OFFICE OF DESIGN UPDATETRAINING

2012

PLANS PREPARATION MANUAL

OFFICE OF DESIGN UPDATE TRAINING 2012

Plans Preparation Manual January 1, 2012 Updates

Benjamin Gerrell, P.E.
Roadway Design Office
Criteria and Standards Section (850) 414-4318
benjamin.gerrell@dot.state.fl.us

Presentation Agenda

Overview of PPM Update Process

PPM - Highlights

Overview

Two Volumes
English Units
Electronic Version
http://www.dot.state.fl.us/rddes ign/PPMManual/PPM.shtm

Overview

To ensure you receive notification of

all updates or revisions:

Register:

http://www2.dot.state.fl.us/contactmanagement

Overview

For Information Regarding Registration
O Edit Personal Information
O Edit Areas of Interest
Log in to the Contact Management database at:
http://www2.dot.state.fl.us/conta ctmanagement/

Overview

- Senior Design Engineers Team
- Primary designer from each district
- Monthly meetings
- Draft Submittals
- Received throughout the year
- Reviewed at SDE meetings
- District Design Engineers
- Quarterly meetings
- Review Final PPM Draft

Overview

Please call or e-mail us if you have any questions or concerns.

We want to hear from you!

As customers, your input is important to us!

PLANS PREPARATION MANUAL VOLUME 1 DESIGN CRITERIA AND PROCESS

Plans
 Preparation Manual

Volume I

Design Criteria and Process

Volume 1 Major

Changes

O SIS Design Speed
O Roadside Slopes
Exceptions and Variations

- Roadway Cross Slope

Superelevation
O Traffic - Standard "K" factors

SIS Design Speed

PPM Volume I

SIS Design Speed

O Section 1.9.1 Design Speed Coordination and Approvals and Section 25.4.4 Design Speed

Reason for Change
OMinimum Design Speed for an Urban facilities FIHS/SIS was 50 mph

Minimize Design Variations in highly developed areas
Median Width DS greater than 45 mph is 40 feet

New Construction and RRR Projects

SIS Design Speed

2012 PPM Revision
Note added in Section 1.9.1 under Table 1.9.2 Minimum Design Speed FIHS/ SIS

DS 45 mph may be used
New Construction and Reconstruction Projects
curb and gutter facilities existing posted speed is 45 mph or less

Access Management Class 3 is proposed

SIS Design Speed

Note added in Section 25.4.4
DS 45 mph may be used
ORRR Projects
Curb and gutter facilities where existing posted speed is 45 mph or less

No access management class requirements

Roadside Slopes

Roadside Slopes

Section 2.4 Roadside Slopes

Reasons for the change

Boom Mower
Typical cutting reach limited to about 20'

Slopes more than 20 ' in height

Roadside Slopes

2012 PPM Revision
Slopes steeper than 1:3
OHigher than 20 feet 10 foot wide flat area top and base

O Higher than 35 feet 10 foot wide maintenance berm every 35 feet

OSlopes steeper than 1:2 coordination with District Geotechnical Office

Exceptions and Variations

Exceptions and Variations

Several changes were made to this chapter

Safety Projects
Variations and Exceptions for Landscape Only Projects

Turnpike Enterprise Exception Approvals

Utility Exceptions

Safety Projects

Safety Projects

Reasons for the change
Canceled Projects
OProjects in design
But unable to get exceptions approved

Stopped Design

Safety Projects

2012 PPM Revision
Section 23.1 General
Safety Study identify all applicable variations and/or exceptions

All applicable variations and/or exceptions approved prior to beginning of design phase

Landscape Only Projects

Landscape Only Projects

Reasons for the change
Design Variations or Exceptions
O Intersection Sight Distance
O. Stopping Sight Distance

Signed and sealed by Professional Engineer

Landscape Only Projects

2012 PPM Revision
Section 23.1 General
Landscape Only Projects a Landscape Architects can

Sign and Seal
OISD Design Variations
Design exceptions where ISD is less than SSD

Landscape Only Projects

O Design Projects with Landscaping

C Professional Engineer shall Sign and Seal

OISD Design Variations
Design exceptions where ISD is less than SSD

Turnpike Enterprise Exception Approvals

Turnpike Enterprise Exception Approvals

- Reasons for Change

FHWA delegates the authority to approve design exceptions for nonfederal oversight projects to the State Design Engineers

Turnpike being a state funded facility is not subject to federal oversight

Turnpike Enterprise Exception Approvals

- 2012 PPM Revision

Section 23.3 Approval
State Roadway Design Engineer
Delegated Approval Authority
To Turnpike Design Engineer

Design Exceptions
OFlorida Turnpike Facilities

Turnpike Enterprise Exception Approvals

- State Structures Design Engineer

Delegated Approval Authority
O To Turnpike Design Engineer
-Design Exceptions
OBridge width
OHorizontal Clearance
o Vertical Clearance
OFlorida Turnpike Facilities

Roadway Cross Slope

Roadway Cross Slope

Section 25.4.6 Roadway Cross Slope
Reasons for the change
Correction and Variation
Correction
Cost overruns
Insufficient Information

- Design Variation

Prepared
Approved

Roadway Cross Slope

2012 PPM Revision
Existing Pavement
©ield Verified
Full DTM
O Vehicle Mounted Scanner

Roadway Cross Slope

C. Full DTM

Roadway Width
Qvaluate Cross Slopes
Tangent Sections
Every 100 feet

Roadway Cross Slope

Vehicle Mounted Scanner
Determine Roadway Limits
Out of Tolerance
Request DTM
Implementation for projects being designed in November

Roadway Cross Slope

Table 25.4.6 for Roadway Cross Slopes

Two-Lane Roads - (0.015 0.030)

Multi-lane Roads - (0.015 0.040)

- Shoulders - (Adjacent Lane Cross Slope - 0.080)

Parking Lanes - (0.015-0.050)

Roadway Cross Slope

Table 25.4.6 New Notes

Multilane cross slope two lanes in one direction

Existing curb and gutter outside lanes max. cross slope of 0.05
0.06 Max. algebraic difference between adjacent through lanes

Parking spaces and access aisles serving persons with disabilities cross slopes no steeper than 0.02

Roadway Cross Slope

Table 25.4.7 Freeway Cross Slopes

O New Table
O Travel Lanes
O Figure 2.1.1
O Range of + or -0.005

Roadway Cross Slope

Figure 2.1.1 Standard Pavement Cross Slope

Allowable Range for cross slope on existing freeways is + or - 0.005 (0.5\%) from the standard slopes in Figure 2.1.1

Roadway Cross Slope

Table 25.4.7 Freeway Cross Slopes

Facility or Feature	Standard	Allowable Range
Travel Lanes	0.02^{*}	$0.015-0.025$
Travel Lanes	0.03^{*}	$0.025-0.035$

* Applies to lanes as designated in Figure 2.1.1.

The algebraic difference in cross slope between adjacent travel lanes shall not exceed 0.04. The maximum algebraic difference in cross slope between a through lane and an auxiliary lane at a turning roadway terminal shall meet Table 2.1.4.

Paved shoulder cross slopes do not need to be corrected if they meet the values in Table 25.4.6 and the algebraic difference in cross slope between the shoulder and adjacent travel lane is 0.07 or less.

Roadway Cross Slope

Notes:

- Max. Algebraic difference between adjacent travel lanes 0.04
- Algebraic difference between a through lane and an auxiliary lane meet Table 2.1.4
- Paved shoulders Table 25.4.6 algebraic difference between shoulder and adjacent travel lane is 0.07 or less

Superelevation

Superelevation

Section 25.4.7 Superelevation
Reasons for the change
Roadways and shoulders shall

OIndex 510 for rural curves
OIndex 511 for urban curves

Superelevation

2012 PPM Revision
Roadways and Shoulders Should

Index 510 for Rural Curves
O Index 511 for Urban Curves

Superelevation

Existing Superelevation
Does Not Meet Design Standards

Safety Study
Contributing factor
One Crash in 5 year period

Superelevation

O High Speed Facilities
Correction not required if Superelevation cannot be linked to crashes

> Existing Rate \geq AASHTO's Minimum Radii for Design Superelevation Rates, Design Speeds, and $\mathrm{e}_{\text {max }}=6 \%$

Existing Rate \leq AASHTO's Minimum Radii for Design Superelevation Rates, Design Speeds, and $\mathrm{e}_{\text {max }}=12 \%$

Superelevation

- Superelevation Correction

Show the Transition from Normal Cross Slope to Superelevation

Correction in Cross Sections

- The PC and PT
50^{\prime} before and after the PC and PT

300 intervals within the curve

Traffic - Standard "K" factors

Traffic - Standard "K" factors

2012 PPM Revision

Section 1.2

O Department adopted Standard "K" factors

Doug McLeod to discuss futher

Sunnnary

- SIS Design Speed

On FIHS/SIS Facilities a DS of 45 mph may be used
Changed in Chapter 1 and 25
Roadside Slopes
Flat area 10 ' wide at the top and bottom of steep slopes higher than 20'
Flat area every 35^{\prime} in height for slopes higher than 35^{\prime}
Exceptions and Variations
Safety Projects require approval before design phase
Design variations and exceptions can be signed and sealed by a Landscape Architect

The State Design Engineers have delegated the authority to approve design exceptions to the Turnpike Design Engineer

Sunnnary

Roadway Cross Slope
Existing pavement and shoulder on RRR Projects to be field verified by Full DTM of the roadway or Vehicle Mounted Scanner.

Check existing cross slope against allowable ranges in Table 25.4.6 or Table 25.4.7.

- Superelevation

When existing superelevation does not meet standards a Safety Study (non-formal) shall be conducted to determine if superelevation is a primary contributing factor to crashes in curves.

When superelevation is not linked to crashes and the existing superelavation rate is between AASHTO's Minimum Radii for Design Superelevation Rates, Design Speeds, and $\mathrm{e}_{\max }=6 \%$ table and $\mathrm{e}_{\max }=$ 12% table correction is not required .

Thank You!

Benjamin Gerrell, P.E.
Roadway Design Office
Criteria and Standards Section
(850) 414-4318
benjamin.gerrell@dot.state.fl.us

