Surface distress and the HVS

HVS Instrumentation Workshop Florida 5 April 2003

Scope

 Surface distress Stress-in-motion (SIM) - Tire-contact stresses Asphalt concrete rutting - Constitutive model for AC rutting » Validation with the HVS – Mix design procedure » Validation with the HVS

Surfacing distress: Rutting

Surfacing distress

Shoving

Effects of surface distress: Safety

Surface distress: Fatigue cracking

Delamination

Surface Disintegration

Potholes and patching

Distress manifests in many different ways
Contributor to almost all surface distress

Loading and tire-contact stress

Stress-in-Motion Device (SIM)

Measurement of tire contact stresses

HVS Tires: 11.00 – R22.5 Radial

HVS Footprint

Dual tire at 30 kN and 420 kPa

HVS Footprint

HVS Tires: 11.00 – R22.5 Radial

High loading

Note the "bulging" of both tyres

SIM measurements with HVS tire

Effect of increase in load on contact stress

Vertical stress
520 kPa
40 kN

CONTINENTAL 11R22.5 Tyre (TREADED)

Inflation Pressure = 520 kPa Applied Vertical Load (HVS) = 40 kN Average Wheel speed = 0.34 m/s Max Stress = 0.849 MPa Measured Vertical Load (CS) = 24 kN Measured Vertical Load (TS) = 23 kN Measured Vertical Total Load = 46.93 kN

100 kN

Effect of increase in load on contact stress

Lateral stress
520 kPa
40 kN

100 kN

Effect of increase in load on contact stress

Longitudinal stress
520 kPa
40 kN

Effect of increase in load on contact area

◆ 520 kPa ◆ 40 kN

100 kN

Modeled pavement structure: Linear elastic

Thin Asphalt Surfacing: 40 mm ($E_1 = 5000$ MPa, 1000, 200, $v_1 = 0.44$);

(C = 2000 kPa, Φ = 43 deg, Yield = 1462 kPa, 585 kPa, 117 kPa)

Crushed Stone Base: 150 mm

 $(E_2 = 350 \text{ MPa}, v_2 = 0.35)$

Cementitious Subbase-1: 150 mm

 $(E_3 = 1500 \text{ MPa}, v_3 = 0.35)$

Cementitious Subbase-2: 150 mm

 $(E_4 = 1500 \text{ MPa}, v_4 = 0.35)$

Soil Subgrade:2000 mm

 $(E_5 = 100 \text{ MPa}, v_5 = 0.35)$

Rigid Base a 2000 mm

Load Case 1: 20 kN, 520 kPa

Standard load case used for design Circular load

Load Case 2 26 kN, 420 kPa

Overloaded, underinflated

UCB GOODYEAR G159A, 11R22.5 (radial) Tire Inflation Pressure=420 kPa ; Load=26 kN (Load case 2) 0.4 @ 0.3 0.2 Long.Contact Stress 0 1.0-100 2.0-200 Longitudinal -0.4 200 n 100 5 10 15 Lateral Longitudinal

Load Case 3 26 kN, 690 kPa

Rated load

Load Case 4 31 kN, 690 kPa

Overloaded, overinflated

n

10

Lateral

15

o 0.2

-0.4

200

Longitudinal

Longitudinal

100

Finite element mesh

SIM Resultant forces for FEM

SIM loading

Approximately 400 – 460
 discrete forces on the nodes

Vertical compressive strains: Hot case

Vertical compressive stress: Hot case

-5.23-00

-5.97-001

-6.72-00

-7.47-00

-8.21-00

-8.96-0

-971-00

@Nd 19234

MSC Patran 2001 r2a 22-Oct-01 12:13:47 Fringe: SC1:DEFAULT, A3:Non-linear: 100. % of Load: Stress Tensor, -(NON-LAYERED) (ZZ) -7.47-0 -1.49-0 -2.24-0 -2.99-00 -3 73-00 -4.48-0 -5.23-00 -5.97-00 -6.72-00 -7.47-00 -8.21-00 -8.96-0 -971-0 -1.05+ -1.12+0 default_Fringe : Max 4.33-003 @Nd 927E Min -5 21-001 @N/d 319 MSC.Patran 2001 r2a 17-Oct-01 14:41:53 Fringe: SC1:DEFAULT, A2:Non-linear: 100. % of Load: Stress Tensor, -(NON-LAYERED) (22 -7 47-00 -1.49-00 -2.24-0 -2.99-00 -3.73-00 -4.48-0

SIM: Conclusions and recommendations

- Calculated stress and strain response reflects applied load
 - Shape and distribution of load are important
- More rational use of 3D tire-pavement contact stresses in the design and analyses of flexible pavements
 - Particularly for surface distress

Where are we?

Must use SIM in surface distress analysis
 Linear elasticity is not sufficient for rutting

 Need a more advanced material model

 How can we use the HVS?

Constitutive model for asphalt concrete

Nonlinear viscoelasticity

Nonlinear Viscoelasticity

Nonlinearity in shear response

 Temperature and strain dependant

 Linear viscoelastic for bulk response

 Temperature dependant only

Lab testing for shear response

Simple shear test at constant height

Laboratory testing

- Specimens cored from UC Berkeley HVS test pavement
 - Dense graded asphalt concrete conventional binder
 - Asphalt rubber hot mix gap graded
- Test Matrix

Peak Strain Level (%)

Temperature (°C)	0.01	0.05	0.10	0.50	1.00	1.50	2.00	
					1.00		2.00	
20	X	X	X					
30	Х	Х	Х	Х	Х			
40	X	X	X	X	X	X		
50	Х	Х	Х	Х	Х	Х	Х	
57/ <mark>60</mark>	X	X	X	X	X	X	X	
Laboratory test results

Strain = 1.0%

Laboratory test results

Temperature = 50C

Time-temperature-superposition

Frequency

Time-temperature-superposition

Frequency

Time-temperature-srain superposition

Time-temperature-strain superposition

Reduced master curves

Frequency (radians/sec.)

Horizontal shift factors

Horizontal shift factors

Vertical shift factors

Shift factors

Shift factor functions

♦ Shift factor = 1 for reference conditions

 40 °C and 0.1% strain

 ♦ Temperature term

 (T - T_{ref})

 ♦ Strain term

$$\log\left(\frac{\mathbf{x} + \left\|\mathbf{e}\right\|}{\mathbf{x} + \left\|\mathbf{e}_{ref}\right\|}\right)$$

e = deviatoric strain

Shift factor functions

Horizontal shift factor function

$$\log a_{\rm H} = 0.4602 - 0.0989 \left({\rm T} - {\rm T}_{\rm ref} \right) + 0.4731 \left(\log \frac{10^{-6} + \left\| \mathbf{e} \right\|}{10^{-6} + \left\| \mathbf{e}_{\rm ref} \right\|} \right) + 0.0187 \left({\rm T} - {\rm T}_{\rm ref} \right) \left(\frac{10^{-6} + \left\| \mathbf{e} \right\|}{10^{-6} + \left\| \mathbf{e}_{\rm ref} \right\|} \right)$$

Vertical shift factor function

$$\log \mathbf{a}_{\mathbf{V}} = 0.0859 + 0.5848 \left(\log \frac{10^{14} + \|\mathbf{e}\|}{10^{14} + \|\mathbf{e}_{\mathbf{mf}}\|} \right) + 0.0097 \left(\mathbf{T} - \mathbf{T}_{\mathbf{mf}} \right) \left(\log \frac{10^{14} + \|\mathbf{e}\|}{10^{14} + \|\mathbf{e}_{\mathbf{mf}}\|} \right)$$

Where:

 $\|\mathbf{e}\| = \text{norm of the deviatoric strain}$ $\|\mathbf{e}_{ref}\| = \text{norm of the deviatoric reference strain}$

T = temperature

 T_{ref} = reference temperature

Linear viscoelastic constitution

◆ Deviatoric stress $\mathbf{s} = \int_{-\infty}^{t} 2 \underbrace{G(t-s)}_{\text{relaxation function}} \frac{d}{ds} [e(s)] ds$

Relaxation function

Nonlinear viscoelasticity

Linear viscoelasticity

$$\mathbf{s}(t) = \int_{-\infty}^{t} 2\left[G_{\infty} + \sum_{i=1}^{m} G_{i} e^{-\frac{t}{\tau_{i}}}\right] \frac{d}{ds} \left[e(s)\right] ds$$

Same as conventional

horizontal temperature

shift

Nonlinear viscoelasticity

$$\mathbf{s}(t) = \int_{-\infty}^{t} 2\left[G_{\infty} + \sum_{i=1}^{m} G_{i} e^{-\frac{\xi(s, a_{H})}{\tau_{i}}}\right] \frac{d}{ds} \left[\begin{array}{c} e(s) \\ a_{V} \end{array}\right] ds$$

Vertical shift

Implementation

Algorithm

- Calculate stress in time steps

$$stress_{t_{n+1}} = f\left(strain_{t_{n+1}}, history_{t_n}\right)$$

Strain to calculate shift factors

- Cannot use current strain
- Maximum strain in time history, damage

Material properties

◆ Fit properties for relaxation function $G(t) = G_{\infty} + \sum_{i=1}^{m} G_{i} e^{-\frac{t}{\tau_{i}}}$

Storage modulus and loss modulus master curves
 Storage modulus

$$\mathbf{G'} = \mathbf{G}_{\infty} + \sum_{i=1}^{m} \mathbf{G}_{i} \frac{\left(\omega \tau_{i}\right)^{2}}{1 + \left(\omega \tau_{i}\right)^{2}}$$

Loss modulus

$$G'' = \sum_{i=1}^{m} G_i \frac{\omega \tau_i}{1 + (\omega \tau_i)^2}$$

Fitted master curves

Frequency (radians/sec.)

HVS rutting study (UC Berkeley)

Test section	Tire			Temperature at 50 mm	Overlay		
	Туре	Pressure (kPa)	Load (kN)	depth (°C)	Material	Thickness (mm)	
505 RF	Dual bias	690	40	50	DGAC drained ¹	54	
506 RF	Dual radial	720	40	50	DGAC undrained	78	
507 RF	Wide-base single	760	40	50	ARHM undrained	76	
508 RF	Wide-base single	760	40	50	ARHM undrained	73	
509 RF	Dual radial	720	40	50	ARHM undrained	75	
510 RF	Dual radial	720	40	50	ARHM undrained	35	
511 RF	Wide-base single	760	40	50	ARHM undrained	35	
512 RF	Wide-base single	760	40	40	DGAC drained	49	
513 RF	Aircraft	1070	100	50	DGAC undrained	80	

HVS rutting study

Rut profile

Accumulation of rutting

Accumulation of rutting

HVS validated the nonlinear viscoelastic constitutive model

- FEM predictions matched the HVS data well

Example

Design and analysis

Mix design: Rutting

Performance test

 Repeated simple shear test at constant height (RSST-CH)
 Critical temperature

Rutting: N_{supply}

Simple shear test (RSST-CH)

- specific value of shear strain, e.g., 5%.

Rutting: N_{demand}

N_{demand} =Design ESALs • TCF • SF TCF = temperature conversion factor SF = shift factor

M = reliability multiplier Laboratory test variance Traffic variance

Mix design example

I710, Long Beach, California
Long-life (perpetual) pavement
2 Binders

AR 8000 (conventional binder)
PBA 6A (polymer modified)
» Less stiff than AR 8000

Design binder content

Asphalt content (percent by weight of aggregate)

CAL/APT evaluation

30

Summary

- Surface distress manifests in many different ways
 SIM key for analyses of surface distress
 AC rutting

 HVS data used to successfully validate a nonlinear
 - viscoelastic model
 - HVS data validated mix design of I 710

Contact stress (bald tire)

Artificial Neural Networks (ANN):

(ANN -FHWA/ PENN STATE)

Practical applications

TRAFFIC SIDE CONTACT STRESS (CENTRE)

Practical applications

TRAFFIC SIDE : TYRE EDGE CONTACT STRESS

