CONSERVE BY BICYCLE PROGRAM STUDY

PHASE I REPORT APPENDICES A THROUGH P

June 2007
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDIX A</td>
<td>Program Study Scope</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>Steering Committee Members</td>
</tr>
<tr>
<td>APPENDIX C</td>
<td>Intercept Survey</td>
</tr>
<tr>
<td>APPENDIX D</td>
<td>Variable Definitions</td>
</tr>
<tr>
<td>APPENDIX E</td>
<td>Network Analysis Zones</td>
</tr>
<tr>
<td>APPENDIX F</td>
<td>Aerials of Study Corridors</td>
</tr>
<tr>
<td>APPENDIX G</td>
<td>Development of the Network Friendliness Measure</td>
</tr>
<tr>
<td>APPENDIX H</td>
<td>Sensitivity Analysis, Mode Shift Model, by Facility Type</td>
</tr>
<tr>
<td>APPENDIX I</td>
<td>Sensitivity Analysis, Mode Shift Model, by Trip Length</td>
</tr>
<tr>
<td>APPENDIX J</td>
<td>Sensitivity Analysis, Induced Recreational Model: Varying Aesthetics, Points of Interest, and Facility Type</td>
</tr>
<tr>
<td>APPENDIX K</td>
<td>Sensitivity Analysis, Induced Recreational Model: Varying Facility Length and Facility Type</td>
</tr>
<tr>
<td>APPENDIX L</td>
<td>Sensitivity Analysis, Induced Recreational Model: Varying Aesthetics, Points of Interest, Facility Length, and Facility Type</td>
</tr>
<tr>
<td>APPENDIX M</td>
<td>Health Benefits and Energy Savings Worksheet</td>
</tr>
<tr>
<td>APPENDIX N</td>
<td>Supplemental Figures</td>
</tr>
<tr>
<td>APPENDIX O</td>
<td>Reserved</td>
</tr>
<tr>
<td>APPENDIX P</td>
<td>The Effect of Lane Width on Urban Street Capacity</td>
</tr>
</tbody>
</table>
APPENDIX A Program Study Scope

Conserve by Bicycle Program Study
Scope of services

Background:

In 2005, the Florida Legislature created FS 335.07, Conserve by Bicycle Program within the Florida Department of Transportation. As part of this program a study has been authorized.

The purposes of the Conserve by Bicycle Program are to:

- Save energy by increasing the number of miles ridden on bicycles, thereby reducing the usage of petroleum-based fuels.
- Increase efficiency of cycling as a transportation mode by improving interconnectivity of roadways, transit and bicycle facilities.
- Reduce traffic congestion on existing roads.
- Provide recreational opportunities for Florida’s residents and visitors.
- Provide healthy transportation and recreation alternatives to help reduce the trend toward obesity and reduce long-term health costs.
- Provide safe ways for children to travel from their homes to their schools by supporting the Safe Paths to Schools Program.

Goals:

The goals of this study are to determine:

- Where energy conservation and savings can be realized when more and safer bicycle facilities, such as bicycle paths, bicycle lanes, and other safe locations for bicycle use, are created which reduce the use of motor vehicles in a given area.
- Where the use of education and marketing programs can help convert motor vehicle trips into bicycle trips.
- How, and under what circumstances, the construction of bicycling facilities can provide more opportunities for recreation and how exercise can lead to a reduction of health risks associated with a sedentary lifestyle.
- How the Safe Paths to Schools Program and other similar programs can reduce school-related commuter traffic, which will result in energy and roadway savings as well as improve the health of children throughout the state.
- How partnerships can be created among interested parties in the fields of transportation, law enforcement, education, public health, environmental restoration and conservation, parks & recreation, and energy conservation to achieve a better possibility of success for the program. The above stakeholder groups for instance, may be brought into new or existing groups such as the Bicycle and Pedestrian Advisory Committee operated by Florida Department of Transportation.
The study shall produce measurable criteria that can be used by the department to determine where and under what circumstances the construction of bicycling facilities will reduce energy consumption and the need for and cost of roadway capacity, as well as realizing the associated health benefits.

Tasks (Phase 1):

1) The consultant shall assemble a steering team consisting of the State Pedestrian/Bicycle Coordinator, and at a minimum, representatives of metropolitan planning organizations, law enforcement agencies, the Office of Greenways and Trails of the Department of Environmental Protection, the Department of Health, Department of Community Affairs, Department of Education, community interest groups and the general public. The consultant will also prepare a public involvement plan which outlines the public involvement activities to be undertaken during the study. The Consultant will also complete an evaluation of the public involvement activities upon the completion of the project. The public involvement activities will include meetings and/or workshops to collect data from a representative population of the state. All public involvement activities will be documented and coordinated with the activities of the Steering Team. The steering team shall meet regularly throughout the state, to receive input from stakeholders, and evaluate and refine the study findings and recommendations.

2) The Consultant will complete a literature search which will highlight case studies of successful programs which have achieved some or all of the goals listed above. Research will include an evaluation of existing Florida-based programs that relate to the study goals, out-of-state statewide research, and national studies/programs. These case studies will be evaluated to determine which components would be most applicable in Florida.

3) With guidance from the steering team, pilot projects (facilities, education, encouragement and/or enforcement) and locations will be selected from ongoing programs (e.g. local TIPs, local jurisdiction or state agency programs, etc.) to demonstrate the principles illustrated by the case studies. To extent possible, the case study literature research should include background data that is representative of Florida, its regions and the various commuter patterns in different areas of the State. All examples will be accompanied by data collection prior to implementation where possible. See Phase 2 for completion of this task.

4) A final report will be produced which documents the study and makes recommendations to the legislature on how to best implement the conserve by bike program. The report will include a stand alone Executive Summary for use by the Legislature and other stakeholders interested in the study findings.

5) The consultant, with direction and guidance from the steering team, will develop an implementation plan along with roles and responsible entities to carry out the recommendations of the study.
Project Deliverables (Phase 1):
1) Public Involvement Plan Document & Evaluation
2) Case Study Technical Memorandum
3) Draft & Final Report

Tasks (Phase 2):
In addition, a post project data collection and evaluation plan will be included for all examples. The actual post project data collection and evaluation will be completed after the completion of this study as a separate phase. Specific data needs will be determined by the steering team.

Project Deliverables (Phase 2):
1) Draft and Final Report for this Phase

Timeline:
By July 1, 2007, study shall be completed and shall be submitted to the Governor, the President of the Senate, the Speaker of the House of Representatives, the Secretary of Transportation, the Secretary of Environmental Protection, and the Secretary of Health.

By July 1, 2008, phase 2 of the study will be complete and shall be submitted to the project manager within FDOT.

Consultant Not Employee or Agent:
The Consultant and its employees, agents, representatives, or subconsultants/subcontractors are not employees of the Department and are not entitled to the benefits of State of Florida employees. Except to the extent expressly authorized herein, Consultant and its employees, agents, representatives, or subconsultants/subcontractors are not agents of the Department or the State for any purpose or authority such as to bind or represent the interests thereof, and shall not represent that is an agent or that it is acting on the behalf of the Department or the State. The Department shall not be bound by any unauthorized acts or conduct of Consultant.
Ownership of Works and Inventions:

The Department shall have full ownership of any works of authorship, inventions, improvements, ideas, data, processes, computer software programs, and discoveries (hereafter called intellectual property) conceived, created, or furnished under this Agreement, with no rights of ownership in Consultant or any subconsultants/subcontractors. Consultant and subconsultants/subcontractors shall fully and promptly disclose to the Department all intellectual property conceived, created, or furnished under this Agreement. Consultant or subconsultants/subcontractor hereby assigns to the Department the sole and exclusive right, title, and interest in and to all intellectual property conceived, created, or furnished under this Agreement, without further consideration. This Agreement shall operate as an irrevocable assignment by Consultant and subconsultants/subcontractors to the Department of the copyright in any intellectual property created, published, or furnished to the Department under this Agreement, including all rights thereunder in perpetuity. Consultant and subconsultants/subcontractors shall not patent any intellectual property conceived, created, or furnished under this Agreement. Consultant and subconsultants/subcontractors agree to execute and deliver all necessary documents requested by the Department to effect the assignment of intellectual property to the Department or the registration or confirmation of the Department’s rights in or to intellectual property under the terms of this Agreement. Consultant agrees to include this provision in all its subcontracts under this Agreement.
APPENDIX B Steering Committee Members

<table>
<thead>
<tr>
<th>NAME</th>
<th>AFFILIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dennis Scott</td>
<td>FDOT</td>
</tr>
<tr>
<td>Dave Blodgett</td>
<td>FDOT</td>
</tr>
<tr>
<td>Jena Brooks</td>
<td>DEP</td>
</tr>
<tr>
<td>Melanie Weaver Carr</td>
<td>FDOT</td>
</tr>
<tr>
<td>Jennifer Carver</td>
<td>DCA</td>
</tr>
<tr>
<td>Dave Cummings</td>
<td>FSU Police Department</td>
</tr>
<tr>
<td>Amy Datz</td>
<td>FDOT</td>
</tr>
<tr>
<td>Laura Hallam</td>
<td>Florida Bicycle Association</td>
</tr>
<tr>
<td>David Henderson</td>
<td>Miami-Dade MPO</td>
</tr>
<tr>
<td>Mark Horowitz</td>
<td>Broward County MPO</td>
</tr>
<tr>
<td>Larry Hymowitz</td>
<td>FDOT District 4</td>
</tr>
<tr>
<td>Dwight Kingsbury</td>
<td>FDOT</td>
</tr>
<tr>
<td>Mary Anne Koos</td>
<td>FDOT</td>
</tr>
<tr>
<td>Sean Masters</td>
<td>FDOT District 1</td>
</tr>
<tr>
<td>Dan Moser</td>
<td>Lee County Health Department</td>
</tr>
<tr>
<td>Marlie Sanderson</td>
<td>Gainesville MPO</td>
</tr>
<tr>
<td>Ruth Steiner</td>
<td>University of Florida</td>
</tr>
<tr>
<td>Sean Timmons</td>
<td>PTA</td>
</tr>
<tr>
<td>Karl Welzenbach</td>
<td>Volusia County MPO</td>
</tr>
</tbody>
</table>
APPENDIX C Intercept Survey

Florida Department of Transportation
CORRIDOR TRAVEL SURVEY

We at the Florida Department of Transportation are working to provide you the best transportation system. To help accomplish this, we need to better understand travelers’ characteristics along this corridor.

Please help us out by taking a couple of minutes to fill out this brief survey regarding your present trip. Then simply fold it, seal it, and drop it in the nearest mailbox – it’s pre-addressed and postage paid. Thank you for your valued time and help!

What is today’s date? ___ / ___/2007

Tell us about yourself...
1. Are you male or female?
 □ Male □ Female

2. What is your age?
 □ Under 16 □ 16-21 □ 22-49 □ 50-64 □ 65+

3. What do you consider to be your current employment status (check all that apply)?
 □ Full □ Part □ Unemployed □ Retired □ Student

4. If employed outside the home, which of the following best describes your job?
 □ Manager/e/Professional/Technical
 □ Clerical
 □ Craftsmen/Mechanic/Manufacturing/Laborer
 □ Sales
 □ Equipment Operator/Trucker/Driver
 □ Service Worker
 □ University or College Faculty/Staff
 □ Military
 □ Other (Specify: ____________________________)

Tell us about your present trip... (if your overall trip has multiple stops, please refer only to the current portion of your trip for Questions #5-11)

5. What is the primary purpose of your present trip (please check only one response)?
 □ Work
 □ Work-Related (meetings, etc.)
 □ Shopping
 □ Errands (dry cleaning, banking, etc.)
 □ Personal Business (doctor, dentist, etc.)
 □ Social (visit family or friends)
 □ Recreation (exercise, gym, park, etc.)
 □ Return Home (from work)
 □ School
 □ Other (Specify: ____________________________)

6. What is the closest intersection of streets to where you began your present trip and the name of the business there, if applicable?
 _______________________________ _______________________________
 Name: ___________________________

7. What is the approximate duration of your present trip (to the nearest 5 minute increment)? ___ minutes

8. Of this duration, approximately how many minutes will you spend using your current mode of transportation (motor vehicle, bicycle, walking, etc.)? ___

9. What is the closest intersection of streets to the destination of your present trip and the name of the business there, if applicable?
 _______________________________ _______________________________
 Name: ___________________________

10. How many people are presently traveling with you?
 □ 0 □ 1 □ 2 □ 3 or more

11. If part of your present trip involves riding a bus, how many bus transfers will you make?
 □ 0 □ 1 □ 2 or more

12. Tell us about your household... (please include yourself in all responses)
 ___ Number of persons age 16+
 ___ Number of licensed drivers
 ___ Number of employed (full or part) persons
 ___ Number of children age 0-4
 ___ Number of elementary school aged children
 ___ Number of middle school aged children
 ___ Number of high school aged children
 ___ Number of working motor vehicles at your home
 ___ Number of working bicycles at your home

Thank you for participating in this survey!
Thank you for filling out this survey! Please refold, seal, and mail this postage-paid and pre-addressed survey.

Florida DOT Corridor Travel Survey

Win One of Four Gift Certificates to Area Restaurants and Movie Theatres by completing and returning this survey!

We at the Florida Department of Transportation are working to provide you the best transportation system. To help accomplish this, we need to better understand travelers’ characteristics along this corridor. Your response will help improve travel in the region.

Return Survey by ____________ to be eligible for prizes. One survey per person.
Name: ______________________ Contact info (phone/e-mail): ______________________

Florida DOT Corridor Travel Survey

13. If you are currently commuting to/from work or making a utilitarian (non-recreational) trip of any kind, and this trail were not present, by what mode would you be traveling?

☐ Car
☐ Bus
☐ Walk
☐ Bicycle
☐ Would not be making trip

14. How did you access the trail today?

☐ Car
☐ Bus
☐ Walk
☐ Bicycle

15. About how many miles did you travel to get to the trail?

_________ miles

Thank you!
APPENDIX D Variable Definitions

1. Bicycle Facility Type – type of facility (designated bike lanes, paved shoulders, or shared use path adjacent to roadway)

2. Width of Bicycle Facility – width of facility (ft)

3. Length of Bicycle Facility – length of facility (mi); in some cases, only a subset of the facility is used as the study corridor, and the length used is the length of this subset

4. Signalized Intersections per Mile – based on the number of signalized intersections the facility crosses; if the corridor begins and ends at signalize intersections, only one of these is counted

5. Unsignalized Intersections per Mile – based on the number of unsignalized intersections the facility crosses

6. Average ADT of Unsignalized Intersections – during the development of the Bicycle Level of Service Model, the volumes of the individual driveways were found to be less significant than other variables, and were not collected

7. Driveways per Mile – based on the number of driveways the facility crosses, regardless of driveway type

7.2 Lanes Crossed per Mile – based on the total number of lanes the facility crosses, including lanes from all intersections and driveways; driveways without lane markings are assumed to have two lanes, except for residential driveways leading to single-car garages

8. Presence of Street Lights (Y/N) – coded as “Y” if street lights are present for the majority of the corridor
9. Drinking Water Facilities per Mile – the number of establishments at which beverages could be quickly procured by travelers, including convenience stores and fast food restaurants; for trails, water fountains are also included

10. Percent of Facility Through/Adjacent to Attractions – attractions are defined as parks, waterfront, or otherwise scenic views

11. Adjacent Property Value of the Surrounding Area – represented by a surrogate, the average of the median household incomes of the Census tracts that coincide with the facility’s network influence area

12. Population Density of Surrounding Area – the average of the population densities of the Census tracts that coincide with the facility’s network influence area

13. Bicycle Network Connectivity – the degree of connectivity of the bicycle network in the network influence area, as defined in Appendix G, the “Development of the Network Travel Quality Continuity Measure” of the Phase I Summary Report

14. Pedestrian Network Connectivity – the degree of connectivity of the pedestrian network in the network influence area, as defined in Appendix G, the “Development of the Network Travel Quality Continuity Measure” section of the Phase I Summary Report

15. Transit Network Connectivity - the degree of connectivity of the transit network in the network influence area, defined as the decimal fraction of the network influence area located within one-half mile of a fixed transit route

16. Motor Vehicle Network Connectivity – the degree of connectivity of the motor vehicle network in the network influence area, assumed to be 1

17. Bicycle Level of Service – the calculated bicycle level of service of the study corrector, as calculated using FDOT’s Bicycle Level of Service Model based on field-collected inputs
18. Pedestrian Level of Service – the calculated pedestrian level of service of the study corridor, as calculated using FDOT’s *Pedestrian Level of Service Model* based on field-collected inputs.

19. Motor Vehicle Level of Service – the calculated motor vehicle level of service of the study corridor using FDOT’s ARTPLPAN software and associated inputs.

20. Transit Level of Service - the calculated transit level of service of the study corridor using FDOT’s ARTPLPAN software and associated inputs.

21. Age of the Surrounding Area – the average of the median ages of the Census tracts that coincide with the facility’s network influence area.

22. Age of Traveler – the average age of intercept survey respondents.

23. Gender of Traveler – the percentage breakdown of survey respondents by gender.

24. Children Age 0-4 per Traveler Household – the average number of children age 0-4 living in survey respondents’ households.

25. Elementary School Students per Traveler Household – the average number of children attending elementary school living in survey respondents’ households.

26. Middle School Students per Traveler Household – the average number of children attending middle school living in survey respondents’ households.

27. High School Students per Traveler Household – the average number of children attending high school living in survey respondents’ households.

28. Adults per Traveler Household – the average number of adults living in survey respondents’ households.
29. Eligible Drivers per Household – the average number of eligible drivers living in survey respondents’ households

30. Car Ownership by Traveler Household – the average number of motor vehicles owned by survey respondents and their households

31. Bicycle Ownership by Traveler Household – the average number of bicycles owned by survey respondents and their households

32. Employment Status of Traveler – the percentage breakdown of survey respondents by employment status

33. Occupation Category of Traveler – the percentage breakdown of survey respondents by occupation category

34. Average Trip Length – the average trip length of survey respondents for the trips during which they were intercepted

35. Trip Purpose – the percentage breakdown of trip purposes of the survey respondents’ trips during which they were intercepted

36. Origin/Destination Locations – the origins and destinations of survey respondents for the trips during which they were intercepted, provided as either a nearby intersection or name of business

37. In-Vehicle Travel Time – the average in-vehicle travel time of survey respondents for the trips during which they were intercepted
38. Out-of-Vehicle Travel Time – the average out-of-vehicle travel time of survey respondents for the trips during which they were intercepted (i.e. time spent walking from the origin to the respondent’s motor vehicle)

39. Number of Transfers – the average number of transfers made by transit survey respondents

40. Average Travel Group Size – the average number of people traveling with the survey respondent, inclusive, on the trips during which they were intercepted
Network Analysis Zone

#1 - 16th St S from 62nd Ave S to Pinellas Point Dr S, St. Petersburg

Length $r = 0.2 \times 5.68 = 1.14$ mi (1.55 in)
Width $r = 0.2 \times 5.68 = 1.14$ mi (1.55 in)

0.54 in = 2100 ft Local
Network Analysis Zone

#2 - 31st St N from Central Ave to 5th Ave N, St. Petersburg

0.54 in = 2100 ft Collector
Length r = 0.225*5.05 = 1.14 mi (1.55 in)
Width r = 0.125*5.05 = 0.63 mi (0.86 in)

T:\06\8137-06 Conserve by Bike\Phase I Report Appendices A through P 6-29-07.doc
Network Analysis Zone

#3 - CR 581 from Amberly Dr to Hunter’s Green Dr, New Tampa

0.49 in = 5280 ft Arterial
Length $r = 0.25 \times 11.09 = 2.77$ mi (1.36 in)
Width $r = 0.05 \times 11.09 = 0.55$ mi (0.27 in)
Network Analysis Zone

#4 - SR 581 from Hillsborough County Line to SR 54, Wesley Chapel

0.54 in = 5280 ft
Arterial
Length $r = 0.25 \times 16.13 = 4.03$ mi (2.18 in)
Width $r = 0.05 \times 16.31 = 0.81$ mi (0.44 in)
Network Analysis Zone

#5 - CR 550 from Shoal Line Blvd to US 19, Weeki Wachee

0.54 in = 5280 ft Collector
Length r = 0.225*12.34 = 2.78 mi (1.50 in)
Width r = 0.125*12.34 = 1.54 mi (0.83 in)
Network Analysis Zone

#6 - Elgin Blvd from Deltona Blvd to Mariner Blvd, Spring Hill

0.54 in = 2100 ft

Collector Length $r = 0.225 \times 8.92 = 2.01$ mi (2.73 in)

Width $r = 0.125 \times 8.92 = 1.11$ mi (1.51 in)
Network Analysis Zone

#7 - Lutz-Lake Fern Rd from Gunn Hwy to Dale Mabry Hwy, Lutz

0.34 in = 2100 ft Collector
Length \(r = 0.225 \times 14.56 = 3.28 \text{ mi} \) (2.80 in)
Width \(r = 0.125 \times 14.56 = 1.82 \text{ mi} \) (1.56 in)
Network Analysis Zone

8 - US 41 from Kennedy Blvd to Bearss Ave, Tampa

![Map of Network Analysis Zone](image)

0.54 in = 5280 ft Arterial
Length \(r = 0.25 \times 8.07 = 2.02 \text{ mi} \) (1.09 in)
Width \(r = 0.05 \times 8.07 = 0.40 \text{ mi} \) (0.22 in)

Survey Location

Study Corridor
Network Analysis Zone

#9 - SR60 from Kings Ave to Kingsway Rd, Brandon

0.57 in = 5280 ft Arterial
Length r = 0.25* =
Width r = 0.05* =

Study Corridor
Survey Location
Network Analysis Zone

#10 - US Alt 19 from Union St to Orange St, Dunedin (Pinellas Trail)

0.54 in = 5280 ft Arterial
Length r = 0.25*12.47 = 3.12 mi (1.68 in)
Width r = 0.05*12.47 = 0.62 mi (0.33 in)

Study Corridor Survey Location
Network Analysis Zone

11 - S 20th St from Adamo Dr to Bermuda Blvd, Tampa

0.55 in = 5280 ft
Arterial
Length \(r = 0.25 \times 11.55 = 2.89 \) mi (1.59 in)
Width \(r = 0.05 \times 11.55 = 0.58 \) mi (0.32 in)

T:\06\8137-06 Conserve by Bike\Phase I Report Appendices A through P 6-29-07.doc
Network Analysis Zone

#12 - US 1 from I-95 to SW 67th Avenue, Miami (M Path)

Length $r = 0.25 \times 10.40 = 2.60$ mi (2.99 in)
Width $r = 0.05 \times 10.40 = 0.52$ mi (0.60 in)

1.15 in = 5280 ft
Network Analysis Zone

#13 - Sunrise Blvd from Hiatus Rd to Pine Island Rd, Plantation

Length $r = 0.25 \times 12.07 = 3.02$ mi (1.66 in)
Width $r = 0.05 \times 12.07 = 0.60$ mi (0.33 in)
Network Analysis Zone

#14 - Spring to Spring Trail, Orange City

0.55 in = 5280 ft Arterial
Length r = 0.25*12.23 = 3.06 mi (1.68 in)
Width r = 0.05*12.23 = 0.61 mi (0.34 in)

Study Corridor
Survey Location

T:\06\8137-06 Conserve by Bike\Phase I Report Appendices A through P 6-29-07.doc
Network Analysis Zone

#15 - St Marks Trail, Wakulla

Length $r = 0.25 \times 13.62 = 3.40$ mi (1.87 in)
Width $r = 0.05 \times 13.62 = 0.68$ mi (0.37 in)

0.55 in = 5280 ft

Arterial

Study Corridor

Survey Location
Network Analysis Zone

#16 - Upper Tampa Bay Trail, Tampa

0.55 in = 5280 ft Arterial
Length $r = 0.25 \times 12.54 = 3.13$ mi (1.72 in)
Width $r = 0.05 \times 12.54 = 0.63$ mi (0.35 in)
Network Analysis Zone
#17 - West Orange Trail, Apopka

0.55 in = 5280 ft
Arterial
Length $r = 0.25 \times 13.08 = 3.27$ mi (1.80 in)
Width $r = 0.05 \times 13.08 = 0.65$ mi (0.36 in)

T:\06\8137-06 Conserve by Bike\Phase I Report Appendices A through P 6-29-07.doc
APPENDIX F Aerials of Study Corridors
#1 – 16th St S, St. Petersburg

Bicycle lanes were recently added (not visible in photo)
Bicycle lanes are programmed

#2 – 31st St N at 5th Ave N, St. Petersburg
Conserve by Bicycle Program Study
Phase I Report – June 2007 – Appendix F – Aerials of Study Corridors

#3 – CR 581, New Tampa

Existing shared use path adjacent to roadway
#4 – SR 581, Wesley Chapel

Shared use path adjacent to roadway is programmed
Paved shoulders are programmed

#5 – CR 550, Spring Hill
#6 – Elgin Blvd., Spring Hill

Paved shoulders are programmed
#7 – Lutz-Lake Fern Road, Lutz

Shared use path adjacent to roadway is programmed
Bicycle lanes are programmed

#8 – Nebraska Avenue, Tampa
Bicycle lanes are programmed
#10 – Pinellas Trail, Dunedin
#11 – 20th Street, Tampa

Existing shared use path adjacent to roadway
#12 – M Path, Miami

Existing shared use path adjacent to roadway (M Path)
#13 – Sunrise Blvd., Plantation

Bicycle lanes are programmed

Sunrise Boulevard

Hiatus Road
#14 – Spring to Spring, Orange City

Existing portion of independent alignment (Spring to Spring Trail)

Programmed extension of independent alignment (Spring to Spring Trail)
#15 – St. Marks Trail, Tallahassee

Existing independent alignment (St. Marks Trail)
#16 – Upper Tampa Bay Trail, Tampa
#17 – West Orange Trail, Apopka

Existing independent alignment (West Orange Trail)
APPENDIX G Development of the Network Friendleness Measure

INTRODUCTION
The Florida Department of Transportation, specifically District 7, is developing a corridor-level mode shift model. This model will predict the degree to which the construction of a non-motorized facility along a corridor will induce a shift from the motor vehicle mode to the bicycle mode. It is expected that many variables could play a role in the mode shift. The three major categories of these variables are demographic characteristics of the travelers (i.e., age and income), trip characteristics (i.e., length and purpose), and corridor characteristics. One of the corridor characteristics expected to significantly affect mode shift is the measure of connectivity and/or the travel quality continuity (also known as network friendliness) of the transportation network surrounding the corridor.

The first question to be addressed when determining this network-based measure is what defines a “transportation network” for a particular mode. While the most basic definition of networks refers to the extent and interconnectedness of streets and roadways, such a viewpoint does not capture the function of networks, particularly for bicycling, walking, and transit, because it fails to include how well travelers are accommodated on the network’s facilities. Regardless of the type of accommodation provided by the different modes (capacity for motor vehicles, safety and comfort for bicycles and pedestrians, and headways for the transit mode), accommodation is always a factor in how well the network serves travelers. For example, a corridor may provide a connection to the surrounding transit network, but if the connected routes have buses running only once a week, not much is gained by that connection. In this sense, one might question whether a network beyond the corridor in question truly exists.

CONNECTIVITY AND CONTINUITY
In the traditional sense, network connectivity has simply referred to the degree to which streets and roadways connect to each other. A high degree of connectivity has traditionally been characterized by tightly spaced facilities that intersect each other frequently and rarely end in a cul-de-sac. A grid street network is an example of a network with good “connectivity.” In contrast, a street network with many cul-de-sacs which all feed into a low number of collectors and arterials has much poorer “connectivity.” It is generally believed that networks with good
“connectivity” are conducive to bicycle travel because they reduce the distance (and thus the time) required to bike or walk to and from origins and destinations by creating more direct bicycle routes.

Several measures have been developed in recent years that attempt to quantify the somewhat abstract idea of connectivity, generally for the auto mode. In an effort to identify the level of connectivity in the metropolitan area of Portland, Oregon, Dill (1) defines and tests several of these measures. Among the most noted of these measures are:

- the Link-Node Ratio, which is measured by dividing the number of links (segments between nodes) in a study area by the number of nodes (intersections plus cul-de-sac termini);
- the Connected Node Ratio, which is a ratio of the number of street intersections to intersections plus the number of cul-de-sacs, thus capturing the number of connected nodes relative to the total number of nodes; and
- Intersection Density, which is simply the number of street intersections per unit of area.

While all of these measures (and other similar ones) provide some method for quantifying connectivity, they fail to take into account the quality of the accommodation provided by the network facilities, an aspect particularly important for the bicycle mode. Without an accommodation factor, the true “network” of facilities is not being taken into account. All other characteristics being equal, it is intuitively apparent that an improved corridor surrounded by roads with good bicycle accommodation (level of service) is more likely to induce mode shifts than one surrounded by roads with poor bicycling conditions. In other words, construction of an attractive and safe bicycle facility will not attract many bicyclists if all of the connecting roads are perceived as being hazardous. It is proposed that this potential measure be referred to as “network friendliness.” [Note: The subsequent discussion and measure refer specifically to the bicycle mode for illustrative purposes.]

In developing this measure, the question arises of whether to include all roads within the defined analysis zone. While local streets tend to provide better levels of service to bicyclists because of their relatively low motor vehicle volumes, they are frequently less appealing to motorists contemplating a shift to the bicycle mode because they do not offer the fastest or most
direct route of travel. Because virtually all travelers, regardless of mode, are sensitive to travel time considerations, this can be an important point. Nonetheless, local streets are viable travel routes and are part of the network that motorists take into account when deciding whether to shift modes. Therefore, part of the difficulty in determining an appropriate measure involves the decision whether to all classes of roadways and, if they are all included, whether some weighting system should exist.

The approach described below offers a method to quantify the network friendliness measure.

THE MEASUREMENT

The following formula represents the proposed method for calculating the network friendliness measure:

Network Friendliness Measure =

\[
\begin{align*}
\text{Network Friendliness Measure} &= f_A(T) \left(\sum \left(\frac{D_A}{LOS_A} \right) \sum D_A \right) \\
&+ f_C(T) \left(\sum \left(\frac{D_C}{LOS_C} \right) \sum D_C \right) \\
&+ f_L(T) \left(\sum \left(\frac{D_L}{LOS_L} \right) \sum D_L \right) \\
\text{Eq. 1}
\end{align*}
\]

Or

\[
\sum \left(\frac{1}{D_{ACL}} \right) \left(f_A(T) \sum \left(\frac{D_A}{LOS_A} \right) + f_C(T) \sum \left(\frac{D_C}{LOS_C} \right) + f_L(T) \sum \left(\frac{D_L}{LOS_L} \right) \right)
\]

\[
\text{Eq. 2}
\]

where:

T = average trip length along the study corridor

T:\06\8137-06 Conserve by Bike\Phase I Report Appendices A through P 6-29-07.doc
D = length of roadway

\[A = \text{arterial roadways} \]
\[C = \text{collector roadways} \]
\[L = \text{local roadways} \]

ACL = sum of the lengths of all arterial, collector, and local roadways

LOS = Bicycle Level of Service

and:

\[f_A(T) = \frac{1.6}{1 + e^{-0.5T + 3}} + 0.8 \quad \text{Eq. 3} \]
\[f_C(T) = 1.1 - \frac{0.8}{1 + e^{-0.5T + 3}} \quad \text{Eq. 4} \]
\[f_L(T) = 1.2 - \frac{1}{1 + e^{-0.5T + 3}} \quad \text{Eq. 5} \]

The score resulting from this equation represents the sum of three components (shown in Eq. 1), each of which represents the role of one of the three functional classifications of roadway (arterial, collector, and local). In turn, each of these components is comprised of three factors 1) the weighting of the functional roadway class as determined by the average trip length of motorists traveling along the corridor, 2) the proportion of the network that the functional class represents, and 3) the level of accommodation (i.e., Bicycle LOS) provided by the network facilities within that particular functional class. When all three functional roadway classes are summed, an accurate representation of the overall network that motorists take into account when contemplating a mode shift away from the automobile emerges.

The first of these factors is important because it determines how much each of the functional roadway classes is weighted in the overall equation. As trip length increases, the likely attractiveness of, or likelihood that motorists will consider, lower-class roadways decreases relative to higher-class roadways. Therefore, in the equation, the exponent of the trip length in the denominator increases as the functional classification shifts from arterial down to
local, and local roads receive far less emphasis as trip length increases. Conversely, local roads are given more emphasis as trip length approaches zero and local roads are more likely to be part of the motorist’s trip.

While the first factor considers the importance of the classes in relation to trip length, the second factor considers the prevalence of the classes. Even if trip lengths are long (which would indicate motorists’ reliance primarily on arterial roadways), arterials cannot play an important role if they are not prevalent within the network. The proportion of the class to the overall network allows for the inclusion of prevalence in the overall equation.

The third factor reflects the role that the quality of bicycle accommodation on the surrounding network plays. More specifically, it uses the FDOT-adopted Bicycle Level of Service measure \((2) \) to incorporate, at a fundamental level, the perceived degree of safety and comfort provided to bicyclists. Through the inclusion of this level of service measure for each of the classes, the attractiveness of the facilities plays a role in the determination of the network’s level of accommodation.

On a hypothetical network wherein all streets have a bicycle level of service of A (Bicycle LOS=1.0) and the roadway classes have an equal share of the total study network, travel quality continuity is 1, regardless of the average trip length of the motorists within the corridor. This scenario is used as the “base case” by which the network friendliness measure has been normalized (the minimum value for the measure is “0”). The three components in this scenario demonstrate the impact of the roadway classes at different trip lengths, with the impact of local and collector streets decreasing as trip length increases, while the impact of arterials becomes greater before leveling off at a very high average trip length.

This network friendliness measure shows promise as a variable to be included in the mode shift model. It provides quantification of network friendliness such that all facilities are incorporated proportionally to their importance to the potential mode shift and that the accommodation level of the facilities themselves (as opposed to their mere existence) is taken into consideration. It is proposed that the measure be used in the model development stage as a way to incorporate the important effects of network connectivity and continuity on travelers’ decisions to shift modes.
ELLIPSE SHAPE OF THE ANALYSIS ZONE

In addition to the formulation described above, the shape of the analysis zone for the improved corridor must be defined in some manner. The trip direction will be defined as the direction of the corridor being improved (or along extensions of the facility being improved) and will therefore be used to define the length of the analysis zone. In addition, there will be some area of influence to either side of the corridor, some width of the study corridor. To represent the area of influence, the researchers defined the analysis zone by an ellipse shape around the improvement section under consideration, with the shape of that ellipse dependent upon the average motorist trip length along the facility. Higher trip lengths would lead to more “stretched” ellipses, while shorter trip lengths would result in more spherical shapes.

REFERENCES

APPENDIX H Sensitivity Analysis, Mode Shift Model, by Facility Type

The researchers tested the mode shift model by varying the facility type (and therefore the bicycle LOS, the pedestrian LOS, bicycle connectivity, and pedestrian connectivity), while holding other variables constant. These charts show how the predicted daily number of utilitarian bicycle trips increases as facility type goes from no bike facilities to bike lane, shared use path adjacent to roadway, and independent alignment, resulting in improved bicycle LOS and improved network connectivity. The reader is reminded that these charts depict only utilitarian trips, not recreational trips.
Utilitarian Bicycle Trips - #1 16th St S

Predicted Daily Bike Trips

Facility Type

- Shared Use Lane (Eff Bike LOS = 4.3)
- Bicycle Lane (existing condition) (Eff Bike LOS = 2.99)
- Shared Use Path Adjacent to Roadway
- Independent Alignment
Utilitarian Bicycle Trips - #2 31st N

Facility Type

Shared Use Lane (existing condition) (Eff Bike LOS = 5.68)
Bicycle Lane (Eff Bike LOS = 4.16)
Shared Use Path Adjacent to Roadway
Independent Alignment

Predicted Daily Bike Trips

0 50 100 150 200 250

T:\06\8137-06 Conserve by Bike\Phase I Report Appendices A through P 6-29-07.doc
Utilitarian Bicycle Trips - #3 Bruce B Downs/Commerce Palms

Facility Type

Predicted Daily Bicycle Trips

- Shared Use Lane (Eff Bike LOS = 7.61)
- Bicycle Lane (Eff Bike LOS = 6.86)
- Shared Use Path Adjacent to Roadway (existing condition)
- Independent Alignment
Utilitarian Bicycle Trips - #4 Bruce B Downs/SR 56

- Shared Use Lane (Eff Bike LOS = 9.27)
- Bicycle Lane (existing condition) (Eff Bike LOS = 7.44)
- Shared Use Path Adjacent to roadway
- Independent Alignment

Facility Type

Predicted Daily Bicycle Trips

0 1 2 3 4 5
Utilitarian Bicycle Trips - #6 Elgin

Facility Type

Predicted Daily Bicycle Trips

Shared Use Lane (existing condition) (Eff Bike LOS = 6.33)
Bicycle Lane (Eff Bike LOS = 5.25)
Shared Use Path Adjacent to Roadway
Independent Alignment
Utilitarian Bicycle Trips - #7 Lutz-Lake Fern

Predicted Daily Bicycle Trips

- Shared Use Lane (Eff Bike LOS = 7.48)
- Bicycle Lane (existing condition) (Eff Bike LOS = 6.82)
- Shared Use Path Adjacent to Roadway
- Independent Alignment

Facility Type
Utilitarian Bicycle Trips - #8 Nebraska

Predicted Daily Bicycle Trips

Shared Use Lane (existing condition) (Eff Bike LOS = 6.85)
Bicycle Lane (Eff Bike LOS = 5.83)
Shared Use Path Adjacent to Roadway
Independent Alignment

Facility Type
Utilitarian Bicycle Trips - #10 US Alt 19

Predicted Daily Bicycle Trips

Facility Type

Shared Use Lane (Eff Bike LOS = 6.64)
Bicycle Lane (Eff Bike LOS = 5.29)
Shared Use Path Adjacent to Roadway
Independent Alignment (existing condition)
Utilitarian Bicycle Trips - #11 20th St

Facility Type

- Shared Use Lane (Eff Bike LOS = 6.63)
- Bicycle Lane (Eff Bike LOS = 5.43)
- Shared Use Path Adjacent to Roadway (existing condition)
- Independent Alignment

Predicted Daily Bicycle Trips

0 1 2 3 4

T:\06\8137-06 Conserve by Bike\Phase I Report Appendices A through P 6-29-07.doc
Utilitarian Bicycle Trips - #12 M Path

- Shared Use Lane (Eff Bike LOS = 8.33)
- Bicycle Lane (Eff Bike LOS = 7.28)
- Shared Use Path Adjacent to Roadway (existing condition)
- Independent Alignment

Predicted Daily Bicycle Trips vs. Facility Type
Utilitarian Bicycle Trips - #13 Sunrise

Facility Type

- Shared Use Lane (existing condition) (Eff Bike LOS = 7.17)
- Bicycle Lane (Eff Bike LOS = 5.89)
- Shared Use Path Adjacent to Roadway
- Independent Alignment

Predicted Daily Bicycle Trips vs. Facility Type
Utilitarian Bicycle Trips - #14 Spring to Spring Trail

Facility Type

- Shared Use Lane (existing condition) (Eff Bike LOS = 7.01)
- Bicycle Lane (Eff Bike LOS = 5.92)
- Shared Use Path Adjacent to Roadway
- Independent Alignment

Predicted Daily Bicycle Trips

0 20 40 60 80 100 120 140 160 180

T:\06\8137-06 Conserve by Bike\Phase I Report Appendices A through P 6-29-07.doc
Utilitarian Bicycle Trips - #15 St Marks Trail

- Shared Use Lane (Eff Bike LOS = 7.78)
- Bicycle Lane (Eff Bike LOS = 6.08)
- Shared Use Path Adjacent to Roadway
- Independent Alignment (existing condition)

Facility Type

Predicted Daily Bicycle Trips

0 5 10 15 20 25 30 35 40 45 50
Utilitarian Bicycle Trips - #16 Upper Tampa Bay Trail

- Shared Use Lane (Eff Bike LOS = 7.08)
- Bicycle Lane (Eff Bike LOS = 5.88)
- Shared Use Path Adjacent to Roadway
- Independent Alignment (existing condition)

Predicted Daily Bicycle Trips

Facility Type
Utilitarian Bicycle Trips - #17 West Orange Trail

Facility Type

Predicted Daily Bicycle Trips

0 1 2 3 4 5 6

Shared Use Lane (Eff Bike LOS = 6.77)
Bicycle Lane (Eff Bike LOS = 6.56)
Shared Use Path Adjacent to Roadway
Independent Alignment (existing condition)
The charts in this Appendix illustrate how the predicted numbers of trips on selected corridors vary according to the trip length. For example, the first chart shows the predicted values for Corridor #3, Bruce B. Downs/Commerce Palms. The bottom line shows the predicted number of trips according to facility type (which represents improvements in bicycle LOS and increasing network friendliness values) with the existing average corridor trip length of 12.38 miles. The second line assumes a shorter trip length of 11.00 miles (which may result from more dense development). The third line assumes a trip length of 10.00 miles, and the top line assumes a trip length of 9.00 miles.
Utilitarian Bicycle Trips - #3 Bruce B Downs/Commerce Palms

- Shared Use Lane (Eff Bike LOS = 7.61)
- Bicycle Lane (Eff Bike LOS = 6.86)
- Shared Use Path Adjacent to Roadway (existing condition)
- Independent Alignment

Predicted Daily Bicycle Trips

- Trip length = 9 miles
- Trip length = 10 miles
- Trip length = 11 miles
- Trip length = 12.38 miles (existing)
Utilitarian Bicycle Trips - #8 Nebraska

Facility Type

Predicted Daily Bicycle Trips

- Trip length = 6 miles
- Trip length = 7 miles
- Trip length = 8 miles
- Trip length = 9.07 miles (existing)

Shared Use Lane (existing condition) (Eff Bike LOS = 6.85)
Bicycle Lane (Eff Bike LOS = 5.83)
Shared Use Path Adjacent to Roadway
Independent Alignment
Utilitarian Bicycle Trips - #15 St Marks

Predicted Daily Bicycle Trips

Facility Type

- Shared Use Lane (Eff Bike LOS = 7.78)
- Bicycle Lane (Eff Bike LOS = 6.08)
- Shared Use Path Adjacent to Roadway
- Independent Alignment (existing condition)

Trip length = 8 miles
Trip length = 10 miles
Trip length = 12 miles
Trip length = 13.98 miles (existing)
The researchers tested the induced recreational model by varying aesthetics and points of interest (AESxINT) and facility type, while holding population proximity and facility length constant. These charts show how the predicted daily number of recreational bicycle trips increases as aesthetics and points of interest (represented by AESxINT) increase. The predicted number of trips also increases as facility type goes from no bike facilities to bike lane, shared use path adjacent to roadway, and independent alignment, resulting in improved bicycle LOS. The reader is reminded that these charts depict only recreational trips, not utilitarian trips.
Recreational Bicycle Trips - #1 16th St

Predicted Daily Trips

- BIKE: AESxINT = 12
- BIKE: AESxINT = 9
- BIKE: AESxINT = 6
- BIKE: AESxINT = 3 (existing condition)

Facility Type:
- Shared Use Lane (existing condition)
- Bicycle Lane
- Shared Use Path Adjacent to Roadway
- Independent Alignment
Recreational Bicycle Trips - #2 31st St

Predicted Daily Trips

- BIKE: AESxINT = 8
- BIKE: AESxINT = 6
- BIKE: AESxINT = 4
- BIKE: AESxINT = 2 (existing condition)

Facility Type

Shared Use Lane (existing condition) Bicycle Lane Shared Use Path Adjacent to Roadway Independent Alignment
Recreational Bicycle Trips - #3 Bruce B Downs / Commerce Palms

Predicted Daily Trips

Facility Type

Shared Use Lane Bicycle Lane Shared Use Path Adjacent to Roadway (existing condition) Independent Alignment

- BIKE: AESxINT = 8
- BIKE: AESxINT = 6
- BIKE: AESxINT = 4
- BIKE: AESxINT = 2 (existing condition)
Recreational Bicycle Trips - #4 Bruce B Downs / SR 56

Facility Type

Predicted Daily Trips

- BIKE: AESxINT = 8
- BIKE: AESxINT = 6
- BIKE: AESxINT = 4
- BIKE: AESxINT = 2 (existing condition)
Recreational Bicycle Trips - #5 CR 550

Predicted Daily Trips

- BIKE: AESxINT = 12
- BIKE: AESxINT = 9
- BIKE: AESxINT = 6
- BIKE: AESxINT = 3 (existing condition)

Facility Type

Shared Use Lane (existing condition) Bicycle Lane Shared Use Path Adjacent to Roadway Independent Alignment
Recreational Bicycle Trips - #6 Elgin

Facility Type

Predicted Daily Trips

Shared Use Lane (existing condition) Bicycle Lane Shared Use Path Adjacent to Roadway Independent Alignment

BIKE: AESxINT = 9
BIKE: AESxINT = 6
BIKE: AESxINT = 4
BIKE: AESxINT = 2 (existing condition)
Recreational Bicycle Trips - #7 Lutz-Lake Fern

<table>
<thead>
<tr>
<th>Facility Type</th>
<th>Predicted Daily Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared Use Lane (existing condition)</td>
<td>BIKE: AESxINT = 3</td>
</tr>
<tr>
<td>Bicycle Lane</td>
<td>BIKE: AESxINT = 6</td>
</tr>
<tr>
<td>Shared Use Path Adjacent to Roadway</td>
<td>BIKE: AESxINT = 9</td>
</tr>
<tr>
<td>Independent Alignment</td>
<td>BIKE: AESxINT = 12</td>
</tr>
</tbody>
</table>
Recreational Bicycle Trips - #8 Nebraska

- BIKE: AESxINT = 9
- BIKE: AESxINT = 6
- BIKE: AESxINT = 3
- BIKE: AESxINT = 1 (existing condition)

Facility Type:
- Shared Use Lane (existing condition)
- Bicycle Lane
- Shared Use Path Adjacent to Roadway
- Independent Alignment

Predicted Daily Trips

0 10 20 30 40 50 60 70 80 90 100
Recreational Bicycle Trips - #9 SR 60

Predicted Daily Trips

Facility Type

- BIKE: AEXxINT = 6
- BIKE: AEXxINT = 4
- BIKE: AEXxINT = 2
- BIKE: AEXxINT = 1 (existing condition)
Recreational Bicycle Trips - #10 US Alt 19 (Pinellas Trail)

Facility Type

- BIKE: AESxINT = 15
- BIKE: AESxINT = 12
- BIKE: AESxINT = 9 (existing condition)

Predicted Daily Trips

0 20 40 60 80 100 120 140 160

Shared Use Lane Bicycle Lane Shared Use Path Adjacent to Roadway Independent Alignment (existing condition)
Recreational Bicycle Trips - #11 20th St

- BIKE: AESxINT = 6
- BIKE: AESxINT = 4
- BIKE: AESxINT = 2
- BIKE: AESxINT = 1 (existing condition)

Predicted Daily Trips

Facility Type

- Shared Use Lane
- Bicycle Lane
- Shared Use Path Adjacent to Roadway (existing condition)
- Independent Alignment

Conserve by Bicycle Program Study

T:\06\8137-06 Conserve by Bike\Phase I Report Appendices A through P 6-29-07.doc
Recreational Bicycle Trips - #12 M Path

Predicted Daily Trips

Shared Use Lane Bicycle Lane Shared Use Path Adjacent to Roadway (existing condition) Independent Alignment

Facility Type

- BIKE: AESxINT = 12
- BIKE: AESxINT = 9
- BIKE: AESxINT = 6
- BIKE: AESxINT = 3 (existing condition)
Recreational Bicycle Trips - #13 Sunrise Blvd

Facility Type

Predicted Daily Trips

- BIKE: AESxINT = 9
- BIKE: AESxINT = 6
- BIKE: AESxINT = 4
- BIKE: AESxINT = 2 (existing condition)

<table>
<thead>
<tr>
<th>Shared Use Lane (existing condition)</th>
<th>Bicycle Lane</th>
<th>Shared Use Path Adjacent to Roadway</th>
<th>Independent Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conserve by Bicycle Program Study
Recreational Bicycle Trips - #14 Spring to Spring

Facility Type

Predicted Daily Trips

- BIKE: AESxINT = 15
- BIKE: AESxINT = 12
- BIKE: AESxINT = 8
- BIKE: AESxINT = 4 (existing condition)

Shared Use Lane Bicycle Lane Shared Use Path Adjacent to Roadway Independent Alignment (existing condition)
Recreational Bicycle Trips - #15 St Marks Trail

Predicted Daily Trips

- BIKE: AESxINT = 15
- BIKE: AESxINT = 12
- BIKE: AESxINT = 10
- BIKE: AESxINT = 8 (existing condition)

Facility Type:
- Shared Use Lane
- Bicycle Lane
- Shared Use Path Adjacent to Roadway
- Independent Alignment (existing condition)
Recreational Bicycle Trips - #16 Sheldon Rd (Upper Tampa Bay Trail)

<table>
<thead>
<tr>
<th>Facility Type</th>
<th>Predicted Daily Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared Use Lane</td>
<td>0</td>
</tr>
<tr>
<td>Bicycle Lane</td>
<td>10</td>
</tr>
<tr>
<td>Shared Use Path Adjacent to Roadway</td>
<td>20</td>
</tr>
<tr>
<td>Independent Alignment (existing condition)</td>
<td>40</td>
</tr>
</tbody>
</table>

- BIKE: AESxINT = 15
- BIKE: AESxINT = 12
- BIKE: AESxINT = 10
- BIKE: AESxINT = 8 (existing condition)
Recreational Bicycle Trips - #17 West Orange

<table>
<thead>
<tr>
<th>Facility Type</th>
<th>Predicted Daily Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared Use Lane</td>
<td>0</td>
</tr>
<tr>
<td>Bicycle Lane</td>
<td>0</td>
</tr>
<tr>
<td>Shared Use Path Adjacent to Roadway</td>
<td>0</td>
</tr>
<tr>
<td>Independent Alignment (existing condition)</td>
<td>0</td>
</tr>
</tbody>
</table>

BIKE: AESxINT = 15
- BIKE: AESxINT = 12
- BIKE: AESxINT = 10
- BIKE: AESxINT = 8 (existing condition)
The researchers tested the induced recreational model by varying facility length and facility type, while holding population proximity and facility length constant. These charts show how the predicted daily number of recreational bicycle trips increases as facility length increases. The predicted number of trips also increases as facility type goes from no bike facilities to bike lane, shared use path adjacent to roadway, and independent alignment, resulting in improved bicycle LOS. The reader is reminded that these charts depict only recreational trips, not utilitarian trips.
Phase I Report – June 2007 – Appendix K – Sensitivity Analysis, Induced Recreational Model: Varying Facility Length and Facility Type

Recreational Bicycle Trips - #1 16th St

Predicted Daily Trips

- - BIKE: Length = 8 miles
- - BIKE: Length = 6 miles
- - BIKE: Length = 4 miles
- - BIKE: Length = 1.71 miles (existing length)

Facility Type

Shared Use Lane
Bicycle Lane (existing condition)
Shared Use Path Adjacent to Roadway
Independent Alignment
Recreational Bicycle Trips - #4 Bruce B Downs / SR 56

Predicted Daily Trips

Facility Type

Shared Use Lane
Bicycle Lane (existing condition)
Shared Use Path Adjacent to Roadway
Independent Alignment

BIKE: Length = 12 miles
BIKE: Length = 10 miles
BIKE: Length = 8 miles
BIKE: Length = 6.88 miles (existing length)
Recreational Bicycle Trips - #5 CR 550

- BIKE: Length = 10 miles
- BIKE: Length = 8 miles
- BIKE: Length = 6 miles
- BIKE: Length = 3.4 miles (existing length)

Facility Type

- Shared Use Lane (existing condition)
- Bicycle Lane
- Shared Use Path Adjacent to Roadway
- Independent Alignment

Predicted Daily Trips

0 10 20 30 40 50 60 70 80
Recreational Bicycle Trips - #8 Nebraska

<table>
<thead>
<tr>
<th>Facility Type</th>
<th>Predicted Daily Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared Use Lane (existing condition)</td>
<td>BIKE: Length = 20 miles</td>
</tr>
<tr>
<td>Bicycle Lane</td>
<td>BIKE: Length = 12 miles</td>
</tr>
<tr>
<td>Shared Use Path Adjacent to Roadway</td>
<td>BIKE: Length = 10 miles</td>
</tr>
<tr>
<td>Independent Alignment</td>
<td>BIKE: Length = 9.4 miles (existing length)</td>
</tr>
</tbody>
</table>

Phase I Report – June 2007 – Appendix K – Sensitivity Analysis, Induced Recreational Model: Varying Facility Length and Facility Type
Recreational Bicycle Trips - #11 20th St

- BIKE: Length = 5 miles
- BIKE: Length = 4 miles
- BIKE: Length = 3 miles
- BIKE: Length = 1.86 miles (existing length)

Facility Type

- Shared Use Lane
- Bicycle Lane
- Shared Use Path Adjacent to Roadway
- Independent Alignment

Predicted Daily Trips

0 2 4 6 8 10 12 14 16

Conserve by Bicycle Program Study
Phase I Report – June 2007 – Appendix K – Sensitivity Analysis, Induced Recreational Model: Varying Facility Length and Facility Type
APPENDIX L Sensitivity Analysis, Induced Recreational Model: Varying Aesthetics, Points of Interest, Facility Length, and Facility Type

The researchers tested the induced recreational model by varying aesthetics and points of interest (AESxINT), facility length, and facility type, while holding population proximity constant. These charts show how the predicted daily number of recreational bicycle trips increases as AESxINT and facility length increase. The predicted number of trips also increases as facility type goes from no bike facilities to bike lane, shared use path adjacent to roadway, and independent alignment, resulting in improved bicycle LOS. The reader is reminded that these charts depict only recreational trips, not utilitarian trips.
Recreational Bicycle Trips - #1 16th St

Facility Type:
- Shared Use Lane
- Bicycle Lane (existing condition)
- Shared Use Path Adjacent to Roadway
- Independent Alignment

Predicted Daily Trips:
- BIKE: Length = 8 miles, AESxINT = 3
- BIKE: Length = 6 miles, AESxINT = 6
- BIKE: Length = 6 miles, AESxINT = 3
- BIKE: Length = 1.71 miles, AESxINT = 3 (existing condition)
Recreational Bicycle Trips - #4 Bruce B Downs/SR 56

Predicted Daily Trips

- BIKE: Length = 10 miles, AESxINT = 2
- BIKE: Length = 8 miles, AESxINT = 4
- BIKE: Length = 8 miles, AESxINT = 2
- BIKE: Length = 6.88 miles, AESxINT = 2 (existing condition)
Recreational Bicycle Trips - #5 CR 550

- BIKE: Length = 10 miles, AESxINT = 3
- BIKE: Length = 6 miles, AESxINT = 6
- BIKE: Length = 6 miles, AESxINT = 3
- BIKE: Length = 3.4 miles, AESxINT = 3 (existing condition)

Facility Type
- Shared Use Lane (existing condition)
- Bicycle Lane
- Shared Use Path Adjacent to Roadway
- Independent Alignment

Predicted Daily Trips
0 10 20 30 40 50 60 70 80

Conserve by Bicycle Program Study
Recreational Bicycle Trips - #8 Nebraska

- BIKE: Length = 12 miles, AESxINT = 3
- BIKE: Length = 12 miles, AESxINT = 1
- BIKE: Length = 9.4 miles, AESxINT = 3
- BIKE: Length = 9.4 miles, AESxINT = 1 (existing condition)

Facility Type:
- Shared Use Lane (existing condition)
- Bicycle Lane
- Shared Use Path Adjacent to Roadway
- Independent Alignment

Predicted Daily Trips vs. Facility Type
Recreational Bicycle Trips - #11 20th St

Predicted Daily Trips

- BIKE: Length = 4 miles, AESxINT = 2
- BIKE: Length = 4 miles, AESxINT = 1
- BIKE: Length = 1.86 miles, AESxINT = 2
- BIKE: Length = 1.86 miles, AESxINT = 1 (existing condition)

Facility Type

Shared Use Lane Bicycle Lane Shared Use Path Adjacent to Roadway (existing condition) Independent Alignment
APPENDIX M Health Benefits and Energy Savings Worksheet

The researchers developed an Excel worksheet that enables the user to compare the health benefits and energy savings for different bicycle improvements. This worksheet and detailed descriptions of the items in the worksheet appear on the following pages. Many of the cells in this worksheet are linked to another worksheet (not shown) that serves as the calculation engine.

In this example worksheet, Column C (shared use lane) is the baseline condition. Three improvements are shown – a bicycle lane (Column D), a shared use path adjacent to a roadway (Column E), and an independent alignment (Column F).

Input values appear in the yellow-shaded area of the worksheet. These input values represent the operational and demographic characteristics of the corridor in the baseline condition and with bicycle facility improvements. The input values are needed for calculating the predicted number of utilitarian and recreational users and for calculating the predicted health benefits and energy savings that would result from increased bicycling activity.
<table>
<thead>
<tr>
<th>Scenario</th>
<th>Baseline - Shared Use Lane</th>
<th>Bicycle - Shoulder</th>
<th>Shared Use Path Adjacent to Roadway</th>
<th>Independent Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On-Street Parking Conditions</th>
<th>(Bicycle LOS at worst section)</th>
<th>(2009-9 for independent alignment)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.1%</td>
<td>3.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inputs for Utility Mode Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Trip in Conductor</td>
</tr>
<tr>
<td>Parked Time per Hour</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Park)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Road)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Hill)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Stair)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Ramp)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Bus)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Train)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Light Rail)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Water)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Taxi)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Bus Rapid Transit)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Train Rapid Transit)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Light Rail Rapid Transit)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Water Rapid Transit)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Taxi Rapid Transit)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Bus Rapid Transit)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Train Rapid Transit)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Light Rail Rapid Transit)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Water Rapid Transit)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Taxi Rapid Transit)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Bus Rapid Transit)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Train Rapid Transit)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Light Rail Rapid Transit)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Water Rapid Transit)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Taxi Rapid Transit)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Bus Rapid Transit)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Train Rapid Transit)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Light Rail Rapid Transit)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Water Rapid Transit)</td>
</tr>
<tr>
<td>Pedestrian Injury LOS (Taxi Rapid Transit)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>27</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>33</td>
</tr>
<tr>
<td>34</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>36</td>
</tr>
<tr>
<td>37</td>
</tr>
<tr>
<td>38</td>
</tr>
<tr>
<td>39</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>41</td>
</tr>
<tr>
<td>42</td>
</tr>
<tr>
<td>43</td>
</tr>
<tr>
<td>44</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>46</td>
</tr>
<tr>
<td>47</td>
</tr>
</tbody>
</table>

T:\06\8137-06 Conserve by Bike\Phase I Report Appendices A through P 6-29-07.doc
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>Values common to all scenarios</th>
<th>B</th>
<th>Baseline - Shared Use Lane</th>
<th>C</th>
<th>Bicycle Lane/Shoulder</th>
<th>D</th>
<th>Shared Use Path Adjacent to Broadway</th>
<th>E</th>
<th>Independent Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Health Benefits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Health Benefit of Being Physically Active (All)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Annual Health Benefit of Being Physically Active (relative to baseline)</td>
<td></td>
<td></td>
<td></td>
<td>$3,832</td>
<td>$4,031.254</td>
<td>$622,786</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Energy Savings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Car Ownership</td>
<td></td>
<td></td>
<td></td>
<td>$1,483</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Price per Gallon of Gas ($)</td>
<td></td>
<td></td>
<td></td>
<td>$1.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Fuel Savings (miles per gallon)</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Energy Savings ($/year (relative to baseline))</td>
<td></td>
<td>$3,832</td>
<td>$4,031.254</td>
<td>$622,786</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Combined Health & Energy Benefits ($/year) (relative to baseline)</td>
<td></td>
<td>$9,548</td>
<td>$2,951.472</td>
<td>$1,310,301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Benefits per Mile of Facility ($/year) (relative to baseline)</td>
<td></td>
<td>$0.06</td>
<td>$13,000</td>
<td>$1,114,485</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The specific input and output values are described below.

- **Row 6, Facility Type** – Enter 1 for shared use lane, 2 for bike lane, 3 for shared use path adjacent to roadway, and 4 for independent alignment.

- **Row 7, Distance between Shared Use Path Adjacent to Roadway and Roadway** – Enter the distance (feet) separating the shared use path from the roadway. If the facility is not a shared use path adjacent to roadway, enter 0. This value is needed to calculate the bicycle LOS and pedestrian LOS for shared use paths adjacent to roadways.

- **Row 8, Speed Limit** – Enter the speed limit (MPH). This value is needed to calculate the bicycle LOS and pedestrian LOS for shared use paths adjacent to roadways.

- **Row 9, On-Street Bicycling Conditions** – Enter the bicycle LOS for a typical shared use lane segment. Enter the bicycle LOS for a typical bicycle lane/paved shoulder segment. Enter the same bicycle LOS for a typical shared use path adjacent to roadway segment. Enter 0.5 for a typical independent alignment segment. The bicycle LOS is a measure of the bicyclist’s perceived stress level. A higher value denotes a higher perceived stress level. The bicycle LOS is used in both the utilitarian and recreational models. The calculation engine will adjust the bicycle LOS for shared use paths adjacent to roadways using the distance between the shared use path and the roadway and the speed limit. The values range from 0.75 to 2. In other words, bicyclists perceive less stress on shared use paths adjacent to roadways than on bike lanes or in shared use lanes.

- **Row 13, Trip Length of Travelers in Corridor** – Enter the average trip length (miles) for all trips in the corridor. This value is used in the utilitarian model. The average trip length can be obtained by conducting an intercept survey of corridor users. The average trip length can also be approximated by the following equation ($R^2 = 0.878$):

 \[
 \text{Avg. trip length} = -3.784 + 0.364 \times \text{speed limit} - 0.975 \times \text{signals per mile}
 \]

- **Row 14, Average Utilitarian Bike Trip Length** - The average length of a utilitarian bicycle trip is assumed to be 3 miles. This value is used to calculate annual utilitarian trips, which in turn is used to calculate energy savings and health benefits associated with additional utilitarian bicycling.

1 This model was developed by staff at Sprinkle Consulting, Inc. using average trip lengths from intercept surveys.

• Row 15, Motor Vehicle Facility LOS – Enter the motor vehicle facility LOS, as defined in the FDOT Q/LOS Handbook. The possible values are A, B, C, D, E, and F. This value is used in the utilitarian model.

• Row 16, Bus Frequency during PM Peak – Enter the number of buses per hour that stop within 0.25 mile of the cut line during the PM peak. Enter 0 if there is no bus transit in the corridor or if there are no bus stops within 0.25 mile of the cut line. The calculation engine translates the combined frequency of buses and trains (see also Row 15) into a transit QOS value, as defined in the FDOT Q/LOS Handbook. The transit QOS value is used in the utilitarian model.

• Row 17, Rapid Transit Frequency during PM Peak – Enter the number of trains or bus rapid transit buses per hour that stop within 0.50 mile of the cut line during the PM peak. Enter 0 if there is no rapid transit in the corridor or if there are no rapid transit stops within 0.50 mile of the cut line. Since buses generally share the roadway with cars, the utility of conventional bus transit depends in part on the motor vehicle facility LOS. Rapid transit lines (such as Miami’s Metrorail) often do not share the roadway with cars. In that case, the utility of rapid transit does not depend on the motor vehicle facility LOS. If a value greater than 0 is entered, then the corridor has rapid transit, and the calculation engine sets the motor vehicle facility LOS to A for the purpose of estimating the transit mode share.

• Row 18, Walking Conditions – Enter the pedestrian LOS for a typical shared use lane segment. Enter the pedestrian LOS for a typical bicycle lane/paved shoulder segment. Enter the pedestrian LOS for a typical shared use path adjacent to roadway segment. Enter 0.5 for a typical independent alignment segment. In other words, pedestrians perceive less stress on independent alignments than on any other facility type. The pedestrian LOS is a measure of the pedestrian’s perceived stress level. A higher value denotes a higher perceived stress level. The pedestrian LOS is used in the utilitarian model.

4 Ibid.
• Row 19, Population in Network Analysis Zone – Enter the population within the corridor’s network analysis zone.\(^5\)

• Row 20, Employment in Network Analysis Zone – Enter the number of employees within the corridor’s network analysis zone.

• Row 21, Area of Network Analysis Zone – Enter the area of the network analysis zone, in square miles. The calculation engine multiplies the population by the employment and divides by the area to obtain population * employment density, which is used in the utilitarian model.

• Row 22, Bike Network Friendliness – Enter the bicycle network friendliness, to two decimal places. The bicycle network friendliness is a weighted average of bicycling conditions on arterials and collectors within the network analysis zone. It measures the quality of the surrounding roadway network as it accommodates bicycling. The minimum value is 0.00 and the maximum value is 1.00.\(^6\) This value is used in the utilitarian model.

• Row 23, Ped Network Friendliness – Enter the pedestrian network friendliness, to two decimal places. The pedestrian network friendliness is a weighted average of walking conditions on arterials and collectors within the network analysis zone. It measures the quality of the surrounding roadway network as it accommodates walking. The minimum value is 0.00 and the maximum value is 1.00. This value is used in the utilitarian model.

• Row 26, Distance-Weighted Population within 10 Miles – The distance-weighted population is a measure of how many people live in the area surrounding the cut line, weighted by how close they live.\(^7\) This value is used in the recreational model. The distance-weighted population within 10 miles is calculated by the equation:

\(^5\) A detailed explanation of network analysis zones appears in the report, *Conserve by Bicycle Program Study: Bicycle Mode Shift and Induced Travel Models.*

\(^6\) Detailed explanations of bicycle network friendliness and pedestrian network friendliness appear in the report, *Conserve by Bicycle Program Study: Bicycle Mode Shift and Induced Travel Models.*

\(^7\) A detailed explanation of distance-weighted population appears in the report, *Conserve by Bicycle Program Study: Bicycle Mode Shift and Induced Travel Models.*
\[
Pop_{10} = \sum_{i=1}^{n} \frac{pop_i}{d_i^2}
\]

where

\(pop_i\) = Population of the i-th Census tract
\(d_i^2\) = Distance (in miles) of the i-th Census tract from the cut line, squared
\(n\) = Total number of Census tracts whose centroids are within a specified distance (in this case, 10 miles) of the cut line

The figure below shows a cut line (represented by a black circle) surrounded by numerous Census tracts that are within 10 miles. Census Tracts 1, 2, and 3 are highlighted in blue. These tracts are located at distances \(d_1\), \(d_2\), and \(d_3\) from the cut line. The population of Tract 1 is divided by the square of its distance from the cut line to obtain a distance-weighted population for Tract 1. The process is repeated for Tracts 2, 3, etc., until distance-weighted populations have been obtained for all of the tracts. The distance-weighted populations are then added together to obtain the distance-weighted population within 10 miles.

- Row 27, Aesthetics – Enter a value of 1 (lowest), 2, 3, 4, or 5 (highest). This value is used in the recreational model.
• Row 28, Points of Interest – Enter a value of 1 (least), 2, or 3 (most). This value is used in the recreational model.

• Row 29, Facility Length – Enter the facility length (miles). The facility length is the length of the continuous cross section. Facility length is used in the recreational model.

• Row 30, Average Recreational Bike Trip Length - The average length of a recreational bicycle trip is assumed to be 5 miles. This value is used to calculate annual recreational trips, which in turn is converted to annual recreational users and then to health benefits of induced recreational bicycling.

• Row 33, Total People passing a cut line per weekday, all modes – Enter the total number of people passing the corridor cut line per weekday for utilitarian purposes. This value is used to estimate the number of utilitarian trips by each mode.

• Row 34, Utilitarian Trips (passing a cut line per day) – The utilitarian model is used to predict the daily number of utilitarian trips passing a cut line.

• Row 35, Day-to-Week Adjustment Factor (Util) – It is assumed that one weekday accounts for 17 percent of utilitarian bicycle trips during a week. The utilitarian model predicts daily trips for each mode. This factor expands weekday trips to weekly trips.

• Row 36, Utilitarian Trips (passing a cut line per year) – The calculation engine expands daily trips to annual trips. The calculation engine first expands weekday trips to weekly trips, and then multiplies the weekly value by 52.14 (weeks in a year) to obtain the annual number of utilitarian trips passing a cut line in the corridor.

• Row 38, Peak-to-Day Adjustment Factor (Rec) – This factor, which has a value of 0.25, expands PM peak trips to weekday daily trips. It is based on average of data from the National Bicycle & Pedestrian Documentation Project, which found that 24% of daily bicycle counts on commuter facilities occur between 3 PM and 6 PM, while 25.5% of daily bicycle counts on recreational facilities occur between 3 PM and 6 PM.

9 This value is based on data from the National Bicycle & Pedestrian Documentation Project.

• Row 40, Recreation Bicycle Trips (passing a cut line per weekday) – The recreational model is used to predict the number of recreational trips passing a cut line between 3 PM and 6 PM. These PM peak trips are then expanded to daily trips.

• Row 41, Day-to-Week Adjustment Factor (Rec) – It is assumed that one weekday accounts for 13 percent of recreational bicycle trips during a week.\(^{11}\) This factor expands weekday trips to weekly trips.

• Row 42, Recreation Trips (passing a cut line per year) – The calculation engine expands daily trips to annual trips. The calculation engine first expands weekday trips to weekly trips, and then multiplies the weekly value by 52.14 (weeks in a year) to obtain the annual number of recreational trips passing a cut line in the corridor.

• Row 46, Average Utilitarian Bike Trip Length – The value entered in Row 14 is repeated here.

• Row 47, Average Recreational Bike Trip Length – The value entered in Row 30 is repeated here.

• Row 48, Adjusted Facility Length (utilitarian) – The adjusted facility length for utilitarian bicycle trips has a maximum value of 6 miles. The length of a utilitarian bicycle trip is 3 miles, so 3 miles on either side of a cut line is 6 miles total. The adjusted facility length is less than 6 miles if the cut line is within 3 miles of a facility end point.

• Row 49, Adjusted Facility Length (recreational) – The adjusted facility length for recreational trips has a maximum value of 10 miles. The length of a recreational bicycle trip is 5 miles, so 5 miles on either side of a cut line is 10 miles. The adjusted facility length is less than 6 miles if the cut line is within 5 miles of a facility end point.

• Row 50, Utilitarian Bicycle Trips/Year (on facility) – The calculation engine expands the number of utilitarian bicycle trips passing a cut line per year (Row 36) to the number of utilitarian bicycle trips on the facility by multiplying by the ratio of the adjusted facility length (Row 48) and average utilitarian bike trip length (Row 46). If the ratio is less than one, then the number of trips on the facility (Row 50) is set equal to the number of trips passing the cut line (Row 36).

\(^{11}\) Ibid.
Row 51, Mode Shift (# of utilitarian bicycle trips/year on facility) (relative to baseline) –
The mode shift is the number of additional utilitarian trips for the bicycle lane/paved shoulder, shared use path adjacent to roadway, and independent alignment conditions (relative to the baseline condition).

Row 53, Recreational Bicycle Trips/Year (on facility) – The calculation engine expands the number of recreational bicycle trips passing a cut line per year (Row 42) to the number of recreational bicycle trips on the facility by multiplying by the ratio of the adjusted facility length (Row 49) and average recreational bike trip length (Row 47). If the ratio is less than one, then the number of trips on the facility (Row 53) is set equal to the number of trips passing the cut line (Row 42).

Row 54, Induced Recreation (# of recreational bicycle trips/year on facility) (relative to baseline) – The induced recreation is the number of additional recreational trips for the bicycle lane/paved shoulder, shared use path adjacent to roadway, and independent alignment conditions (relative to the baseline condition).

Row 58, Health Benefit of Being Physically Active – This value is about 49 cents per trip. The research12 defines physically active as 30 minutes of physical activity, 5 times a week and identifies an average health benefit of $128 per person per year. Five times a week translates into 260 times \textit{(i.e., trips)} a year, so the average health benefit of $128 per person per year is divided by 260 trips per person per year to obtain a benefit of about 49 cents per trip.

Row 59, Annual Health Benefit – This value assumes that the health benefit for each additional trip (not unique user) is about 49 cents. The benefits are for each improvement (bicycle lane/paved shoulder, shared use path adjacent to roadway, independent alignment) relative to the baseline.

Row 63, Car Occupancy – It is assumed that the average car has 1.43 occupants, based on data from the Center for Urban Transportation Research.13 This factor is used in estimating energy savings.

13 E-mail from Sara Hendricks, Center for Urban Transportation Research, to Herman Huang, Sprinkle Consulting, Inc.
Row 64, Price per Gallon of Gas – Enter the prevailing price of a gallon of gas, in dollars and cents. This value is used to calculate energy savings.

Row 65, Fuel Savings – It is assumed that for every 20 miles of motor vehicle travel that are mode shifted to bicycling, one gallon of gas is saved.\(^{14}\) This value is used to calculate energy savings.

Row 67, Energy Savings – The energy savings is calculated by multiplying the average utilitarian bicycle trip length (Row 46), the annual number of utilitarian trips along the facility (Row 50), and the price per gallon of gas (Row 64), then dividing by fuel savings (Row 65) and the average car occupancy (Row 63). It is assumed that there are no energy savings associated with induced recreational bicycling because those trips are not mode-shifted from the motor vehicle mode.

Row 70, Combined Health & Energy Benefits – This is the sum of the annual health benefit (Row 59) and the annual energy savings (Row 67). This value represents the annual combined health and energy benefits relative to the baseline.

Row 74, Benefits per Mile of Facility – This is the combined health and energy benefits (Row 70) divided by the length of the facility improvement (Row 29). This value represents the annual health and energy benefits per mile of facility improvement.

The spreadsheet on the following two pages lists each of the 17 study corridors. For purposes of comparison, the baseline condition is assumed to be “Shared Use Lane.” Thus, the additional trips and benefits shown compare each improvement (bicycle lane, shared use path adjacent to roadway, independent alignment) with “No bike facilities.” The same process as described above was used to obtain the predicted trips and benefits.

Energy Savings and Health Benefits Worksheet

<table>
<thead>
<tr>
<th>Location</th>
<th>Energy Savings</th>
<th>Health Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Note: The table contains detailed data on energy savings and health benefits across various locations.
<table>
<thead>
<tr>
<th>Location</th>
<th>Mode</th>
<th>Year</th>
<th>Current Use</th>
<th>Proposed Use</th>
<th>Energy</th>
<th>Health</th>
<th>Cost</th>
<th>Energy Savings</th>
<th>Health Savings</th>
<th>Cost Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bicycles</td>
<td>2006</td>
<td>Commuter Use</td>
<td>Local Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Public</td>
<td>2007</td>
<td>School</td>
<td>Recreation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Private</td>
<td>2008</td>
<td>Shopping</td>
<td>Commuter Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Bicycle</td>
<td>2009</td>
<td>Exercise</td>
<td>Local Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Public</td>
<td>2010</td>
<td>Medical</td>
<td>School</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T:\06\8137-06 Conserve by Bike\Phase I Report Appendices A through P 6-29-07.doc
Figure N-1 Student survey for FDOT Safe Routes to School (Source: National Center for Safe Routes to School)
Survey about Walking and Biking to School - For Parents -

Dear Parent or Caregiver,

Your child’s school wants to learn your thoughts about children walking and biking to school. This survey will take about 10–15 minutes to complete. We ask that each family complete only one survey per school your child attends. If more than one child from a school brings a survey home, please fill out the survey for the child with the most birthday from today’s date.

After you have completed this survey, send it back to the school with your child or give it to the teacher. Your responses will be kept confidential and neither your name nor your child’s name will be associated with our results. Thank you for participating in this survey!

These first few questions gather some general and background information. Remember, all information will be confidential, and no identifying information will be released.

1. What is the grade of the child who brought home this survey? (K–6) ______ grade
2. Is the child who brought home this survey male or female? ______ Male ______ Female
3. How many children do you have in kindergarten through 6th grade? ______ children
4. What is your ZIP Code? (person profile, ZIP 4 if known) ______ ZIP code

Here are some questions that will share your responses.

5. How far does your child live from school? (In miles)
 - Less than 1 mile
 - 1 mile up to 2 miles
 - 2 miles up to 4 miles
 - 4 miles up to 10 miles
 - More than 10 miles

6. On most days, how often does your child walk or bike at school and home for lunch and after school? (Please check one column)
 - Walk
 - Bike
 - School Bus
 - Family rides together with children from other families
 - Carpool (only with children from other families)
 - Transit (city bus, subway, etc.)
 - Other (please specify, answer with 1–2 words)

Figure N-2 Parent survey, FDOT Safe Routes to School, page 1 (Source: National Center for Safe Routes to School)

T:\06\8137-06 Conserve by Bike\Phase I Report Appendices A through P 6-29-07.doc
Figure N-3 Parent survey, FDOT Safe Routes to School, page 2 (Source: National Center for Safe Routes to School)
Figure N-4 Parent survey, FDOT Safe Routes to School, page 3 (Source: National Center for Safe Routes to School)
Student Travel Survey

School Name: Brevard

Dear Teacher,

We are conducting a survey to understand the methods students use to travel to school. Your participation is essential for creating a comprehensive report. Please assist by completing the survey below.

First name: __________________________ Date: __________________________

School Address: __________________________

Student Grade: __________________________

Student Home Address: __________________________

If you use bicycle to travel to school, please mark "X":

[] Yes

If you walk or jog to travel to school, please mark "X":

[] Yes

Most important travel method to school:

[] Bicycle

[] Walk/jog

[] Bus

[] Car

[] Other

Date Survey Completed: April 22, 2003

We thank you for your participation in this important survey. Your contributions will help us understand the transportation habits of students in Brevard County Schools.

Best regards,
[Signature]

Figure N-5 Student travel survey, Brevard County Schools, 2003
Figure N-6 Conceptual layout for Safe Routes to School improvements, Suwannee County, Florida (Sheet #1)
Figure N-7 Conceptual layout for Safe Routes to School improvements, Suwannee County, Florida (Sheet #2)
Figure N-8 Portland, Oregon - SmartTrips Southeast newsletter, front (Source: Transportation Options)
Springwater Corridor Three Bridges Open

In the not-so-distant past those traveling west on the Springwater Corridor Trail enjoyed “car-free” prudent journey until abruptly meeting the first major obstacle. Known as Johnson Creek, the Springwater Corridor Three Bridges project is an engineering feat of the past. The three new bridges span NE McLoughlin Boulevard, Union Pacific Railroad and Johnson Creek. The project is only 2,400 feet long but the distinct change is a significant gap providing safe crossing for pedestrians and bikers. The three bridges are greater than 100 feet high. Keeping people safe is the primary reason for such enhancements so as to maintain public safety and provide a more enjoyable ride.

The bridge, the example of a one-mile gap in Portland requiring travel on neighborhood streets, is now complete from downtown Portland to Beaverton. Oregon for a distance of nearly 16 miles. Partially finished has been accessed from Metro to complete the gap to Beaverton. Additional funding will soon be needed to finish Bay Area transportation trails already underway for specific regional needs through the efforts of Congresswoman Earl Blumenauer.

The trail allows you to increase your physical activity level while exploring many different types of wildlife, including woodpeckers, herons, bats and many other birds. Stroll and cycle paths also pass through streets, access to marathon and fitness areas. These areas display a variety of ecologies such as swamp, blackberry, plant, yellow and elderberry.

To take a walk, ride or ride the many aspects of the trail.

The OMSI observes the wildlife at Oaks Bottom Refuge, picnic, at Southwest Corridor Park, explore Powell Butte Nature Park or even enjoy links in living.

Options Ambassadors Wanted

Do you feel passionate about biking, walking, and getting around Portland without driving? Portland is one of the best bicycling and walking cities in America and you can help strengthen that fact by becoming an Options Ambassador. The Options Program is an opportunity for volunteers to get first hand experience with Transportation Options staff and reach out to Portland residents.

Ambassadors represent the Office of Transportation and encourage motorists, pedestrians, cyclists, and transit riders to travel safer together and share the road. Activities include bike rides, walks, neighborhood and community events, and business transportation talks. Ambassadors’ commit to a minimum of two events during the 2007 event season.

Smart Trips Expands to Milwaukee

Transportation Options SmartTrips Southeast has been expanded to include 5,400 households in Portland’s southeast neighborhood of Milwaukee for 2007. This first of its kind partnership was made possible through the generous support of Metro’s Regional Travel Options program awarding the two cities a grant to expand the project into Milwaukee.

Each year, Metro’s Regional Travel Options program administers a grant program seeking projects that promote transportation options. The grant programs aim to fund projects and programs that reduce emissions and traffic congestion. The projects are aimed at reducing our national and international air quality standards.

The partnership allows Options to expand our already popular guided walks, and bike rides, to include several destinations in Milwaukee such as Zoo and Westmen Park.

GET READY, GET SET, STROLL!

Get ready to get healthy—more people! While others, and learn about some of Portland’s great Southeast neighborhood. Transportation Options invites you to join them for another great summer of Senior Strolls. These excursions are easy, fun and free.

Lack of physical activity is an important contributor to many chronic diseases. In older adults, including heart disease, diabetes, cancer and high blood pressure. According to the U.S. Department of Health and Human Services (U.S. DHHS), only 31 percent of individuals aged 65 to 74 report participating in 20 minutes of moderate physical activity three or more days per week. For more information about the Senior Powell, please contact Dennis Gant at 503-823-6143 or dennis.green@metro.org.

www.gettingaroundportland.org

Figure N-9 Portland, Oregon - SmartTrips Southeast newsletter, back (Transportation Options)
Figure N-10 Portland, Oregon - SmartTrips Southeast survey script, page 1 (Source: Transportation Options)
<table>
<thead>
<tr>
<th>Question</th>
<th>Options</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Do you or does any member of your household work for the City of Portland, or work at an employer that has an agreement for RELIANCE?</td>
<td>Yes</td>
<td>Ask Yes</td>
</tr>
<tr>
<td>No</td>
<td>Ask No</td>
<td></td>
</tr>
<tr>
<td>2. Did you receive, or did you or any member of your household receive, the following categories of SMARTS?</td>
<td>Food</td>
<td>Ask Yes</td>
</tr>
<tr>
<td>Clothing</td>
<td>Ask Yes</td>
<td></td>
</tr>
<tr>
<td>Any other</td>
<td>Ask Yes</td>
<td></td>
</tr>
<tr>
<td>3. Are you at or near the intersection of 18th Ave and SE Division?</td>
<td>South</td>
<td>Ask Yes</td>
</tr>
<tr>
<td>North</td>
<td>Ask Yes</td>
<td></td>
</tr>
<tr>
<td>East</td>
<td>Ask Yes</td>
<td></td>
</tr>
<tr>
<td>West</td>
<td>Ask Yes</td>
<td></td>
</tr>
<tr>
<td>4. Are you north or south of SE 50th?</td>
<td>SE 50th</td>
<td>Ask Yes</td>
</tr>
<tr>
<td>SE 51st</td>
<td>Ask Yes</td>
<td></td>
</tr>
<tr>
<td>SE 52nd</td>
<td>Ask Yes</td>
<td></td>
</tr>
<tr>
<td>SE 56th</td>
<td>Ask Yes</td>
<td></td>
</tr>
<tr>
<td>All others</td>
<td>Ask Yes</td>
<td></td>
</tr>
</tbody>
</table>

Figure N-11 Portland, Oregon – SmartTrips Southeast survey script, page 2 (Source: Transportation Options)
Figure N-12 Portland, Oregon - SmartTrips Southeast survey script, page 3 (Source: Transportation Options)
Figure N-13 Portland, Oregon – SmartTrips Southeast survey script, page 4 (Source: Transportation Options)
Figure N-14 Portland, Oregon – SmartTrips Southeast survey script, page 5 (Source: Transportation Options)
Figure N-15 Portland, Oregon – SmartTrips Southeast survey script, page 6 (Source: Transportation Options)
Figure N-16 Portland, Oregon – Bike Commute Challenge sponsors
Figure N-17 Bike to Work Week trivia contest, West Palm Beach
Figure N-18 Bicycle pool announcement, Bay Area Commuter Services, Tampa-St. Petersburg, Florida
APPENDIX O Reserved
APPENDIX P The Effect of Lane Width on Urban Street Capacity

Technical Memorandum

Date: March 22, 2007

To: Sprinkle Consulting Engineers

From: John Zeiger

Copy to: Patrick McMahon and Paul Ryus

Subject: The Effect of Lane Width on Urban Street Capacity
FDOT Conserve by Bicycle Project

One of the goals of the FDOT Conserve by Bicycle project is to determine how the provision of bicycling facilities can enhance opportunities for recreational travel. One potential treatment that is being considered for accommodating additional bicycle travel along urban streets is the narrowing of street lane widths in order to provide a striped bicycle lane on the paved roadway surface adjacent to these narrower lanes. In considering this treatment, a concern has been raised regarding the reduction in roadway capacity (for motorized vehicles) that could occur due to the lane width reduction.

The purpose of this memorandum is to provide a summary of relevant research that describes the relationship between lane width and urban street capacity. The next section of this memorandum summarizes the method by which urban street capacity is determined. Then, a summary of relevant research is provided. Finally, conclusions are drawn as to the impact of narrowing lanes on urban street capacity.

How is Urban Street Capacity Determined?

Chapter 15 of HCM2000 provides the methodology for analyzing urban streets. (Highway Capacity Manual 2000. Fourth Edition. Transportation Research Board., Washington, D.C. 2000.) “Urban street level of service is based on average through-vehicle travel speed for the segment or for the entire street under consideration. The average travel speed is computed from the running times on the urban street (between signalized intersections) and the control delay experienced by through movements at signalized intersections.” (page 15-2) “The capacity of an urban street is defined for a single direction of travel as the capacity of the through movement at its lowest point (usually at a signalized intersection). The capacity is determined by the number of lanes, the saturation flow rate per lane (influenced by geometric design and demand factors), and the green time per cycle for the through movement at the intersection.” (page 15-9)
Chapter 16 of HCM2000 provides the methodology for analyzing signalized intersections. This methodology includes the determination of the saturation flow rate for each lane group. "The saturation flow rate is the flow in vehicles per hour that can be accommodated by the lane group assuming that the green phase were displayed 100 percent of the time (i.e., g/C = 1.0)." (page 16-9) The equation for this calculation is shown below:

\[s = s_s N f_a f_{sw} f_w f_{nh} f_{tt} f_{at} f_{pa} f_{pb} \]
(Equation 16-4)

where:

- \(s \) = saturation flow rate for subject lane group, expressed as a total for all lanes in lane group (veh/h);
- \(s_s \) = base saturation flow rate per lane (pc/h/ln);
- \(N \) = number of lanes in lane group;
- \(f_a \) = adjustment factor for lane width;
- \(f_{nh} \) = adjustment factor for heavy vehicles in traffic stream;
- \(f_g \) = adjustment factor for approach grade;
- \(f_p \) = adjustment factor for existence of a parking lane and parking activity adjacent to lane group;
- \(f_{pa} \) = adjustment factor for blocking effect of local buses that stop within intersection area;
- \(f_a \) = adjustment factor for area type;
- \(f_{tt} \) = adjustment factor for lane utilization;
- \(f_{at} \) = adjustment factor for left turns in lane group;
- \(f_{at} \) = adjustment factor for right turns in lane group;
- \(f_{pb} \) = pedestrian adjustment factor for left-turn movements; and
- \(f_{pa} \) = pedestrian-bicycle adjustment factor for right-turn movements.

As shown in the above equation, the adjustment factor for lane width is the first of the eleven adjustment factors that is used in calculating the saturation flow rate for the subject lane group. "The lane width adjustment factor, \(f_a \), accounts for the negative impact of narrow lanes on saturation flow rate and allows for an increased flow rate on wide lanes." (page 16-10)

Summary of Relevant Research

Four relevant research documents were found that provide guidance on the relationship between lane width and saturation flow rate:

1. Potts, J.B., et al. Relationship of Lane Width to Saturation Flow Rate on Urban and Suburban Signalized Intersection Approaches. Presented at the 2007 Transportation Research Board Annual Meeting. Accepted for publication in a Transportation Research Record.

Kittelson & Associates, Inc. Fort Lauderdale, Florida

T:\06\8137-06 Conserve by Bike\Phase I Report Appendices A through P 6-29-07.doc
The Effect of Lane Width on Urban Street Capacity
March 26, 2007

2. Zegeer, J.D. Field Validation of Intersection Capacity Factors. Transportation Research Record 1091, Transportation Research Board. 1986.

The first paper cited above provides an overview of the other three research documents. So, the remainder of this section contains direct quotes from that paper.

Zegeer (2) evaluated the saturation flow rates on approaches with lane widths varying between 2.6 and 4.7 m (8.5 and 15.5 ft). Saturation flow data was collected from 2,733 vehicles on eleven approaches with lane widths varying between 2.6 and 2.9 m (8.5 and 9.5 ft). Four approaches with lane widths varying between 3.9 and 4.7 m (13.0 and 15.5 ft) were also surveyed, with a sample size of 1,568 saturation flow vehicles. All baseline conditions except for lane width were held constant at these locations. The survey results were then compared with those of the baseline condition surveys (with a sample size of 6,687 saturation flow vehicles). The narrower lane widths demonstrated saturation flow rates between 2 and 5 percent less than did those in the baseline surveys, while the wider lane widths demonstrated saturation flow rates 5 percent greater than did those in the baseline surveys. Zegeer proposed the following lane width adjustment factors:

<table>
<thead>
<tr>
<th>Lane width category (ft)</th>
<th>Saturation flow adjustment factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 – 8.9</td>
<td>0.96</td>
</tr>
<tr>
<td>9 – 9.9</td>
<td>0.98</td>
</tr>
<tr>
<td>10 – 12.9</td>
<td>1.00</td>
</tr>
<tr>
<td>13 – 15.5</td>
<td>1.05</td>
</tr>
</tbody>
</table>

A 1983 study by Agent (3) of the effects of lane width on saturation flow indicated that lane width did not have an effect on saturation flow for lane widths of 3.0 m (10 ft) or more. For lane widths between 2.7 and 3.0 m (9 and 10 ft), a 5 percent reduction in saturation flow was found compared to lane widths of 3.0 m (10 ft) or more. No lane widths below 2.7 m (9 ft) were observed. There was a slight unexplained reduction in saturation flow for lane widths greater than 4.5 m (15 ft). A similar analysis was performed with the limited data available for commercial vehicles, and no effect was found even for lane widths below 3.0 m (10 ft). Table 1 illustrates the effect of lane width on saturation flow found by Agent.

Table 1. Effect of lane width on saturation flow

<table>
<thead>
<tr>
<th>Lane width(ft)</th>
<th>Total headway (sec)</th>
<th>Average headway (sec)</th>
<th>Saturation flow (vphg)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kittelson & Associates, Inc. Fort Lauderdale, Florida
The Effect of Lane Width on Urban Street Capacity
March 26, 2007

<table>
<thead>
<tr>
<th>Lane Width</th>
<th>Veh./hr</th>
<th>Flow Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9</td>
<td>959</td>
<td>2.29</td>
</tr>
<tr>
<td>10.0</td>
<td>2,039</td>
<td>2.16</td>
</tr>
<tr>
<td>11.0</td>
<td>11,089</td>
<td>2.18</td>
</tr>
<tr>
<td>12.0</td>
<td>2,454</td>
<td>2.18</td>
</tr>
<tr>
<td>13.0</td>
<td>680</td>
<td>2.21</td>
</tr>
<tr>
<td>14.0</td>
<td>16,382</td>
<td>2.18</td>
</tr>
<tr>
<td>15.0 or more</td>
<td>17,062</td>
<td>2.18</td>
</tr>
</tbody>
</table>

* vphg—vehicles per hour of green time.

In a 1992 study by Bonneson (4), it was determined that discharge headway is a function of a vehicle’s position in the queue and, therefore, measurements taken between the fourth and eighth vehicles will have longer headways than measurements taken between the eighth and eleventh vehicles. Using empirical data from two study sites, Bonneson developed a model to estimate the impact of queue position on saturation flow rate. Bonneson found that the minimum discharge headway using queue positions four through ten is about 0.02 s/veh shorter than that found when using queue positions four through eight. This difference translates into a base saturation flow rate ratio of 1.3 percent.

The following text summarizes the research results from the study conducted by Potts, et al. (1):

Field studies were conducted at signalized intersections to determine the difference in saturation flow rates of exclusive through lanes with 2.7-, 3.0-, 3.2-, 3.6-, and 4.0-m (9-, 10-, 11-, 12-, and 13-ft) lane widths. Left- and right-turn vehicles were not surveyed. Data collection focused on through travel lanes under the most ideal conditions possible to minimize the influence of site-specific factors. At those intersection approaches where exclusive left- or right-turn lanes were present, vehicles turning from the exclusive turn lanes were observed for a minimum period of time to ensure that they did not influence surveyed vehicles in the adjacent through lanes. To eliminate any influence of turning vehicles at sites with shared through-right or through-left lanes, data were not collected for signal cycles during which any turning movement took place.

Saturation flow headways were measured beginning when the front axle of the fourth vehicle in queue crossed the stop bar. The cumulative elapsed time was then measured when the front axle of the last vehicle in queue (stopped at the onset of the green signal phase) crossed the stop bar. Any impedance (driveway movements, bus stop activity, pedestrian or bicycle activity) that could influence the saturation flow rate during a surveyed signal green phase was noted. The number of heavy vehicles per cycle was documented.

For analysis purposes, the study sites were grouped into lane width categories as follows:

- 2.9 m (9.5 ft) (9 study sites)
- 3.3 to 3.6 m (11 to 12 ft) (12 study sites)
- 4.0 m (13 ft) and greater (4 study sites)
The Effect of Lane Width on Urban Street Capacity

From the average headway of each headway sample, an average saturation flow rate was calculated. Table 2 presents basic average saturation flow statistics (sample size, mean, median, minimum, maximum, standard deviation, and relative standard deviation) for each lane width category.

TABLE 2. Average saturation flow statistics (pc/h/in) for each lane width category

<table>
<thead>
<tr>
<th>Lane width category (ft)</th>
<th>N</th>
<th>Mean</th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Standard deviation</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>334</td>
<td>1,752</td>
<td>1,714</td>
<td>711</td>
<td>3,000</td>
<td>282</td>
<td>16.1</td>
</tr>
<tr>
<td>11 to 12</td>
<td>655</td>
<td>1,830</td>
<td>1,831</td>
<td>550</td>
<td>2,746</td>
<td>274</td>
<td>15.0</td>
</tr>
<tr>
<td>13+</td>
<td>205</td>
<td>1,913</td>
<td>1,901</td>
<td>962</td>
<td>3,000</td>
<td>283</td>
<td>15.3</td>
</tr>
<tr>
<td>Total</td>
<td>1,194</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Coefficient of variation = 100% x standard deviation/mean.

The results of this research indicate that using narrow lanes (i.e., 2.9 m [9.5 ft]) on signalized intersection approaches on urban and suburban arterials resulted in an average saturation flow rate that is approximately 78 to 79 pc/h/in, or 4.3 percent, lower than if 3.3- to 3.6-m (11- to 12-ft) lanes are used. Similarly, using lane widths of 4.0 m (13 ft) or greater resulted in an average saturation flow rate that is approximately 82 to 84 pc/h/in, or 4.3 to 4.4 percent, higher than if 3.3- to 3.6-m (11- to 12-ft) lanes are used. Both relationships were negligibly affected by whether average saturation flow was adjusted for the position of the vehicle in the queue.

The HCM provides saturation flow rate adjustment factors for lane widths that are greater than or less than 3.6 m (12 ft). Table 3 compares the saturation flow rate estimates based on HCM procedures to those measured in the current research. The table shows that the measured saturation flow rate values are generally lower than those obtained from HCM procedures. Furthermore, the percent difference in saturation flow rate between sites with 2.9- to 3.6-m (9.5 to 12-ft) lanes was found to be about half the value used in the HCM. These findings should be considered as a basis for revisions to the HCM. In particular, there appears to be justification for revising the HCM lane width adjustment factors for lane widths less than 3.6 m (12 ft).

TABLE 3. Comparison of saturation flow rate values from this research to HCM values

<table>
<thead>
<tr>
<th>Lane width (ft)</th>
<th>Adjusted saturation flow rate* (pc/h/ln)</th>
<th>Percent difference from value for 12-ft lanes</th>
<th>HCM</th>
<th>Adjusted saturation flow rate* (pc/h/ln)</th>
<th>Percent difference from values for 12-ft lanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>1,742</td>
<td>-8.3</td>
<td></td>
<td>1,736</td>
<td>-4.4</td>
</tr>
<tr>
<td>11</td>
<td>1,837</td>
<td>-3.3</td>
<td></td>
<td>1,815</td>
<td>0</td>
</tr>
<tr>
<td>11.5</td>
<td>1,888</td>
<td>-1.7</td>
<td></td>
<td>1,815</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1,900</td>
<td>0</td>
<td></td>
<td>1,815</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>1,983</td>
<td>+3.8</td>
<td></td>
<td>1,898</td>
<td>+4.5</td>
</tr>
<tr>
<td>14</td>
<td>2,026</td>
<td>+6.7</td>
<td></td>
<td>1,898</td>
<td>+4.5</td>
</tr>
</tbody>
</table>

*The HCM saturation flow rates have been adjusted for lane width.

Kittelson & Associates, Inc. Fort Lauderdale, Florida
The Effect of Lane Width on Urban Street Capacity

March 26, 2007

Page 6

The saturation flow rates from the current research have been adjusted for queue position.

This value was derived for sites with a range of lane widths from 11 to 12 ft.

This value was derived for sites with a range of lane widths of 13 ft or more.

Conclusions Drawn from the Research

All of the relevant research is in general agreement as to the impact of narrowing lane width on saturation flow for through lanes on signalized intersection approaches. The measured saturation flow rates are similar for lane widths between 10 feet and 12 feet. For lane widths below 10 feet, there is a measurable decrease in saturation flow rate. Thus, so long as all other geometric and traffic signalization conditions remain constant, there is no measurable decrease in urban street capacity when through lane widths are narrowed from 12 feet to 10 feet.

Kittelson & Associates, Inc.

Fort Lauderdale, Florida