Long-term Design Properties of Corrugated HDPE Pipe

August 10th, 2011

Current Long-term Properties

- Tensile Strength
 - Short term value = 3000 psi
 - Long term value = 900 psi
- Modulus
 - Short term value = 110,000 psi
 - Long term value = 20,000 psi

Proposed Test Methods

 Long-term Tensile Strength will be determined by FM 5-572, Procedure B on pipe junction specimens.

 Long-term modulus will be determined by FM 5-577 on pipe liner.

Long-term Tensile Strength

- Establish the SCR curves using FM 5-572, Procedure B.
- Perform tests at temperatures of 70 and 80°C and applied stresses of 650 and 450 psi, or others.
- Extrapolate test data to generate the SCR curve at 23°C with 95% confidence.
- Determine the applied stress corresponding to 100 year from the predicted 23°C curve.

The 100-year tensile strength for corrugated HDPE pipe is predicted to be 800 psi.

Long-term Tensile Strength

If industry would like to increase the recommended 100-year tensile strength, an interlaboratory test program should be carried out using slightly higher applied stresses defined in Section 948.

<u>Acceleration Creep Test to</u> <u>Determine the Long-term Modulus</u>

Stepped Isothermal Method (SIM)

- It is a national standard test method, ASTM D6992
- The method has been successfully used to evaluate creep property of HDPE and PET geogrids.
- Single test specimen is subjected to a series of temperature steps under a constant stress.
- Master creep curve at 23°C can extend to 100 years.

- Identify the discrepancy of test procedure and apparatus among the four participating labs.
- Determine the appropriate method to measure the creep strain: cross-head movement of the tensile machine vs. strain gauge.

Strain Measurement Method	Strain Gauge	Cross-head Movement
Test Specimen	ASTM D 638, Type IV (Dumbbell specimen)	ASTM D 882 (1-inch strip specimen)
Gauge Length	1-inch	2-inch
Grip Distance	2.5-inch	2-inch

Test Results

Findings

- Strain gauge must be used to measure the creep strain.
- The duration to reach equilibrium at each temperature step should be within 15 minutes.

- Investigate the variability of temperature control and strain gauge.
- Use the "top-hat" material of the pipe instead of the pipe liner portion of the pipe.

Location of Test Specimen

Test Results

Lab-1 used load cell to control the applied force. Others used dead load to apply the force to the specimen

Findings

- The top-hat material is too thin to be used for the SIM test. A compressive stress may be introduced by attaching the strain gauge to such thin material subsequently affecting the creep strain.
- <u>Dead-load</u> must be used to apply force to the test specimen in the SIM test.

- Isolate the variability contributed by the test equipments from that by the test specimens.
- Test specimens were taken from the compressive molded plaques instead of pipe liner.

Test Results

Waiting for the results from Lab. 4

- Test specimens will be taken from the liner part of the pipe.
- Three types of resins and two manufacturing processes will be evaluated.
- Results will be used to determine the long-term modulus value with 95% confidence.

Location of Test Specimen

<u>Summary</u>

- The test methods to determine long-term tensile strength and modulus have been established.
- Long-term tensile strength value has been recommended.
- Long-term modulus value will be established in couple months (October, 2011).