¥

Figure 10.12. Embedded steel plate at top surface of closure strip
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Figure 10.14. Concrete used in closure strip and end block concrete mix,
showing presence of Propex Fibermesh® 150 reinforcing fibers

10.4 End blocks

One function of the girder end blocks was to provide a cross-section capable of
accommodating post-tensioning anchorage zone reinforcement, anchor and leveling plates, and
lifting loops. Like the closure strips, the end blocks were cast in place at the FDOT laboratory.
Figure 10.15 shows the south end block formwork with one side wall removed to expose the
interior details. Lifting loops (composed of prestressing strand) were cast into the end blocks and
were designed to support and lift the completed test girder after it had been post-tensioned.
Anchorage zone reinforcement (Figure 10.16), consisting of mild reinforcing steel, served to
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distribute the concentrated post-tensioning forces more uniformly over the concrete section.
Embedded vertical leveling plates (Figure 10.16) were also cast into the end blocks to provide
bearing surfaces for the post-tensioning anchor plates. Figure 10.17 shows the final configuration
of the formwork for the end blocks, and Figure 10.18 shows concrete being placed in the north
end block.

After formwork removal (Figure 10.19), grout tubes protruded from the faces of the end
blocks so that they were accessible during the post-tensioning operation. Leveling plates cast
flush with the surface of the end blocks are clearly visible in Figure 10.20a (prior to installation
of the post-tensioning anchor plates and anchor nuts). Each of the two end blocks was poured
from a different batch of concrete, on different days (casting dates are indicated in Figure 10.1),
however the mix design for both batches was the same: specified 28-day concrete compressive
strength of 8,000 psi and Propex Fibermesh® 150 reinforcing fibers to aid in preventing
localized cracking. For each end block concrete batch, a minimum of ten 4 in. x 8 in. cylinders
were cast for later use in strength and modulus testing.

Figure 10.15. Open end block formwork revealing mild reinforcement and lifting loops:
a) Side view; b) Isometric view
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Figure 10.16. Anchorage zone mild steel reinforcement in end blocks:
a) Elevation view at top of cross-section; b) Elevation view at bottom of cross-section
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Figure 10.17. Completed end block formwork:
a) South end block; b) North end block

Figure 10.18. Placement of concrete in north end block formwork
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Figure 10.19. End block after removal of formwork

b)

Figure 10.20. Leveling plates and anchor plates at bottom of end block:
a) Embedded leveling plates flush with surface of end block; b) Post tensioning anchor plates
and anchor nuts installed
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10.5 Material testsand properties

Each time a concrete component of the test girder was cast, 4 in. X 8 in. cylinders were
also cast for the purpose of later quantifying material properties. Tests were performed to
determine compressive strength (f ’c) and modulus of elasticity (E) of the cylinders at the time of
the buckling tests. Approximately half of the cylinders were field-cured and the other half were
moist-cured. Field-cured cylinders were cured in the casting yard with the test girder sections for
precast segments and in the FDOT structures laboratory in the case of the closure strips and end
blocks. Prior to removal of formwork from each cast girder component, the corresponding
cylinders remained in plastic molds. After formwork removal, cylinders were demolded and
cured in the open air (field-cured) or fully submerged in a tank of lime water (moist-cured,
Figure 10.21). Several moist-cured cylinders were tested for compressive strength at
intermediate stages of the project (e.g., prior to post-tensioning, to ensure adequate strength
before stressing), the results of which are documented in Appendix C. Compressive strength and
elastic modulus tests were performed within one week of the girder buckling tests (cylinders
tested between 2011-12-08 and 2011-12-12; buckling tests performed between 2011-12-12 and
2011-12-15) to provide data needed for subsequent finite element model validation. Table 10.1
provides a summary of the quantity of cylinders (field and moist-cured) that were tested for
compressive strength and elastic modulus within one week of buckling testing. Specific dates on
which each cylinder material test was performed are documented in Appendix C.

Table 10.1. Summary of cylinder material tests performed within one week of
buckling testing for each girder component

Girder component concrete Moist-cured cylinders Field-cured cylinders Total
Date poured | batch from which cylinders | Compressive | Modulus of | Compressive | Modulus of cylinders
were cast Strength Elasticity Strength Elasticity
2011-05-18 | Precast segment: exterior A 2 3 3 3 11
2011-05-19 | Precast segment: exterior B 2 3 3 3 11
2011-05-23 Precast segment: interior 2 3 3 3 11
2011-08-26 South end block 3 3 2 3 11
2011-08-30 Closure strips 3 3 1 3 10
2011-08-30 North end block 3 3 1 3 10

Compressive strength tests were conducted in accordance with the Sandard Test Method
for Compressive Srength of Cylindrical Concrete Specimens (ASTM C39, ASTM 2001).
Modulus of elasticity tests were conducted in accordance with the Standard Test Method for
Satic Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression (ASTM C469,
ASTM 1994). Compressive strength tests were conducted at the University of Florida (on
2011-12-08), and elastic modulus tests were conducted at the FDOT State Materials Office
(SMO) laboratory in Gainesville, Florida (on 2011-12-09 and 2011-12-12). Average compressive
strengths and elastic moduli measured for each component of the test girder are shown in
Table 10.2. Specific results obtained for individual cylinder tests are documented in Appendix C.
Qualitatively, the majority of cylinders tested for compressive strength (both moist-cured and
field-cured) broke in either a Type 1 (cone) or Type 4 (shear) fracture mode (Figure 10.22).
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Table 10.2. Compressive strength and modulus of elasticity of cylinders tested within one week

of buckling testing

Girder component concrete

Moist-cured cylinders

Field-cured cylinders

Compressive

Modulus of

Compressive

Modulus of

Date poured batch from which cylinders Strength Elasticity Strength Elasticity
were cast

(psi) (ksi) (psi) (ksi)
2011-05-18 Precast segment: exterior A 8200 5150 6340 4620
2011-05-19 Precast segment: exterior B 8520 5200 5830 4770
2011-05-23 Precast segment: interior 7910 5070 7140 4930
2011-08-26 South end block 9120 5380 7510 4850
2011-08-30 North end block 9440 5020 7080 4230
2011-08-30 Closure strips 7580 4750 5260 3630

Figure 10.21. Moist-cured cylinders submerged in a tank of lime water
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Figure 10.22. Typical cylinder failure types observed during compressive strength testing:
a) Type 1 (cone failure); b) Type 4 (shear failure)

10.6 Girder post-tensioning and grouting

The final stage of the segmental construction process involved post-tensioning the
various components of the girder (end blocks, precast segments, and closure strips) together to
form a continuous girder and subsequently grouting the post-tensioning ducts. On 2011-09-20,
the test girder was post-tensioned using a sequence of incremental post-tensioning force
applications (21 in total) that were designed to ensure that the test girder would not crack during
stressing. Each bar was assigned an identification code (Figure 10.23) and stressed incrementally
in the sequence documented in Table 10.3. It should be noted that, because the precast segment
cross-section was so slender, there was concern that even with the use of the stressing sequence
indicated in Table 10.3, incremental eccentric stressing forces might cause the girder to deflect
laterally and crack prior to achieving a final symmetric post-tensioned condition. Consequently,
throughout the post-tensioning and grouting operation, the test girder was braced against lateral
movement at several locations along its length by inserting timber blocking between the girder
and surrounding steel catch frames (Figure 10.24).
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Figure 10.23. Bar identification numbers used during
post-tensioning (south end of girder shown)

Table 10.3. Sequence of incremental post-tensioning forces applied to girder during stressing

Increment Bar forces (kip)

ID 1 ID 2 ID3 ID 4 ID5 ID6
1 19 — — — — —
2 19 — — 19 — —
3 19 — 19 19 — —
4 19 19 19 19 — —
5 31 19 19 19 — —
6 31 19 19 31 — —
7 31 19 31 31 — —
8 31 31 31 31 — —
9 31 31 31 31 6 —
10 31 31 31 31 6 6
11 31 31 31 31 6 30
12 31 31 31 31 30 30
13 64 31 31 31 30 30
14 64 31 31 64 30 30
15 64 31 64 64 30 30
16 64 64 64 64 30 30
17 95 64 64 64 30 30
18 95 64 64 95 30 30
19 95 64 86 95 30 30
20 95 95 86 95 30 30
21 95 95 95 95 30 30
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Figure 10.24. Test girder during post-tensioning, braced against steel catch frames using timber
blocking

Each bar was stressed from the north end of the test girder using a DYWIDAG compact
lightweight hydraulic jack (operated by a DSI technician). The jack fit over a pull rod that was
threaded to the post-tensioning bar protruding from the anchor nut. The jack nose contained a
ratchet device which allowed the anchor nut to be tightened (inside the jack) by turning a nut
located on the exterior of the jack with a wrench (Figure 10.25). A pressure gage connected to
the jack (Figure 10.26) was used to determine the force level in each bar, per the jack calibration
form provided by DYWIDAG (Appendix D). Additionally, a Geokon load cell was aligned with
the jack on the post-tensioned bar (Figure 10.25) with the intent of providing independent
confirmation of the load level. However, the load cell readings were deemed inaccurate because
the load was slightly eccentric on the load cell. Therefore, the hydraulic pressure gage (and
associated calibration form) was the sole method of determining load level in each bar during the
stressing sequence. Once the pressure gage indicated that the target prestress level had been
attained, the anchor nut was tightened and the jack was moved onto the next bar in the sequence.
Once all bars were fully stressed, the jack was moved to the south end of the beam and a series
of bar liftoff tests were performed to confirm that the south end prestress levels were consistent
with the north end prestress levels. These checks served two purposes: 1) to ensure that the bars
and bar couplers had not snagged at any point along the length of the girder during stressing, and
2) to ensure that no bars lost any prestress force during the final increments in the stressing
sequence. After all of bars were post-tensioned, the camber measured at midspan (Figure 10.27)
was 11/16 in. which was in excellent agreement with the predicted camber of 3/4 in.

Upon completion of post-tensioning, the ducts surrounding the post-tensioning bars were
pumped full of grout to mechanically bond the post-tensioning bars to the test girder. Grout was
mixed with a CG550 single tub grout plant mixer provided by DYWIDAG (Figure 10.28) and
pumped through the ducts. Grout cube samples were cast and subsequently tested in accordance
with the Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (ASTM
C109, ASTM 2011) at the FDOT State Materials Office (SMO) laboratory in Gainesville,
Florida (on 2011-10-26). Grout strength measurements obtained from these tests are presented in
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Table 10.4. After post-tensioning and grouting, the test girder was lifted into testing position
(Figure 10.29) using the lifting loops cast into each end block.

Figure 10.26. Post-tensioning jack and pressure gage
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Figure 10.27. Camber measurement at midspan of test girder immediately after completion of
post-tensioning

Figure 10.28. Grout mixer and high capacity air compressor

Table 10.4. Grout cube strength test results

Specimen | Strength (psi)
Cube 1 12,770
Cube 2 13,510
Cube 3 13,150

Average 13,140
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Figure 10.29. Lifting the test girder into testing position, prior to end block fabrication
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CHAPTER 11
GRAVITY LOAD SSIMULATOR ANALYSIS, DESIGN, AND FABRICATION

11.1 Introduction

As previously discussed, concentrated vertical point loads were applied to the top of the
test girder—through the use of gravity load simulators—to induce buckling (lateral deflection) of
the girder in the experimental tests in a manner that did not introduce lateral stiffness into the
system. Typically in experimental testing, a test specimen will deflect principally in the direction
that the load is being applied. For example, when a simply-supported beam is tested in flexure, a
vertical point load can be applied at midspan, and the beam will deflect vertically at the point of
loading. In such a case, load application can be achieved through the use of a jack that is
anchored to a stationary (effectively rigid) test frame which reacts against the test specimen. In
contrast, in a buckling test of the type conducted in this study, the girder not only deflects in the
direction of the applied load (vertically), but it also deflects laterally (perpendicular to the load
direction). If a typical load application method—where the jack is anchored to a stationary
position—were used in a buckling experiment, the load frame would resist lateral motion of the
test specimen and a horizontal component of restraining force would develop (Figure 11.1). This
condition is unacceptable, because the lateral force component would artificially increase the
measured buckling capacity of the girder. To maintain vertical load and zero lateral restraining
force as buckling occurs, a special type of load application frame (called a gravity load
simulator) can be used that translates freely with the test girder as it buckles laterally. This
chapter discusses the mechanics and design of the gravity load simulators designed and
employed in this project, including a novel modification to previous designs (by other
researchers) that improves the accuracy and performance of the system.

Original position—/i

oftest girder I

Deflected position
of test girder

Tension jack

Restraining component<—
Anchor point

Vertical component

Figure 11.1. Undesirable horizontal restraining component that develops in an
anchored loading system (After Yarimci et al., 1967)
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11.2 Gravity load simulator

The first gravity load simulator was developed by Yarimci et al. (1967) to test structures
permitted to sway. As designed, the simulator acts as a horizontally unstable truss structure (i.e.,
zero lateral stiffness) which provides vertical load application without horizontal restraint to the
test specimen. As shown schematically in Figure 11.2, the simulator consists of two inclined
arms that are connected to the ground (lab floor) and to a rigid triangle at the center of the
simulator via pins. The source of load—a hydraulic jack—is attached at the base of the rigid
triangle, also through a pinned connection. As is noted by Yarimci et al. (1967), “For the type of
mechanism shown, equilibrium requires that the line of action of the load passes through the
instantaneous center, that is, the point of intersection of the two arms. The position of the
instantaneous center changes as the mechanism is deflected.” With carefully chosen geometry
(top width, arm length, load height, and base width; Figure 11.2), the load line of action will
remain vertical and through the instantaneous center, regardless of the deflected position
(Figure 11.3). Additional guidance for determining optimal geometry for the simulator can be
found in Yarimci et al. (1967).

VLoad line of action

Jack
Top width
Q—:ﬁ Pin

Inclined arms
Hinge

Hydraulic jack
] attachment point ]

Base width

Figure 11.2. Dimensions, defined (After Yarimci et al., 1967)
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Figure 11.3. Instantaneous center (After Yarimci et al., 1967)

The original simulators, located at Lehigh University, had 80 kip load capacity and could
translate laterally 16 in., for performing buckling tests on full-scale building frames (Yarimci et
al., 1967). Since then, several other researchers have constructed gravity load simulators for
various test programs. Lateral torsional buckling tests of steel I-shapes were conducted at
University of Texas at Austin (Yura and Phillips, 1992). At the University of Texas at Houston,
two simulators (6 in. displacement capacity, 150 kip load capacity) were constructed to
investigate torsional bracing by simulating buckling of a two-beam system with midspan bracing
(Deaver, 2003). A gravity load simulator at the Georgia Institute of Technology (7.5 in.
displacement capacity, 60 kip load capacity) was used to experimentally investigate
lateral-torsional buckling behavior of fiber reinforced polymer I-shaped cross-sections (Stoddard,
1997) and also to examine the lateral stability of slender rectangular reinforced concrete beams
(Kalkan, 2009). Also at the Georgia Institute of Technology, a relatively large gravity load
simulator (12.875 in. displacement capacity, 300 kip load capacity) was used to study the
stability of prestressed concrete beams (Hurff, 2010). It should be noted that Hurff observed that
the load line of action was not perfectly vertical when the simulator swayed from its original
centered position. Postulating that self-weight of the simulator caused this issue, a control
mechanism was installed that forced the simulator to act as a stable mechanism, in which the
position of the simulator was manually adjusted until the applied load was vertical. Further
investigations into the simulator self-weight issue were not conducted by Hurff.
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11.3 UF/FDOT gravity load smulators

A pair of gravity load simulators (one of which is shown in Figure 11.4) were designed
and fabricated for this project, with a maximum lateral deflection capacity of 16 in. and vertical
load capacity of 50 kip each. The UF/FDOT simulators had the same relative geometry as the
original simulator developed by Yarimci et al. (1967). In the UF/FDOT simulators, high-quality
spherical roller bearings (Figure 11.5) were used to prevent binding (due to shaft bending or
simulator geometry fabrication imperfections) and minimize friction at the pinned connections,
thereby minimizing restraint of the simulator to lateral motion. The bearings used in the
simulators were self-aligning—accommodating misalignment between the shaft and housing
without increasing friction—which allowed out of plane bearing rotation of +1.5 deg. The
bearings were housed in thick plates that were bolted and welded to the simulators
(Figure 11.4a). PVC end caps served as bearing seals that prevented dust from entering the
bearings and creating friction (Figure 11.4b). A hydraulic jack was connected to the center pin of
each simulator (Figure 11.6), allowing the hydraulic jack to rotate freely about the pin and
maintain vertical load application as the simulator displaced (Figure 11.7). Two safety
mechanisms were included in the design of the simulators: one temporary restraint and one
permanent restraint (Figure 11.4). The temporary restraints were engaged when the simulators
were not in use—removed during buckling tests—to keep each simulator from displacing
laterally under its own weight. For safety during a buckling test, permanent restraint chains—
which were slack during normal operation (Figure 11.4a)—connected the bottom of the rigid
triangles to the base beams. The restraint chains allowed the full range of motion expected during
a buckling test (expected deflection of 10 in. out of the maximum allowable displacement of
16 in.), but prevent the simulators from displacing further than desired (Figure 11.7).

The completed simulators were positioned below the test girder closure strips. Load
frames were designed to transfer the vertical load from the gravity load simulator (below the test
girder) to the load application point (at the top of the test girder). A threaded rod, in line with the
hydraulic jack, connected the load frame to the simulator (Figure 11.7). A heat treated steel knife
edge (Figure 11.8) was used to apply loads to the top of the test girder, while allowing the girder
to rotate freely about the y-axis within the load frame as it buckled (Figure 11.7). When loaded,
the simulators could be pushed laterally by hand from the equilibrium position, and upon release,
would float back to the equilibrium position, clearly confirming that no adverse lateral restraint
had been introduced into the test setup. Figure 11.9 shows a photograph of one of the gravity
load simulators and load frame in testing position. Full fabrication plans for the simulators can be
found in Appendix E.
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Figure 11.4. UF/FDOT gravity load simulator:
a)Schematic view; b) Photograph
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1
Figure 11.6. Hydraulic jack connection to simulator center pin

75



il
I |

R Load application point
Knife edge—/

Load frame—/

| ™——Buckled position of test girder
(translated laterally and rotating
about y-axis)

Threaded rod connectin WET
simulator to load frame

Counterweight

Hydraulic jaek

m d_/ \ i X
Temporary restraint (disconnecte Permanent restraint chains
during buckling test)

Figure 11.7. Gravity load simulator displaced shape

76



- E - - A,
= C—— 3 3 ..

Figure 11.8. Knife edge at load application point (top of test girder)

Figure 11.9. UF/FDOT gravity load simulator and load frame in testing position

11.4 Effect of gravity load simulator self-weight

Prior to performing buckling experiments, the performance of each simulator was tested
to ensure that the load line of action remained vertical. Restraining the test girder centered above
the simulators, the loaded simulators maintained equilibrium as expected, and the direction of
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load was confirmed to be vertical using a carpenter’s level. Subsequently, a trial buckling test
was performed in which load was applied to the test girder and the girder was allowed to freely
deflect laterally. Both simulators reached equilibrium in a position such that the applied load was
not perfectly vertical. Specifically, the middle pin of each simulator was displaced further than
the load application point (at the top of the test girder). This condition caused a lateral
component of load to be applied to the test girder in the direction of buckling motion
(Figure 11.10). With the simulators floating in this manner of equilibrium, they were pushed (by
hand) until vertical alignment was reached. Upon release, each simulator floated back to the
equilibrium position with a non-vertical load line of action. In the displaced configuration
observed during this trial buckling test, the load line of action was not vertical as expected,
indicating that additional forces (such as the weight of the simulator) affected the system during
the test. As mentioned in the previous section, Hurff (2010) observed that the Georgia Tech
simulator did not reach equilibrium with a vertical load orientation unless the simulator was in
the undeformed (centered) position. Hurff fixed this problem by using a lateral control
mechanism that caused the simulator to become a stable structure. While this solution proved
effective for maintaining proper vertical load orientation, the lateral restraint provided by the
control mechanism is undesirable for buckling experiments. Ideally, the girder should be
permitted to deflect laterally (buckle) without restraint, which is consistent with an unbraced
field condition. Thus, an alternative solution was developed in the present study which allowed
unrestrained lateral motion and maintained vertical load orientation throughout the full range of
motion.

Load application point

/—Applied load
Slope ofload = percent/

ofload applied laterally Tension jack
(positiveorientation)

Figure 11.10. Definition of percent of simulator load applied laterally
(After Yarimci et al., 1967)

To investigate how the self-weight of the gravity load simulator influences its equilibrium
position, numerical models of the simulator were developed (Figure 11.11). In the initial
simulator model, rigid beam elements represented the components of the simulator, the self-
weights of which (due to gravity) were neglected. The inclined arm beam elements were attached
to hinges at the base of the system, with end moment (My) releases at the connection to the rigid
triangle. Moment transfer between the elements of the rigid triangle ensured that the rigid
triangle acted as a single unit. The connection of the gravity load simulator at the middle pin and
the load application point to the test girder (the knife edge) was represented in the model using a
beam element. Releasing the end moment (My) of this element at the connection to the rigid
triangle allowed the element to rotate freely about the middle pin of the simulator. An initial
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tensile strain was applied to this element, simulating the tension applied through the use of the
jack during a buckling test. A prescribed displacement was then applied at the load application
point, representing the lateral deflection of the test girder. The load application point was
modeled as a roller support (free to rotate about the y-axis and translate along the x-axis),
representing the knife edge at the top of the test girder.

Yarimci et al. (1967) describe that the theoretical load applied by a gravity load simulator
is generally not truly vertical, and that a slight lateral load is applied to the test specimen as a
result of this non-vertical orientation. Neglecting gravity, the results of the simulator analysis
(Figure 11.12) were consistent with Yarimci et al. (1967). The analysis indicated that—within
the range of lateral deflections expected in the buckling experiments—the lateral load component
was, at most, approximately -0.02% of the applied vertical load. Note that the sign convention of
Yarimci et al. (Figure 11.10) states that a negative percentage corresponds to a lateral load that
restrains the beam, and a positive percentage corresponds to a lateral load that drives the beam in
the direction of buckling. For example, the simulator analysis results (Figure 11.12) show that,
when the test girder has displaced 5 in., under zero-gravity conditions, the lateral force
component is approximately -0.02%. Thus, if a 10 kip load is applied vertically, 0.002 kip would
develop laterally at the top of the beam, restraining the beam slightly.

Roller support
fg. 10 Prescribed displacement 3‘%
= / Load application point to test girder
:
o Initial strain applied to beam element,
% /representing tension load applied to test girder
2
A 0 Time step 10

Rigid triangle

End moment

(M,) released Gravity load simulator

comprised ofrigid
beam elements

V4

Hinge 1
X

Figure 11.11. Gravity load simulator model
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Figure 11.12. Results of simulator analysis: theoretical percent of load applied laterally to the
beam at the load application point (self-weight excluded in model)

To determine the effect of self-weight on simulator equilibrium, gravity was introduced
into the simulator model via mass-proportional body forces (and therefore taking the self-weight
of the simulator into account), and the analysis described above was repeated. It was found that
the self-weight causes much larger lateral loads to develop in the direction of buckling, and those
loads increase with increasing displacement (Figure 11.13). This behavior occurs because the
self-weight of the simulator is eccentric relative to the idealized instantaneous center—the point
of intersection of the two inclined arms when neglecting gravity—as shown conceptually in
Figure 11.14a.

Recall that Hurff (2010) corrected this problem by providing lateral restraint to the
gravity load simulator. In contrast, in the present study, an alternative solution was employed
that avoided restraining lateral motion. The system consisted of weights placed eccentrically
from the instantaneous center which counterbalanced the eccentric self-weight of the simulator
(Figure 11.14b). With appropriate counterweight magnitude and eccentricity, the effect of the
simulator self-weight was corrected, and the load line of action remained vertical. The
counterweights were an excellent option because there was no addition stiffness added to the
system (permitting unrestrained lateral motions), and the counterweights could be adjusted to
maintain vertical load regardless of the displaced shape of the test girder. The physical
counterweight system was fabricated using barbell weights of various sizes, slid onto a steel pipe
that was mounted to the rigid triangle of the simulator (Figure 11.15). For each simulator, two
(2) 25 Ibf. weights and one (1) 45 Ibf. weight were available for the counterweight system. Small
clamps ensured that the weights did not slide unless physically pushed along the pipe. Details of
the counterweight system are included in the gravity load simulator fabrication plans, found in
Appendix E.
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Figure 11.13. Results of simulator analysis: theoretical percent of load applied laterally to the
beam at the load application point (self-weight included in model)
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Figure 11.14. Effect of simulator self-weight and counterweights
on verticalness of load line of action:
a) Counterweights omitted, load is skewed;
b) Counterweights included, load is vertical
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Figure 11.15. Counterweight system
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CHAPTER 12
GIRDER BUCKLING TEST PROGRAM

12.1 Buckling test setup

An overview of the test setup is shown in Figure 12.1. To accommodate the gravity load
simulators, the test girder was elevated approximately 8 ft. above the lab floor and set on bearing
pads that rested on rigid end supports. Because the test girder was elevated overhead, safety
catch frames were designed and fabricated to support the test girder should it become fully
unstable during testing. Five catch frames were fabricated: two positioned at the ends, one
positioned at midspan, and two positioned near the third points (Figure 12.1). The catch frames
allowed the test girder to displace up to 9 in. laterally at midspan before preventing further
movement. Full fabrication plans for the catch frames can be found in Appendix F. Each end
support was fabricated with the test girder suspended in the testing position. Constructed from
eight solid concrete blocks, the end supports were built up one level at a time and welded
together to create a rigid support (Figure 12.1). A pad of Hydro-Stone® was poured at the base
and at the top of each end support, to ensure that the bearing surface for the end blocks on the
ground was level and to provide a level surface for the bearing pad contact area, respectively.

12.2 Test matrix

The bearing pads used to support the ends of the test girder were the same pads
previously tested to quantify roll stiffness in the first phase of this project. As shown in
Chapter 6, among all bearing pad types tested, the Type A bearing pads had the least amount of
variation in individual roll stiffness results under all combinations of skew and slope angles (the
results are reproduced here in Figure 12.2). Therefore, pad Type A was chosen to support the
ends of the girder during the buckling tests. To best illustrate the influence of roll stiffness on
buckling capacity, the girder was to be tested with bearing pads oriented at the extreme values of
skew and slope that were previously investigated (A-0-0, A-45-0, A-0-04, and A-45-04). Recall
that, in the abbreviated naming convention, the first letter denotes pad type, the following
number denotes skew angle (in degrees), and the last number denotes slope angle (in 10~
radians). However, during buckling testing in test configuration A-45-04, the test girder buckled
under its own self-weight (i.e., with no additional applied vertical load). Consequently, a
configuration with an intermediate combination of skew and slope was required instead.
Reducing skew from 45 deg. to 15 deg. increased the buckling capacity enough to allow a test to
be performed with applied load and with the pad in a skewed and sloped configuration. The test
matrix for the buckling tests—with number of tests performed per configuration—is presented in
Table 12.1.

12.3 Test procedure

There were two main phases to the setup portion of the buckling tests: 1) imposing skew
and slope angles on the bearing pad, and 2) placing the test girder on the bearing pads. After the
setup portion of each buckling test (setting the bearing pads and placing the girder on the pads)
was completed, the buckling test was performed. This section documents the procedure for
setting up and performing the buckling tests.
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Figure 12.1. Overall test setup: a) Schematic; b) Photograph
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Figure 12.2. Roll stiffness results, reproduced from Chapter 6

Table 12.1. Test matrix

Test Skew angle | Slope angle | Number of tests
configuration (deg.) (rad.) performed
A-0-0 0 0 3
A-45-0 45 0 2
A-0-04 0 0.04 3
A-15-04 15 0.04 1

12.3.1 Setting skew and slope angles

Prior to performing each buckling test, bearing pads—Ilocated between the girder end
blocks and rigid end supports—were oriented at the desired skew and slope angle. Skew angle
was set by rotating the bearing pad about the z-axis relative to the test girder (Figure 12.3). Slope
angle was set by placing a beveled plate (Figure 12.4) between the bearing pad and rigid end
support (Figure 12.5). Bearing pads were oriented in the buckling tests such that the pressure
distributions during buckling testing matched that of the pressure distributions during roll
stiffness testing (Chapter 6). Conceptually, Figure 12.6 shows the initial pressure distribution of
each test configuration, and Figure 12.7 shows the final pressure distribution for each test
configuration. In the sloped tests, the thick ends of both beveled plates faced north, creating a
pressure concentration on the north portion of the bearing pads. This scenario represents the
pressure distribution on a pair of bearing pads that would be produced by girder grade (as
opposed to girder camber).
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Figure 12.3. Bearing pad skew angle orientation in buckling tests

| A
Figure 12.5. Beveled plate and bearing pad positioned between end block and end support
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Figure 12.6. Bearing pad orientation and initial pressure distributions during buckling tests
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Figure 12.7. Final bearing pad pressure distributions during buckling tests
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12.3.2 Placing the test girder

While the skew and slope angles of the bearing pads were being adjusted, the test girder
was lifted—via lifting loops cast into the end blocks—to allow adjustments. Once the bearing
pads were set at the desired angles, the test girder was lowered onto the pads for a buckling test.
As shown in Figure 12.8a, the beam swept naturally (due to casting and post-tensioning
tolerances) from West to East. Table 12.2 presents the initial girder sweep (measured at the
height of the section centroid) that was present prior to load application in each test
configuration. For most tests, a hydraulic jack was used to push the test girder toward the west at
the midspan centroid, effectively removing sweep from the system (i.e., pushing the girder
straight) (Figure 12.8b). The jack used to straighten the test girder was mounted to the midspan
catch frame, as shown in Figure 12.9. For comparison, two different methods for placing the test
girder on the bearing pads were used:

e Method A: The test girder was straightened using the jack, lowered onto the bearing pads,

and then allowed to sweep freely by slowly retracting the jack, and;

e Method B: The girder was set down on the pads in the swept position.
In both methods, girder end blocking (recall Figure 10.29) was used during lifting and lowering
operations. Additionally, in Method A, end blocking was also used during girder straightening.
Method A was advantageous because the sweeping motion of the test girder could be directly
recorded during a buckling test (as the jack was slowly retracted). However, when Method A
was used, it was observed that as the test girder deflected into the swept position, torsion was
introduced into the bearing pads about the z-axis. This outcome was undesirable because: 1) pad
torsion is generally not present in field conditions, and 2) such torsion was not present in the
isolated bearing pad roll stiffness tests conducted in the first phase of this study. To quantify the
effect that torsion in the pads had on the buckling capacity of the test girder, test configuration
A-0-0 was tested under both conditions (using Method A and Method B). Examining the
load-displacement curves presented in Chapter 13 for test configuration A-0-0, the effect of
torsion on the bearing pads was found to be insignificant. Table 12.2 summarizes the placement
method of each individual test performed per configuration (e.g., A-0-0-1 was the first test
performed in configuration A-0-0, A-0-0-2 was the second test performed in configuration
A-0-0, etc.).
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Figure 12.8. Sweep of test girder:
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Table 12.2. Initial girder sweep and girder placement method for each test

Initial girder

TestID sweep (in.) Ceitod

A-0-0-1 2.61 A

A-0-0-2 2.82 A

A-0-0-3 2.87 B
A-45-0-1 2.84 B
A-45-0-2 3.09 B
A-0-04-1 2.96 A
A-0-04-2 3.49 A
A-0-04-3 3.16 A
A-15-04-1 5.69 A

12.3.3 Buckling test procedure

During each girder buckling test, load was applied iteratively to the test girder, first
gradually increasing the applied load at the north gravity load simulator (GLS), until a specific
target was reached, and then increasing the load at the south GLS until the loads were equal at
both locations (Figure 12.10). Once the loads were approximately equal at both GLSs, the
counterweight system at each GLS was adjusted. These adjustments produced lateral movements
of both the girder and the GLS and were made to ensure vertical load application. The GLS load
application directions were confirmed to be vertical using a carpenter’s level. After the
counterweights were adjusted, a test data point was established (Figure 12.10), at which time the
applied GLS loads and girder deflection were measured.

18
=
& 12
e
<
2
=
.2
g 6
< North GLS
—— — South GLS
® @ Data points

0 5 10 15 20 25 30 35 40
Time (minutes)

Figure 12.10. Typical load time history (test A-0-0-2 shown)
12.4 Instrumentation
Several types of instrumentation—displacement transducers (displacement sensors,

lasers, and string potentiometers), load cells, and strain gages (both external and vibrating wire
strain gages cast into the concrete)—were used in the buckling tests. A naming convention for
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the instrumentation was developed to reflect the instrument type and its specific location on the
test girder. As summarized in Figure 12.11, each instrument name had the same format of
T-LD-F-H, where “T” indicates the type of instrument, and “-LD-F-H” indicates the location of
the measurement. For example, the instrument shown in Figure 12.11 was an external strain gage
mounted to the east face of the test girder top flange. Therefore, the instrument shown in
Figure 12.11 was named SG-N24-E-76, which means that the device is a strain gage (SQG),
located 24 ft north of midspan, mounted to the east face, at a height of 76 in. from the bottom of
the girder. The full instrumentation plan (included in Appendix G) further describes the naming
convention, and also provides an overview of all of the instrumentation by name.

LD =longitudinal distance from midspan: H=height:
- defined in figure below - defined in
- specify north (N) or south (S) of midspan figure below

T)D-F-H/
NN

Type of instrumentation: F =face of beam:
- Dx, Dy, Dz : displacement - specify east (E),
transducer along x, y, and west (W), or
z-axis (respectively) centerline (C) H (in.)

- Sx, Sz : string potentiometer
along x, and z-axis
(respectively)

-F : force

- VW : vibrating wire
strain gage

- SG : strain gage

Example instrument
(strain gage)

LD (ft)
. z-axis
WEST NORTH (y-axis)
SOUTH EAST (x-axis)

Figure 12.11. Naming convention for buckling test instrumentation

12.4.1 Displacement transducers

Displacement sensors, string potentiometers and laser gages were used to measure girder
deflection at various points. All three types of displacement transducer were used at midspan, but
only displacement sensors were used at the end blocks. Laser gages (Balluff model BOD 66M)
measured lateral displacement at the centroid height near the gravity load simulator locations.

Because midspan lateral deflection was a key parameter measured in each buckling test,
the midspan of the test girder was heavily instrumented with displacement transducers
(Figure 12.12). Displacement transducers were mounted to the central catch frame and used to
record midspan deflections along both the x-axis and z-axis. A laser gage (Balluff model BOD
66M) and a displacement sensor (TML model SDP-200D) were mounted next to one another at
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the centroid height to measure lateral displacement (along the x-axis). The laser gage
(Dx-N0-W-38) was used as the primary lateral displacement measuring device during each
buckling test, while the displacement sensor (Dx-S0-W-38) provided redundancy to the laser
gage. String potentiometers (SpaceAge Control model 62-60-82E1) measured both lateral and
vertical displacement of the test girder, providing additional redundancy to the lateral
displacement measurement provided by the laser gage.

String potentiomete )
Sx-NO-C-78 I

Displacement sensor: 4

Laser gage—_|
Dx-N0-W-38

S

A0

String potentiomete
Sz-N0-C-0
String potentiomete

Sx-N0-C-0

X (East)

Y (North

a)

Figure 12.12. Midspan displacement transducers:
a) Schematic; b) Photograph

The end blocks were also heavily instrumented with displacement sensors, as shown in
Figure 12.13. All displacement transducers monitoring the end blocks were TML model SDP-50,
mounted to the rigid end supports. Vertical displacement transducers (along the z-axis, Dz) and
horizontal displacement transducers (along the x-axis, Dx) were used to calculate the roll angle
imposed on the bearing pad. Knowing the horizontal distance between the vertical (Dz)
displacement transducers and the vertical distance between the horizontal (Dx) displacement
transducers, the roll angle imposed on the bearing pad at the end block could be calculated from
the relative displacement measurements, and used to confirm each other. Horizontal
displacement transducers along the y-axis (Dy) were used to calculate torsional rotation in the
bearing pad.
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Figure 12.13. South end block displacement transducers:
a) Schematic; b) Photograph

12.4.2 Load cells

Load cells measured the vertical load applied to the test girder at the gravity load
simulator (GLS) locations. At each GLS, an Interface load cell (model 1220, 50 kip capacity)
was installed in line with a threaded rod connecting the gravity load simulator to the load frame.
Each such cell directly measured the load applied to the test girder (Figure 12.14). Additionally,
at each GLS, a pair of Geokon load cells (model 3000, 50 kip capacity) were mounted in line
with the load frame rods that flanked each side of the test girder (Figure 12.14). These load cells
provided load measurements that were redundant with the Interface load cells. The average of
the Interface load cell readings on each gravity load simulator (named F-N15-C and F-S15-C,
located at the north and south GLSs, respectively) were used to monitor the load applied to the
test girder and to determine the buckling capacity of the test girder. These load cells (F-N15-C
and F-S15-C) were also used to generate the load-time history presented previously in
Figure 12.10.
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Figure 12.14. Load cells, located at gravity load simulator locations

12.4.3 Strain gages

Strain gages (both external and cast into the concrete) were used to detect cracking, if it
were to occur. Several external strain gages (Kyowa 60 mm and 120 ohm) were mounted to the
test girder at locations most likely to crack: on the bottom of the precast segments close to the
interface with each closure strip (see Appendix G for specific locations). The remaining external
strain gages were placed at increments along the length of the girder on the east and west faces of
both the top and bottom flanges, to capture the strain profile if necessary. A pair of vibrating
wire strain gages (Geokon model 4200) were cast into each closure strip, located vertically
between the post-tensioning coupler housings (Figure 12.15). These gages were used to detect
cracking should it occur in the closure strips. The vibrating wire strain gages were also used to
measure total strain in the test girder over time, including strain introduced during the
post-tensioning stage. In contrast, the external strain gages measured incremental (not total)
strains caused by applied vertical load during each buckling test.
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Figure 12.15. Vibrating wire strain gages, cast into closure strips
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CHAPTER 13
GIRDER BUCKLING TEST RESULTS

13.1 Introduction

As introduced in Chapter 7, there were two primary goals of the second phase of this
project. The first objective was to experimentally quantify the buckling capacity of the test girder
supported on bearing pads with various configurations of skew and slope angles. The second
objective was to use the experimental results to validate and calibrate corresponding finite
element buckling models. The results of the experimental girder buckling tests are presented in
this chapter, including measured data, a data curve fitting scheme, a method for calculating
buckling capacities, and the computed buckling capacities. Additionally, the results of the
experimental tests are compared to finite element analysis results and aspects of the validated
finite element model—bearing pad roll stiffness, concrete elastic modulus specified, and load-
displacement results—are presented.

13.2 Experimental buckling test results

It is important to note that, of the nine (9) individual buckling experiments performed and
presented in this chapter, only one test (A-45-0-1) was carried out until complete buckling of the
test girder occurred (Figure 13.1). The remaining tests were terminated close to, but before the
test girder became fully unstable, thus ensuring that cracking did not occur (and therefore
maintaining repeatability). Therefore, the last measured data point presented for each individual
test does not indicate that buckling occurred, but rather indicates the load and displacement level
at which the test was concluded.

X~ §
— . — |

S ST AT

Figure 13.1. Test girder in buckled configuration, test A-45-0-1:
a) Photograph taken above girder; b) Photograph taken below girder (note the laterally displaced
positions of girder and gravity load simulator)
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13.2.1 Measur ed load-displacement curves

For each test, vertical load was applied at the top of the test girder at the gravity load
simulator locations (Figure 13.2), and midspan lateral (x-axis) displacement was measured
roughly at the centroid of the test girder. Data points were established when the Interface load
cell readings (F-N15-C and F-S15-C, located at the north and south GLSs, respectively)
measured approximately the same applied load. In this chapter, the average of these load cell
readings is defined as the load (P) applied at each GLS (Figure 13.2). Midspan lateral
displacements presented in this chapter were measured using displacement sensor Dx-NO-W-38.
Measured load-displacement curves for each test are shown in Figure 13.3. For each curve, the
displacement of the first data point indicates the sweep of the test girder under only its own self-
weight. Note that sweep was recorded using displacement sensor Dx-NO-W-38 for the tests
conducted following method A (recall Section 12.3.2), whereas the sweep was measured using a
tape rule for the tests conducted following method B. By shifting the displacement data along the
x-axis to the origin (Figure 13.4)—corresponding to incremental midspan displacement caused
by applied load—excellent repeatability is observed between tests with the same configuration.

NORTH

< (y-axis)

EAST
(x-axis)

Applied load (P)

Figure 13.2. Definition of applied load (P)
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Figure 13.3. Measured absolute load-displacement data
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Figure 13.4. Measured incremental load-displacement data
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13.2.2 Data curvefitting

A method developed by Southwell (1932) is commonly used to characterize the
load-displacement behavior of buckling experiments and to determine buckling capacity without
needing to perform the experimental test until complete buckling occurs. Using the Southwell
method, a rectangular hyperbola passing through the origin is fitted to load-displacement data
obtained from a buckling experiment using the equation:

X-y=B-x+o-y=0 (13.1)

where o and B are the asymptotes of the hyperbola (Figure 13.5). Rearranging the equation
provides an alternate form:

2
o-B-x
y=— " (13.2)
o-X +0o"-X
y
Asymptote
Q
12 —
3
% B
g«
0 X

Figure 13.5. Southwell hyperbola fit

To fit a curve through multiple sets of experimental data, individual data sets
(corresponding to individual tests) are commonly averaged together to form a single data set and
a curve is fit through the averaged data. This approach works best when each data set includes
approximately the same number of points, and data are recorded at the same interval. However,
the data from the buckling tests were not recorded in this manner. As shown in Figure 13.4, data
for individual tests within each configuration were measured at unequal lateral displacement
intervals, and the displacement range of each test was not equal. Thus, simply averaging the data
for each configuration would bias the average toward tests in which data were captured at
smaller intervals. To prevent such biasing, the following procedure was used to process the data
for each individual test and develop a characteristic fitted curve for each configuration:

e A hyperbola (Equation 13.2) was fit—by using least-squares error minimization—to each
individual test data set (Figure 13.6a)

e The fitted hyperbolas for each test configuration were resampled at equal displacement
intervals: specifically at intervals of 1/20™ of the maximum displacement achieved for the
configuration (Figure 13.6b)

e A single hyperbola was then fit to the cloud of resampled data points for each test
configuration (Figure 13.6¢)

This procedure was applied to each test configuration, producing the final hyperbola results
shown in Figure 13.7.

99



14 — 14
12 12
£ 10 £ 10
-9 A
< 8 < 38
< <
° i=
=] 6 el 6
2 2
“& 4 A A A-45-0-1 measured E 4
< A A A-45-0-2 measured <
2 A-45-0-1 hyperbola 2 —0—0— A-45-0-1 resampled
—— — A-45-0-2 hyperbola —O— O— A-45-0-2 resampled
0 06
0 1 2 3 4 5 0 1 2 3 4 5
Midspan lateral displacement (in.) Midspan lateral displacement (in.)
a) b)
14
12
Z 10
[a W
= 8
<
S
= 6
L
& 4
& !
2| é ® ® A-45-0resampled
A-45-0 hyperbola
0
0 1 2 3 4 5
Midspan lateral displacement (in.)
c)

Figure 13.6. Data curve fitting procedure:
a) Best fit hyperbolas for each individual test through measured data; b) Resampled data on
hyperbola at regular interval; ¢) Test configuration hyperbola fit through resampled cloud of data
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Figure 13.7. Best fit hyperbolas for each test configuration

13.2.3 Calculation of buckling capacity

Using the Southwell method (1932), buckling capacity is approximately equal to the
horizontal asymptote (3, Figure 13.5) of the best fit hyperbola. Recall that among the buckling
experiments conducted, one test (A-45-0-1) was conducted until complete buckling occurred.
Thus, this case can be used to test the accuracy of approximating the buckling load using the
fitted value B. For this test, the buckling load was experimentally measured as 13.1 kip.
However, as shown in Figure 13.8, the Southwell method estimates the buckling load (B) as
18.7 kip, overestimating by 43%. As stated by Southwell (1932), the “analysis may be expected
to apply best to cases in which the initial deflection [sweep] was small.” In other words, the
Southwell method works best when the primary instability is lateral torsional buckling. However,
for the experiments conducted in this study, the test girder initial sweep was large enough that
the failure mode was a mixture of lateral torsional buckling and roll-over instability as opposed
to pure lateral torsional buckling instability. Due to the slenderness and post-tensioning levels
necessary to elastically buckle the test girder at a 100 ft span length, the test girder had a sweep
that was more than twice the level that is acceptable in practice.

As per the 2010 FDOT Sandard Specifications for Road and Bridge Construction
(FDOT 2010b), maximum allowable girder sweep was limited to 1/8 in. of sweep per 10 ft of
girder length, but not to exceed 1.5 in. for Florida Bulb-Tee beams and Florida-I Beams. The
minimum sweep of the test girder—in test configuration A-0-0—was 2.8 in. Because of the large
initial sweep displacements, the asymptote of the hyperbola (B) is not an ideal definition of
buckling load for the experiments performed in this study. Instead, an alternative definition for
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buckling capacity was employed, but still partially incorporating the Southwell hyperbola. Using
the fitted hyperbola (Eqn. 13.2), the buckling load was defined, in this study, as the point at
which the slope of the hyperbola drops below 1/10th of the initial slope (Figure 13.9). Buckling
capacity determined using this rule agreed well with measured data from the one girder test case
that was carried out to the point of complete buckling (A-45-0-1, as noted in the following
section).
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Figure 13.8. Hyperbolic curve fit and Southwell buckling load for test A-45-0-1
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Figure 13.9. Definition of buckling capacity (A-45-0 configuration shown)

13.2.4 Buckling capacity results

Using the 10%-slope buckling definition, the ideal case, A-0-0 (non-skewed, non-sloped),
had the largest buckling capacity, and the skewed, sloped case (A-15-04) had the lowest buckling
capacity. The intermediate cases (A-45-0 and A-0-04) both had buckling capacities between the
two extremes. Table 13.1 provides a summary of the buckling capacity for each test
configuration, as well as the percent reduction in buckling capacity relative to the ideal (A-0-0)
case. There was good agreement between the buckling capacity configuration A-45-0, as
determined using the 10%-slope rule, and the measured buckling capacity of experimental test
A-45-0-1, which completely buckled in the lab at a measured load of 13.1 kip. Using the 10%
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buckling rule, the buckling capacity for configuration A-45-0 was calculated to be 12.8 kip
(2.3% error relative to experimental test A-45-0-1).

Table 13.1. Buckling capacity results

Test Skew angle| Slope angle Bucklivng Buckling cap agity
configuration|  (deg.) (rad.) capacity | percent reduction
(kip) from A-0-0 (%)
A-0-0 0 0 15.4 0.0%
A-45-0 45 0 12.8 16.9%
A-0-04 0 0.04 11.8 23.4%

In the case of test configuration A-15-04, determining the buckling capacity through the
use of the 10% rule was not possible, because the test girder had such a large initial sweep
(5.69 in., recall Table 12.2) compared to what is acceptable in practice. In the A-15-04 test, the
large initial lateral displacement (sweep) caused the test girder to purely overturn, as opposed to
buckle. While a hyperbola can be fit through the data, the buckling load cannot be quantified and
will not be discussed in the remainder of this report.

13.3 Buckling finite element model

The results of the experimental buckling tests were used to validate the finite element
modeling techniques and buckling analysis procedures. This section discusses the several
components of the finite element model, including development of the moment-rotation curves
that were used to represent the bearing pad, the modulus of elasticity of test girder concrete, and
the results obtained from a buckling analysis of each configuration tested in the lab.

13.3.1 Moment-rotation curves from bearing pad roll stiffnesstests

As originally planned, the nonlinear roll stiffnesses of the bearing pads were to be
modeled using the moment-rotation curves obtained from the isolated roll bearing pad tests
(Chapter 6). However, the axial (vertical) load levels on the pads were different between the
isolated pad tests and the girder buckling tests. Recall from Section 5.4 that the axial load level
used in the majority of the isolated bearing pad tests was chosen to be representative of the self-
weight reaction caused by a long-span Florida Bulb-Tee (FBT) 78 girder. That is, the axial load
levels used in the isolated bearing pad tests were chosen to be representative of typical field
conditions. In contrast, due the shorter span length (limited to 100 ft) and the slender cross-
section of the laboratory test girder, the axial pad loads generated by the self-weight reactions
from the test girder were considerably smaller than those which would be associated with a long-
span FBT or FIB girder.

This difference in axial pad load altered the moment-rotation behavior of the bearing pad
during girder buckling tests, as compared to the isolated bearing pad tests. Therefore, to generate
appropriate data needed for finite element model validation, additional roll stiffness tests were
performed on the bearing pads under buckling testing conditions, with the bearing pads located
beneath the laboratory test girder in test configuration A-0-0. Under these conditions, the bearing
pads were tested “in situ.” In the remainder of this section, the in situ test procedure and results
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are presented, and the results are compared to the roll stiffness results obtained using the bearing
pad test device (denoted as “isolated” results in this section).

For the in situ tests, a lateral load was applied to the top flange of the test girder near each
end block, and the girder was allowed to roll about the y-axis of the bearing pad (Figure 13.10a).
The intent in conducting the in situ tests was to determine the bearing pad roll stiffness relative
to the initial girder equilibrium position (which is influenced by the presence of girder
sweep).The load was applied by a hydraulic jack mounted to the catch frame at each end of the
test girder, and measured with an inline load cell (Figure 13.10b). Displacement sensors,
mounted at the end blocks and oriented along the x-axis (Dx), measured the relative horizontal
displacement between the top and bottom of the end blocks. Knowing the vertical separation
distance between each pair of sensors (Dx-N51-W-2 and Dx-N51-W-76; Dx-S51-W-2 and
Dx-S51-W-76), the end block roll (rotation) angles could then be calculated. Three in situ roll
tests were performed (on 2011-12-19 and 2011-12-20). The measured data are shown in
Figure 13.11.

Because the goal was to determine the bearing pad roll stiffness relative to the initial
equilibrium position of the girder, the moment data included in Figure 13.11 were computed only
from lateral jack loads, not the combination of jack loads and eccentric gravity loads. Moreover,
the data reported in Figure 13.11 include tests in which the jack loads were applied from East-to-
West (in the direction opposite to the girder sweep) and from West-to-East (in the same direction
as the girder sweep). The lack of an evident correlation between the test results and the loading
direction indicates that this test procedure adequately captured the bearing pad roll stiffness
relative to the girder equilibrium position.

2

\Apgplied load (F)

A\

Figure 13.10. Description of “in situ” roll test:
a) Schematic of test; b) Loading setup, mounted to catch frame
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Figure 13.11. Moment-rotation data from in situ tests (A-0-0)

In the finite element model, bearing pad rotational resistance is modeled using nonlinear
rotational springs which are defined by a moment-rotation curve. Therefore, the measured
moment-rotation data from the laboratory in situ roll stiffness tests were averaged and
subsequently fitted to a representative function for input into the finite element model. To
maintain equal weight when averaging the curves, the measured load-displacement curves from
individual tests (Figure 13.12a) were resampled at an equal interval of 0.0003 rad
(Figure 13.12b), and the resampled curves were averaged (Figure 13.12c). The averaged data
exhibit an initial, linear roll stiffness (slope of moment-rotation curve) that is followed by an
apparent softening (reduction in stiffness), until the slope of the moment-rotation curve
effectively equals zero and the moment-rotation curve plateaus. A sigmoid function, which has a
shape that matches the average data closely, was chosen to represent the moment-rotation curves
for the bearing pads. A basic sigmoid function takes the following functional form:

1
1+e*

f(x)= (13.3)
However, to fit the moment-roll curves, the basic functional form must undergo a variety of
transformations. Thus, the data were fit (by using least-squares error minimization) with the
following modified functional form:

f(x):yo+1+Z—lw (13.4)
where 7o, V1, and ¥, are parameters that determine the shape of the curve.

This same process of resampling, averaging, and fitting the data was then applied to the
moment-rotation curves obtained from the isolated roll stiffness tests using the bearing pad test
device. Similar to the in situ roll stiffness tests, the measured isolated bearing pad data had an
initial linear stiffness that gradually decreased, closely matching the modified sigmoid curve
shape. The best fit sigmoid curves for the moment-rotation curves of the isolated and in situ roll
stiffness tests are shown in Figure 13.13. The functional parameters of the best fit sigmoid curve
for each test configuration—both isolated and in situ roll stiffness tests—are presented in
Table 13.2.
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Figure 13.12. Data curve fitting procedure, in situ case shown:
a) Measured data; b) Resampled data; c) Average curve and best fit sigmoid curve
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Figure 13.13. Moment-rotation curves, from isolated and in situ roll stiffness tests

Table 13.2. Sigmoid curve functional parameters for each test configuration
(applicable unit set: moment = kip-in., roll angle = rad.)

Test configuration Yo " Y
A-0-0 (isolated) 443.6 887.6 424.8
A-0-0 (in situ) 158.2 316.4 1350.7

A-45-0 (isolated) 375.2 750.5 294.8

A-0-04 (isolated) 1005.2 2010.4 140.8

13.3.2 Scaling of moment-rotation curves from isolated bearing pad tests

The axial load applied to the type A bearing pads during the isolated roll stiffness tests
was approximately 92 kip, which, as noted above, was chosen to be representative of the self-
weight end reactions of a realistic long-span girder (FBT or FIB sections). However, during
girder buckling testing, the test girder was constrained to a 100 ft span length, which required a
more slender and therefore lighter girder cross-section to be used, resulting in a reduced axial
load applied to the pad. During buckling testing, the total axial load—caused by combination of
girder self-weight and applied vertical loads—was approximately 40 kip. Thus, the ratio of axial
load during buckling testing to axial load during isolated roll stiffness testing was approximately
40 kip / 92 kip = 0.43. Under this reduced axial load, the in situ moment-rotation behavior of the
bearing pads was different than measured during the isolated tests, as shown in Figure 13.14.
Although both the in situ and isolated moment-rotation data have similar initial roll stiffnesses,
the plateau value differs significantly. As shown in Figure 13.14, the plateau of the in situ
moment-rotation curve occurs at a much lower moment level than that from the isolated pad
tests.
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Figure 13.14. Moment-rotation curves, test configuration A-0-0,
from isolated bearing pad tests and in situ tests

This difference in moment-rotation behavior can be attributed to the difference in axial
pad pre-compression, which affects the contact area between the pad and the girder end block (or
bearing pad test device) as roll rotation occurs. Initially, under non-sloped conditions, each
bearing pad was fully in contact with the bottom of the end block (or bearing pad test device),
and thus the initial roll stiffness of the bearing pad was not affected by the magnitude of axial
load. However, during the in situ roll stiffness tests (and during the girder buckling tests)—in
which pre-compression was reduced relative to the isolated pad tests—a smaller rotation angle
was required for the end blocks to lose contact with the pads (Figure 13.15). Consequently, the in
situ plateau moment was reduced relative to the plateau moment observed in the isolated pad
tests. These test results suggest that the plateau moment for each situation was proportional to the
level of axial pre-compression acting on the pad. Thus, the ratio of roll-off moment capacities
(i.e., the plateau moments) for the in situ and isolated test cases should differ by the ratio of axial
loads present during each type of testing (40 kip / 92 kip = 0.43 in this case).
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Figure 13.15. Contact areas during both isolated roll stiffness tests and buckling tests

A similar phenomenon also occurred in the sloped cases. However, the initial contact

area of the end block (or test device) with the bearing pad was approximately proportional to
axial pre-compression (Figure 13.16). Thus, the initial roll stiffness is also proportional to the
pre-compression. Similar to the non-sloped cases, the roll capacity was proportional to axial pre-
compression. Therefore, for sloped cases, both the initial stiffness and the plateau moment of the
moment-rotation curve were decreased by the ratio of applied axial load (0.43 in this case).

End block\
> <
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contact contact
width width
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\— Initial configuration:
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tests (larger axial load)
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Figure 13.16. Contact areas during both isolated roll stiffness tests and buckling tests

Therefore, for use in the girder buckling finite element model, moment-rotation curves

obtained from the isolated roll stiffness tests were scaled by a factor of 0.43 (equal to the ratio of
axial loads). In non-sloped test configurations (A-0-0 and A-45-0), the scale factor was applied
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only to the plateau of the moment-rotation curve, while maintaining the initial slope
(Figure 13.17a and Figure 13.17b). However, for the sloped configuration (A-0-04), the scale
factor was applied to both the initial slope and the moment plateau (Figure 13.17¢). Examining
the moment-rotation curves from test configuration A-0-0 (Figure 13.17a), the scaled curve
closely matches the in situ curve for both the initial stiffness and moment plateau. The final
scaled curves for each test configuration—used in all subsequent finite element buckling
analyses—are compared in Figure 13.18.
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Figure 13.17. Moment-rotation curves, from isolated roll stiffness tests (scaled and original) and
in situ roll stiffness tests: a) A-0-0; b) A-45-0; c) A-0-04
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Figure 13.18. Moment-rotation curves for girder buckling model (scaled down from isolated
bearing pad test results)

13.4 Elastic modulus used in finite element buckling model

Concrete components of the test girder were modeled using a linear elastic material
model. As discussed in Chapter 10, the elastic modulus was determined for the precast segments
using field-cured and moist-cured cylinders. The average elastic modulus for the field-cured
cylinders was 4,770 ksi, and the average of the moist-cured cylinders was 5,140 ksi. Two
separate finite element buckling analyses were performed for test configuration A-0-0 (using the
scaled bearing pad roll stiffness curves), each with an elastic modulus corresponding to the field-
cured or moist-cured results. The buckling curves predicted by both models are presented in
Figure 13.19, along with the best fit hyperbola generated from the experimental data. Generally,
the finite element model that employed the field-cured elastic modulus was more accurate in
approximating the experimental results. This observation can be attributed to the fact that the
web thickness of the precast segments matched the diameter of the concrete cylinders (4 in.).
Therefore, the environmental conditions imposed on the field-cured cylinders (cured alongside
the test girder) were more representative of the precast segments than were the moist-cured
cylinders (which were submerged in a tank of lime water). Thus, the field-cured elastic modulus
(4,770 ksi) was used in all subsequent finite element models.
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Figure 13.19. Comparison of experimental and FE buckling curves (configuration A-0-0)

13.5 Finite element buckling model results

A finite element buckling analysis was performed for each of the three test
configurations, using the scaled bearing pad roll stiffness curves and field-cured elastic modulus
as described in the previous sections. Using the same 10%-slope buckling definition that was
applied to the experimental results, the buckling capacity of each finite element analysis was
defined as the point at which the slope of the load-displacement curve dropped to below 1/10th
of the initial slope. The buckling curves and capacities for each of the finite element analyses are
shown in Figure 13.20, along with the buckling curves and capacities generated using hyperbolas
fitted to the experimental data. The buckling capacities calculated from the experimental tests
and from finite element analyses are also summarized numerically in Table 13.3.

Generally, there was good agreement between the shape of the experimental and
analytical (finite element) curves—particularly in the non-sloped cases—and also between the
predicted buckling capacities. In the non-sloped cases (A-0-0 and A-45-0), the finite element
buckling capacity was lower than the experimental buckling capacity. However, in the sloped
case (A-0-04), the initial slope and buckling capacity of the model were slightly larger than the
experimental results. This disagreement can most likely be attributed to a difference in the
theoretical initial contact area on the bearing pad, caused by the initial sweep that was present at
the start of the experimental buckling test. If, as a simplification, linear elastic bearing pad
response was assumed, then the ratio of initial contact areas between girder buckling tests and
isolated roll tests would be equal to the ratio of applied axial load. Thus, scaling the isolated roll
stiffness curves by the ratio of the applied axial loads should accurately reflect this difference.
However, because relatively large sweep was present in the test girder, the end blocks initially
rolled about the bearing pad as the test girder was being set in place. Therefore, the contact area
in the buckling tests may actually have been less than the theoretical contact area accounted for
by using the scale factor. Thus, the initial slope and buckling load obtained from the
experimental results would be smaller than the finite element prediction (as seen in the A-0-04
case).
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Figure 13.20. Buckling curves from experimental tests and finite element models:
a) A-0-0; b) A-45-0; c) A-0-04
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Table 13.3. Experimental and finite element buckling capacities for each test configuration

Experimental | Finite element
Test . . Percent
configuration buckling load | model buckling difference
(kip) load (kip)
A-0-0 15.4 13.9 -9.7%
A-45-0 12.8 10.9 -14.9%
A-0-04 11.8 12.2 3.4%

Based on the acceptable levels of agreement observed between the shape of the
experimental buckling curves and the finite element analysis buckling curves, and based on a
maximum difference of 15% between experimentally and analytically determined buckling
capacities, the finite element modeling and analysis methods employed in this study, and in
related FDOT-sponsored research studies (specifically, BD545-36: Consolazio et al. 2007,
BDK?75 977-33, and BDK75 977-70), are considered to be experimentally validated to a level of
accuracy that is suitable for use in the development of girder bracing recommendations.

114



CHAPTER 14
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

14.1 Summary

Roll stiffnesses for various types of standard FDOT bearing pads were quantified under
the effects of skew angle, slope angle, and a combination of skew and slope. A bearing pad test
device was designed and fabricated to impose axial load, skew, and slope on bearing pads, and to
enable measurement of roll rotation as a function of moment applied. Additionally, girder
buckling capacities of a full-scale test girder were quantified under the effects of skew angle,
slope angle, and a combination of skew and slope. The pads used to support each end of the test
girder were the same pads previously tested to determine roll stiffness. Gravity load simulators
were designed and fabricated to apply vertical loads to the test girder without imposing artificial
lateral restraint. In both types of testing (bearing pad and girder buckling), multiple test
repetitions were performed under identical conditions, to ensure that reasonable repeatability of
the data was achieved.

14.2 Conclusions and recommendations

Based on the isolated bearing pad roll stiffness test results, for all three FDOT pad types
tested, substantial reductions in roll stiffness arose from the combined effects of skew and slope.
Although not as severe as the combination of skew and slope, it was also found that skew angle
alone significantly reduced the roll stiffness of a bearing pad. Regarding the buckling tests,
reductions in buckling capacities resulted from the imposition of skew or slope angle alone. A
severe reduction in buckling capacity was observed when skew and slope were combined, with
the most extreme case (A-45-04) causing the test girder to buckle under its own self-weight
without any superimposed loads.

It is therefore recommended that consideration be given to requiring that bearing pads be
oriented to match girder alignment to eliminate the effects of skew angle. Similarly, the effects
of slope should be minimized or eliminated by continuing to require the use of either beveled
bearing plates or sloped beam seats. These measures would eliminate the adverse effects of skew
and slope, both of which have been analytically and experimentally demonstrated to reduce
bearing pad roll stiffness and girder buckling capacity.

It is also recommended that further analytical studies be conducted to examine the effects
of bearing pad roll stiffness on Florida I-Beam (FIB) girders, at typical design span lengths. Such
studies can be executed using the finite element buckling modeling techniques documented in
this report. The buckling capacity determination rule—in which the buckling load is defined as
the point at which the slope of the load-deflection curve drops below 10% of the initial value—
should continue to be used in future studies to determine girder buckling capacity.
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APPENDIX A
BEARING PAD TEST DEVICE FABRICATION PLANS

This appendix includes drawings for the fabrication of the bearing pad test device, used
in the isolated roll stiffness tests.
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APPENDIX B
FULL-SCALE TEST GIRDER FABRICATION PLANS

This appendix includes drawings for the fabrication of the test girder, used in the full-
scale buckling tests.
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(10) HORIZONTAL TIE —— — (4) VERTICAL HOOP

(5) HORIZONTAL HOOP \ / ~—— (4) VERTICAL TIE
\. \ / /
\ / /
1
" 7MY D —— #4 ALTERNATE
a

r § i : / HOOK DIRECTIONS
4{/4 " UTh /

o Y, T
I o\ (7P . /
. 0 ;

| >

i rox o3

p I 1l N

// T 1T 1T T

LOCAL ZONE — = ) ) \
REINFORCEMENT \—— EXTEND LONGITUDINAL
) ) REINFORCEMENT FROM

oy o oy TEST CROSS SECTION 23"
* * INTO END BLOCK (TYP.)

S < ,
11/ " \ 11/ "
4 2u3lyn A

END BLOCK TO PRECAST SEGMENT CONNECTION - PLAN VIEW
ALL BARS ARE SIZE #4. PRETENSIONED STRANDS AND POST-TENSIONED
BARS NOT SHOWN FOR CLARITY.

SCALE: 1"=1'-Q"

14

10" 10"
LA

BOTTOM BAR LOCAL TOP BAR LOCAL
ZONE REINFORCEMENT ZONE REINFORCEMENT

) 612l
6 3& /2 " /2

2ty

230y

(5) HORIZONTAL HOOP (10) HORIZONTAL TIE —

=

END BLOCK REINFORCEMENT DETAILS (4) VERTICAL TIE (4) VERTICAL HOOP
ALL BARS ARE SIZE #4

SCALE: }5"=1'-0"

Contact: Megan Salvetti  meg8253@ufl.edu 561-866-2531

REV3  End block reinforcement details P 2011-06-22 ‘ University of Florida | Sheet 9 of 10

Revisions: REV 1:2011-01-03 REV 2 : 2011-02-23 | REV 3 : 2011-06-24 |
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/ GROUT VALVE

GROUT TUBE AND ACCESORIES — / GROUT TUBE
SHOWN FOR COMPLETENESS \ / //
N /
N [ ~— COUPLER HOUSING, CLEAR ACRYLIC TUBE
GROUT TUBE COUPLER — /" McMASTER PART NUMBER 8486K368, OD 3-1/4"
\ I /' CUTIN HALF ALONG LENGTH AND CLAMP

/ TOGETHER AROUND TRANSITION PIECE

/ COUPLER

_—cLAMP

\
SEALRING — \ ‘
\

GROUT TUBE CONNECTOR ——__

—
V& W /&%
—L_]

/ .
/ pt _ .
// 4. ~4 ) \"\ N
S le a4 ? 4 3 1" @ POST-TENSIONED BAR
/ e . < :
GALVANIZED STEEL —/ - . . . /\/ A4 < x\\
DUCT, OD 17%" ; \—— TRANSITION PIECE
8/8" 61/9"
Sw ]
75"/
16"

CLOSURE POUR - POST-TENSION DETAILS
MILD REINFORCEMENT NOT SHOWN FOR CLARITY
SCALE: 1)5"=1-0"

~— PLATE CONNECTOR

/ /— SPLICE SLEEVE

/ / — GALVANIZED STEEL
GROUT TUBE — / / // DUCT COUPLER

GROUT VALVE ——

L

ANCHOR NUT —~_

L oA <i\. .
3{/8" / \ /\/ T X
\— LEVELING PLATE \ \

\ __ 1" POST-TENSIONED BAR

ANCHOR PLATE \

4 x5 x 14 \¥ GALVANIZED STEEL DUCT, OD 2.06"

SOLID END BLOCK - POST-TENSION DETAILS
MILD REINFORCEMENT NOT SHOWN FOR CLARITY
SCALE: 1%"=1'-0"

Contact: Megan Salvetti  meg8253@ufl.edu 561-866-2531
Post-tension connection details ‘ 2011-06-22 ‘

University of Florida | Sheet 10 of 10
Revisions: REV1:2011-01-03 | REV 2 :2011-02-23 | REV 3 : 2011-06-24 |
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APPENDIX C
COMPRESSIVE STRENGTH AND ELASTIC MODULUSTEST RESULTS

This appendix includes the compressive strength and elastic modulus test results, from
cylinders cast from the test girder, used in the full-scale buckling tests.
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Table C.1. Compressive strength test results performed for each girder component

Date . Age | Fracture | Compressive
poured Batch Curing | Date tested (days) type | strength (psi)
moist 28 day 28 - 7540
moist | 9/19/2011 124 1 8828
moist | 12/8/2011 204 4 7564
Precast
5/18/2011 | segment: | moist | 12/8/2011 204 1 -
Exterior A
field 12/8/2011 204 4 6368
field 12/8/2011 204 4 6131
field 12/8/2011 204 4 6514
moist 28 day 28 - 7720
moist | 9/19/2011 123 1,2 9154
moist | 12/8/2011 203 4 8160
Precast
5/19/2011 | segment: | moist | 12/8/2011 203 1 8238
Exterior B
field 12/8/2011 203 4 5956
field 12/8/2011 203 4 5680
field 12/8/2011 203 1 5858
moist 28 day 28 - 8070
moist | 9/19/2011 119 1,2 9004
moist | 12/8/2011 199 | irregular 6646
Precast
5/23/2011 | segment: | moist | 12/8/2011 199 4 8088
Interior
field 12/8/2011 199 4 6348
field 12/8/2011 199 4 7855
field 12/8/2011 199 4 7223

137




moist | 9/13/2011 | 18 4 8812
moist | 9/13/2011 | 18 4 8806
moist | 12/8/2011 | 104 1 9060
826/2011 | S0 0 moist | 12782011 | 104 1 9514
moist | 12/8/2011 | 104 4 8783
fidld | 12/8/2011 | 104 4 7693
fidld | 12/8/2011 | 104 1 7335
moist | 9/13/2011 | 14 4 8346
moist | 9/13/2011 | 14 4 8154
001 N% rlt(},lcin q mo?st 12/8/2011 | 100 1 9490
moist | 12/8/2011 | 100 1 8808
moist | 12/8/2011 | 100 1 10016
fild | 12/8/2011 | 100 1 7082
moist | 9/13/2011 | 14 4 6124
moist | 9/13/2011 | 14 4 6322
Closure | MOist | 12/8/2011 | 100 1 8292
8/30/2011
POUrs moist | 12/8/2011 | 100 4 7366
moist | 12/8/2011 100 | irregular 7090
fild | 12/8/2011 | 100 4 5264

Table C.2. Elastic modulus test results performed for each girder component

Date . Age |Poisson's | Modulus of
poured Batch Curing | Date tested (days) ratio  |Elasticity (ksi)
5/18/2011 |  Pprecast moist | 12/9/2011 205 0.34 5450
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segment:

) moist 12/9/2011 205 0.31 5000
Exterior A
moist 12/9/2011 205 0.23 5000
field 12/9/2011 205 0.27 4550
field 12/9/2011 205 0.28 4750
field 12/9/2011 205 0.27 4550
moist 12/9/2011 205 0.32 5600
moist 12/9/2011 205 0.2 5000
Precast moist 12/9/2011 205 0.3 5000
5/19/2011 | segment:
Exterior B | field 12/9/2011 205 0.31 4650
field 12/9/2011 205 0.31 4950
field 12/9/2011 205 0.29 4700
moist | 12/12/2011 208 0.27 5000
moist | 12/12/2011 208 0.27 5050
Precast moist | 12/12/2011 208 0.27 5150
5/23/2011 | segment:
Interior field 12/9/2011 205 0.32 5050
field 12/9/2011 205 0.28 5000
field 12/9/2011 205 0.27 4750
moist | 12/12/2011 208 0.27 5500
moist | 12/12/2011 208 0.27 5250
South end moist | 12/12/2011 208 0.28 5400
8/26/2011 block
¢ fild | 12/9/2011 | 205 0.25 4600
field 12/9/2011 205 0.25 4950
field 12/9/2011 205 0.27 5000
8/30/2011 | North end | moist | 12/12/2011 208 0.27 5000
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block

moist | 12/12/2011 | 208 | 0.31 5050
moist | 12/12/2011 | 208 | 0.26 5000
fidd | 12/9/2011 | 205 | 0.27 4300
fidld | 12/9/2011 | 205 | 0.26 4250
fidld | 12/9/2011 | 205 | 0.26 4150
moist | 12/12/2011 | 208 | 0.25 4600
moist | 12/12/2011 | 208 | 0.28 5050
Closure | MOist | 12/12/2011| 208 | 031 4600
8/30/2011
pours fidd | 12/9/2011 | 205 | 0.27 3700
fidld | 12/9/2011 | 205 | 0.26 3700
fidld | 12/9/2011 | 205 | 0.25 3500
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APPENDIX D
DYWIDAG JACK CALIBRATION FORM

This appendix includes the DYWIDAG jack calibration form, used to determine the
prestress levels in the post-tensioned bars, in the full-scale buckling tests.
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Dywidag Systems International USA Inc. m

JACK CALIBRATION FORM CALIBRAZIGNTR
9931
JACK TYPE: 60Mp SERIES 04 THEO. RAM AREA: 20.50 DATE: 9/2/2011
JACK ID: AS56 COMPUTED RAM AREA: _ 20.82
PRESSURE GAUGES: MASTER GAUGE CALIBRATION STANDARD: ANSI 45.2
MASTER GAUGE: 475 SERVICE GAUGE CALIBRATION STANDARD: ANSI 40.1
SERVICE GAUGE(S): GAUGE 1: 6-10218 GAUGE 2: GAUGE3: GAUGE 4:
LOADCELL: CALIBRATION STANDARD: ASTM E4 AND E74
TYPE: Slope Indicator .D.NO. 10158
METER NUMBER: 1280
METER MFG: Slope Indicator CONVERSION EQUATION: AVG. X 1 + 0
Temperature: 87 Humidity: 74%
Calibration Location: DYWIDAG SYSTEMS INTERNATIONAL, INC.
Calibrated By: Gary Smith Calibration Firm: DYWIDAG SYSTEMS INTERNATIONAL, INC.
Verified By Greg Wilkinson " Veérification Firm: DYWIDAG SYSTEMS INTERNATIONAL, INC.
Customer: University of Florida Job Number: J081583
MASTER GAUGE1 GAUGE 2 GAUGE3 GAUGE4 RUN1 RUN 2 RUN3  AVG ACTKIPS |
1000 1000 0 0 0 20.61 20.45 20.73 20.597 20.597
2000 2000 0 0 0 41.81 41.39 41.35 41.517 41,517
3000 3000 0 0 0 62.77 62.15 62.36 62.427 62.427
4000 4000 0 0 0 83.36 82.86 83.05 83.090 83.090
5000 5000 0 0 0 104.29 103.73 103.82 103.947 103.947
5500 5500 0 0 0 114.89 113.91 | 114.25 114.350 114.350
6000 6000 0 0 0 125.28 124,37, 124.74 124,797 124,797
6500 6500 0 0 0 135.61 134.92 135.06 135.197 135.197
7000 7000 0 0 0 ; 146.33 145.24 145.57 145.713 145.713
7400 7400 0 0 0 1 54».48 163.71 153.93 164.040 154.040
For Monostrand Use Only Please Refer To; Use Gauge PS
True Gauge PSI: N/A N/A =80% of U.T.S Use Gauge PSI:  N/A
—180
160
140
‘é’ 120
€ 100
% 80
S 60
40
20
0
0 1000 2000 3000 4000 5000 6000 7000 8000

Gauge Reading = PSI

Report Created By: Russell Galasinski Report Number: 11-3-EDTS-R3 Revised Date: 4-8-00
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Dywidag Systems International USA Inc. m
GAUGE CALIBRATION FORM

GAUGE TYPE: 6" 10000 PSI GAUGE CALID: 11086
GAUGE I.D#:  6-10218 DATE:  9/2/2011
Special Note: TEMP: 87
| MASTER |TEST RUN 1| TEST RUN 2| TEST RUN 3| AVG.READING |
0 0o 0 0 0 |
1000 | 1000 1000 1000 | 1000 '
2000 2000 | 2000 2000 2000 |
3000 3000 | 3000 | 3000 | 3000
4000 4000 4000 | 4000 | 4000
5000 5000 5000 | 5000 | 5000
6000 6000 6000 | 6000 | 6000 |
7000 7000 7000 ~ 7000 7000
8000 8000 8000 8000 . 8000
9000 9000 9000 | 9000 9000

CALIBRATED BY: Gary, Smith
CUSTOMER: Unversity of Florida
JOB NUMBER: J081583
MASTER INSTRUMENT ID No.: 91550 TRACE# 9912-EQ

DESCRIPTION : DEADWEIGHT TESTER

ALTHOUGH RAM/GAUGE COMBINATIONS ARE CALIBRATED AS A UNIT, GAUGES ARE
CALIBRATED INDEPENDENTLY, AND ARE USABLE ON OTHER DYWIDAG SYSTEM RAMS,
WHEN THIS DOES NOT CONFLICT WITH PROJECT SPECIFICATIONS.

INSTRUCTIONS:

1. Each gauge must be calibrated to a master instrument that has been calibrated

and traceable to NIST Standards.

. Each gauge must be calibratied to meet or exceed ASME STD. 40.1.

. Each gauge will be calibrated before being used in a jack calibration.

. Each gauge will be calibrated before being sent to the customer as a replacement gauge.
. Connect the gauge to the testing machine.

. Pressurize the gauge in 10 increments throughout it's entire range, 3 times.

. Record the gauge and test standard readings.

. If gauge is in need of adjustment, consult the manufacturers product manual
contained in the DSI equipment calibration and standards book.

9.Form is to be used by Equipment Dept. staff in the calibration of hydraulic gauges that
will be used by the customer.

10. Form is to be completely filled out.

11. Form is to be filled in the gauge calibration file according to it's I.D. No. and with any
associated equipment file. One Copy to customer.

N

o~NOOR W

Report Created By: Russell Galasinski Report Number: 11-3-EDTS-R4 Revised Date: 4-8-00
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APPENDIX E
GRAVITY LOAD SSIMULATOR FABRICATION PLANS

This appendix includes drawings for the fabrication of the gravity load simulators, used
in the full-scale buckling tests.
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APPENDIX F
CATCH FRAMESFABRICATION PLANS

This appendix includes drawings for the fabrication of the gravity load simulators, used
in the full-scale buckling tests.
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APPENDIX G
BUCKLING TESTSINSTRUMENTATION PLAN

This appendix includes drawings of the instrumentation used in the full-scale buckling
tests.
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