Evaluation of Feasibility of Using Composite Pavements in Florida By Means of HVS Testing

^{ву} Mang Tia Patricio Tapia Wasantha Kumara Chung-Lung Wu

Acknowledgments

Project Manager: Dr. Bouzid Choubane Key FDOT Personnel (alphabetical order): Mike Bergin, Tom Byron, Richard Delorenzo, Lance Denmark, Shawn English, Joseph Fitzgerald, Vidal Francis, Charles Ishee, Abdenour Nazef, Aaron Philpott, Steve Ross, Greg Sholar, Kyle Younger, and others

<u>Research Need</u>

Increasing truck loads and tire pressure **Possible Solution:** Whitetopping (WT)

Advantages of WT

Rutting and surfaceinitiated cracking in asphalt pavements

Increasing price of asphalt

 Resistant to rutting and surface-initiated cracking

- Better long-term performance

There is a need to effectively evaluate the feasibility and proper application of WT pavements in Florida

Types of Whitetopping

 Conventional White-topping (CWT)

 Thin Whitetopping (TWT)
5" - 8"

< 5″

Ultra-thin Whitetopping (UTW)

How does un-bonded Whitetopping work?

How does bonded Whitetopping work?

Effects of joint spacing

Effects of temperature differential in the concrete slab

To develop analytical models for analysis of the behavior of UTW, TWT and CWT pavements. These models are to be verified and fine-tuned by experimental results.

To evaluate the potential performance of the WT pavement test sections for use under Florida conditions.

To assess the applicability of UTW, TWT and CWT techniques for rehabilitation of asphalt pavements in Florida.

<u>Approach</u>

Run full scale experiments with proper instrumentation

 Develop a reliable model and methodology to analyze the behavior of WT pavements under the effects of load and temperature
calibrate and verify the analytical model
observe relationships between performance (distresses) and measured strains and calculated stresses

Approach

Model Calibration

Analytical Tool to predict the behavior of WT pavements

Design recommendations

Ţ

Analytical Model

Analytical Model

Phase I: bonded

- Phase I-a: 6' x 6' Slabs
- Phase I-b: 4' x 4' Slabs
- 4, 5 and 6 inch slabs

Phase II: Un-bonded

- 6' x 6' Slabs
- 6, 8 and 10 inch slabs

Instrumentation

Gages locations

Construction & Testing of Test Sections

Material Characterization

Characterization of the test sections by both laboratory and FWD testing, to obtain pavement parameters of the test sections

Material Characterization

Interface

Intended Bond Condition	Slab Size	Shear Strength Before Loading (psi)	Shear Strength After Loading (psi)
Bonded (Phase I-a)	6' x 6'	207.5	220
Bonded (Phase I-b)	4' x 4'	-	194.5
Un-bonded (Phase II)	6' x 6'	118,6	134.4

Concrete

Phase II

Flexural Strength, psi

-

-

-

808

855

-

Curing Time,	Compressive	Elastic Modulus,	Flexural	Curing Time,	Compressive	Elastic Modulus,
days	Strength, psi	ksi	Strength, psi	days	Strength, psi	ksi
1	1,690	-	-	1	1,933	-
3	2,940	-	-	3	3,608	-
7	3,930	3,440	-	7	4,651	3,307
14	4,750	3,737	732	14	-	3,875
28	5,980	3,940	772	28	6,083	4,004
56	6,750	4,380	847	56	6,612	4,272

Phase I

Asphalt

	Temperature		
AC Properties	5 °C	15 °C	25 ℃
Resilient Modulus (ksi)	1,787	1,193	750
Indirect Tensile Strength (psi)		272	

Spring

Temperature Differential - Phase I-a - 6" - 6'x6' slab

May 20th - May 25th

Fall – Winter

Temperature Differential - Phase I-a - 5" - 6'x6' slab

November 1st 2004 - January 13th 2005

Time

— Center ----- Corner

Summer

Temperature Differential - Phase I-b - 6" - 4'x4' slab

June 17th - June 22nd

Winter

Temperature Differential - Phase II - 6" - 6'x6' slab Jan 31st - Feb 15th, 2006

- - TC 1 _____ TC 2 __ - TC 3

Spring

Temperature in the surface of the AC layer - Phase I-a - 6"- 6'x6' slab May 20th - May 25th, 2005

Fall – Winter

Temperature on the surface of the AC layer - Phase I-a - 5" - 6'x6' slab

November 1st 2004 - January 13th 2005

Summer

Temperature in the surface of AC - Phase I-b - 6" - 4'x4' slab

June 17th - June 22nd

Winter

Temperature in the surface of AC layer - Phase II - 6" - 6'x6' slab Jan 31st - Feb 15th, 2006

FWD-1 - • • • Case 1 — • Case 2

Strain comparison - 6" - 6' x 6 slab - Phase I-a Location 2 - Gage 3 (top), 12 kips load

Strain comparison - 4" - 6'x6' slab - Phase I-a

Location 1, Gage 2 (bottom), 12 kips load

Strain comparison - 6" - 4'x4' slab - Phase I-b

Location1 - Gage 1 (top, depth 1.25"), 12 kips load

Strain comparison - 6" - 4'x4' slab - Phase I-b Location2 - Gage 3 (bottom, depth 5.3"), 12 kips load

Gage 2 - 3D Model (Case 1) - • A - · 3D Model (Case 2)

Strain comparison - 8" - 6'x6' slab - Phase II

Strain comparison - 8" - 6'x6' slab - Phase II

Location 1 - AC surface, 12 kips load

Gage 3 → 3D Model (Case 1) ▲ 3D Model (Case 2)

Axle Load Positioned on Slabs with 4-ft Joint Spacing

24-kip single axle load placed at mid edge and at slab corner

Axle Load Positioned on Slabs with 6-ft Joint Spacing

Effect of AC Elastic Modulus

Stress Comparison - Effect of the AC Elastic Modulus 5"- 4'x4' slab - Bonded condition - Load at the mid-edge

Effect of Temperature Differential

Stress Comparison - Effect of Temperature Differential Bonded condition - 6' x 6' slab - Load at the corner

Effect of Temperature Differential

Effect of the Slab Size

Stress comparison - Effect of Slab Size Bonded Condition - Load at the mid-edge

Effect of the bond in the interface

Stress comparison - Effect of bond in the interface Load applied at the mid-edge

Effect of the bond in the interface

Stress comparison for the 6" slab Load applied at the mid-edge

Shear stress in the interface

Shear Stress in the interface Bonded Condition - 6' x 6' slabs

Shear stress in the interface

Shear Stress in the interface Bonded Condition - 4' x 4' slabs

Tensile Stress in the AC layer

Tensile Stress in the AC layer Bonded Condition - 6' x 6' slabs - +20 F Temp diff.

Tensile Stress in the AC layer

Tensile Stress in the AC layer Bonded Condition - 4' x 4' slabs - +20 F Temp diff.

Findings- Potential Performance

Phase	Slab Thickness	Stress (psi)	Stress- strength Ratio	# of Repetitions of 24- kip Axle Loads to Failure
I-a	4"	568.3	0.675	3,810
	5"	531.43	0.631	13,231
	6"	488.6	0.580	56,178
I-b	4"	555.06	0.659	5,958
	5"	486.94	0.578	59,416
	6"	416.15	0.494	no limit
Π	6"	476	0.565	85,963
	8"	400.42	0.476	no limit
	10"	318.4	0.378	no limit

Summary of Findings

The method of milling and cleaning the asphalt surface and spraying it with water before the placement of concrete was found to produce excellent bonding at the interface, with a shear strength of 195 to 220 psi.

When a white-pigmented curing compound was sprayed on the surface of the asphalt before the placement of concrete to intend to produce an unbonded interface, partial bonding was found to exist, with an average shear strength of 119 psi before the HVS loading and 135 psi after the HVS loading.

Summary of Findings (continued)

- With a relatively thin AC layer of 4.5 inches as typical for Florida conditions, a WT pavement with a 4-inch concrete layer can be used for low volume roads with heavy (24-kip single axle) loads.
- The allowable traffic volume increases as the concrete slab thickness increases.
- In order to be able to withstand the critical load without fear of fatigue failure (for an infinite number of critical load repetitions), a minimum slab thickness of 6 inches would be needed for a joint spacing of 4 ft, and a minimum slab thickness of 8 inches would be needed for a joint spacing of 6 ft.

Recommendations

- The developed 3-D finite element model is recommended for use for analysis of WT pavements subjected to load and temperature effects.
- It is recommended that experimental WT pavement test sections of various designs be constructed on actual roadways in Florida to evaluate their behavior and performance under actual environmental and traffic conditions. The experimental pavement sections will be instrumented for monitoring of temperature and strains on a long-term basis. This will enable the monitoring of the behavior of the WT pavements under critical load and temperature conditions.

Thank you!

Any Questions?