

Cause and Effects

EAR Workshop "Cause and Effect"

by: Howie Moseley

June 2005

Definitions

<u>Air Voids</u> – Air void content of a lab compacted specimen in the SGC.
 Also called plant or lab air voids.
 V_a = (G_{mm}-G_{mb})/G_{mm} X 100

Definitions

<u>Density</u> – In-place air void content at the roadway expressed as %G_{mm}.
 Also called in-place air voids.
 Density = (G_{mb} / G_{mm}) x 100

Definitions

Percent passing the #200 sieve – Also called dust, mineral filler, -200 material, or P₋₂₀₀ material.

Air Voids and AC Content

Air void content decreases as AC content increases.

No gradation change.

 Ratio is approximately 0.2 – 0.35% decrease in air void content for every 0.1% increase in AC content.

Mix dependant

% Air voids

Air Voids and AC Content

- Increased AC content causes the G_{mm} to decrease.
- Increased AC content also causes the G_{mb} to increase.

V_a = (G_{mm}-G_{mb})/G_{mm} X 100
At 4.6% AC: V_a = (2.576-2.470) / 2.576 x 100 = 4.1%
At 5.1% AC: V_a = (2.565-2.504) / 2.565 x 100 = 2.4%
(Real lab data)

Air Voids and P₋₂₀₀ Material

 Air void content decreases as P₋₂₀₀ material increases.

Ratio is approximately 0.4 – 1.0% decrease in air voids for every 1.0% increase in P₋₂₀₀ material.

Mix dependant

Air Voids and P₋₂₀₀ Material

- Increased P₋₂₀₀ material causes the G_{mm} to decrease.
- Increased P₋₂₀₀ material also causes the G_{mb} to increase.
- $-Va = (G_{mm} G_{mb})/G_{mm} \times 100$

At 4.7% P₋₂₀₀ material: V_a = (2.575-2.481) / 2.575 x 100 = 3.6%
 At 5.7% P₋₂₀₀ material: V_a = (2.560-2.488) / 2.560 x 100 = 2.8%
 (Real lab data)

Density, AC, and P₋₂₀₀ Material

- Increased AC content and/or P₋₂₀₀ material in the mix will make it easier to achieve density in the field.
- Doesn't necessarily mean density will be high in the field, just that the mixture is easier to compact.

The mixture will also be more susceptible to compaction/rutting by traffic after construction.

Coarse and Fine Gradations

Coarse gradations require a higher density level during construction.

- ◆ Coarse mix target density is 94.5% G_{mm}.
- ♦ Fine mix target density is 93.0% G_{mm}.
- Coarse mixes can have permeability issues if density is not achieved.
 - Problems can occur below 93.0% G_{mm}.
- Coarse mixtures are more difficult to compact during construction.

Tender zone

Coarse and Fine Gradations

Gradation and VMA

VMA = Voids in the mineral aggregate
VMA = $100 - \{[G_{mb} \times (100 - P_b)]/G_{sb}\}$

Asphalt Mixture Volumetrics

What affects VMA?

Gradation

- ◆ P₋₂₀₀ material
 - Lowers VMA
- Maximum density line
 - Gradations closer to the maximum density line have lower VMA
 - Gap-graded mixes

What affects VMA?

12.5 mm Superpave Gradation Chart

Which Gradation will have the highest VMA? Which Gradation will have the lowest VMA?

What else affects VMA?

Aggregate type

 Aggregate angularity or texture
 Aggregate Shape

 Aggregate toughness

 Aggregate breakdown at the plant
 More P₋₂₀₀ material
 Aggregate is less angular

Questions or Comments?