

Engineering Analysis Reports (EAR) Workshop

EAR Workshop

- 1. Background (Musselman)
 - a. Purpose of the workshop
 - b. Introductions
- 2. Basics (Musselman)
 - a. Pavements
 - b. Mix Types
 - c. Asphalt Mix Basics
 - i. Volumetrics
 - ii. 0.45 Gradation chart
- 3. Specification overview (Upshaw)
 - a. HMA testing requirements
 - b. Failure criteria QC/IV Master Production Range
 - c. Defective Material 334-5.9.5
- 4. FDOT Pavement Performance (Schaub)
 - a. Pavement Condition Survey
 - b. Performance Trends
- 5. Cause and effects (Moseley)
 - a. Binder content (high/low)
 - b. Gradation (coarse/fine, impact on VMA, volumetrics, effective binder content, etc.)
 - c. Dust (high/low,)
- 6. General relationships between test data and performance (Sholar)
 - a. Air voids (high & low)
 - b. Density (low)
 - c. Binder content (FC-5)
 - d. Gradation (FC-5)
- 7. Analysis Tools (Sholar)
 - a. Production data
 - b. Cores (gradation, binder content, G_{mb} , G_{mm} , permeability, in-place V_a)
 - c. Asphalt Pavement Analyzer
 - d. Recompacted cores
- 8. Overview of EAR Process (Blazo)
 - a. Disposition of Defective Material Form
 - b. Flow Chart
- 9. Engineering Analysis Reports (Musselman)
 - a. EAR Guidelines
 - b. Model EAR
 - c. Summary

EAR Workshop

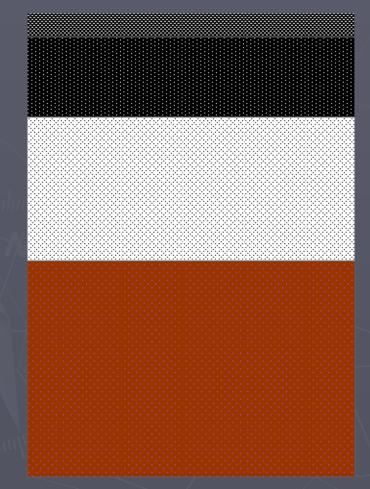
Purpose

Familiarize participants with:

- 1. HMA pavement basics
- 2. HMA failures; causes and effects
- 3. Relationship between test results and performance
- 4. Available analysis tools & methodologies
- 5. FDOT EAR process
- 6. FDOT expectations

BACKGROUND

 Name
 Company
 Position within Company


Today's Topics

> HMA Basics
> Specification Overview
> Relationships between test data & performance
> What causes a failure?
> FDOT Pavement Performance
> EAR Process

HMA Basics

Pavements
 Mix & Binder Types
 Asphalt Mix Basics (Volumetrics 101)

Typical Asphalt Pavement Structure

Friction Course Structural Course

Base (Limerock or Asphalt)

Stabilized Subgrade

Mix Types

Friction Courses

FC-9.5, FC-12.5, FC-5

Structural Courses

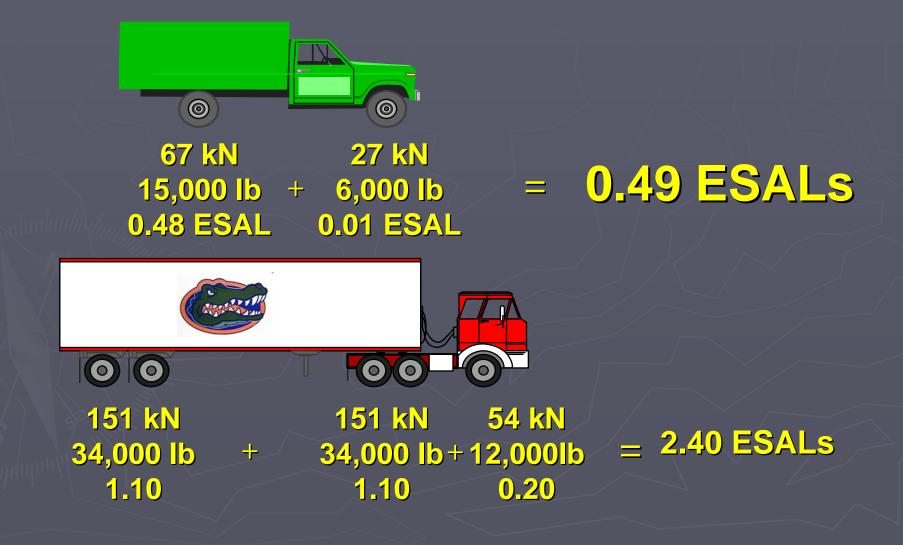
SP-9.5, SP-12.5, SP-19.0

Base Courses

B-12.5

Other

Asphalt Treated Permeable Base (ATPB)
Used under PCC pavements


Structural Mixes

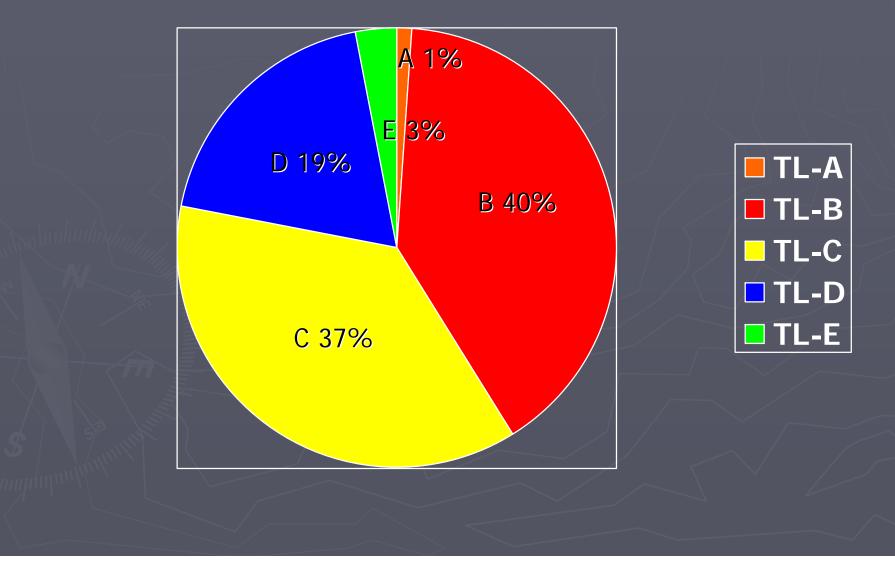
- Designated as Type SP
 - Superpave

Purpose: load carrying portion of pavement

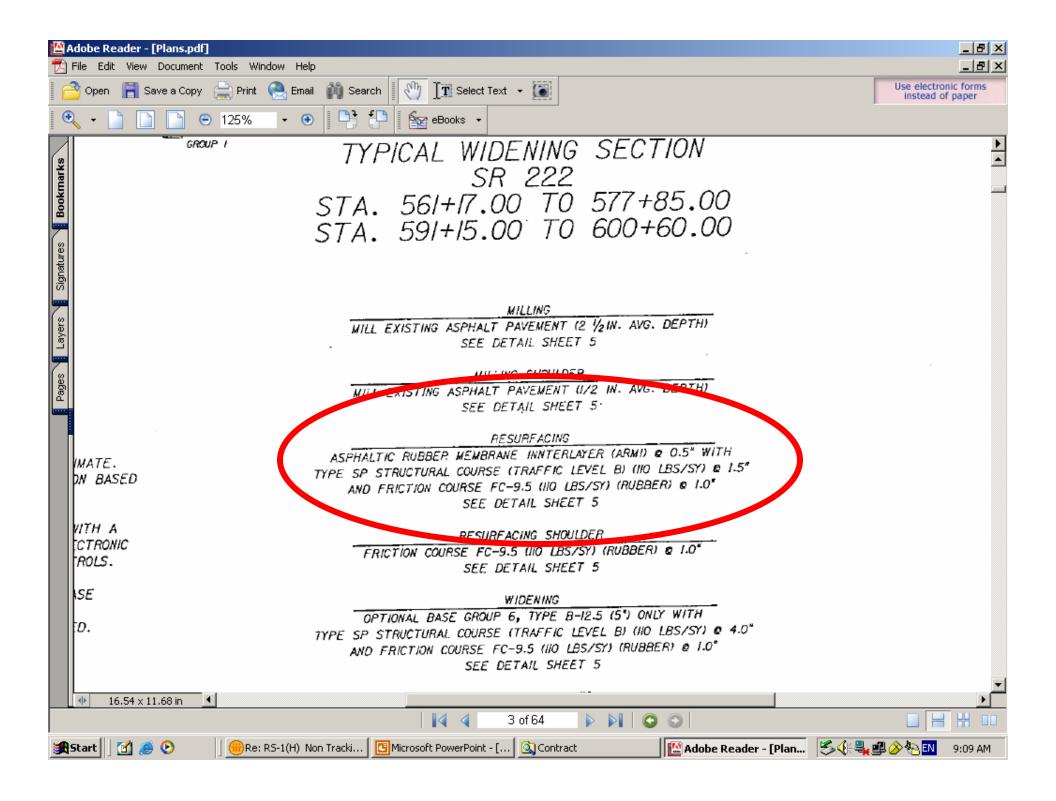
- Layer coefficient 0.44
- Three nominal maximum aggregate sizes
 - 9.5 mm (SP-9.5)
 - 12.5 mm (SP-12.5)
 - 19.0 mm (SP-19.0)
- Five Traffic Levels (A-E)
 - Based on 18-kip Equivalent Single Axle Loads (ESAL's)
 - Low traffic = A, High traffic = E

ESAL Configuration Examples

Mix Types (Cont'd)

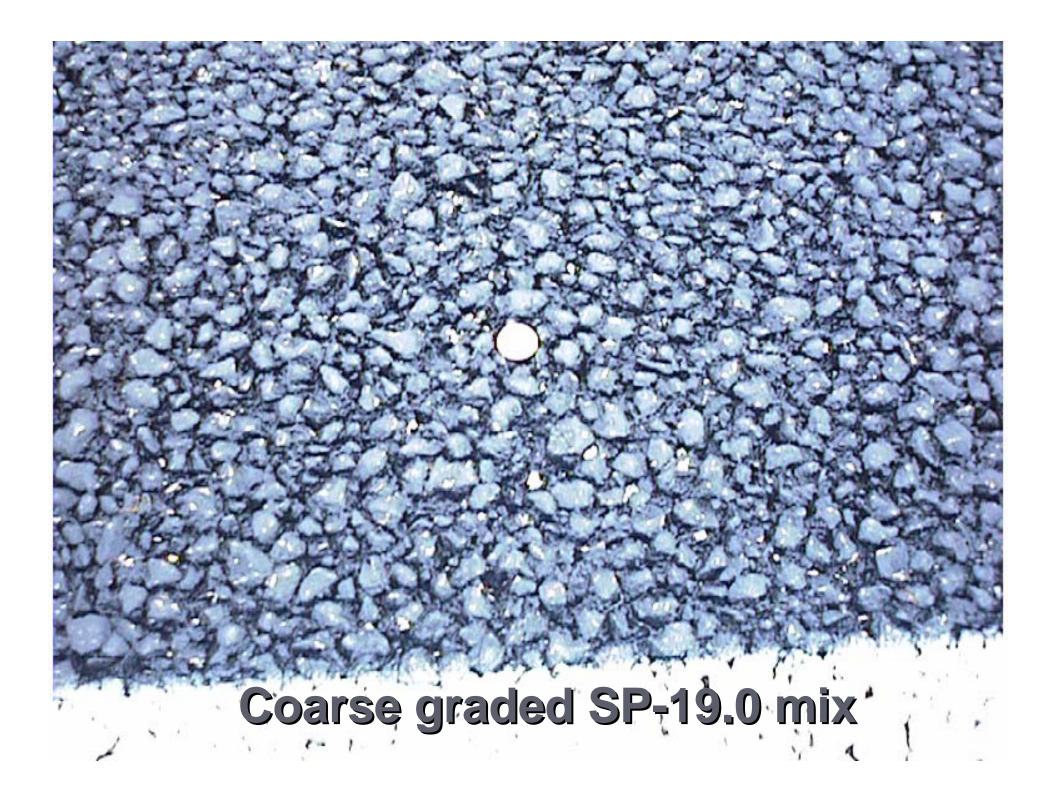

Traffic Levels – Based on design life of the pavement:

- A <300,000 ESAL's
- B 300,000 3 million ESAL's
- C 3 million 10 million ESAL's
- D 10 million 30 million ESAL's
 - >30 million ESAL's


Ε

Traffic Levels A, B, C: Fine Graded Traffic Levels D & E: Coarse Graded*

Traffic Distribution in Florida



Gradation Types

Coarse mixes – Predominantly coarse aggregate Gradation below restricted zone Higher density requirement Greater likelihood of being permeable Placed thicker Fine mixes – Predominantly fine aggregate Gradation above restricted zone Similar to old FDOT Type S mixes Shown on the mix design

🥙 htt	🚰 http://secure.sm.dot.state.fl.us/bituminous/superpave/3001-4000/3009A.pdf - Microsoft Internet Explorer													
File	Edit View Favorite	es Tools Help							1					
🕀 Ba	🗘 Back 🔻 🔿 🗸 🔯 🖓 Search 👔 Favorites 🎯 Media 🧭 🔂 🕶 🧾													
Addre:	ss 🙋 http://secure.sm	dot.state.fl.us/bituminous/sup	erpave/3001-4000	/3009A.pdf				▼ ∂⊙	Links »					
Save a Copy 🚔 🤮 🙌 🕅 🖑 I Select Text 🗸 🗃 🔍 - 📄 📄 🕒 🕒 115% - 💿 🕼 🗠 🗠 📄 🕒 Use electronic forms instead of paper														
Pages Experts Signatures Bookmarks		STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION STATEMENT OF SOURCE OF MATERIALS AND JOB MIX FORMULA FOR BITUMINOUS CONCRETE SUBMIT TO THE STATE MATERIALS ENGINEER, CENTRAL BITUMINOUS LABORATORY, 2006 NORTHEAST WALDO ROAD., GAINESVILLE, FLA. 32609												
Sign	Contractor	Orlando I	Paving Compar	ny Addre		8150 Apopka	Blvd., Apopka, FL 32	703	_					
are a	Phone No.	(407) 290-9327	Fax No.	(407) 290 3068	E-mail	C	moorefield@hubbard	.com						
s Laye	Submitted By Orlando Paving Company			Fine Type Mix SP-12.5 Recycle Intended Use of			se of Mix Struc	tural						
Design Traffic Level C Grations @ N des														
	TYP	PE MATERIAL	F.D.O.T. CODE	PRODU	CER	PIT NO.	DATE SAM	PLED	_					
	1. Crushed R. A	A. P.	2-00	Orlando Paving Com	bany	A0531 TM-469	06 / 01 / 2	2001						
	2. S-1-A Stone		42	Florida Rock Industries		87-049 TM-447	06/01/2	2001						
	3. FC-3 Stone		55	Rinker Materials Corp.		87-090	06 / 01 / 2	2001						
	4. W-12 Screen	nings	21	Rinker Materials Corp).	TM-447 GA-178	06 / 01 / 2	2001						
	5.													
	6.													
4	🕨 8.5 x 11 in 🔳			1					•					
🙆 Done														
🏽 🕅 🖉 🖉 🕑 👘 🛛 🗍 💼 Re: RS-1(H) Non 📴 Microsoft PowerP 🔯 Special Provisions 🔛 Adobe Reader - [🖗 http://secure.s 🏷 🕀 🔩 🕮 🔗 🇞 🖬 🛛 9:20 AM														

Friction Courses

Designated as FC

Purpose: Provide a pavement surface with good frictional characteristics

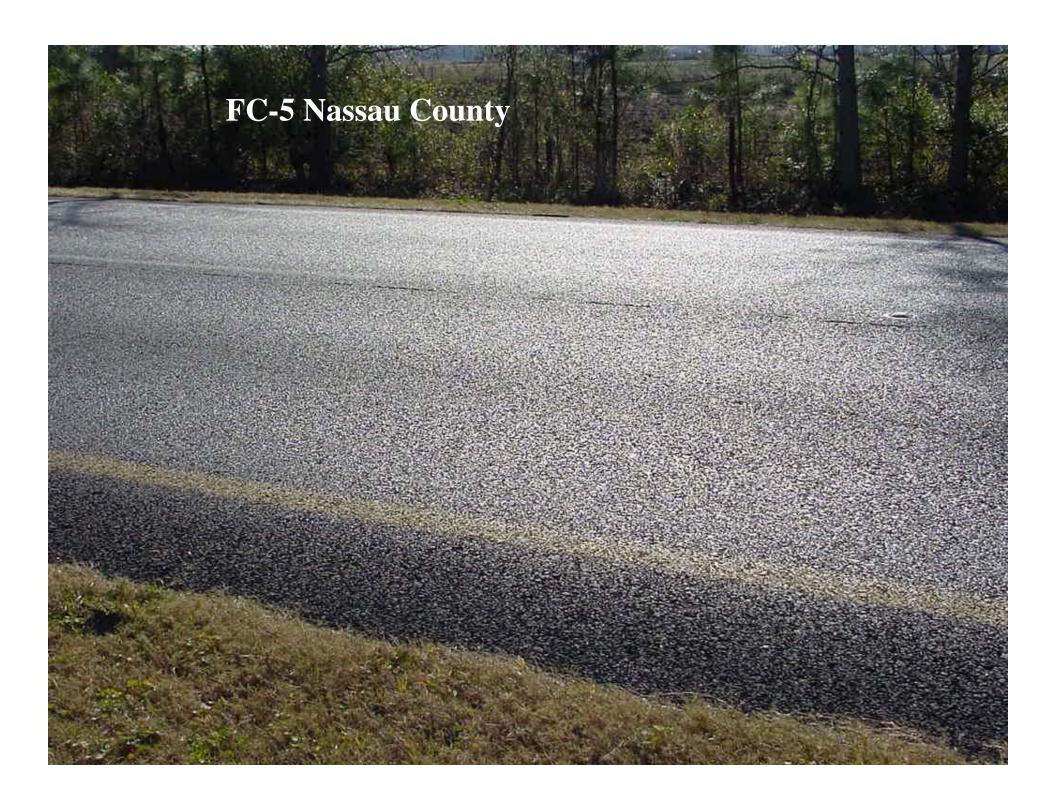
Required on all jobs with:

AADT > 3,000

Design Speed >35 mph

Use polish resistant aggregate

- Oolitic limestone (Miami-Dade County)
- Granite (Georgia & Nova Scotia)
- Also use asphalt rubber binder (ARB)


Friction Courses

Fine Graded Friction Courses: Good microtexture ► Function of the aggregate Two Nominal Maximum Aggregate Sizes: ► FC-9.5 (Placed 1" thick) ▶ FC-12.5 (Placed 1 ½["] thick) Formerly called FC-6 Standardized at Traffic Level C Layer coefficient: 0.44 100% oolite or 60% granite ARB-5 (PG 67-22 w/5% GTR)

Friction Courses

Open-Graded Friction Courses:

- Required on high speed multi-lane facilities
 - Design Speed >50 mph
- Good macrotexture
 - Function of surface texture
 - "Minimize" hydroplaning
- FC-5
- Layer coefficient: 0.00
- 100% granite or 100% oolite
- ARB-12 (PG 67-22 w/12% GTR)
- Stabilizing fibers
- Granite: hydrated lime

Base Courses

Designated as Type B ► One NMAS: ■ B-12.5 ► Superpave Standardized as Traffic Level B Layer coefficient: 0.20 ► May substitute an SP-12.5 It's basically the same mix

Asphalt Treated Permeable Base (APTB)

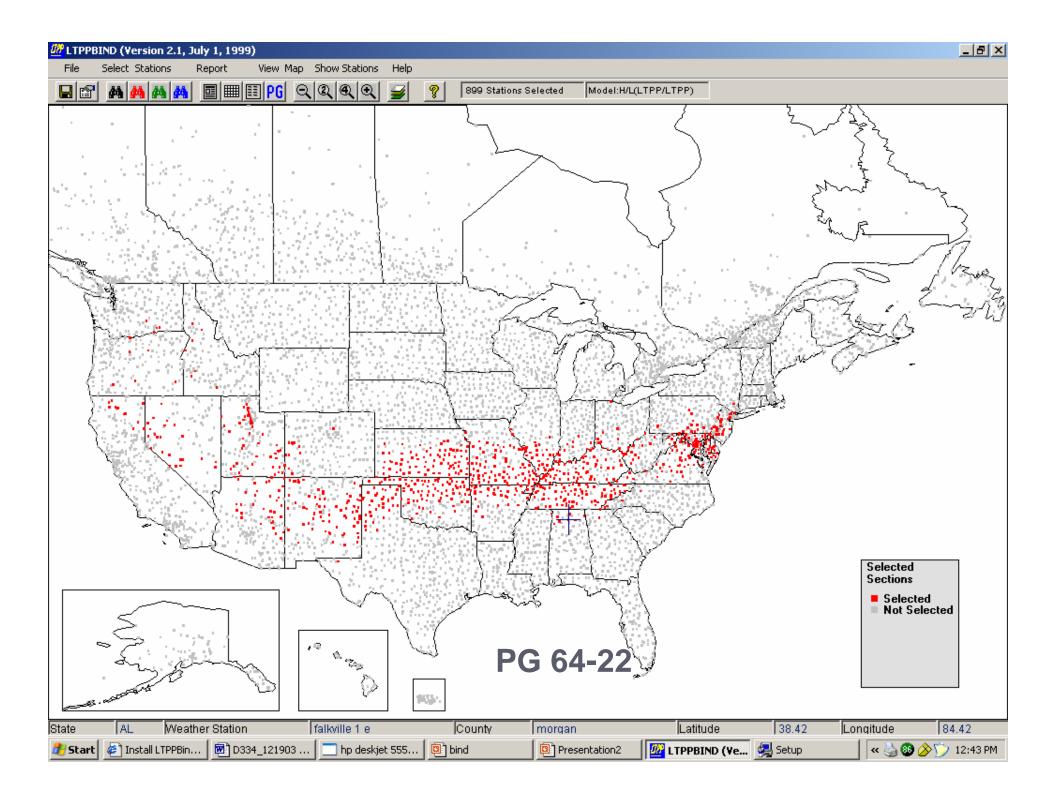
No. 57 or 67 Stone
¾" aggregate
Approximately 2 – 3% PG 67-22
Very porous/very open
Used under PCC pavements

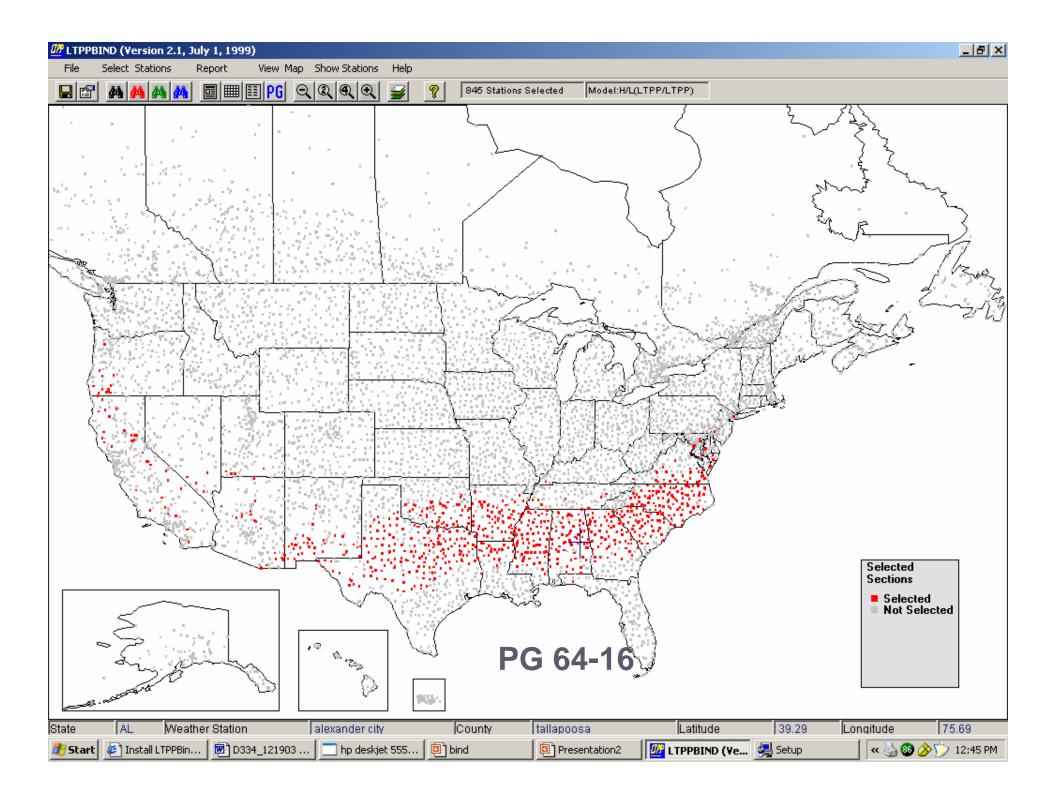
Binder Types

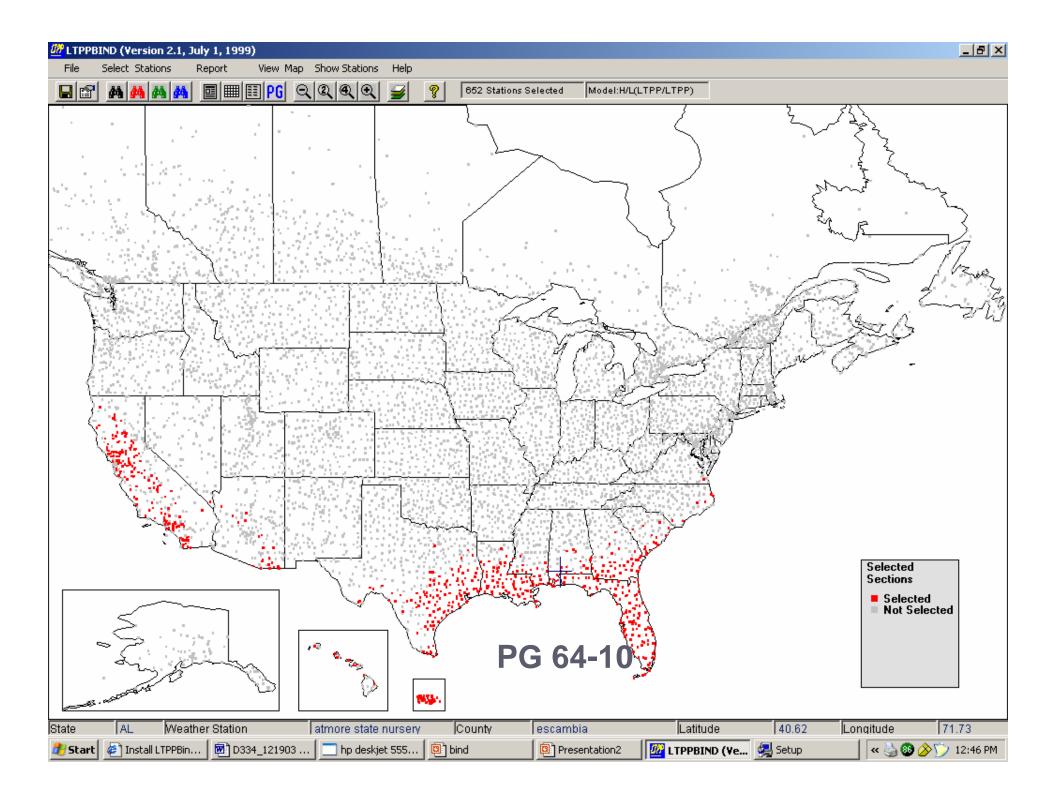
Superpave Asphalt Binders

Grading system based on climate

PG 67-22


Performance Grade Average 7-day max pavement design temp Min pavement design temp




Developed from Air Temperatures (over 20 year period)

Superpave Weather Database
 6500 stations in U.S. and Canada
 Annual air temperatures
 hottest seven-day temp (avg and std dev)
 coldest temp (avg and std dev)
 Found on LTPP Website

🖉 L TPPBind - Internet Explorer Provided by Cox High Speed Internet														
File Edit View Favorites Tools Help														
🔇 Back 🔻 🕥 👻 😰 🐔 🔎 Search 🛭 👷 Favorites 🚳 Media 🦳 🗸 😓 🚍 🕶 💭 🎉 🦓														
Address 🙆 http://www.tfhrc.gov/pavement/ltpp/ltppbind.htm Go Links »														
Search - Edit	Google 🔻 AltaVista 🔻 Ask Jeeves Allth	neWeb ▼ LookSmart ຊຶ່)≱Custor	nize My Button 1 💷 Highlight											
U.S. Department of Transportation TFHRC Home FHWA Home Feedback														
LTPP	LON PERFOR													
<u>Search</u> Contacts	LTPPBind	Shortcuts												
Links	LTPPBind is a Windows-based software program developed by LTPP to help highway agencies select the most suitable and cost-effective Superpave asphalt binder Performance Grade (PG)	Brief												
<u>What's New</u> Library	for a particular site. Based on the original binder selection software SHRPBind, LTPPBind features a database of high and low air temperatures (minimum, mean, maximum, standard	Presentation												
Data Collection	deviation, and number of years) for U.S. and Canadian weather stations, along with several modifications that provide users with the ability to:													
<u>Analysis</u>	 Select PGs based on actual temperature conditions at their site and et the level of eight desirected by their 	Back to Products												
<u>Products</u>	their site and at the level of risk designated by their highway agency.													
<u>Calendar</u> <u>Pooled Fund</u> <u>Studies</u>	 Use either the original SHRP or LTPP's revised temperature models for determining a site's binder PG. Adjust PG selection for different levels of traffic loading an 	d												
<u>Operations/</u> <u>Analysis</u> Feedback	Speed.	-												
<u>Reports</u> LTPP Customer	LTPPBind were developed via an LTPP data analysis project. The research report from the project is entitled, <i>LTPP Seasonal</i> <u>Asphalt Concrete Pavement Temperature Models</u> (FHWA-RD-97	-			_									
Survey	103). To view an abstract on this publication or for information on d - Internet E 👹 D334_121903 - Microsof 🗐 bind	ETPP Bind Demo		« 🚳 🎸 🏷	2:53 PM									

LTPP Binder Grade in Florida

PG 67-22

Standard FDOT Binder Grade

Standard Binder Grades in Florida

▶ PG 67-22 (AC-30)

Special grade used in southeastern US

▶ PG 64-22 (AC-20)

RA (Recycling Agent)
 If >30% RAP in mix

PG 76-22 (AC-30 w/polymer)
 Rutting concerns

Volumetrics

Basic Terminology

Spec	ific Gravi	ty (G):	G _{xy}
■ X:	b = <u>b</u>	inder	
	s = <u>s</u> t	tone	
	<u>n</u> = <u>n</u>	<u>m</u> ixture	
■ y:	b = <u>b</u>	ulk	
Muluuluvlan	e = <u>e</u>	ffective	
		pparent	
	m = <u>r</u>	<u>m</u> aximum	
Exa	ample:		
G	– aravitv	, mixture	max

G_{mm} = gravity, mixture, maximum (i.e., maximum gravity of the mixture)

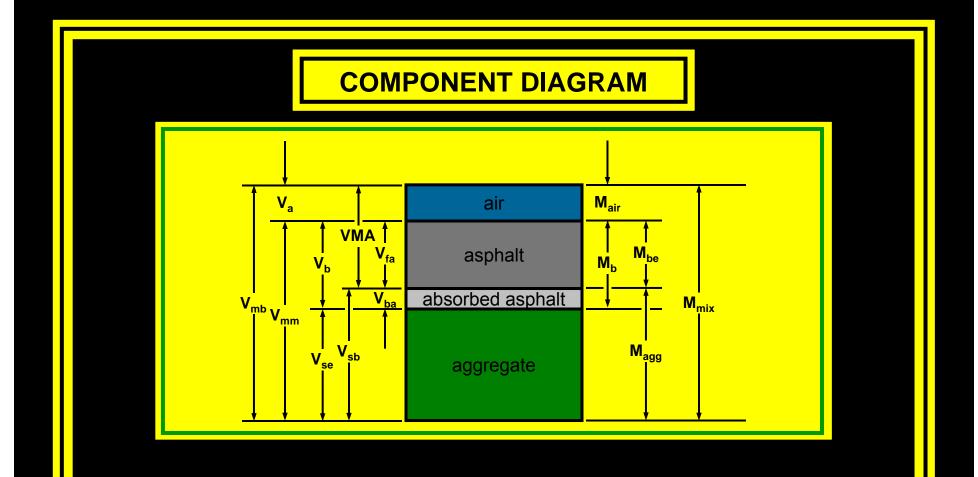
HMA Basics

Bulk specific gravity of compacted mix (G_{mb}) ■ FM 1-T 166 Core, SGC specimen Maximum specific gravity (G_{mm}) ■ FM 1-T 209 Loose (uncompacted) mixture \blacktriangleright Air voids (V_a) Voids in the mineral aggregate (VMA)

HMA Basics

Air Voids

Calculated using G_{mm} & G_{mb}


$$V_{a} = 100 * \left\{ \frac{G_{mm} - G_{mb}}{G_{mm}} \right\}$$

► VMA

Void space in mix containing air or binder
 VMA = V_a + V_{be}
 Calculated using G_{mb}, P_s, & G_{sb}

VMA = 100 -
$$\frac{G_{mb} * P}{G_{sb}}$$

ASPHALT MIXTURE VOLUMETRICS

EQUATIONS USED IN HMA VOLUMETRIC ANALYSIS

Bulk Specific Gravity of Aggregate

$$G_{sb} = \frac{P_1 + P_2 + \dots + P_N}{\frac{P_1}{G_1} + \frac{P_2}{G_2} + \dots + \frac{P_N}{G_N}}$$

= bulk specifi

= bulk specific gravity for the total aggregate

 P_1, P_2, P_N = individual percentages by mass of aggregate

 G_1, G_2, G_N = individual bulk specific gravities of aggregate

Effective Specific Gravity of Aggregate

$$G_{se} = -\frac{P_{mm} - P_b}{P_{mm}} - \frac{P_b}{G_{tm}}$$

where

where G_{se} = effective specific gravity of the aggregate

G_{mm} = maximum specific gravity

 P_{mm} = percent by mass of total loose mixture = 100

P_b = asphalt content

 G_{b} = specific gravity of asphalt

Maximum Specific Gravity of Mixtures with Different Asphalt Contents

$$G_{sb} = \frac{P_{mm}}{\frac{P_s}{G_{se}} + \frac{F_{mm}}{G_{se}}}$$

where G_{mm} = maximum specific gravity

P_{mm} = percent by mass of total loose mixture = 100

- P_s = aggregate content, percent by total mass of mixture
- P_b = asphalt content, percent by total mass of mixture
- = effective specific gravity of the aggregate
- G_{b} = specific gravity of asphalt

Asphalt Absorption

$$P_{ba} = 100 \times \frac{G_{se} - G_{sb}}{G_{sb}G_{se}} \times G$$

where P_{ba} = absorbed asphalt, percent by mass of aggregate

- G_{se} = effective specific gravity of aggregate
- G_{sb} = bulk specific gravity of aggregate
- G_{b} = specific gravity of asphalt

Effective Asphalt Content of a Paving Mixture

$$P_{be} = P_b - \frac{P_{ba}}{100} \times P_s$$

where P_{be} = effective asphalt content, percent by total mass of mixture P_{be} = asphalt content, percent by total mass of mixture

 P_{ha} = absorbed asphalt, percent by mass of aggregate

= aggregate content, percent by total mass of mixture

Percent VMA in Compacted Paving Mixture

$$MA = 100 - \frac{G_{mb} \times P_s}{G_{sb}}$$

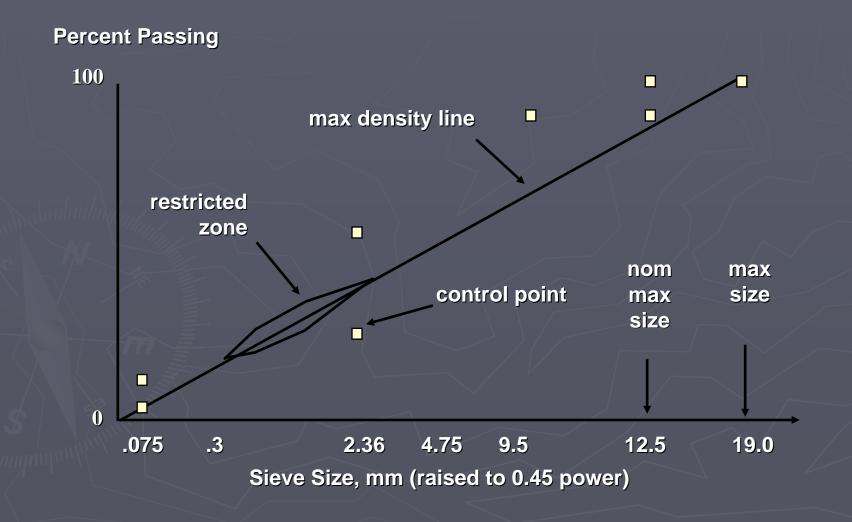
where VMA= voids in mineral aggregate (percent of bulk volume)

G_{sb} = bulk specific gravity of total aggregate

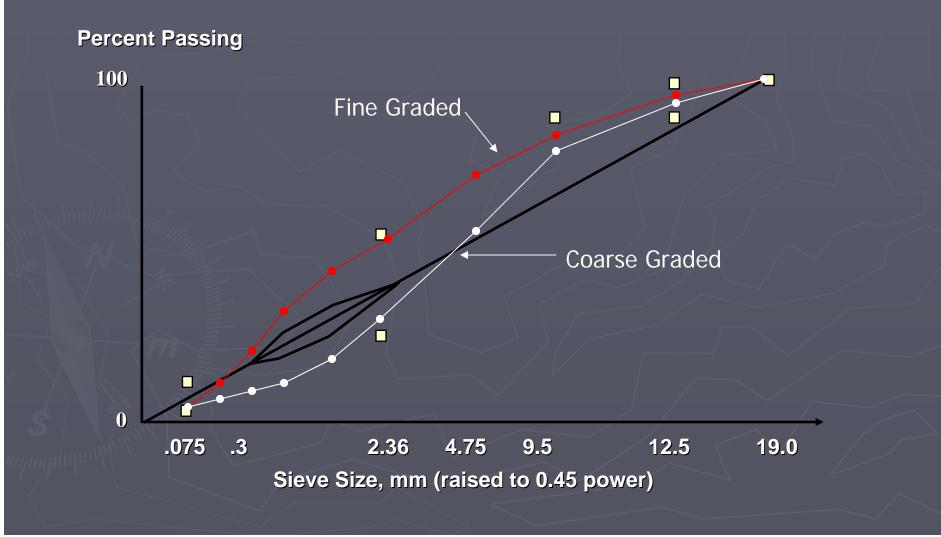
 G_{mb} = bulk specific gravity of compacted mixture

 P_s = aggregate content, percent by total mass of mixture

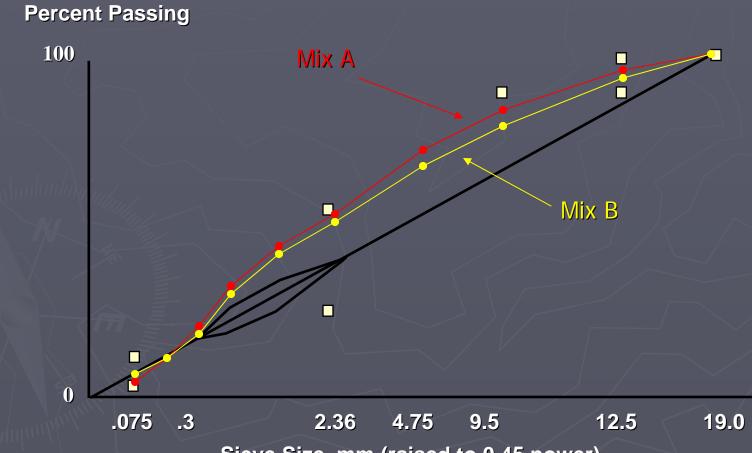
Percent Air Voids in Compacted Mixture


$$a = 100 \text{ x} \frac{\text{G}_{\text{mm}} - \text{G}_{\text{mb}}}{\text{G}_{\text{mm}}}$$

where V_a = air voids in compacted mixture, percent of total volume G_{mm} = maximum specific gravity G_{mh} = bulk specific gravity of compacted mixture


Percent VFA in Compacted Mixture

$$FA = 100 \times \frac{VMA - V_a}{VMA}$$


0.45 Power Curve

0.45 Power Curve

0.45 Power Curve

Sieve Size, mm (raised to 0.45 power)

Summary

Typical asphalt pavement structures
 Different asphalt mix types
 Asphalt binders
 Basic volumetrics

Questions?

Specification Review

Specification Overview

FLORIDA DEPARTMENT OF TRANSPORTATIO

Standard Specifica for Road and Brid Construction

1991

Tellalation

FLORIDA DEPARTME OF TRANSPO

Road

FLORIDA DEPARTMENT OF TRANSPORTATION

FLORIDA

DEPARTMEN

Standard Specifications for Road and Bridge Construction

2004

FLORIDA DEPARTMENT OF TRANSPORTATION

Standard Specifications for Road and Bridge Construction

2000

Topics

 <u>Brief</u> overview of the CQC system for asphalt
 Basic testing requirements
 Failure criteria
 Defective material

Contractor Quality Control for Asphalt

Production Lot sizes 2000 or 4000 tons Four sublots 500 or 1000 tons Plant Lot and Roadway Lot the same Quality Control (QC) tests randomly 1 set/sublot FDOT determines when to sample Split samples obtained for Verification & Resolution G_{mm}, SGC (G_{mb}), P_b, gradation (P₋₈, P₋₂₀₀) Five cores (G_{mb}) per sublot for density Must meet requirements of Table 334-4 Master Production Range Pass/Fail criteria

Table 334-4Master Production Range

Characteristic	Tolerance (1)			
Asphalt Binder Content (percent)	Target ± 0.55			
Passing No. 8 Sieve (percent)	Target ± 5.50			
Passing No. 200 Sieve (percent)	Target ± 1.50			
Air Voids (percent) Coarse Graded	2.00 – 6.00			
Air Voids (percent) Fine Graded	2.30 – 6.00			
Density, percent G _{mm} (2)				
Coarse Graded (minimum)	93.00			
Fine Graded (minimum)	90.00			
(1) Tolorancos for sample size of $n = 1$ from the verified mix design				

(1) Tolerances for sample size of n = 1 from the verified mix design
(2) Based on an average of 5 randomly located cores

Contractor Quality Control for Asphalt

Verification (VT) 1 set/Lot
 Only determines if QC data is acceptable for pay
 Randomly select one of four sublots

 Split sample (plant)
 Same cores (roadway)

 G_{mm}, SGC (G_{mb}), P_b, gradation (P₋₈, P₋₂₀₀)
 Use Between-laboratory precision values

 Table 334-5

- If everything compares favorably → accept material and pay based on QC results
- If an unfavorable comparison → Resolution

Table 334-5Between-Laboratory Precision Values

Property	Maximum Difference	
G _{mm}	0.016	
G _{mb}	0.022	
P _b	0.44 Percent	
P ₋₂₀₀	FM 1-T 030 (Figure 2)	
P8	FM 1-T 030 (Figure 2)	

Contractor Quality Control for Asphalt

Pay Factors determined per Lot:

- V_a, Density, P_b, P₋₂₀₀, P₋₈
- 1 2 tests: Small Quantity Pay Table
- 3 4 tests: Percent Within Limits (PWL)
- Composite Pay Factor for each Lot determined based on the following weighting:
 - 35% Density
 - 25% V_a
 - 25% P_b
 - 10% P₋₂₀₀
 - 5% P₋₈
- System slightly different for FC-5
 - Lot size, Pay factors

Contractor Quality Control for Asphalt

Independent Verification (IV) 1 set/Lot District Bituminous staff Plant – P_b, gradation (P₋₈, P₋₂₀₀), Air Voids ► Roadway – Five cores (G_{mb}) for density Use same Table 334-4 If any tests results do not meet the requirements of Table 334-4, cease production Address failing test results in accordance with 334-5.9.5

HOT

Asphalt Content (P_h) ■ FM 5-563 Loose (uncompacted) mixture \triangleright Gradation (P₋₈ and P₋₂₀₀) FM 1-T 030 Recovered Aggregate Volumetric Testing – prior to testing samples condition the test sized sample for 1 hour at the target roadway temperature

Tests

Maximum specific gravity (G_{mm}) ■ FM 1-T 209 Loose (uncompacted) mixture ► Gyratory Compaction – N_{des} Plant Air Voids at N_{des} AASHTO T 312-04 Bulk specific gravity of compacted mix (G) ■ FM 1-T 166 Core, SGC specimen

334-5.9 Minimum Acceptable Quality Levels:

Individual Lot Pay Factors 0.80 to 0.89
 First time correct, 2 consecutive - cease
 Composite Pay Factor 0.75 to 0.79
 Handle per 334-5.9.5
 Composite Pay Factor Less than 0.75
 Remove and Replace

334-5.9.5 Defective Material:

Includes IV and QC failures
 Remove and Replace....or
 Engineering Analysis Report

 Paid by contractor
 Remain in place at composite pay factor, or
 Remove and Replace

 The Engineer may determine that an engineering analysis is not necessary or may perform an engineering analysis to determine the disposition of the material

334-5.9.5 Defective Material: Assume responsibility for removing and replacing all defective material placed on the project, at no cost to the Department.

As an exception to the above and upon approval of the Engineer, obtain an engineering analysis by an independent laboratory (as approved by the Engineer) to determine the disposition of the material. The engineering analysis must be signed and sealed by a Professional Engineer licensed in the State of <u>Florida</u>.

The Engineer may determine that an engineering analysis is not necessary or may perform an engineering analysis to determine the disposition of the material.

Any material that remains in place will be accepted with a composite pay factor as determined by 334-8, or as determined by the Engineer.

If the defective material is due to a gradation, asphalt binder content or density failure, upon approval of the Engineer the Contractor may perform delineation tests on roadway cores in lieu of an engineering analysis to determine the limits of the defective material that requires removal and replacement. Prior to any delineation testing, all sampling locations shall be approved by the Engineer. All delineation sampling and testing shall be monitored and verified by the Engineer. The minimum limit of removal of defective material is fifty-feet either side of the failed sample. For materials that are defective due to air voids, an engineering analysis is required.

QUESTIONS ?

₹

FDOT Pavement Performance

PAVEMENT CONDITION SURVEY UNIT

PAVEMENT MATERIALS SECTION

PAVEMENT CONDITION SURVEY

- ANNUAL SURVEY OF THE STATE HIGHWAY SYSTEM TO EVALUATE THE CONDITION OF THE WEARING SURFACE
- ANNUAL RIDE SURVEY OF HIGHWAY PERFORMANCE MONITORING SYSTEM (HPMS)

2004 – 2005 PAVEMENT CONDITION SURVEY STATE MAINTAINED SYSTEM

	RATED	LANE
	MILES	MILES
FLEXIBLE	18,159	40,381
RIGID	363	976
TOTAL	18,522	41,357

PCS DATA COLLECTION

- DETERMINE PRESENT CONDITION
- COMPARE PRESENT WITH PAST CONDITION
- PREDICT DETERIORATION RATES

PCS DATA COLLECTION

- PREDICT FUNDING NEEDS
- JUSTIFY STATEWIDE ANNUAL BUDGET REQUEST FOR REHABILITATION
- BASIS FOR DISTRICTS' PROJECT REHABILITATION FUNDING

FLEXIBLE PAVEMENT SURVEY

- RIDE
 - AUTOMATED
- RUTTING
 - AUTOMATED
 - MANUAL
- CRACKING (PLUS PATCHING AND RAVELING)
 WINDSHIELD SURVEY

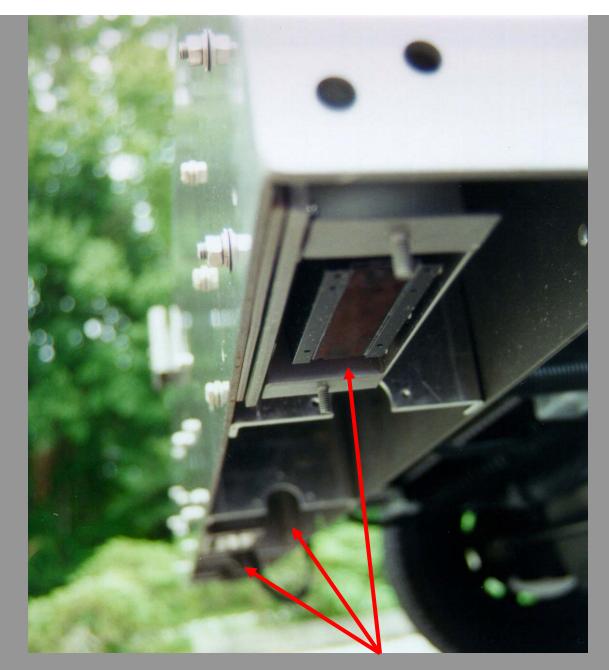
RIDE & RUT DATA

• HIGH SPEED PROFILER Class 1 by ASTM E-950

RIDE QUALITY INDEX

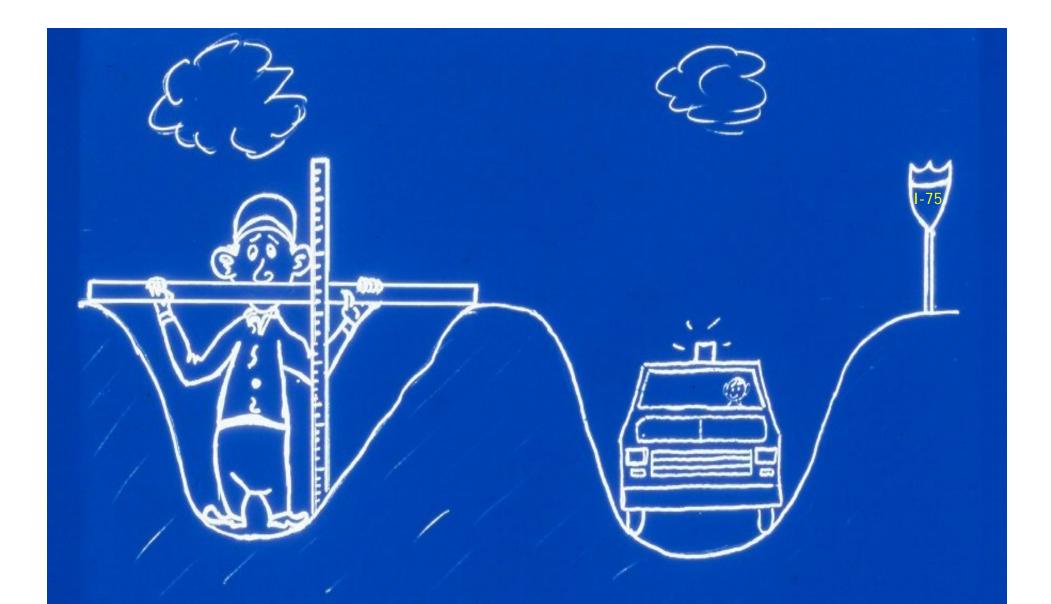
• RN - ASTM E-1489

Used For Pavement Management System and For Ride Acceptance Testing On New Projects


• IRI - ASTM E-1926


Used For HPMS Monitoring

LASER PROFILER


LASER SENSORS

OPERATOR CONSOLE

We Measure Ruts With Precision

Using a Road Profiler

PROFILER RUTTING DEDUCT POINTS

Rut Depth (inches) 0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 1/8 $1 \frac{1}{4} +$

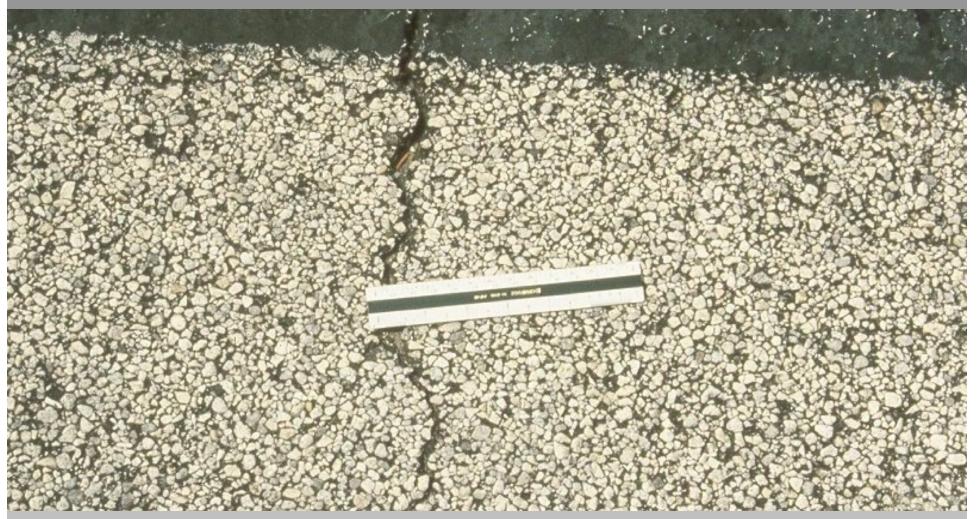
Range (inches) 0.00 - 0.06 0.07 - 0.19 0.20 - 0.31 0.32 - 0.44 0.45 - 0.56 0.57 - 0.69 0.70 - 0.81 0.82 - 0.94 0.95 - 1.06 1.07 - 1.19 1.20 +

MANUAL RUT DEPTH

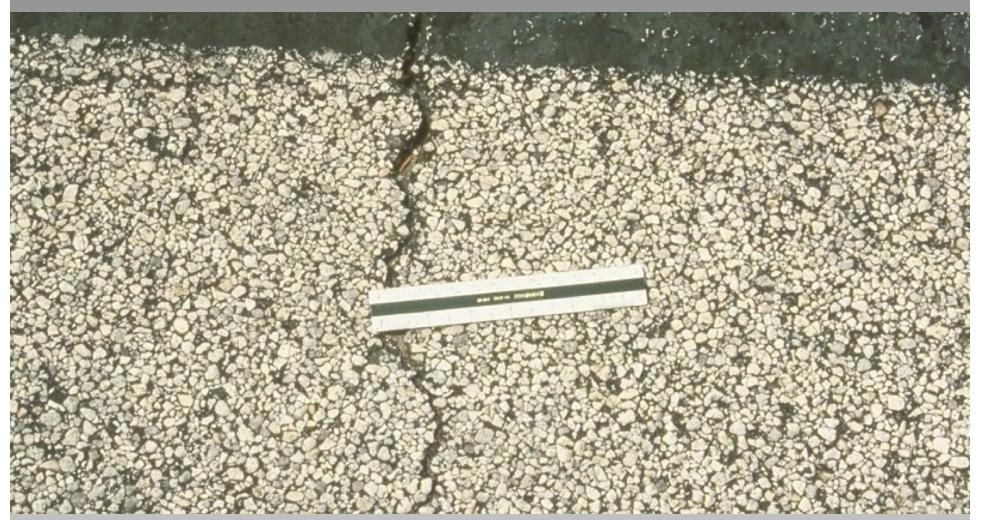
MANUAL RUTTING DEDUCT POINTS

Rut Depth	Deduct	
(inches)	Points	
0	0	
1/8	1	
1/4	2	
3/8	3	
1/2	4	
5/8	5	
3/4	6	
7/8	7	
1	8	
1 1/8	9	
1 1/4 +	10	

CLASS 1B CRACKING


HAIRLINE CRACKS \leq 1/8 INCH (3.18 mm).

CLASS 1B CRACKING


MAY HAVE SLIGHT SPALLING AND SLIGHT TO MODERATE BRANCHING.

CLASS || CRACKING

CRACKS >1/8 INCH (3.18 mm) TO ≤1/4 INCH (6.35 mm) WHICH MAY HAVE SPALLING OR BRANCHING

CLASS II CRACKING

CRACKS LESS THAN 1/4 INCH (6.35 mm) WIDE WHICH HAVE FORMED CELLS LESS THAN 2 FEET (0.61 m) ON THE LONGEST SIDE (ALLIGATOR CRACKING).

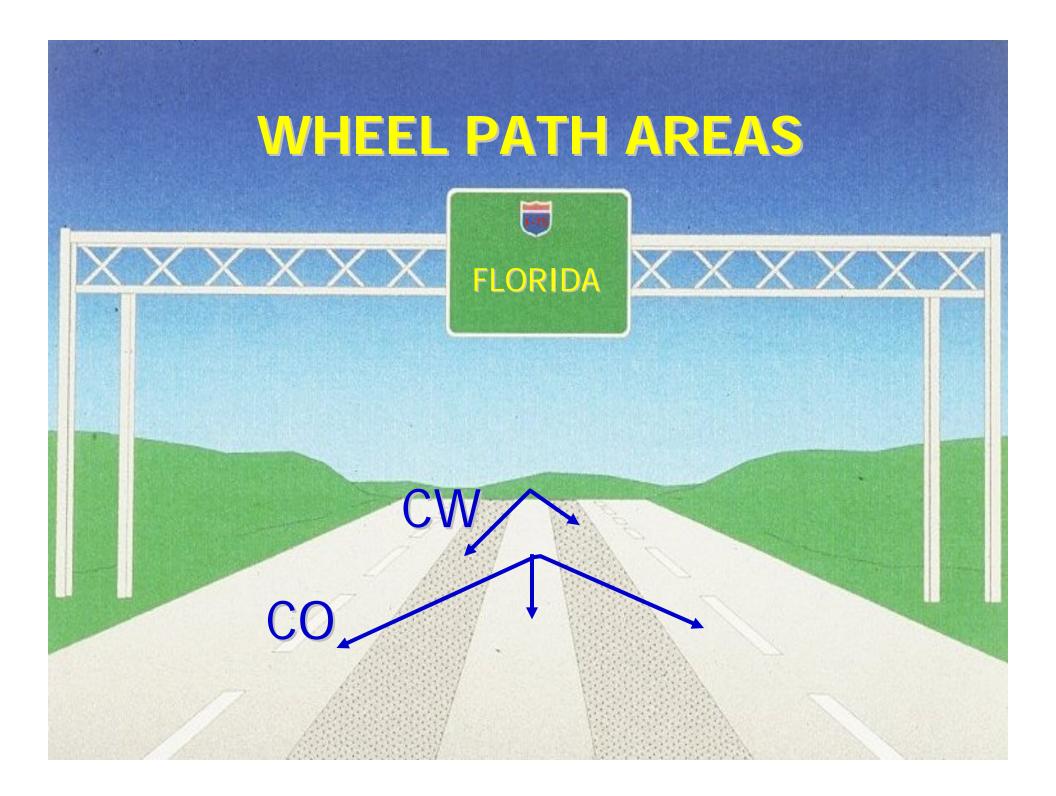
CLASS III CRACKING

CRACKS >1/4 INCH (6.35 mm) REACHING DOWN TO THE BASE OR UNDERLYING MATERIAL


CLASS III CRACKING

PROGRESSIVE CLASS II CRACKING RESULTING IN SEVERE SPALLING WITH CHUNKS OF PAVEMENT BREAKING OUT, AND SEVERE RAVELING (LOSS OF SURFACE ND


SEVERE RAVELING (LOSS OF SURFACE AGGREGATE).



THE DISLODGING OF AGGREGATE PARTICLES AND LOSS OF ASPHALT BINDER.

PORTION OF PAVEMENT SURFACE > 0.1 SQ. FT THAT HAS BEEN REMOVED AND REPLACED.

CONFINED TO THE WHEEL PATHS (CW)

% of PVT	PREDOMINATE CRACKING CLASS					
Area affected	IB CRACKING		II CRACKING		III CRACKING	
by Cracking	CODE	DEDUCT	CODE	DEDUCT	CODE	DEDUCT
00-05	Α	0.0	E	0.5		1.0
06-25	В	1.0	F	2.0	J	2.5
26-50	С	2.0	G	3.0	K	4.5
51 +	D	3.5	Η	5.0	L	7.0

OUTSIDE THE WHEEL PATHS (CO)

% of PVT	PREDOMINATE CRACKING CLASS					
Area affected	IB CRACKING		II CRACKING		III CRACKING	
by Cracking	CODE	DEDUCT	CODE	DEDUCT	CODE	DEDUCT
00-05	А	0.0	E	0.0	I	0.0
06-25	В	0.5	F	1.0	J	1.0
26-50	С	1.0	G	1.5	K	2.0
51 +	D	1.5	Н	2.0	L	3.0

NOTES FOR CW & CO WHEEL PATHS

- PERCENTAGES FOR CW AND CO ARE ESTIMATED SEPARATELY. EACH REPRESENTING 100% OF ITS RESPECTIVE AREA.
- CRACKING PERCENTAGES ARE COMBINED BUT ONLY THE PREDOMINATE TYPE OF CRACKING PRESENT WILL BE CODED
- CRACKING DEFECT RATING = 10 (CW + CO).

MONTH:		YEAR:	_
UNIT:	1		
DISTRICT:	5	COUNTY:	92
SECTION:	090	SUB SECTION:	000
STATE ROAD:	0530	US ROAD:	0192
SYSTEM:	1	ROADWAY:	3
TYPE:	1		
BMP: NET LENGTH:	12.759	EMP:	13.874
CW:		CO:	-
LASER RUT:		SPEED:	-
LT RAVEL:		MD RAVEL:	-
SV RAVEL:		RN:	
	3	MANUAL RUT:	
LANES:	3	CRKTYPE:	

Flexible Pavement Condition Survey Data Entry Screen

RIGID PAVEMENT SURVEY

RIDE RATING

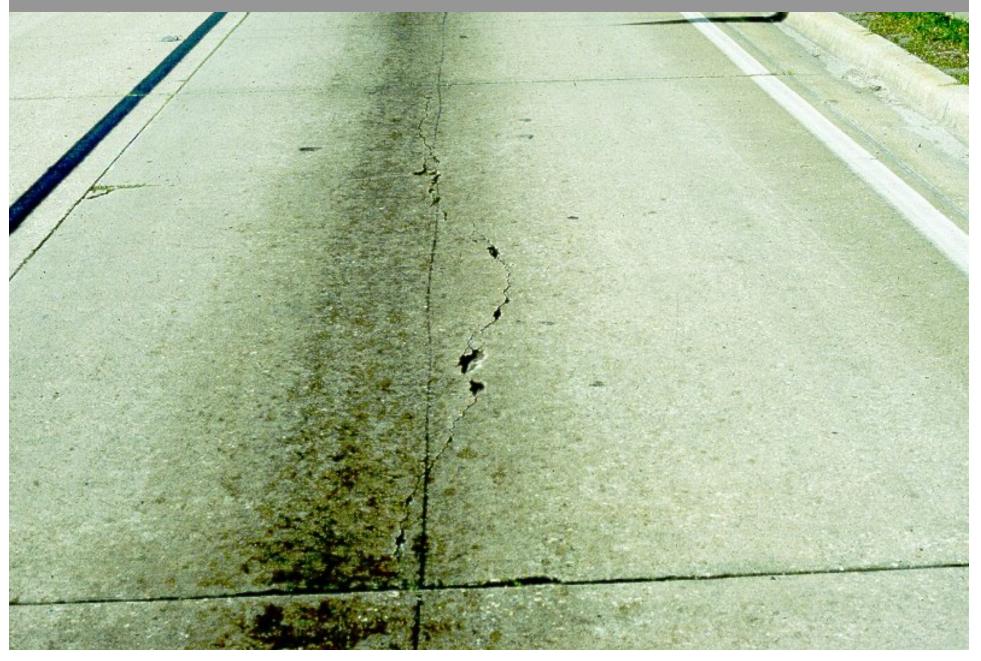
• DEFECT RATING

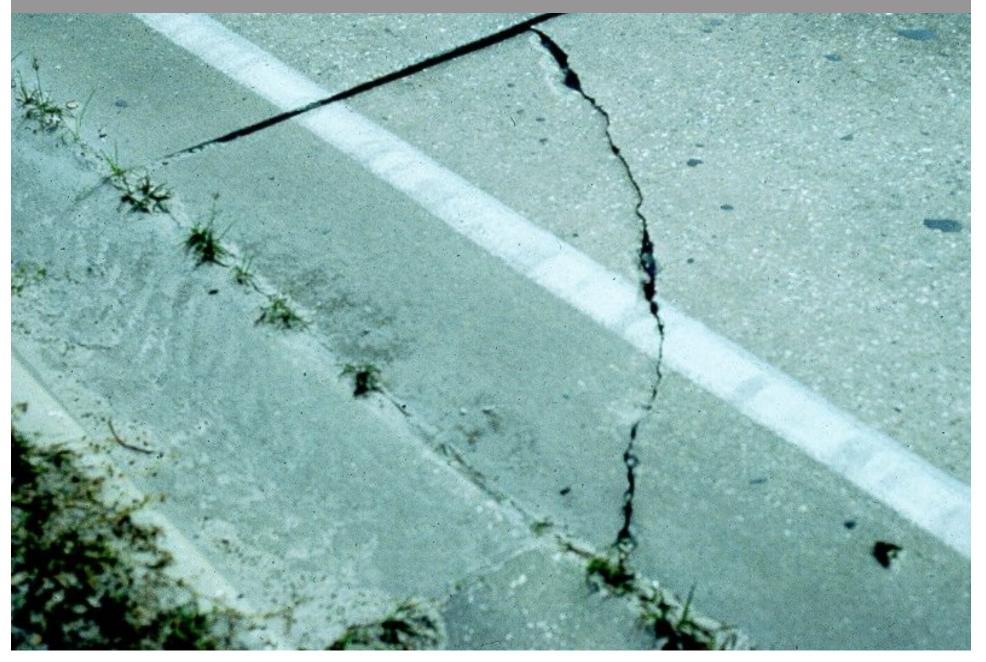
DISTRESS FACTORS IN DEFECT RATING

- Surface Deterioration
 Spalling
- 3) Patching
- 4) Transverse Cracking
- 5) Longitudinal Cracking

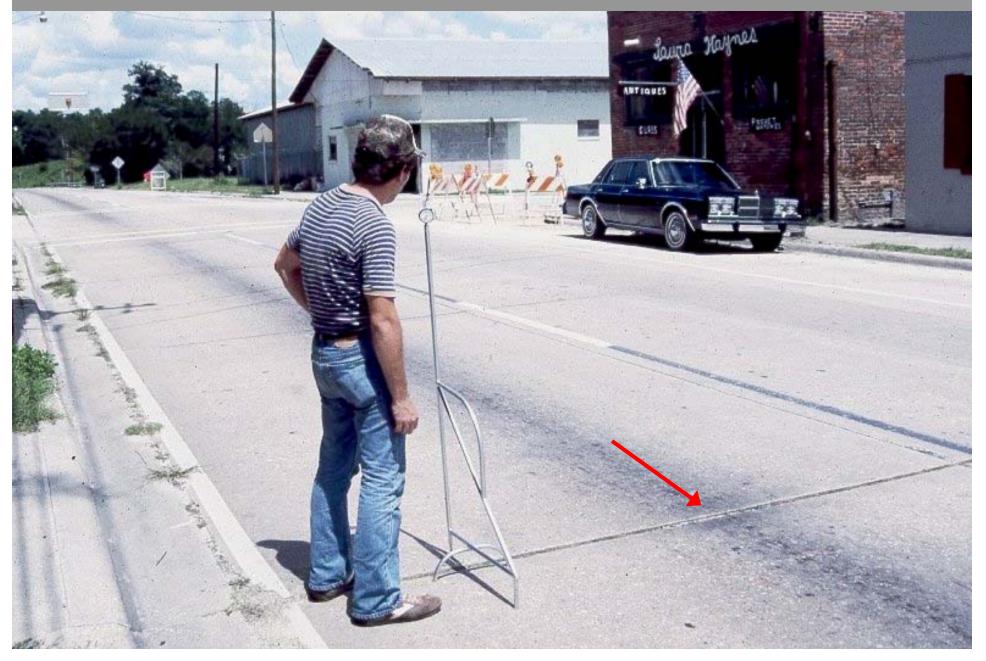
- 6) Corner Cracking
- 7) Shattered Slab
- 8) Faulting
- 9) Pumping
- 10) Joint Condition

SURFACE DETERIORATION

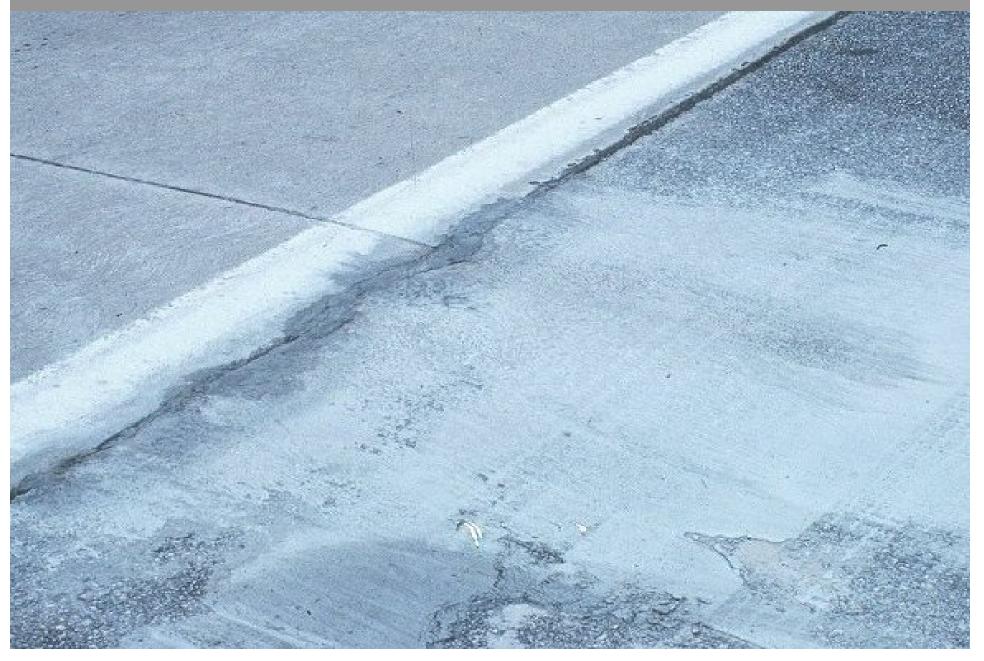



TRANSVERSE CRACKING

LONGITUDINAL CRACKING


CORNER CRACKING

SHATTERED SLAB

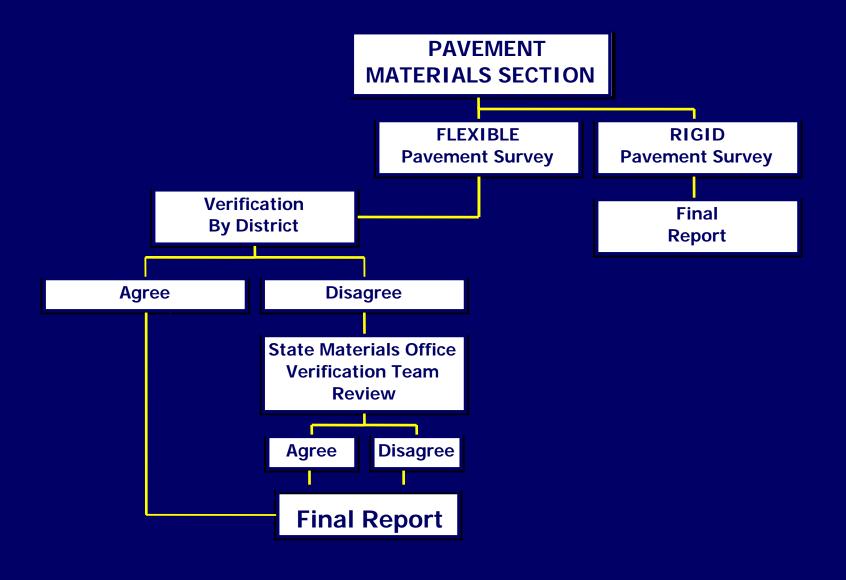




JOINT CONDITION

DEDUCT VALUES FOR RIGID PAVEMENT

TYPE OF DISTRESS	SEVERITY	NUMERIC VALUE
Surface Deterioration	Moderate	0.003 per square foot
	Severe	0.006 per square foot
Spalling	Moderate	0.01 per linear foot
	Severe	0.02 per linear foot
Patching	Fair	0.018 per square yard
	Poor	0.045 per square yard
Transverse Cracking	Light	0.30 per crack
	Moderate	0.38 per crack
	Severe	0.50 per crack
Longitudinal Cracking	Light	0.15 per crack
	Moderate	0.19 per crack
	Severe	0.25 per crack
Corner Cracking	Light	0.25 per crack
	Moderate	0.31 per crack
	Severe	0.40 per crack
Shottored Slob	Moderate	1.15 per Shattered Slab
Shattered Slab	Severe	1.50 per Shattered Slab


DEDUCT VALUES FOR RIGID PAVEMENT

TYPE OF DISTRESS	SEVERITY	NUMERIC VALUE		
Faulting	1.0 per 1/32" Faulting			
Pumping	Light	1%-25%	2	
	Light	26%-50%	3	
	Light	51%-75%	4	
	Light	76%-100%	5	
	Moderate	1%-25%	4	
	Moderate	26%-50%	6	
	Moderate	51%-75%	8	
	Moderate	76%-100%	10	
	Severe	1%-25%	6	
	Severe	26%-50%	9	
	Severe	51%-75%	12	
	Severe	76%-100%	15	
Joint Condition	Partially Sealed		5	
	Not Sealed		10	

DATA QUALITY CHECKS

- 150 + EDITS ON CODING ENTRIES
- YEAR TO YEAR COMPARE
- RCI EDIT CHECK

PCS VERIFICATION PROCESS

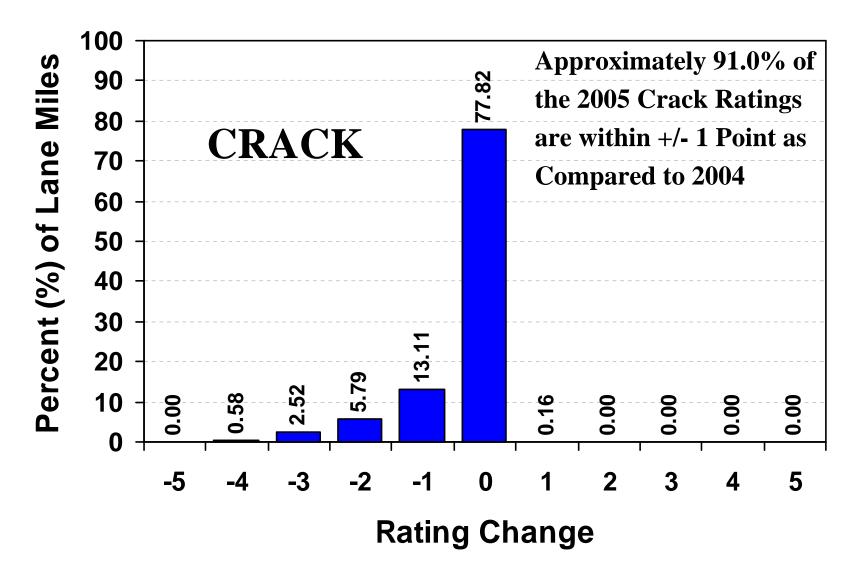
CALIBRATION

- PROFILERS RECEIVE ELABORATE
 CALIBRATION
- STRAIGHTEDGE CALIBRATION
- PLATE CALIBRATION
- SECTION CALIBRATION WITH DIPSTICK

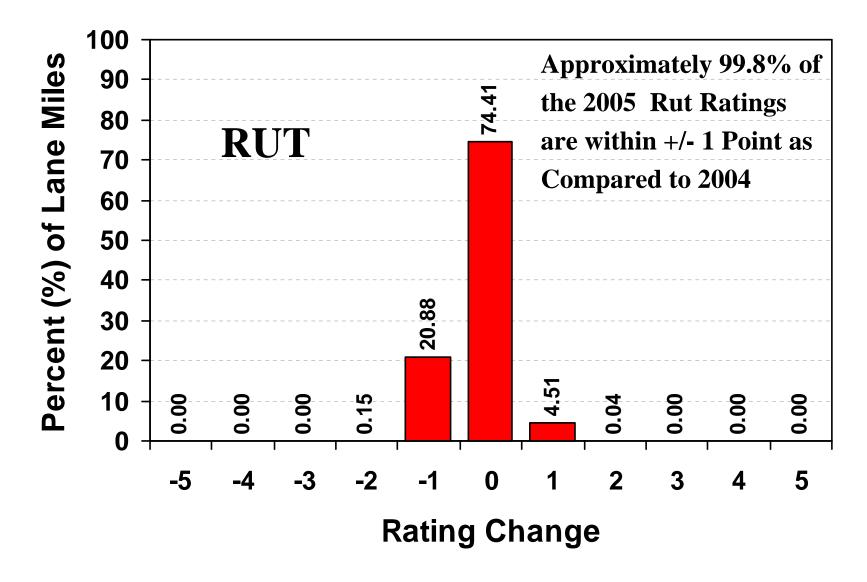
STRAIGHTEDGE CALIBRATION

2.6 e

PLATE CALIBRATION

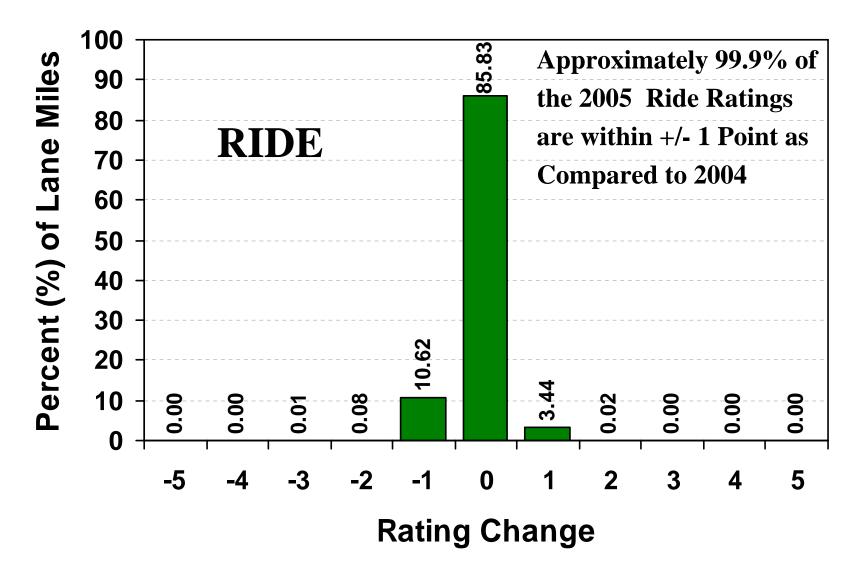


TRAINING

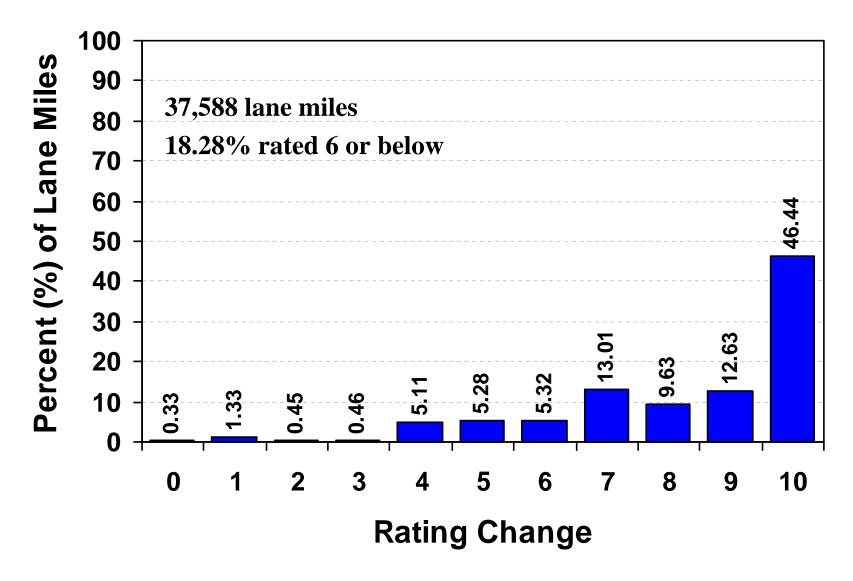

 RATERS ARE COMPARED ANNUALLY ON PAVEMENTS THAT EXHIBIT A RANGE OF CONDITIONS

Crack Changes

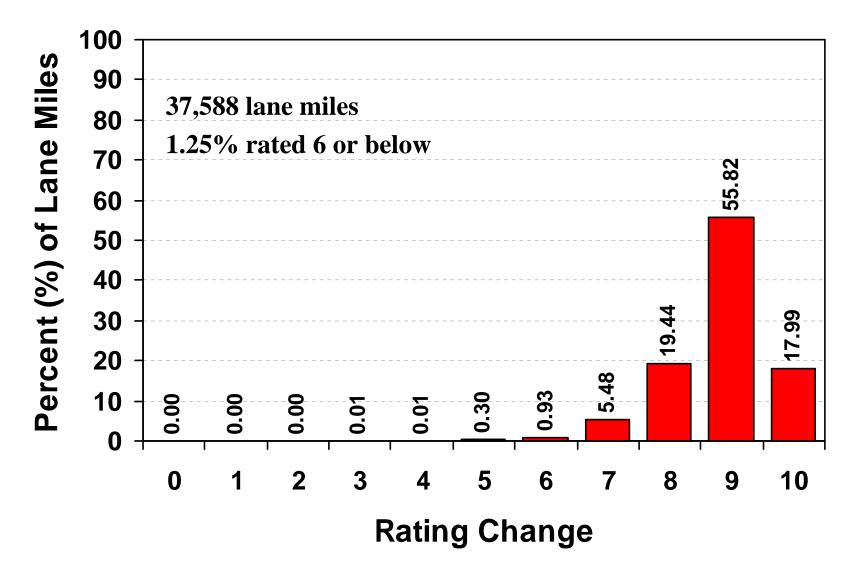
2005 as Compared to 2004



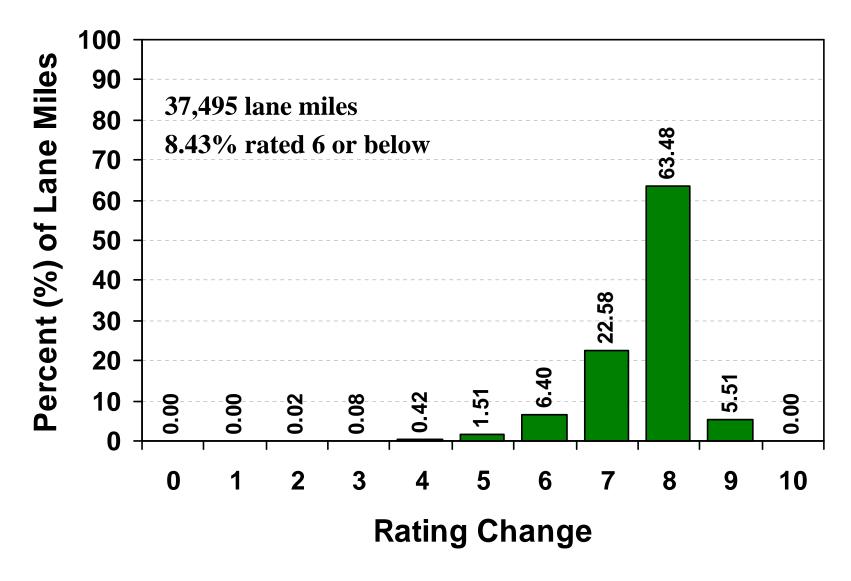
Rut Changes 2005 as Compared to 2004


Ride Changes

2005 as Compared to 2004


2005 Crack Distribution

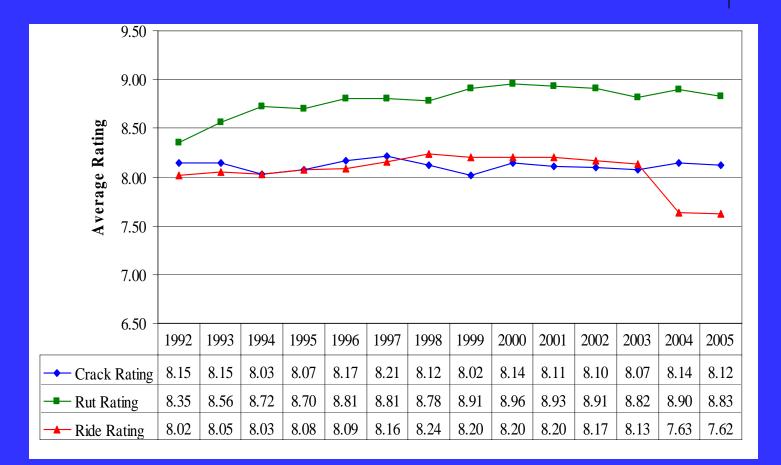
Statewide (All Systems)

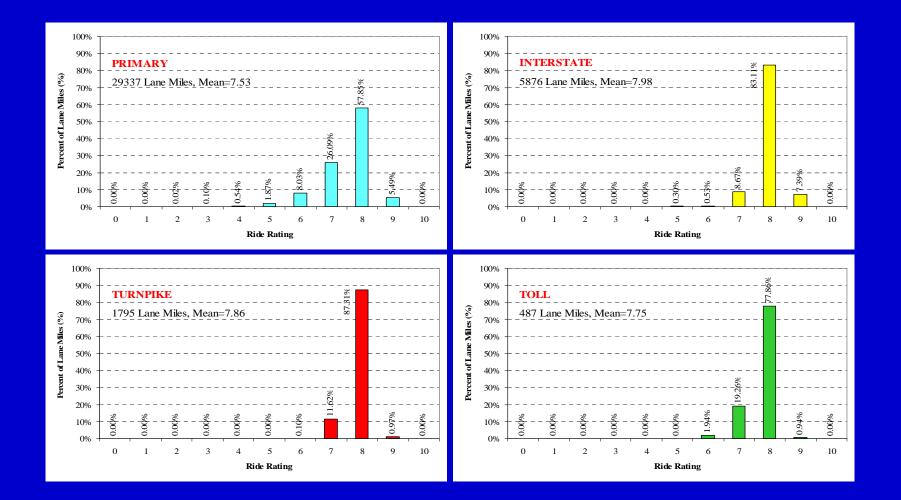

2005 Rut Distribution

Statewide (All Systems)

2005 Ride Distribution

Statewide (All Systems)


Deficient Lane Miles


Year	2003	2004	2005
Ride	2.6%	6.3%	5.6%
	1063 Miles	2556 Miles	2311 Miles
Crack	15.8%	16.5%	17.0%
	6410 Miles	6718 Miles	7006 Miles
Rut	1.5%	1.2%	1.2%
	596 Miles	498 Miles	474 Miles

Historical Distress Ratings

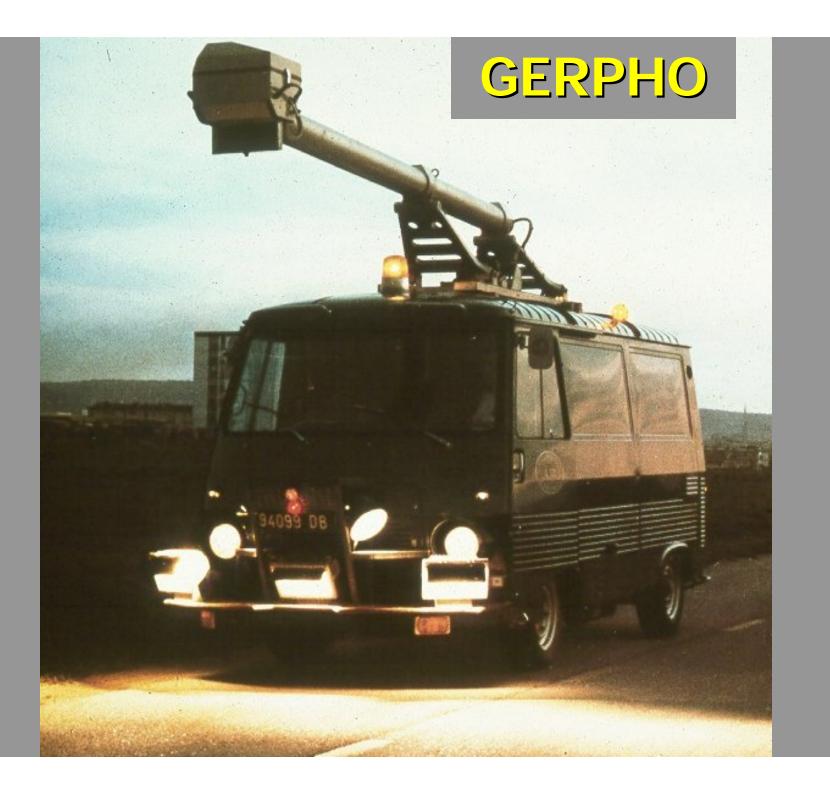
All Systems (All Districts)

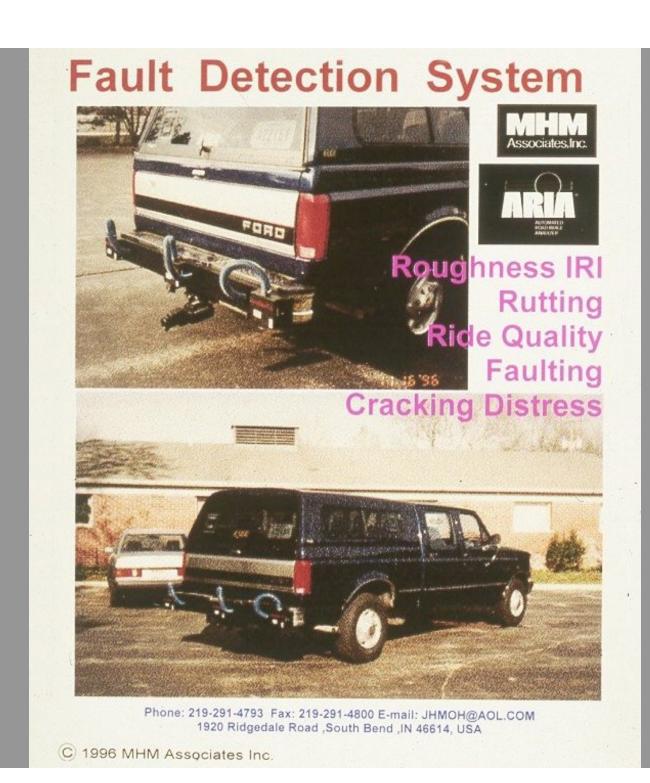
2005 Ride Distribution by System Statewide

Smooth Pavement Means Happy Drivers

AUTOMATED DISTRESS EQUIPMENT

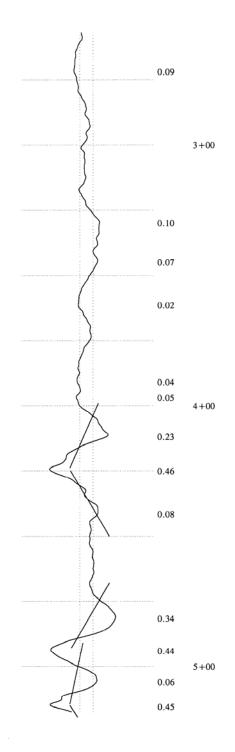
PATHWAY


PATHWAY



IMS

PASCO USA


OTHER PAVEMENT SYSTEMS EVALUATION SERVICES

CALIFORNIA PROFILOGRAPH

LIGHTWEIGHT PROFILER

PROSCAN - PROFILOGRAM SCANNING SYSTEM VERSION V4.56 - DEVORE SYSTEMS, INC.

File R16MPH1 Track 1 Segment 1 Page 2 of 3

Station 0+00.0 to 5+28.0 Segment length 21.12in (528ft, .100mi)

Up is to the right

Scallop (Filter 15)		
minimum height	0.020	in
minimum width (300:1)	0.08	in
resolution	0.01	in
Blanking band	0.20	in
Defect template height	0.30	in


Profile Roughness Index 29.8 in/mi Defect at 4+11.5 Bump 4+39.0 Bump 4+82.0 Bump 5+05.5 Bump 5+25.0 Bump

LIGHTWEIGHT PROFILER TRACE

FRICTION UNIT

RUNWAY FRICTION TESTER

FALLING WEIGHT DEFLECTOMETER

GROUND PENETRATING RADAR UNIT

HEAVY VEHICLE SIMULATOR

THE PCS TEAM

THE PCS TEAM

THE PCS TEAM

QUESTIONS?

Cause and Effects

EAR Workshop "Cause and Effect"


by: Howie Moseley

June 2005

Definitions


<u>Air Voids</u> – Air void content of a lab compacted specimen in the SGC.
 Also called plant or lab air voids.
 V_a = (G_{mm}-G_{mb})/G_{mm} X 100

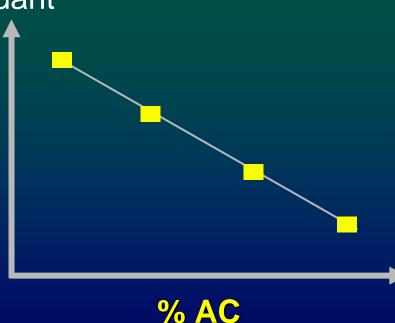
Definitions

<u>Density</u> – In-place air void content at the roadway expressed as %G_{mm}.
 Also called in-place air voids.
 Density = (G_{mb} / G_{mm}) x 100

Definitions

Percent passing the #200 sieve – Also called dust, mineral filler, -200 material, or P₋₂₀₀ material.

Air Voids and AC Content


Air void content decreases as AC content increases.

No gradation change.

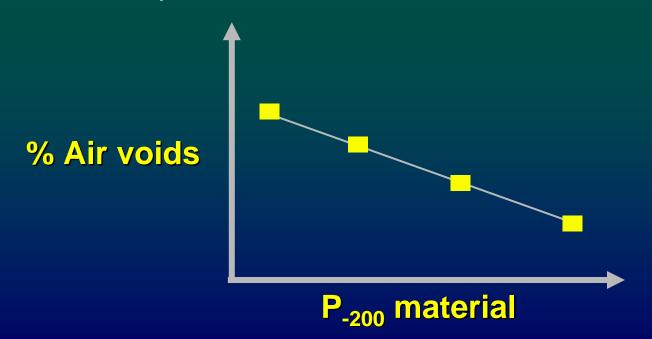
Ratio is approximately 0.2 – 0.35% decrease in air void content for every 0.1% increase in AC content.

Mix dependant

% Air voids

Air Voids and AC Content

- Increased AC content causes the G_{mm} to decrease.
- Increased AC content also causes the G_{mb} to increase.


V_a = (G_{mm}-G_{mb})/G_{mm} X 100
At 4.6% AC: V_a = (2.576-2.470) / 2.576 x 100 = 4.1%
At 5.1% AC: V_a = (2.565-2.504) / 2.565 x 100 = 2.4%
(Real lab data)

Air Voids and P₋₂₀₀ Material

 Air void content decreases as P₋₂₀₀ material increases.

Ratio is approximately 0.4 – 1.0% decrease in air voids for every 1.0% increase in P₋₂₀₀ material.

Mix dependant

Air Voids and P₋₂₀₀ Material

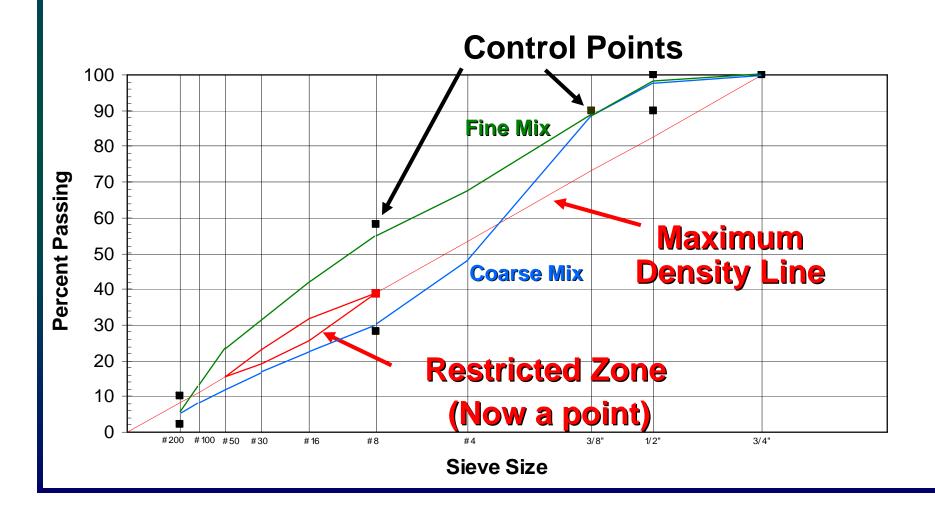
- Increased P₋₂₀₀ material causes the G_{mm} to decrease.
- Increased P₋₂₀₀ material also causes the G_{mb} to increase.
- $-Va = (G_{mm} G_{mb})/G_{mm} \times 100$

At 4.7% P₋₂₀₀ material: V_a = (2.575-2.481) / 2.575 x 100 = 3.6%
 At 5.7% P₋₂₀₀ material: V_a = (2.560-2.488) / 2.560 x 100 = 2.8%
 (Real lab data)

Density, AC, and P₋₂₀₀ Material

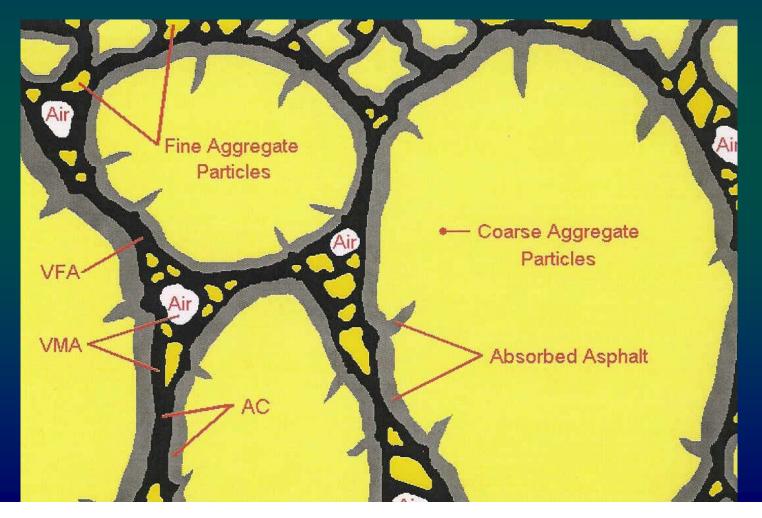
- Increased AC content and/or P₋₂₀₀ material in the mix will make it easier to achieve density in the field.
- Doesn't necessarily mean density will be high in the field, just that the mixture is easier to compact.

The mixture will also be more susceptible to compaction/rutting by traffic after construction.

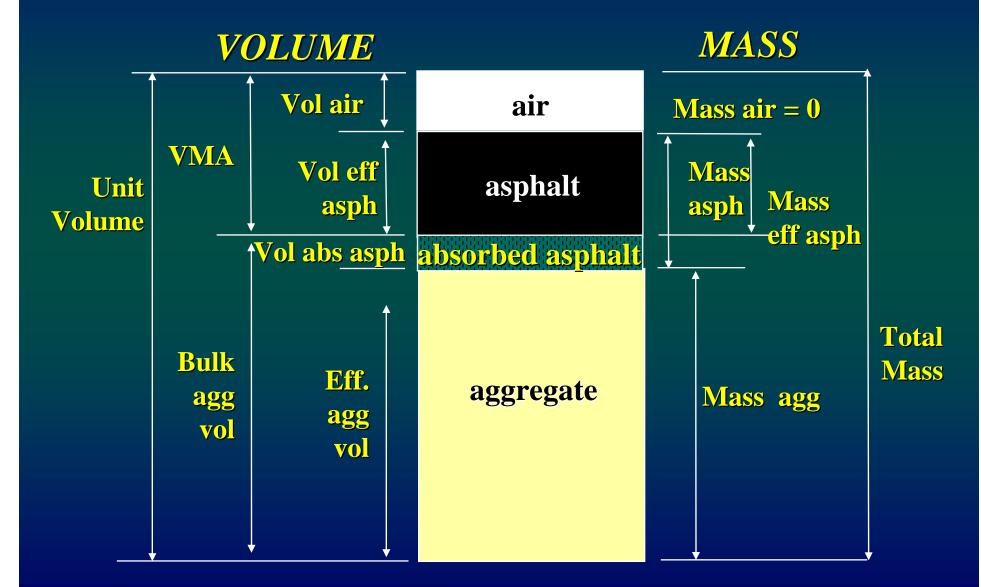

Coarse and Fine Gradations

Coarse gradations require a higher density level during construction.

- ◆ Coarse mix target density is 94.5% G_{mm}.
- ♦ Fine mix target density is 93.0% G_{mm}.
- Coarse mixes can have permeability issues if density is not achieved.
 - Problems can occur below 93.0% G_{mm}.
- Coarse mixtures are more difficult to compact during construction.


Tender zone

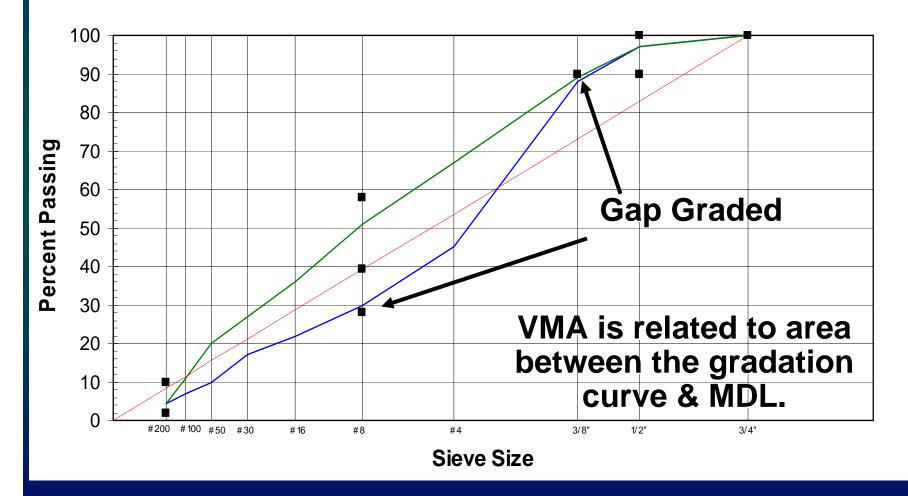
Coarse and Fine Gradations



Gradation and VMA

VMA = Voids in the mineral aggregate
VMA = $100 - \{[G_{mb} \times (100 - P_b)]/G_{sb}\}$

Asphalt Mixture Volumetrics


What affects VMA?

Gradation


- ◆ P₋₂₀₀ material
 - Lowers VMA
- Maximum density line
 - Gradations closer to the maximum density line have lower VMA
 - Gap-graded mixes

What affects VMA?

12.5 mm Superpave Gradation Chart

Which Gradation will have the highest VMA? Which Gradation will have the lowest VMA?

What else affects VMA?

Aggregate type

 Aggregate angularity or texture
 Aggregate Shape

 Aggregate toughness

 Aggregate breakdown at the plant
 More P₋₂₀₀ material
 Aggregate is less angular

Questions or Comments?

General Relationships between Test Data and Performance

EAR Workshop

Relationships Between Test Results and Performance

June 2005

Test Results

Air voids (laboratory compaction).
Roadway density.
Asphalt binder content.
Gradation.
Permeability.
Shear testing.

Air Voids (lab compaction)

- Represents ultimate compaction in roadway.
 - Majority of densification occurs within 4 years (summers).
- Past research: less than 2.5 to 3.0% lab air voids is detrimental to rutting.
- Air voids too high:
 - Faster oxidation.
 - More difficult to achieve field compaction.
 - Potential permeability problem.
 - Often the result of low AC content.
 - Faster to crack.

Roadway Density

Too low:

- Consolidation rutting.
- Permeability for coarse mixes.
- Stripping potential increases.
- More oxidation/cracking.
- **Too high:**

Aggregate breakdown...uncoated particles.

Asphalt Binder Content

Too low:

- Cracking and raveling (FC-5 and dense).
- Permeability issue if result is high air voids for dense mixtures.
- **Too high:**
 - Binder draindown for FC-5.....flushing, fat spots, bleeding.
 - Low air voids and rutting for dense mixtures.
 - Bleeding.

Gradation

Dense mixtures:

- Effect on VMA could reduce fatigue cracking resistance of mixtures....less film thickness.
- Effect on air voids could affect rutting potential.

FC-5:

- Coarser gradation may lower surface area and cause excessive binder film thickness.....i.e., draindown.
- Finer gradation may result in less porosity and reduced film thickness.....more serious.

Permeability

- Dense mixtures:
 - High permeability....increased stripping potential.

FC-5:

 Low permeability....reduced effectiveness at water drainage and spray reduction.

Shear Testing

Dense mixtures:

Low shear strength....strong potential for slippage.

Comments / Questions?

Analysis Tools

EAR Workshop

Analysis Tools

June 2005

EAR vs. Delineation Testing

- EAR for air void failures.
 - ♦ By EAR firm.
- Delineation testing for gradation, AC content and density failures.
 - Done by Contractor upon approval by the Engineer.
- EAR and delineation used to determine limits of defective material.

Analyzing Data

What data is available?

- Production data: QC, VT, IV.
- Plant reports.
- Roadway reports.
- Typical section traffic data.
- CPF sheets.
- Forensic data from roadway cores and field tests.

Summary Sheet

Project Summary										
Project No.: 321456-1-52-01 SR No. :					9/13/2004	9/13/2004	9/13/2004			
	First American As	sphalt		Gyra			ested by:	QC	QC	IV
Mix Design No.:		(mm):	12.5	@ N i:	7	Lo	ot / Sublot	8,1PC	8,1	8,1
Traffic Level:		Gmm:		@ N _d :	75		Load #:	4	21	35
	14.0% MIN		65-75%	@ N _m :	115		Fons/day:			
Design Temp:	Production:		Coi	mpaction:		Cumula	tive tons:			
Property	JMF	AVG	STD	MIN	MAX	RNG	CNT			
25.0mm (1")		100.00	0.00	100.00	100.00	0.00	17.00	100.00	100.00	100.00
19.0mm (3/4")		100.00	0.00	100.00	100.00	0.00	17.00	100.00	100.00	100.00
12.5mm (1/2")	95	93.82	1.65	90.14	96.26	6.12	17.00	96.08	93.13	94.36
9.5mm (3/8")	89	87.42	1.83	84.34	91.26	6.92	17.00	89.45	86.73	87.26
4.75mm (#4)	66	65.56	2.01	62.65	68.99	6.34	17.00	64.83	63.81	63.10
2.36mm (#8)	45	45.11	1.81	42.64	48.38	5.74	17.00	42.81	43.37	43.00
1.18mm (#16)	32	31.86	1.85	28.68	34.44	5.76	17.00	29.69	30.11	29.37
600um (#30)	24	24.20	1.55	21.13	26.33	5.20	17.00	22.47	22.73	22.35
300um (#50)	18	18.22	1.38	15.36	20.30	4.94	17.00	16.66	16.98	16.75
150um (#100)	7	6.94	0.84	5.38	8.28	2.90	17.00	5.38	5.95	5.83
75um (#200)	2.9	2.42	0.24	2.15	3.10	0.95	17.00	2.15	2.24	3.10
Ext. AC %:	6.1	6.04	0.18	5.81	6.55	0.74	17.00	6.10	6.00	6.55
Rice MSG (Gmm):	2.399	2.399	0.01	2.385	2.412	0.03	17.00	2.396	2.397	2.385
Avg. Bulk (Gmb):	2.399	2.399	0.01	2.300	2.412	0.03	17.00	2.390	2.397	2.333
Agg. Sp. Gr. (Gsb):	2.557	2.557	0.01	2.557	2.555	0.03	17.00	2.557	2.557	2.555
Hgt.@N int.:	2.007	123.9	1.21	122.5	126.3	3.80	17.00	126.3	124.4	126.0
Hgt.@N des.:		115.9	0.57	115.2	117.3	2.10	17.00	117.3	116.0	120.0
%Gmm @ Ni	≤ 89.0	90.2	0.55	88.9	91.0	2.09	17.00	89.73	89.67	90.83
% Gmm @ Nd	96.0	96.4	0.45	95.9	97.8	1.95	17.00	96.62	96.16	97.82
% Air Voids @ Nd	4	3.65	0.45	2.18	4.13	1.95	17.00	3.38	3.84 🤇	2.18
% VMA @ Nd		15.07	0.23	14.74	15.74	1.00	17.00	14.99	15.27	14.74
% VFA @ Nd		75.83	2.82	72.28	85.21	12.93	17.00	77.45	74.85	85.21
Dust/Asphalt		0.48	0.04	0.41	0.56	0.15	17.00	0.41	0.44	0.56
Gmb @ Nd		2.311	0.01	2.30	2.333	0.03	17.00	2.315	2.305	2.333
Density lbs/cf		144.2	0.46	143.52	145.6	2.060	17.00	144.46	143.83	145.58
Gse		2.6	0.01	2.62	2.6	0.02	17.00	2.62	2.62	2.63
Pba		1.02	0.09	0.97	1.27	0.30	17.00	0.97	0.97	1.12
Pbe		5.08	0.15	4.76	5.50	0.74	17.00	5.19	5.09	5.50
Roadway Core 1 Gmb									2.234	
Roadway Core 1 Gmb Roadway Core 2 Gmb									2.234	
Roadway Core 2 Gmb Roadway Core 3 Gmb									2.223	
Roadway Core 3 Gmb Roadway Core 4 Gmb									2.220	
Roadway Core 5 Gmb									2.212	
Average Core Gmb		2.21	0.01	2.20	2.23	0.03	11.00		2.225	
Sublot Gmm		2.40	0.01	2.39	2.41	0.03	17.00	2.391	2.397	2.385
% of Sublot Gmm		92.15	0.42	91.63	92.83	1.20	11.00		92.81	

Production Data

Look for trends and changes in data.

AC increases, air voids decrease.

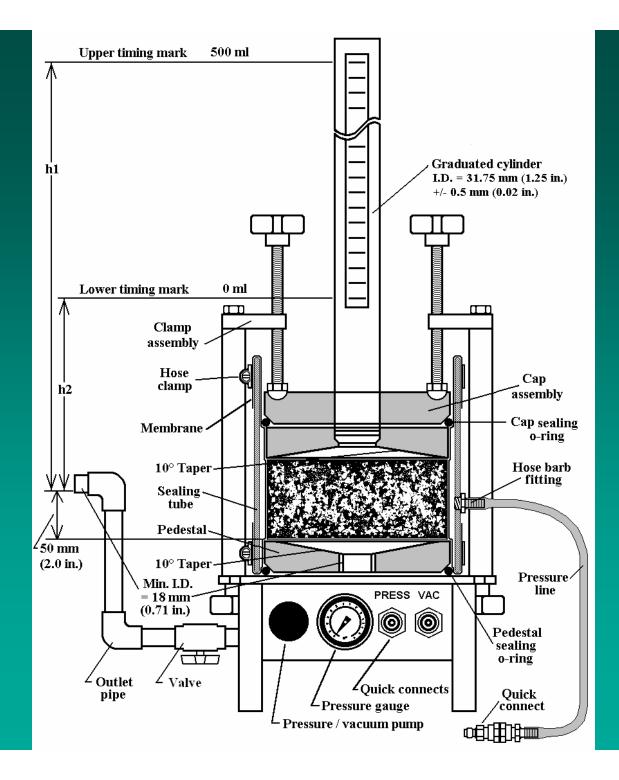
Gmm decreases, air voids decrease.

If available, see if IV data follows same trends.

Forensic Data

Types of data:

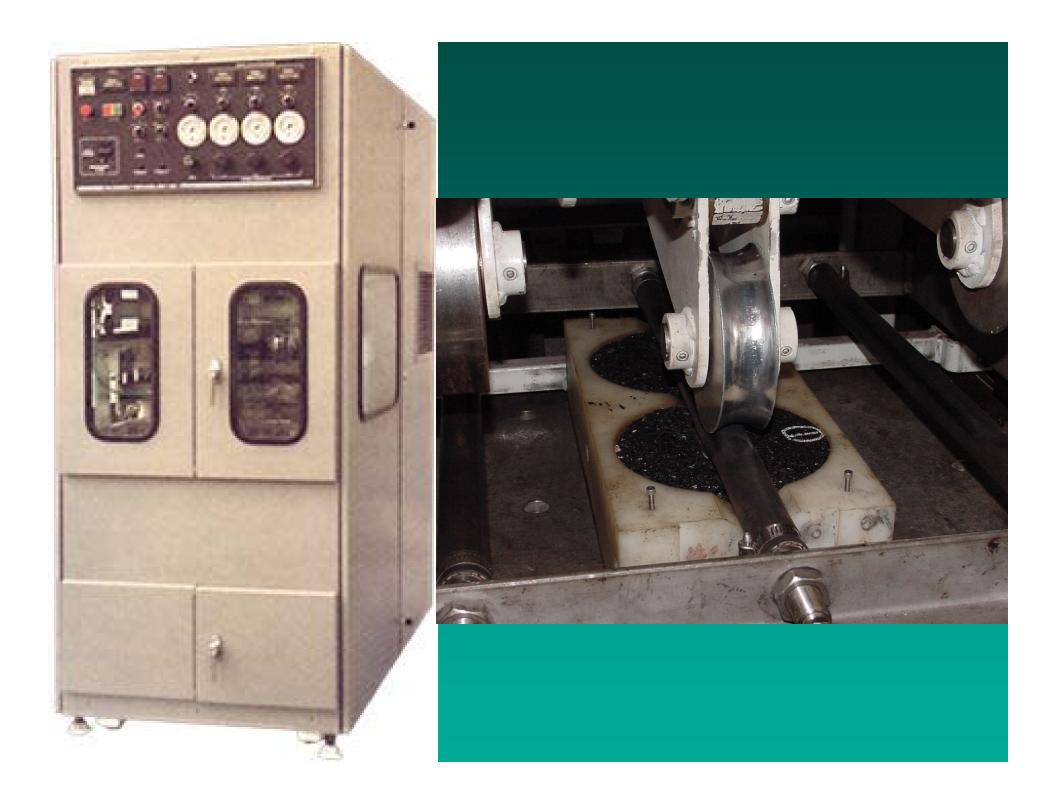
- Properties of field cores.
- Laboratory tests from extra mix (if available).
- Laboratory performance tests on field cores.
- Performance tests at the roadway.
- Core reconstitution.


Properties of Field Cores Density (Gmb). Sample in the WP and BWP. Maximum specific gravity (Gmm). Asphalt content and gradation. Frequency: 4 cores per 500 ft. 2 WP, **2 BWP.** More cores if performance tests are needed. Gmb on all cores (wash cores well). Gmm on two cores. AC and gradation on two cores. Cut cores in good section ?

Lab Tests of Extra Mix
Mix not always available.
Used to check other results....
Gmb
Gmm
Air voids
AC and gradation

Laboratory Performance Tests on Field Cores

Dense graded mixtures only.


- Permeability.
- Shear test bond strength between two asphalt layers.

Future

Laboratory rutting test.
 Asphalt Pavement Analyzer.
 Hamburg rut device.
 Good for lab or field specimens.

Performance Tests at Roadway Field permeability – OGFC only. Longitudinal and transverse density profiles with density gauge (like PQI). Use in conjunction with lesser frequency core data.

Core Reconstitution

- Make gyratory pills from roadway cores.
- Measure Gmb. Calculate air voids.
- Used as a tool to evaluate mix with out-of-tolerance air voids.
- Evaluated method in research lab.

Comments / Questions?

Overview of the EAR Process

- Disposition of Defective Material Form - Flow Chart

EARs & Disposition of Defective Materials Form

Why an EAR?

Section A – Contractor

Project Information
Material Information
Location
Description
Quantity
Prime's proposed EAR scope

Section A: Sample Information and Request for EAR - Contractor

Financial Project No.:	Contract No.:	Federal Job No.:
Material ID.:	Sample No.:	LIMS Sample ID.:
Pay Item No.:	Quantity:	Location:
Description of Defective Material:		
•		

EAR Scope attached

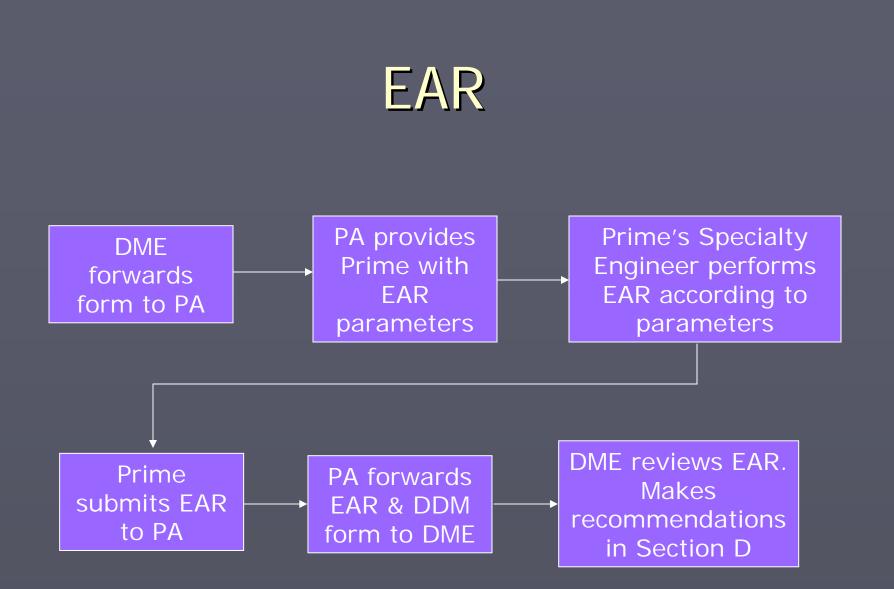
Section B - Project Administrator/Resident Engineer Fill out Section B Determines if material should be removed and replaced

OR

Allow use of EAR

Section B - Project Administrator/Resident Engineer

Section B: Proposal - Project Administrator/Resident Engineer				
Remove and Replace Material				
Send to DME for Concurrence with Proposal, EAR Scope attached	ed			
Concurs Rejects (See Comments Below) Leav	e in Place, EAR not required			
Signature: Date:				
Comments:				


Section C - DME

Remove and Replace OR ► No EAR needed OR Review Prime's proposed EAR scope & Add to scope, revise scope or If no scope is included, develop scope & parameters for EAR

Section C - DME

Section C: EAR Information – District Materials Engineer - Choose one and send form to DC	Έ
---	---

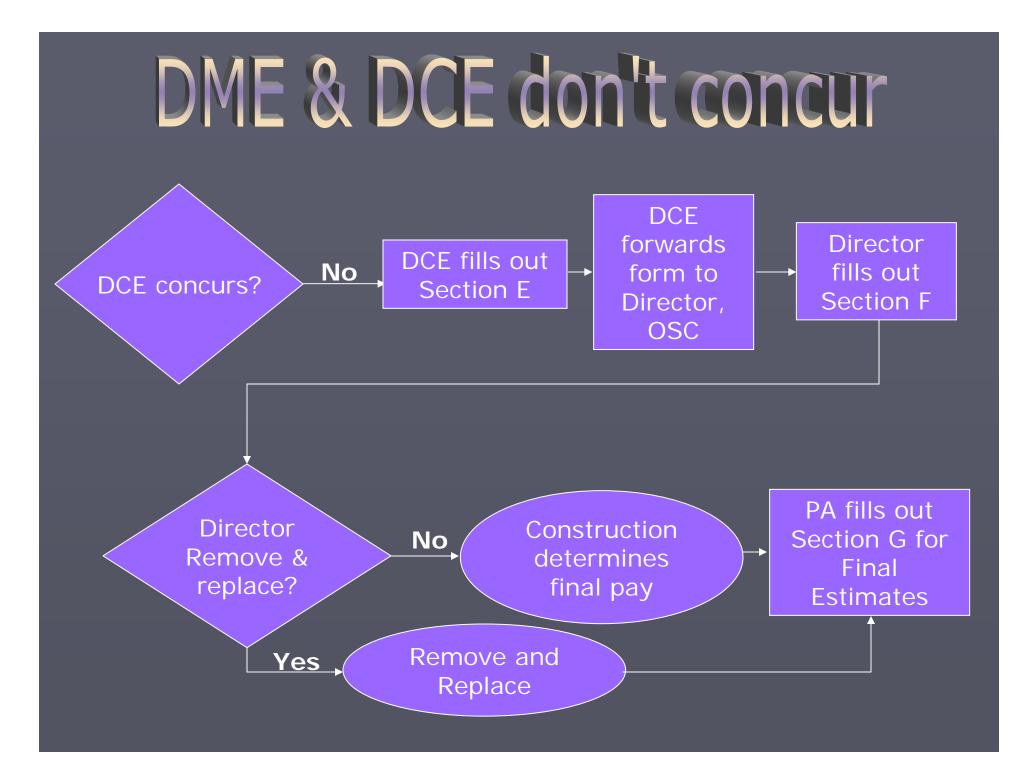
Remove and Replace Material			
Leave in Place – EAR not required, Send to DC	E for Concurrence		
Concur with EAR Scope (attached) – Submit EAR			
Signature:	Date:		
Comments:			

Section D - DME

DME records EAR review results Concurs/Does not concur with EAR recommendations Recommends material disposition Remove and Replace Leave in place Partial Removal ▶ Where, how much

Section D - DME

Section D: Material Disposition Recommendation – District Materials Engineer				
EAR performed, DME recommendation: Choose one and send form to District Construction Engineer				
All material to be left in place. All material to be removed. Partial removal of material/Other				
Quantity of material to be removed: Location of material to be removed:				
DME Concurs with EAR Recommendations Yes No				
Signature:	Date:			


Section E - DCE

 DCE records concurrence, non-concurrence with DME and why or why not
 If the DME and DCE concur follow DME's recommendations

Section	E - DCE
Section E: Concurrence - District Constructi Concur with DME Recommendation – Send to F Do Not Concur with DME recommendation – Se DCE recommendation attached Comments:	Project Administrator
Signature:	Date:

Non-concurrence by DME/DCE

If the DME and DCE don't concur, the EAR and form go to the Office of Construction

Section F - Director

Director makes final decision
 Attaches decision to form
 Returns form & all backup to PA

Section F - Director


Section F: Decision - Director, Office of Cor		
 Director, Office of Construction Decision attached 		
Signature:	Date:	

Section G - PA

Record of final payment on material

Section G: Record of Final Payment Determination: - Project Administrator

Material left in place at % pay. Comments:

Questions?



STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION DISPOSITION OF DEFECTIVE MATERIAL

Section A: Sample Information and Request for EAR - Contractor

Financial Project No.:	Contract No.:	Federal Job No.:
-		
Material ID.:	Sample No.:	LIMS Sample ID.:
Pay Item No.: Description of Defective Material:	Quantity:	Location:
EAR Scope attached		
Section B: Proposal - Project	Administrator/Re	esident Engineer
Remove and Replace Material		
Send to DME for Concurrence		
	e Comments Belov	
Signature: Comments:		Date:
Comments:		
Section C: EAR Information – Remove and Replace Material Leave in Place – EAR not requ Concur with EAR Scope (attac	uired, Send to DCE	
Signature:	,	Date:
Comments:		
EAR performed, DME recomme	ndation: Choose o All material to b removed: removed:	tion – District Materials Engineer ne and send form to District Construction Engineer be removed. Partial removal of material/Other
Signature:		Date:
Section E: Concurrence - Dis Concur with DME Recommend Do Not Concur with DME reco DCE recommen Comments:	dation – Send to Pro mmendation – Sen	
Signature:	[Date:
Section F: Decision - Director	, Office of Cons	truction
Director, Office of Construction	Decision attached	. Send to Project Administrator
Signature:		Date:
Section G: Record of Final Pa	yment Determin	ation: - Project Administrator
Material left in place at % pay Comments:		

cc: District Materials Office District Construction Office State Construction Office

- EAR Guidelines - Model EAR

Department Guidelines for Preparing an Engineering Analysis Report

Following is a list of the basic requirements that should be included in an Engineering Analysis Report (EAR)

1. Identification information: This should be included at the beginning of the EAR identifying the project information, the name and address of the company submitting the EAR and the name and address of the company the EAR is being prepared for.

2. Problem statement: Describe in detail the problem which required the EAR. Provide a summary of the test results (QC, IV, as applicable) and specification requirements that triggered the EAR. Provide the location within the project of the questionable material. If possible, use Global Positioning System (GPS) coordinates to identify the location of the material.

3. Testing laboratory: Identify the laboratory that will be used and discuss the laboratory's qualifications and personnel that will perform the required tests. Provide technician identification numbers (TIN).

4. Engineering: Identify the Engineer responsible for analyzing the data and making final recommendations. Include a brief résumé listing similar past work efforts.

5. Testing plan: Discuss the testing approach that will be used, including the test methods and number of test replicates. Include information on who will provide the samples for the analysis, where they will be located (within the area of the questionable material) and when they will be obtained.

6. Analysis approach: Describe the approach and reasoning that will be used to evaluate the test data and determine the quality of the questionable material.

Approval of the testing plan and analysis approach must be obtained from the Department prior to obtaining any samples and/or testing.

7. Data presentation: Present the data in a tabular and/or graphical format.

8. Statistical analysis: Conduct statistical tests, as applicable, to determine the viability of the data. The statistical analysis should also determine if the samples used in the analysis are representative of the questionable material in-place.

9. Recommendations: Based on the test data obtained and current engineering practice, provide and justify the recommendations for the disposition of the questionable material. Discuss the quantities and locations of the material determined to be questionable.

10. P.E. Seal: The Professional Engineer responsible for the EAR and its recommendations must sign and seal the EAR

11. Attachments: Present any accreditation, certification, or other supporting documents, including pictures, plant and field records, control charts, etc. that are needed for the EAR Include a copy of the Department's correspondence to the Contractor that indicates approval to perform an EAR for this particular problem.

FICTITIOUS ASPHALT ENGINEERING, INC.

November 18, 2004

Mr. George W. Kerry QC Manager First American Asphalt Contractors, Inc. 3171 N.W. 43rd Avenue Gainesville, Florida 32606

Subject: Engineering Analysis Report – SP-12.5 LOT 8, sublot 1 Financial Project Number: 321456-1-52-01 Road No.: SR-121 County: Alachua

Dear Mr. Kerry:

At your request, an engineering analysis was performed on the failing material from LOT 8, sublot 1 of the subject project. The Engineering Analysis Report for this investigation is attached. Should you have any questions or require additional information, please let me know.

Sincerely,

John Q. Fictitious, P.E. Bituminous Engineer

JQF/

Attachment

Engineering Analysis Report

Financial Project Number: 321456-1-52-01 Road No.: SR-121 County: Alachua

Superpave Asphalt Concrete Type SP-12.5, Fine Graded Mix Design Number: SP 04-9999A LOT 8, sublot 1

Prepared for:

Mr. George W. Kerry QC Manager First American Asphalt Contractors, Inc. 3171 N.W. 43rd Avenue Gainesville, Florida 32606

Prepared by:

John Q. Fictitious, P.E. Fictitious Asphalt Engineering, Inc. 5007 NE 39th Avenue Gainesville, FL 32609

November 18, 2004

Problem Statement:

During the production of the SP-12.5 Superpave fine graded asphalt mix on the night of September 13, 2004, the air voids, as measured by the Independent Verification sample for LOT 8, sublot 1, were 2.18%. Article 334-7 of the Florida Department of Transportation (FDOT) Specifications for this project requires that the air voids be maintained within the range of 2.30 to 6.00%; consequently the sample failed to meet the Specification requirements. Since low air voids have been associated with plastic deformation (rutting) of asphalt pavements, an analysis of this failing material is warranted to determine the appropriate disposition.

The Quality Control (QC), Independent Verification (IV) and Verification (VT) data for the SP-12.5 mix in question has been summarized and can be found in Table 1. The failing IV test result is identified by the blue circle in Table 1. Preliminary review of the data indicates that the probable cause of the low air voids was primarily a high asphalt binder content in the mix. The gradation appears to be a contributing problem with a coarser gradation compared to the job mix formula (JMF) on all of the sieves except for the No. 200 sieve. Since the mix in question is a fine graded mix, a coarser gradation than the JMF would tend to cause lower air voids.

The IV sample was pulled from load number 35, at approximately 700 tons. The QC test for LOT 8, sublot 1 was pulled from load number 21, at approximately 420 tons. The QC test results were acceptable. The IV testing and results were not finished and available until after the completion of sublot 1 on September 13. Therefore, it is proposed that the asphalt mixture placed between the QC test result and the end of sublot 1 be evaluated. This represents 580 tons (1000 tons – 420 tons) of asphalt mixture. This questionable mix was placed on the project from Sta 223+05 to Sta 281+05 (5,800 ft.), in Lane L-1. The average spread rate for the material was 150.0 lbs/sy, equating to a compacted thickness of approximately 1.5 inches.

Testing Laboratory:

All testing associated with this Engineering Analysis Report was conducted by Fictitious Asphalt Engineering, Inc., Asphalt Laboratory. The FAE Asphalt Laboratory is an accredited laboratory meeting all of the requirements set forth under AASHTO R18. All personnel involved in testing activities in the FAE Asphalt Laboratory are qualified through the FDOT Construction Training Qualification Program (CTQP), and are actively evaluated through the FDOT Independent Assurance (IA) Program as well as the AASHTO Materials Reference Laboratory (AMRL) proficiency sampling program. Technician Identification Numbers are available upon request.

Engineering:

The following FAE staff were involved in various stages of the analysis:

Suburban Meyer, Senior Engineer – Supervised all field sampling Robert Bowden, Junior Technician – Conducted all laboratory testing

The final recommendation will come from John Q. Fictitious, PE. A brief resume outlining Mr. Fictitious's related work experiences is given in Attachment 1.

Project Summary																								
Project No.: 3214	456-1-52-01		SR No. :	121			Date:	9/13/2004	9/13/2004	9/13/2004	9/15/2004	9/15/2004	9/20/2004	9/20/2004	9/23/2004	9/23/2004	9/27/2004	9/27/2004	9/27/2004	9/27/2004	9/27/2004	9/27/2004	9/29/04	9/29/04
Contractor: First			51110	Gyrat	ions	Tes	ed by:	QC	QC	IV	QC	VT	QC	QC	QC	QC	QC	QC	IV	QC	VT	QC	QC	QC
Mix Design No.: SP04				@ N ;:	7		Sublot	8.1PC	8.1	8.1	8.2	8.2	8.3PC	8.3	8.4	9.1	PC	9.2	9.2	9.3	9.3	9.3	PC - 9/4	9/4
		Gmm:	12.0	@ N4:	75		bad #:	4	21	35	1	0,2	4	25	3	23	4	13	6	29	29	29	1	13
VMA: 14.0	0% MIN	VFA: 6	35-75%	@ N:	115	Tor	s/dav:																310.18	310.18
Design Temp: Production:		Con	ompaction:		Cumulative tons:																	310.18	310.18	
Descet	JME			MAX	RNG	CNT				•				•	•									
Property 25.0mm (1")	JIVIE	100.00	0.00	100.00	100.00		17.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
19.0mm (3/4")		100.00	0.00	100.00	100.00		17.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
12.5mm (1/2")	95	93.82	1.65	90.14	96.26		17.00	96.08	93.13	94.36	91.82	96.26	91.96	93.48	94.68	94.21	95.77	91.42	94.96	94.19	93.40	94.19	94.83	90.14
9.5mm (3/8")	89	87.42	1.83	84.34	91.26		17.00	89.45	86.73	87.26	84.93	91.26	84.89	86.28	88.63	87.98	88.37	84.34	88.32	88.51	86.67	88.51	88.92	85.10
4.75mm (#4)	66	65.56	2.01	62.65	68.99	6.34	17.00	64.83	63.81	63.10	64.29	68.99	63.12	63.04	67.64	66.59	68.55	62.65	67.73	66.83	64.43	66.83	65.29	66.79
2.36mm (#8)	45	45.11	1.81	42.64	48.38	5.74	17.00	42.81	43.37	43.00	42.97	45.78	42.64	43.39	45.69	46.31	48.38	44.69	47.83	46.81	44.16	46.81	46.06	46.19
1.18mm (#16)	32	31.86	1.85	28.68	34.44	5.76	17.00	29.69	30.11	29.37	28.68	30.68	30.68	30.45	33.96	33.62	34.44	31.43	34.33	33.91	32.01	33.91	32.49	31.90
600um (#30)	24	24.20	1.55	21.13	26.33	5.20	17.00	22.47	22.73	22.35	21.13	22.63	24.04	23.66	25.75	25.54	26.33	24.00	26.31	25.87	25.08	25.87	24.15	23.57
300um (#50)	18	18.22	1.38	15.36	20.30	4.94	17.00	16.66	16.98	16.75	15.36	16.59	18.64	18.20	18.10	19.51	20.17	18.35	20.30	19.63	19.26	19.63	17.93	17.62
150um (#100)	7	6.94	0.84	5.38	8.28	2.90	17.00	5.38	5.95	5.83	5.56	6.57	6.90	6.71	7.08	7.44	8.08	7.16	8.28	7.58	7.87	7.58	6.77	7.32
75um (#200)	2.9	2.42	0.24	2.15	3.10	0.95	17.00	2.15	2.24	3.10	2.32	2.76	2.21	2.45	2.31	2.30	2.51	2.28	2.73	2.36	2.45	2.36	2.20	2.35
Ext. AC %:	6.1	6.04	0.18	5.81	6.55	0.74	17.00	6.10	6.00	6.55	6.09	6.32	5.82	5.87	6.11	5.92	6.14	5.84	6.10	6.04	5.81	6.04	5.90	5.96
Rice MSG (Gmm):	2.399	2.399	0.01	2.385	2.412	0.03	17.00	2.396	2.397	2.385	2.398	2.399	2.401	2.400	2.399	2.400	2.401	2.401	2.395	2.397	2.412	2.397	2.398	2.402
	2.303	2.311	0.01	2.300	2.333		17.00	2.315	2.305	2.333	2.307	2.300	2.306	2.311	2.310	2.308	2.317	2.311	2.320	2.313	2.313	2.313	2.303	2.306
	2.557	2.557	0.00	2.557	2.557		17.00	2.557	2.557	2.557	2.557	2.557	2.557	2.557	2.557	2.557	2.557	2.557	2.557	2.557	2.557	2.557	2.557	2.557
Hat.@N int.:		123.9	1.21	122.5	126.3		17.00	126.3	124.4	126.0	125.4	125.7	123.7	123.4	122.9	123.3	122.7	123.4	122.6	122.9	122.5	122.9	123.7	123.8
Hgt.@N des.:		115.9	0.57	115.2	117.3		17.00	117.3	116.0	117.0	116.4	116.6	116.1	115.7	115.5	115.8	115.3	115.8	115.2	115.6	115.3	115.6	115.8	115.9
%Gmm @ Ni	≤ 89.0	90.2	0.55	88.9	91.0	2.09	17.00	89.73	89.67	90.83	89.30	88.93	90.14	90.28	90.49	90.32	90.68	90.28	91.02	90.76	90.26	90.76	89.90	89.88
% Gmm @ Nd	96.0	96.4	0.45	95.9	97.8	1.95	17.00	96.62	96.16	97.82	96.21	95.87	96.04	96.29	96.29	96.17	96.50	96.25	96.87	96.50	95.90	96.50	96.04	96.00
% Air Voids @ Nd	4	3.65	0.45	2.18	4.13	1.95	17.00	3.38	3.84	2.18	D 3.79	4.13	3.96	3.71	3.71	3.83	3.50	3.75	3.13	3.50	4.10	3.50	3.96	4.00
% VMA @ Nd		15.07	0.23	14.74	15.74	1.00	17.00	14.99	15.27	14.74	15.27	15.74	15.07	14.93	15.18	15.08	14.95	14.90	14.80	15.00	14.79	15.00	15.25	15.19
% VFA @ Nd		75.83	2.82	72.28	85.21	12.93	17.00	77.45	74.85	85.21	75.18	73.76	73.72	75.15	75.56	74.60	76.59	74.83	78.85	76.67	72.28	76.67	74.03	73.67
Dust/Asphalt		0.48	0.04	0.41	0.56	0.15	17.00	0.41	0.44	0.56	0.45	0.54	0.45	0.49	0.46	0.46	0.49	0.46	0.53	0.46	0.51	0.46	0.44	0.47
Gmb @ Nd		2.311	0.01	2.30	2.333	0.03	17.00	2.315	2.305	2.333	2.307	2.300	2.306	2.311	2.310	2.308	2.317	2.311	2.320	2.313	2.313	2.313	2.303	2.306
Density Ibs/cf	l	144.2	0.46	143.52	145.6		17.00	144.46	143.83	145.58	143.96	143.52	143.89	144.21	144.14	144.02	144.58	144.21	144.77	144.33	144.33	144.33	143.71	143.89
Gse		2.6	0.01	2.62	2.6		17.00	2.62	2.62	2.63	2.62	2.64	2.62	2.62	2.63	2.62	2.63	2.62	2.62	2.62	2.63	2.62	2.62	2.62
Pba		1.02	0.09	0.97	1.27	0.30	17.00	0.97	0.97	1.12	0.97	1.27	0.97	0.97	1.12	0.97	1.12	0.97	0.97	0.97	1.12	0.97	0.97	0.97
Pbe		5.08	0.15	4.76	5.50	0.74	17.00	5.19	5.09	5.50	5.18	5.13	4.91	4.96	5.06	5.01	5.09	4.93	5.19	5.13	4.76	5.13	4.99	5.05
Roadway Core 1 (Gmb								2.234		2.153	2.143		2.230	2.250	2.237		2.195		2.217	2.216	2.217		2.163
Roadway Core 2 (2.223		2.235	2.236		2.182	2.210	2.214		2.211		2.220	2.220	2.220		2.243
Roadway Core 3 (2.228		2.239	2.239		2.204	2.225	2.225		2.190		2.181	2.177	2.181		2.243
Roadway Core 4 0									2.212		2.21	2.21		2.251	2.209	2.222		2.213		2.2	2.196	2.200		
Roadway Core 5 0	Gmb								2.226		2.179	2.174		2.187	2.241	2.223		2.200		2.212	2.241	2.212		
Average Core Gr	Gmb	2.21	0.01	2.20	2.23	0.03	11.00		2.225		2.203	2.200		2.211	2.227	2.224		2.202		2.206	2.210	2.206		2.216
Sublot Gmm		2.40	0.01	2.39	2.41		17.00	2.391	2.397	2.385	2.398	2.399	2.401	2.400	2.399	2.400	2.401	2.401	2.395	2.397	2.412	2.397	2.398	2.402
% of Sublot Gm	nm	92.15	0.42	91.63	92.83	1.20	11.00		92.81		91.88	91.72		92.12	92.83	92.68		91.70		92.03	91.63	92.03		92.27

Table 1 – Summary of Quality Control, Verification and Independent Verification Data

Testing Plan:

In order to evaluate the questionable material placed on the project, a set of four six-inch diameter roadway cores were taken at a frequency of one set of cores per 500 feet of roadway. The first set of cores is located 500 feet from Sta 223+05 and a set of cores was then obtained every 500 ft. after that. Cores 1 and 2 were taken between-the-wheelpath and cores 3 and 4 were taken within the wheelpath. Prior to cutting cores, the pavement was inspected by Department & Contractor personnel for any signs of premature rutting. The samples were obtained by staff of First American Asphalt Contractors, Inc., under the direction and supervision of Fictitious Asphalt Engineering, Inc. personnel on October 14, 2004. Of each set of cores, the following tests were performed:

Bulk specific gravity - G_{mb} (FM 1-T 166) – Cores 1-4. Maximum specific gravity – G_{mm} (FM 1-T 030) – Combined Cores 1 & 2. Determination of asphalt binder content - P_b (FM 5-563) – Combined Cores 3 & 4. Gradation analysis – (FM 1-T 030) – Combined Cores 3 & 4.

Analysis Approach:

Based on a review of the production data, the low air voids in the asphalt mixture that occurred on the night of September 13, 2004 were primarily due to high asphalt binder content (6.55% with a target of 6.10%). In addition, the gradation of the material on all of the sieves, except for the No. 200 sieve, is slightly on the coarse side.

Since the pavement was only opened to traffic for thirty one days prior to cutting the cores used in this analysis and the roadway in question does not have heavy truck traffic (8.7% with an AADT of 19,500), the pavement has not had adequate time to further densify and inplace air voids is not likely to be a good indicator of performance. Consequently, this analysis focused primarily on the characteristics that caused the low air voids (high binder content and a coarse gradation) rather than in-place air voids alone.

This analysis focused on 1) identifying the limits of the questionable material, and 2) determining whether the questionable material is suitable to remain in place or should be removed.

The following test data was summarized for each coring location:

- Asphalt binder content
- Gradation
- Maximum specific gravity (Gmm)
- Bulk specific gravity (Gmb)
- In-Place Density, expressed as % Gmm

Approval of Testing Plan and Analysis Approach:

The testing plan and analysis approach of this EAR were submitted to the Department for review on October 1, 2004. Approval was received on October 4, 2004.

Data presentation:

A summary of the data is presented in Table 2.

Analysis:

The IV sample was obtained from load number 35. This mix was placed approximately at Sta 251+05. Examination of the data shows that the asphalt binder content is close to the design target until Sta 248+05, where the asphalt binder content was 6.30 %. Core test results obtained at stations 253+05 and 258+05 show asphalt binder contents of 6.51 % and 6.39 %, respectively. The asphalt binder contents at the remaining stations were close to the design target. There appears to be an isolated section between stations 248+05 and 258+05 where the binder content was excessive.

The gradation at Sta 253+05 appears to be slightly coarser than the gradations at the other stations and this effect could cause a fine graded mix to have low air voids for specimens compacted in the gyratory compactor.

There appears to be no difference in the densities for the wheelpath and between-thewheelpath cores. Also, no observed rutting was noticed by Department and Contractor personnel in the area near Sta 251+05.

The data obtained from the field cores corroborates the IV sample test data. The asphalt binder content at Sta 248+05 is 6.30, which is 0.20 % higher than the mix design, but is not unreasonable. However, the asphalt binder content at Sta 253+05 is 6.51 %, which is excessive. The asphalt binder content at Sta 258+05 is 6.39%, which is borderline excessive, but should not require removal.

Recommendations:

It is recommended that First American Asphalt Contractors, Inc. mill and replace the asphalt from Sta 248+05 to Sta 258+05. The milling should encompass the entire twelve foot width of lane L-1 and be the full depth of the paved layer, which is 1.5 in. This is approximately 100 tons of asphalt mix. This remedial action should alleviate any concerns of premature rutting in the area of concern.

Sincerely,

John Q. Fictitious

Property	Design	Sta 22	8+05	Sta 23	33+05	Sta 23	38+05	Sta 24	43+05	Sta 24	48+05	Sta 253+05		Sta 258+05		Sta 263+05		Sta 268+05		Sta 273+05		Sta 27	78+05	
Pb	6.1	6.0)5	6.2	21	6.	15	6.09		6.30		6.	51	6.39		6.20		6.01		6.07		5.98		
3/4 "	100	10	0	10	00	10	00	10	00	100		100		100		100		100		100		100		
1/2"	95	94	4	9	5	9	6	94		93		94		94		95		94		93		95		
3/8"	89	88	8	8	8	8	9	87		86		85		88		89		87		86		87		
No. 4	66	6	5	6	6	66		65		64		64		65		65		65		65		66		
No.8	45	44	4	4	5	46		45		44		43		44		44		45		46		46		
No. 16	32	30	0	3	0	31		31		30		29		29		30		30		31		32		
No. 30	24	23	3	2	4	2	4	23		2	2	2	21		22		23		24		24		24	
No. 50	18	11	7	1	6	1	8	17		16		17		17		19		18		19		18		
No. 100	7	6		7	7	e	5	6		5		4		5		6		6		7		6		
No. 200	2.9	2.	3	2.	.4	2.	.5	2.4		2.7		3.4		3.4		3.1		3.0		2.9		2.7		
Gmm	2.399	2.4	03	2.4	-01	2.4	2.405		97	2.397		2.3	2.383		2.392		2.405		-03	2.399		2.400		
Cruh	2 221	BWP	WP	BWP	WP	BWP	WP	BWP	WP	BWP	WP	BWP	WP	BWP	WP									
Gmb	2.231	2.231	2.235	2.224	2.223	2.220	2.218	2.230	2.235	2.221	2.215	2.209	2.215	2.220	2.218	2.215	2.210	2.231	2.235	2.236	2.239	2.240	2.245	
%Gmm	93.00	92.84	93.01	92.63	92.59	92.31	92.22	93.03	93.24	92.66	92.41	92.70	92.95	92.81	92.73	92.10	91.89	92.84	93.01	93.21	93.33	93.33	93.54	

Table 2 – Summary of Test Data from Roadway Cores