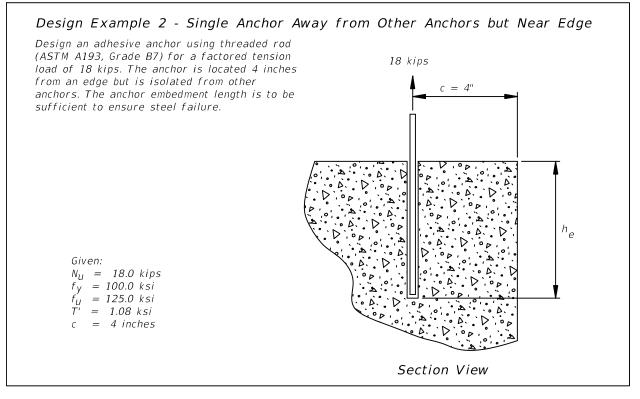
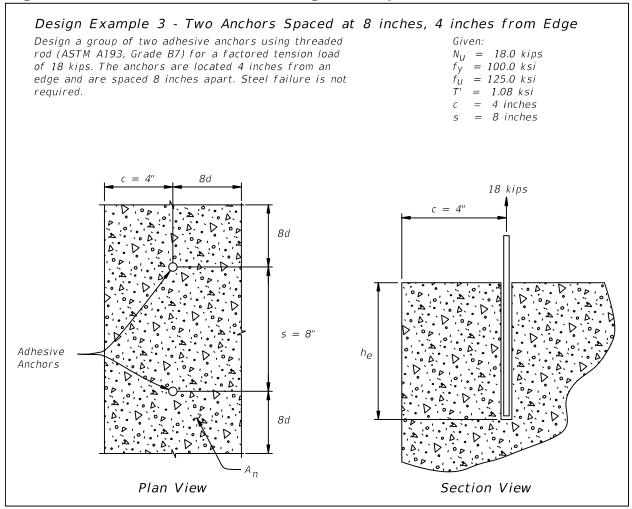

Design Procedure Example 1 See Figure 1	Calculation	
Step 1 - Determine required rod diameter		
Determine the required diameter of the threaded rod by setting the factored tension load equal to the design steel strength.	$N_u = N_s$	
The effective area for the threaded rod may be taken as 75% of the gross area. As with reinforcing bars, the minimum specified yield strength of the rod is used to determine the required diameter.	$\begin{split} \textbf{N}_{s} &= \varphi_{s}\textbf{A}_{e}\textbf{f}_{y} \\ \text{Where: } \varphi_{s} &= \textbf{0.9} \text{ ; } \textbf{A}_{e} &= \textbf{0.75}(\pi d^{2} / 4)\text{ ;} \\ \text{and } \textbf{f}_{y} &= \textbf{100} \text{ ksi} \end{split}$	
Substituting and solving for d :	$18 = (0.9)[(\pi d^2/4)](100)$ d = 0.583 in. therefore, use 5/8" threaded rod.	
Step 2 - Determine required embedment	length to ensure steel failure	
Basic equation for embedment length calculation. Since there are no edge or spacing concerns, Ψ e and Ψ gn may be taken as unity.	$\begin{split} \mathbf{N_c} &= \ \varphi_c \Psi_e \Psi_{gn} \mathbf{N_o} \ \text{(for embedment)} \\ \text{Where:} \ \varphi_c &= \ \textbf{0.85} \ \text{;} \\ \Psi_e, \Psi_{gn} &= \textbf{1.0} \ \text{(no edge/spacing concern); and } \mathbf{N_o} &= \textbf{T}' \pi \textbf{d} \textbf{h}_e \end{split}$	
For ductile behavior it is necessary to embed the anchor sufficiently to develop 125% of the yield strength or 100% of the ultimate strength, whichever is less.	$N_{c}(req'd) = 1.25 A_{e}f_{y} \le A_{e}f_{u}$	
Determine the effective area for a 5/8" threaded rod:	$\begin{array}{l} {\sf A}_{e} = 0.75(\pi 0.625^{2}/4) \\ {\sf A}_{e} = 0.23in^{2} \end{array}$	
Determine the required tension force, N_c (req'd), to ensure ductile behavior.	$\begin{array}{l} N_c(req'd) \ = \ 1.25 \ A_e f_y \leq A_e f_u \\ N_c(req'd) = \ 1.25(0.23)(100) \leq (0.23)(125) \\ N_c(req'd) \ = \ 28.75 \ kips = \ 28.75 \ kips \\ therefore, \ use \ N_c(req'd) \ = \ \ 28.75 \ kips \end{array}$	
Substituting and solving for h_e :	28.75 = 0.85 (1.0) (1.0) (1.08) π (.625) h _e h _e $=$ 16 in	


Figure 1 Adhesive Anchors Design Example 1

Design Procedure Example 2 See Figure 2	Calculation	
Step 1 - Determine required rod diameter	r	
Determine the required diameter of the threaded rod by setting the factored tension load equal to the design steel strength.	N _u = N _s	
The effective area for the threaded rod may be taken as 75% of the gross area. As with reinforcing bars, the minimum specified yield strength of the rod is used to determine the required diameter.	$\begin{split} \textbf{N}_{s} &= \varphi_{s}\textbf{A}_{e}\textbf{f}_{y} \\ \text{Where: } \varphi_{s} &= \textbf{0.9} \text{ ; } \textbf{A}_{e} &= \textbf{0.75}(\pi d^{2} / 4)\text{ ;} \\ \text{and } \textbf{f}_{y} &= \textbf{100} \text{ ksi} \end{split}$	
Substituting and solving for d :	$18 = (0.9)[0.75(\pi d^2/4)](100)$ d = 0.583 in. therefore, use 5/8" threaded rod.	
Step 2 - Determine required embedment length to ensure steel failure		
Basic equation for embedment length calculation. Since there are no spacing concerns, Ψ gn may be taken as unity, and, since the edge distance (4 in) is less than 8d (5 in), the edge effect, Ψ e, will need to be evaluated.	$\begin{array}{l} \textbf{N_c} = \ \varphi_c \Psi_e \Psi_{gn} \textbf{N_o} \ \ (\text{for embedment}) \\ \text{Where:} \ \ \varphi_c = \ \textbf{0.85} \ ; \\ \Psi_{gn} = \textbf{1.0} \ \ (\text{no spacing concern}); \ \text{and} \\ \textbf{N_o} = \textbf{T}' \pi \ \textbf{d} \ \textbf{h}_e \end{array}$	
For ductile behavior it is necessary to embed the anchor sufficiently to develop 125% of the yield strength or 100% of the ultimate strength, whichever is less.	$N_{c}(req'd) = 1.25 A_{e}f_{y} \le A_{e}f_{u}$	
Determine the effective area for a 5/8" threaded rod:	$\begin{array}{l} {\sf A}_{e} = 0.75(\pi 0.625^{2}/4) \\ {\sf A}_{e} = 0.23in^{2} \end{array}$	
Determine the required tension force, N_c (req'd), to ensure ductile behavior.	$\begin{split} &N_c(req'd) = 1.25 A_e f_y \leq A_e f_u \\ &N_c(req'd) = 1.25(0.23)(100) \leq (0.23)(125) \\ &N_c(req'd) = 28.75 \text{kips} = 28.75 \text{kips} \\ &\text{therefore, use } N_c(req'd) = 28.75 \text{kips} \end{split}$	

Design Procedure Example 2 See Figure 2	Calculation
Determine edge effect factor, $\Psi_{f e}$. Note: ${f C}_{f cr}$ = 8d	$\begin{split} \psi_{e} &= 0.70 + 0.30 (c/8d) \\ \psi_{e} &= 0.70 + 0.30 [4/(8)(0.625)] \\ \psi_{e} &= 0.94 \end{split}$
Substituting and solving for h_e :	28.75 = 0.85 (1.0) (0.94) (1.08) π (.625) ${\rm h_e}$ ${\rm h_e}~=$ 16.98 in


Figure 2 Adhesive Anchors Design Example 2

Design Procedure Example 3 See Figure 3	Calculation	
Step 1 - Determine required rod diameter	r	
Determine the required diameter of the threaded rod by setting the factored tension load equal to the design steel strength.	$N_u = N_s$	
The effective area for the threaded rod may be taken as 75% of the gross area. As with reinforcing bars, the minimum specified yield strength of the rod is used to determine the required diameter.	$\begin{array}{l} \textbf{N}_{s}=\varphi_{s}\textbf{A}_{e}\textbf{f}_{y}\\ \text{Where:}\\ \varphi_{s}\!=\!\textbf{0.9};\textbf{A}_{e}\!=\!(2)\textbf{0.75}(\pi d^{2}/4);\\ \text{and}\textbf{f}_{y}=\textbf{100}\text{ksi} \end{array}$	
Substituting and solving for d :	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
Design steel strength	$\begin{array}{l} \textbf{N_s} = (0.9)(2)[0.75(\pi d^2/4)](100) \\ \textbf{N_s} = \textbf{41.4 kips} > \textbf{18 kips} \\ \text{therefore: OK} \end{array}$	
Step 2 - Determine required embedment length		
Basic equation for embedment length calculation. Since there are edge or spacing concerns, Ψe and Ψgn will need to be determined.	$\begin{array}{l} \textbf{N_c} = \phi_c \psi_e \psi_{gn} \textbf{N_o} \ \ (\text{for embedment}) \\ \text{Where:} \ \phi_c = 0.85 \ ; \\ \psi_e \ \text{and} \ \psi_{gn} \ \text{are calculated below; and} \\ \textbf{N_o} = \textbf{T}' \pi \textbf{d} \textbf{h}_e \end{array}$	
Determine edge effect factor, $\Psi_{f e}$.	$\begin{split} \psi_{e} &= 0.70 + 0.30 (c/8d) \\ \psi_{e} &= 0.70 + 0.30 [4/(8)(0.625)] \\ \psi_{e} &= 0.94 \end{split}$	
Determine group effect factor, $\Psi {f gn}$.	$\begin{split} \psi_{gn} &= A_n / A_{no} \\ \psi_{gn} &= (4+8d) [8+2(8d)] / (16d)^2 \\ \psi_{gn} &= (4+8(0.625)) [8+2(8)(0.625) / 16(0.625)^2] \\ \psi_{gn} &= 1.62 \end{split}$	

Design Procedure Example 3 See Figure 3	Calculation
Substituting and solving for h_e :	18 = 0.85 (1.62) (0.94) (1.08) π (.625) h _e h _e = 6.55in (say 7") therefore: OK
Design adhesive bond strength.	$\begin{split} \textbf{N_c} &= (0.85)(1.62)(094)(1.08)\pi(0.625)(7) \\ \textbf{N_c} &= \ \textbf{19.21} > \textbf{18} \ \text{therefore: OK} \end{split}$
Step 3 - Final Design Strength	
Strength as controlled by steel.	$N_s = 41.4 \text{ kips} > 18 \text{ kips}$ therefore: OK
Strength as controlled by adhesive bond.	N _c = 19.21 kips > 18 kips therefore: OK
Final Design.	Two 5/8" anchors embedded 7 in.

Figure 3 Adhesive Anchors Design Example 3

