

Assumptions

Static equilibrium
 Compatibility (continuity)
 Hooke's law

4th order differential equation

Boundary conditions

13/05/2003

Response Verification

Reality

Dynamic equilibrium Particulate materials Viscos, visco-elastic and plastic deformations, non-linear, anisotropic Boundary conditions???

Is the theory useless???

13/05/2003

Response Verification

Finite Element Method

Non-linearity
3D
Dynamic
Visco-elastic
Elasto-plastic
Failure

13/05/2003

Response Verification

. . . .

б

.0

Distinct Element Method

13/05/2003

Response Verification

.....

Instrumentation

ReliableDurable

13/05/2003

Response Verification

8

.

13/05/2003

...................................

Response Verification

Bloced

Walk FWD over instruments (hydraulic pad) Measure the response (influence line) Calculate layer moduli Calculate response at position of instruments Compare

13/05/2003

Response Verification

A COLOR OF A

N. M & AND & AND A PO

---- A term Q V

Phase 2: Verification of response

Model	Team	CEDEX				DTU			LAVOC		
		εx	ε _z	σz	d	εx	ε _z	σz	ε _x	ε _z	d
BISAR	1	Û	•	¥.	Û	Û	¥	¥	₿	$\mathbf{+}$	Û
CAPA3D	1	Û	•	¥	Û	Û	V	¥	\$	1	\$
CIRCLY	1	Û	•	¥	Û	Û	¥	¥	\$	1	Û
	4	\Leftrightarrow	•	¥		Û	¥	Ŧ	\$	Ψ.	仓
KENLAYER	2	•	•	V		•	¥	¥	•	↓ ↓	Û
	3	•	•	•	⇔	•	¥	¥		↓ ↓	Û
	4	⇔(1)	•	$\mathbf{\Psi}$	\$	⇔	¥	\Leftrightarrow	⇔	\mathbf{V}	$\Leftrightarrow^{(2)}$
MICHPAVE	3	•	•	•	•	•	•	•	\Leftrightarrow	4	
NOAH	2	Û	•	¥	⇔	⇔	-	-	\Leftrightarrow	4	Û
SYSTUS	2	•	•	•	•	•	•	•	•	•	•
VEROAD	2	•	•	•	•	•	•	•	•	•	•
13/05/2003		Response Verification									18

.....

Response Verification

