

ERA-NET Plus Infravation

SEACON

AN INDUSTRY PERSPECTIVE - ASTALDI

(SEACON Forum/HRB Workshop)

May 3, 2017

John Kipp Astaldi Construction Corporation

Outline

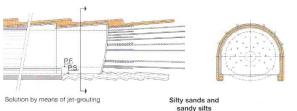
- Astaldi's Experience with FRP
- Construction Considerations
 - Procurement & Lead times
 - Site Storage and logistics
 - Construction Challenges
 - Advantages/Disadvantages Contractor's View
- Halls River Bridge Project
 - Comparison HRB GFRP Black Steel
- Vision for deployment of innovation

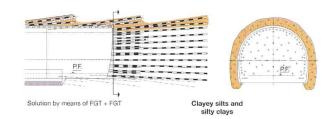
Astaldi's Experience with FRP

• More than 20 years using FRP:

Astaldi's Recent Projects using FRP				
Metro Copenhagen,Phase 1 & 2 - Denmark	Metro Milan Line 5 Bignami - Garibaldi, Italy			
Metro Brescia. Italy	Metro Naples Line 1, Piscinola - Centro Direzionale, Italy			
Metro Genoa, Italy	Metro Rome Line C, Italy Phase 1 and Phase 2			
Metro Milan Line 4, Italy	Metro Warsaw, Poland			
Metro Milan Line 5, San Siro - Garibaldi, Italy	Rome-Naples HSR, Italy			

Astaldi's use of FRP, has been predominately for <u>mechanized</u> <u>tunneling</u>, and <u>NATM works</u>.




Astaldi's Experience with FRP

ASTALDI Infravation

- Use of 'Soft Eye' in breakthroughs of Tunnel Boring Machines (TBMs) in stations/shafts.
- Use of Glass FRP reinforcements for tunnel face strengthening in soft ground NATM tunnels works.

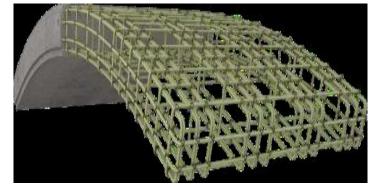
4

Astaldi's Experience with FRP

In recent years, the improvement in materials and testing have allowed FRP to make the jump from '*temporary works*' to '*permanent works*'.

- Concrete Tunnel Linings/Segments with FRP.
- LRT Track Beds Mitigation of Stray Current Corrosion
- Reinforced Concrete Structures in marine environments.
- Reinforced Structures subject to harsh environment – cold weather climates.

5/5/2017


testing

6

Astaldi's Experience with FRP

- Less reinforcements requirements due to reduced concrete cover.
- Higher durability no issues with spalling caused by oxidization of steel rebar.
- Higher durability no corrosions caused by stray currents from DC distribution lines, railway systems, substations, among other sources
- Normal Concrete Mixes Designsno specific requirements for specialized mixes and relevant

Procurement & Lead Time

- Procurement must consider lead time for manufacturing and shipping.
- Design becomes critical
- Procurement of additional quantities of FRP bars to ensure immediate replacements in case of damages on site.
- QA/QC additional verifications at manufacturing plant needed prior to shipment to mitigate risk of delays due to non compliances of materials arriving on site.

Site Storage and Logistics

- Transportation and storage usually in containers – avoids mishandling of rebar and protection from direct sunlight.
- Light weight of FRP rebar make it easy to man handle all sizes and lengths minimizing H&S issues.

Site Storage and Logistics

- > Additional Storage requirements needed on site
- Specific lifting plans needed for large prefabricated cages.
- Weight of bars is ¼ of black steel, making it easy to handle and increases productivity rebar placing.

- Trained labor required to ensure correct fixing and minimize risk of damages and movement of reinforcements during concreting operations.
- Specialized lifting plans required for prefabricated cages.
- Splicing of FRP bars complicated and time consuming.

Construction Challenges

- Lift of prefabricated FRP cages
- Splicing of rebar to ensure safe lifting.
- Concrete issues due to light weight of rebar.
- NO FLAME no heat sources allowed near FRP bars.
- Fragility of rebar

Construction Challenges

- Lift of prefabricated FRP cages
- Splicing of rebar to ensure safe lifting.
- Concrete issues due to light weight of rebar.
- NO FLAME no heat sources allowed near FRP bars.
- Fragility of rebar

Construction Challenges

- Lift of prefabricated FRP cages
- Splicing of rebar to ensure safe lifting.
- Concrete issues due to light weight of rebar.
- NO FLAME no heat sources allowed near FRP bars.
- Fragility of rebar

Advantages:

- Highly resistant to corrosion
- Tensile strength greater than that of steel
- Weighs only one quarter as steel
- It is transparent to magnetic fields and radar frequencies
- GFRP has low electrical and thermal conductivity
- Reduced concrete cover requirements
- Labor Savings during Installation
- Concrete Properties less stringent

Disadvantages:

- Higher Costs of Materials
- Specific Storage and Site Logistics
- Additional Contingency Qty's required
- Specific lifting plans required
- QA/QC additional verifications at manufacturing plant
- Risk of movement of GFRP during concreting
- Fragile easily damaged. Specialized training of labor.
- Splicing details for prefabricated cages

Comparison HRB GFRP – Black steel

ALLOWABLE STRESS DESIGN

GFRP BARS	ALLOWABLE TENSILE STRENGTH (ksi) – HALLS RIVER BRIDGE BARS	STEEL – GRADE 60 S	ALLOWABLE TENSILE STRENGTH (ksi)	K = (GFRP)/ (STEEL)	
#4 (0.5 in)	143/2* = 71.5 ksi	#4 (0.5 in)	24 ksi	3	
#5 (0.625 in)	140/2* = 70 ksi	#5 (0.625 in)	24 ksi	2.9	
#6 (0.750 in)	146/2* = 73 ksi	#6 (0.750 in)	24 ksi	3	
#8 (1 in)	123/2* = 61.5 ksi	#8 (1 in)	24 ksi	2.6	

(*) minimum safety factor GFRP tensile strength: n = 2

Comparison HRB GFRP – Black steel

Cost expressed in terms of efficiency: \$/K of the allowable tensile stress

GFRP BARS	Unite Price LF	Unite Price /K	Grade 60 steel S BARS	Unit price*
#4 (0.5 in)	1.00 \$/LF	0.34 \$/LF/K	#4 (0.5 in)	0.51 \$/LF
#5 (0.625 in)	1.10 \$/LF	0.38 \$/LF/K	#5 (0.625 in)	0.79 \$/LF
#6 (0.750 in)	1.40 \$/LF	0.46 \$/LF/K	#6 (0.750 in)	1.14 \$/LF
#8 (1 in)	1.70 \$/LF	0.66 \$/LF/K	#8 (1 in)	2.03 \$/LF

(*) unit price based on FDOT average prices

Vision for deployment of innovation

- University and Research to keep reporting and demonstrating the successful alternative to steel
- GFRP unit price must be competitive
- Designers/Clients have a key role as promoters
- Concrete Durability and Life Cycle Assessment have to be considered as driving input

