

2017 FDOT – Halls River Bridge FRP Workshop

May 3, 2017 Tampa, FL

HRB-FRP Workshop (Part 3)

Presenter: Michelle Roddenberry, PhD, P.E.

Principal Investigator FAMU-FSU College of Engineering

Collaborator: Antonio Nanni, PhD, P.E. University of Miami

Outline:

Part 1 – Bridge Design

- 1. Halls River Bridge Project Overview (Suarez/Pelham)
- 2. Hybrid Composite Beams (Masseus/Siddiqui/Hillman)
- 3. GFRP-RC Deck Design (Siddiqui/Nanni)
- 4. GFRP-RC Bent Cap Design (Elisha/ Siddiqui/Pelham)
- GFRP-RC End Bents, Back Wall & Wing Walls (Siddiqui) (15 min. break)
- Part 2 Developmental Standards:
 - 5. CFRP Prestressed Bearing Piles (Nolan)
 - 6. Cantilever Sheet Pile Walls (Bulkhead/Seawall) (Nolan/Hunter)
 - 7. Gravity Walls (Nolan)
 - 8. GFRP-RC Traffic Railings & Approach Slabs (Nolan)
- Part 3 Research Project & Monitoring (Knight/Roddenberry)
- Part 4 CEI's Insights and Recommendations (D7 Construction)
- Part 5 Open Discussion

Research Project & Monitoring

Objectives

- Verify the ability of experimental features within an extremely aggressive environment to increase the overall life of the bridge along with decreasing the associated maintenance costs
- Prove validity of experimental features for future use of these products

- Observe and document the fabrication activities
- Document the construction activities
- Document the quality of the constructed bridge

- Measure the performance of the in-service bridge by monitoring and durability testing
- Identify and quantify material degradation of concrete and FRP in sheet pile wall caps
 - End of construction
 - 6 months
 - 1 year
 - 2 years

For concrete:

- Concrete compressive strength (ASTM C42)*
- Penetration of chloride ion into concrete (ASTM C1202 / AASHTO T277)*
- pH*
- Stiffness*
- Elemental analysis via Energy Dispersive X-ray (EDX)
- Fourier Transform Infrared (FTIR) spectroscopy*

For FRP:

- Transverse shear strength (ASTM D7617)
- Horizontal shear strength (ASTM D4475)
- Fiber content (ASTM D2584)*
- Glass transition temperature by Dynamic Mechanical Analysis (DMA) (ASTM E1640)
- Tensile strength (ASTM D7205)
- Maximum outside dimensions (ASTM D792)
- Moisture absorption (ASTM D570)*
- Degree of cure by differential scanning calorimetry (DSC) (ASTM E2160)*
- Scanning electron microscope (SEM) image analysis at the inner core, the outer core, and the concrete-rebar bond interface
- Elemental analysis via Energy Dispersive X-ray (EDX)
- Fourier Transform Infrared (FTIR) spectroscopy*

CFCC Pile Driving

Halls River Bridge Homosassa Springs, FL

CFCC/GFRP Prestressed Sheet Piles

HRB-FRP Workshop

Hybrid Composite Beam (HCB)

- POLYISO FOAM - (1) LAYER 1oz CFM - ST-2 & RESIN FLOW PIPING (2) LAYERS 102oz QUADRAXIAL - (2) LAYERS 24oz BIAXIAL AND

(2) LAYERS 1oz CFM

POLYISO FOAM (1) LAYER 1oz CFM ST-2 & RESIN FLOW PIPING (2) LAYERS 102oz QUADRAXIAL (2) LAYERS 24oz BIAXIAL AND (2) LAYERS 1oz CFM

00

POLYISO FOAM (1) LAYER 1oz CFM ST-2 & RESIN FLOW PIPING (2) LAYERS 102oz QUADRAXIAL (2) LAYERS 24oz BIAXIAL AND

Lid Resin Infusion & Preparation

Shell Resin Infusion

Shell Preparation

Reinforcement

Concrete Arch Casting

CDS Manufacturing Inc. Gretna, FL

GFRP Reinforced Bent Caps

Sheet Pile Test Blocks

Test blocks from RCA and RAP Gravity Walls (with CFRP, GFRP & BFRP)

New FRP rebar configuration

24 test blocks of each RCA and RAP concrete mixes 8 test blocks with 4 CFRP 0.6" Carbon fiber strand 8 test blocks with 4 GFRP #5 Glass fiber rebar 8 test blocks with 4 BFRP #5 Basalt fiber rebar (half the blocks cast with conventional RCA and RAP mixes & half with green RCA and green RAP mixes)

Twin-block Forms built for ease of transportation to be done with blocks still in forms after the 7th day of casting

ABUTMENT #1

nixes For SECTION A-A Pavement Form work

Increasing E

ED

Test Block: 4 FRP #5

Test blocks from White Cement and Slag Blend Traffic Parapets (with GFRP only)

Questions?

SMO Contact Information:

Chase Knight, PhD FDOT State Materials Office 5007 N.E. 39th Avenue Gainesville, FL 32609 Email address: chase.knight@dot.state.fl.us Phone: (352) 955-6642

P.I. Contact Information:

Michelle Roddenberry, PhD, P.E.

FAMU-FSU College of Engineering 2525 Pottsdamer St., Rm A129 Tallahassee, FL 32310-6046 Email address: mroddenberry@fsu.edu Phone: (850) 410-6125