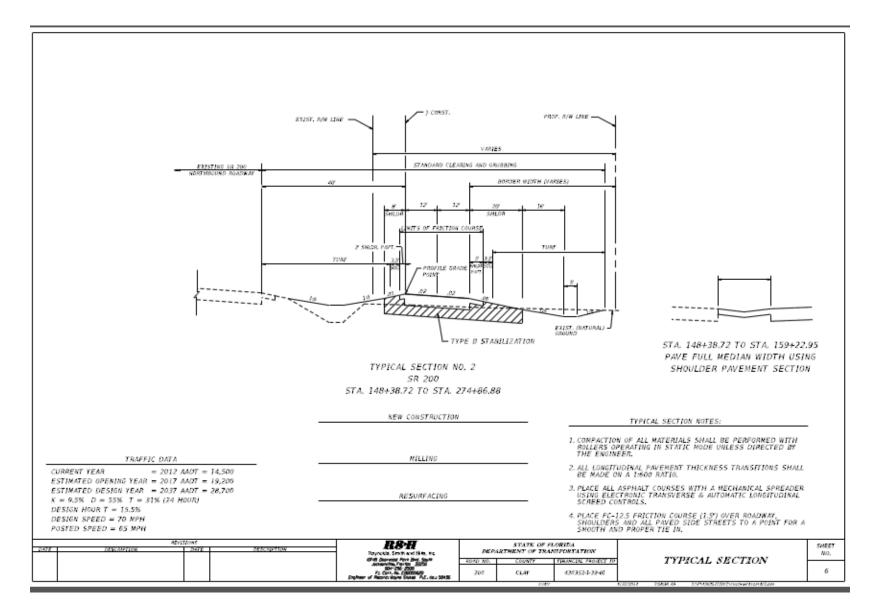
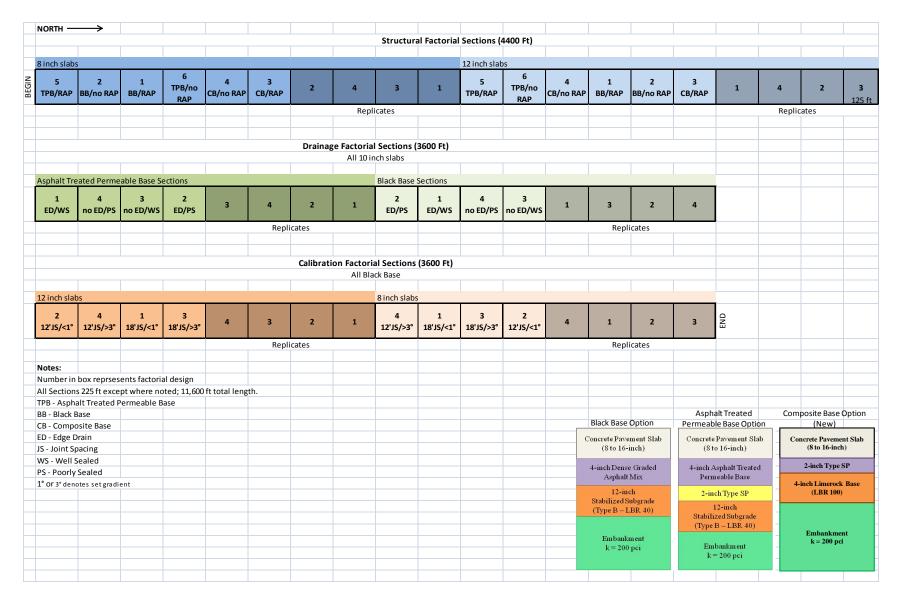

Concrete Technical Council February 27, 2013


301 Test Road

Aerial of US 301 Test Road Area


Proposed Typical Section

Close Up Aerial – Pavement Goes Between 4-Lane and Railroad Track

301 Test Road Plan

Structural Factorial

(8 replicated sections 225 ft ea; 3 unreplicated sections 225 ft ea; 1 unreplicated section 125 ft; yields 4400 ft)

w/RAP Blk Base 1	w/o RAP Blk Base 2	w RAP Comp Base 3	w/o RAP Comp Base 4	w RAP Trt Perm 5	w/o RAP Trt Perm 6
Order of Co	ncstruction				
3	2	6	5	1	4
4	1	3	2		

w/RAP Blk Base 1	w/o RAP Blk Base 2	w RAP Comp Base 3	w/o RAP Comp Base 4	w RAP Trt Perm 5	w/o RAP Trt Perm 6
Order of Concstruction					
4	5	6	3	1	2
1	3	4	2		

12 in thickness 8 in thickness

Drainage Factorial

(8 -10" sections of well sealed/poorly sealed joint combinations with section lengths of 225 ft ea; 2 replications yields 3600 ft)

w/Edge Drains	w/Edge Drains	w/o Edge Drains	w/o Edge Drains
Well Sealed	Poorly Sealed	Well Sealed	Poorly Sealed
1	2	3	4

Order of Concstruction			
1	4	3	2
4	3	1	2

w/Edge Drains Well Sealed 1	w/Edge Drains Poorly Sealed 2	w/o Edge Drains Well Sealed 3	w/o Edge Drains Poorly Sealed 4		
Black Base Trt Perm Base					
Order of	Order of Concstruction				
2	2		3		
1		3 2	4		

Calibration Factorial

(8 sections of 12/18 ft slab combinations in lengths of 225 ft ea; 2 replications yields 3600 ft)

18 ft js	12 ft js	18 ft js	12 ft js
Set grad <1°F	Set grad <1°F	Set grad >3°F	Set grad >3°F
1	2	3	4

Order of Concstruction			
3	1	4	2
4	3	2	1

18 ft js Set grad <1°F 1	12 ft js Set grad <1°F 2	18 ft js Set grad >3°F 3	12 ft js Set grad >3°F 4
8 inches	12 inch	es	
Order of Cor	ncstruction		
2		4 3	1
2		3 4	1

Rigid Pavement Committee

Unit Costs for Concrete:

- limited information on concrete unit costs all over the place
- suggested a standard chart for unit costs for concrete
- Benefit = lower LCCA's for concrete pavement

<u>Rehabilitation Cycles:</u>

- historical cycles are closer to 25 years for the first rehabilitation and another 20 years to the second
- standard from FDOT is 20 and 30 year rehabilitations without salvage; using 1,025 lane miles of failed pavement on I-10 and I-75 to establish rehabilitation cycles
- Benefit = lower LCCA's for concrete pavement, about 3% reduction in LCCA costs

<u>Concrete Pavement Thickness:</u>

- FDOT requires use of the Tables in the 2009 Rigid Pavement Manual, either AASHTO '93 or MEPDG with Florida Calibrations
- thickness will consistently be 1 to 2 inches thicker than an MEPDG analysis with the national calibrations
- FDOT should use the national calibration constants for C1 and C2 for transverse cracking
- Benefit: 1" drop in thickness is about a 5% reduction in LCCA costs
- Other issues:
 - Need for edgedrains (adds 9% to LCCA costs), need for 4" asphalt base (adds about 9% to LCCA costs), including initial grinding and friction course costs in the LCCA (minimal concrete costs, high asphalt costs), asphalt rehabilitation cycles (use 14, 28, 42 w salvage more like 12, 24, 36 in history).

350 Specification Committee

- Developmental Specification @:
 - http://www.dot.state.fl.us/specificationsoffice/Ot herFDOTLinks/Developmental/Files/Dev350-113.pdf
- Three Pilot Projects Under Way
 - I-4 Volusia County
 - I-275 Hillsborough County
 - 9B Duval County