Impact of Wide-Base Single Tires on Pavement Damage

Background

- Dual tires have traditionally provided the largest footprint to adequately distribute axle loads and limit pavement damage
- The trucking industry is encouraging the use of a new generation of wide-base single tires
 - Economical benefits
 - ✓ Safety benefits
 - Environmental benefits
 - Positive driver feedback
 - Contact area approaches that of dual tires

Background

- Reported potential disadvantages from the American Trucking Association
 - Mixed results on tread wear
 - Potentially significantly faster tread wear for local and urban operations
 - Reports of increased retread failures
 - Retread failure leads to higher rates of vehicle damage

Objective

- Assess the impact of wide-base tires on pavement damage
 - 1. Goodyear Unisteel G149 RSA, 11R22.5 (Dual Tire)
 - 2. Goodyear G286 A SS, 425/65R22.5 (Super Single)
 - Michelin X One XDA-HT Plus, 445/50R22.5 (445-mm)
 - 4. Michelin X One XDA-HT Plus, 455/55R22.5 (455-mm)

Pavement Damage Potential

- Two primary pavement failure mechanisms in Florida
 - Rutting
 - ✓ Fatigue cracking (bottom-up and top-down)
- Recent findings from literature regarding new wide-base single tires when compared to dual tires
 - ✓ Generate similar rut depths
 - ✓ Induce greater tensile strain at the HMA bottom
 - Produce similar or less shear strains near the HMA surface

Experiment Design

- Rutting study with APT
 - ✓ Open graded FC-5
 - ✓ Dense graded FC-12.5
- Fatigue evaluation with finite element modeling
 - ✓ Dense graded FC-12.5

Heavy Vehicle Simulator

- Dynatest HVS, Mark IV
- Wheel speed up to 8 mph
- Loading: 7 to 24 kips
- Wander from 0 to 30 inches

Heating System

- Radiant heaters attached to both sides of HVS test beam
- Insulated panels enclose test area
- Rutting tests conducted at 50°C

Rut Measurement with Laser Profiler

- Two 16 kHz Lasers, mounted 762mm (30 in) apart
- Wheel is unloaded
- Wheel carriage travels at 4 kph (2.5 mph)
- Profile time is approximately 15 minutes
- Profiles collected several times throughout test

Pavement Sections for APT Study

Open-Grade Surface Lanes 2, 3, and 4

0.75 inch (19-mm) FC-5, ARB-12

2 inch (50-mm) SP-12.5, PG 67-22, 93% Gmm

3.5 inch (89-mm) Existing SP-12.5

10.5 inch (265-mm) Limerock Base Course

12 inch (305-mm) Granular Subbase

Dense-Grade Surface Lanes 5, 6, and 7

2 inch (50-mm) FC-12.5, ARB-5 93% Gmm

3.5 inch (89-mm) Existing SP-12.5

10.5 inch (265-mm) Limerock Base Course

12 inch (305-mm) Granular Subbase

Note: ARB-12 represents 12% asphalt rubber binder.

	S
Super Single	NGWB 445
< <u>−</u> 12	2 ft

North	Lar	ne 2	Open (Grade	l ar	ne 4	
Section A			NGWB 455	Super Single	Dual Tires	NGWB 445	
Secton B	Dual Tres	Super Single	NGWB 445	NGWB 455	Super Single	Dual Tres	
Section C	NGWB 445	NGWB 455	Dual Tires	NGWB 445	NGWB 455	Super Single	

Dense Grade

Loading Conditions

- Each tire inflated to recommended pressure
- 9 kip load
- 5-inch wander
- Constant temperature maintained at 50°C

Rut Performance

	Passes Required for a 12.5-mm Rut Depth			
Statistic	Dual Tires S	Super Single	NGWB	NGWB
			445mm	455mm
Average	169,000	16,000	72,000	133,000
Rut Damage Ratio	1.0	10.6	2.3	1.3

Rut Performance

Finite Element Analysis

- Objective: Predict strains critical to fatigue cracking
 - ✓ Bottom-up cracking
 - Longitudinal tensile strain at the bottom of the HMA
 - ✓ Top-down cracking
 - Shear strain below the tire edge
 - Transverse tensile surface strain away from tire edge

Pavement S	tructure Model
	100 in (2540mm) 7 1 200 in (2540mm) 7 1
	(^{SO} 80mm) × × × Y
	E = 700 ksi (4.825 MPa)
5.1 in (130mm) HMA	v = 0.3 Density = 142 pcf (2,275 kg/m ³)
10.5 in (267mm) limerock base	E = 80 ksi (552 MPa) v = 0.40 Density = 115 pcf (1 842 kg/m ³)
36 in (915mm) subgrade	E = 10 ksi (131 MPs)
	v = 0.45 Density = 113 pcf (1,810 kg/m ³) 17

Tire Imprints

- Dimensions measured from tire imprints
- Contact stress taken from literature

Tire Contact Areas

Tread Length

As the load increases, the tread length increases

Dual Tire

Note: 1 inch = 25.4 mm 1 psi = 6.89 kPa

7.8 in / 115 psi 7.8 in / 115 psi 7.8 in / 115 psi 8.5 in / 125psi 8.5 in / 125psi 7.8 in / 115psi 7.3 in / 115psi 8.1 in / 115psi	7.8 in / 115 psi 7.8 in / 125psi 8.5 in / 125psi 8.2 in / 125psi 7.8 in / 115psi 7.3 in / 115psi 8.1 in / 115psi
---	--

Bottom-Up Fatigue Cracking

- Similar strains predicted for Dual and NGWB 455mm single tire
- Predicted greater strain for NGWB 445mm tire

Top-Down Cracking

- Critical strains for top-down cracking
 - Top-down cracking is primarily observed as longitudinal cracks within or near the wheel path
 - Shear strain below the tire edge is thought to be critical in initial formation
 - Tensile strain away from tire edge may be critical for formation and propagation of cracks, particularly for older pavements subjected to aging

Shear Strain at the Tire Edge

- Similar max shear strains for dual and NGWB 445mm (but less at shallower depths)
- Estimated max shear strain for NGWB 455mm less than Dual
- Max shear strain located at a depth of approximately 2 inches

Surface Tensile Strain

- Maximum tensile strains from both new wide-base single tires are less than dual
- Maximum tensile strain is approximately 9 to 10 inches from tire edge

General Findings

Increased tire contact area reduces pavement damage

Tire/tread geometry plays a role in pavement damage

NGWB 445 mm at 100 psi

NGWB 455 mm at 100 psi

In general, findings agree with literature

Pavement Damage Summary

- Comparisons to a standard dual tire:
 - ✓ Rutting (APT)
 - 455mm: Similar rutting performance
 - 445mm: Rutted twice as fast on dense-graded mixture
 - Super Single: Rutted significantly greater on both mixtures
 - ✓ Bottom-up cracking (FEA)
 - 455mm: Predicted to induce similar tensile strain
 - 445mm: Predicted to induce greater tensile strain
 - ✓ Top-down cracking (FEA)
 - 455mm: Predicted to induce less shear strain and tensile strain
 - 445mm: Predicted to induce similar shear strain and less tensile strain

Impact on Florida Roadways

- Cracking patterns will likely continue similar trend (perhaps slight increase in bottom-up cracking if 445mm wide-base tire is added)
- Rutting will likely accelerate if the 445mm wide-base single tire is added

