Effect of Proximity of Sheet Pile Walls on the Apparent Capacity of Driven Displacement Piles (BDV31 TWO 977-26)

Project Manager: Juan Castellanos Investigators: Jae Chung, Michael McVay, Michael Davidson, Ata Taghavi

¹ Bridge Software Institute (BSI), University of Florida, Gainesville, FL, USA
² Computer Laboratory for Granular Physics Studies, University of Florida, Gainesville, FL, USA
³ Geosystems Engineering, ESSIE, University of Florida, Gainesville, FL, USA

Modeling of Driven Pile and SPW in Granular Materials

Deliverables

- Development of a driven pile model
- Development of a pile and pre-driven SPW model (no removal)
- Development of a pile and pre-driven SPW model (w/ removal)
- Report of parametric study of pile-soil-SPW simulations

Agenda

- Progress in Geotechnical Centrifuge Modeling
- Progress in Numerical Modeling (in association with centrifuge modeling)

E·S·S·I·E

ing School of Sustainable

Geotechnical Centrifuge Modeling

Shear strength and deformation behaviors of granular soils depend on loading history and corresponding granular structure; the main benefit of centrifuge modeling is to simulate repeatable geostatic stress states similar to in-situ conditions.

Quantity	Symbol	Scale Factor
Gravity	g	Ν
Length	I	N ⁻¹
Force	F	N ⁻²
Stress	σ	1
Acceleration	а	Ν
Time (Dynamic)	t _{dyn}	N ⁻¹
Time (Diffusion)	t _{diff}	N ⁻²
Frequency	f	Ν

nol of Sustainable

UF Centrifuge Equipment

UF Centrifuge

Radius = 1.5 m Max. Payload = 12.5 g-ton Max. Acceleration = 80 g

Centrifugal Acceleration = 32 g

Task 4. Centrifuge Test Set-up: Plan View

E.S.S.I.E Engineering School of Sustainable

Prototype scale dimensions (inches)

Centrifuge Test Set-up: Loading Scenario 1

E.S.S.I.E Engineering School of Sustainable

Prototype scale dimensions (inches)

Centrifuge Test Set-up: Loading Scenario 2

Prototype scale dimensions (inches)

Engineering School of Sustainable

Centrifuge Test Set-up: Loading Scenario 3

E.S.S.I.E Engineering School of Sustainable

Prototype scale dimensions (inches)

Dimensions of Prototype Pile

Scale	Scale factor	Length (in)	Outside width (in)	Area (in²)	Modulus of Elasticity (ksi)	E.A (kips)	Pre- embedment depth (in)	Total embedmen t depth (in)
Model	1.0	11.33	0.75	0.31	1.0×10^{4}	3125	0.5	6.65
Prototype	32.0	362.4	24	320	1.0×10^{4}	3.2×10^{6}	16	212.86

Source for deliverable items: http://osp.mans.edu.eg

Pile Driving

Dimensions of Sheet Pile Wall (SPW)

Scale	Scale factor	Length (in)	Width (in)	Wall thickness (in)	Area (in²)	Modulus of Elasticity (ksi)	E.A (kips)	Pre- embedment depth (in)	Total embedment depth (in)
Model	1.0	15.04	5.96	0.375	1.14	2.9×10^{4}	33147	2	6.65
Prototype	32.0	481.25	190.72	12	27796	2.9×10^{4}	8.1×10^{8}	64	212.86

Plan view of the sheet pile wall with tongue-groove pattern in centrifuge tests

E·S·S·I·E Engineering School of Sustainable Infrastructure & Environment

Granular Soil for Centrifuge Model

E.S.S.I.E Engineering School of Sustainable

Laboratory test results provided by SMO

Preparation of Centrifuge Models

Target relative density of FL sand (by pluviation) = 60%, K₀=0.5, ϕ =30°

Instrumentation in Centrifuge Models

E·S·S·I·E

or School of Sustainable

Centrifuge Apparatus and Load Mechanism

Displacement and Load-Time Histories during Pile Driving

All values are in prototype scale.

E.S.S.I.E Engineering School of Sustainable

Displacement-Time History during SPW Driving

All values are in prototype scale.

E.S.S.I.E Engineering School of Sustainable

Vertical Pressure – Time History (at 2.8D Right Side of the Pile)

Far-Field Horizontal Pressure – Time History (at 5.9D Right Side of the Pile)

Engineering School of Sustainable

Near-Field Horizontal Pressure – Time History (at 1.8D Right Side of the Pile)

Horizontal Pressure between Pile and SPW (at 1.8D Left Side of the Pile)

Comparative Horizontal Pressure – Time History

Centrifuge top-down load tests results

Task 3. Numerical Modeling of Driven Pile and SPW in Granular Soil

• Scenario 1: Driven pile

- Model overview:
 - Soft-particle dynamics
 - Prototype scale (32g)

Source for pile and sheet pile wall prototype object dimensions: Preliminary Task 3/Task 4 report, submitted Dec. 2016

Task 3. Numerical Modeling

- Mesoscale Discrete Spherical Element (MDSE)
 - Modeling DSE at grain scales is not feasible for prototype-scale domain
 - Requires 1E+09~ 1E+10 elements
 - Current limits are ~1E+07 elements
 - Averaged values of contact stiffness and friction coeff. are mapped onto the representation of upscaled DSE
 - Partitioning of continuum-scale volume (e.g., a 4x8 in. cylinder) requires mass-averaging to ensure conservation of mass as per weight and void ratio of a sample.

Parameters of Upscaled DSE

- Parameters of mesoscale DSE for use in pile-driving and top down load test simulations:
 - Mass density of upscaled DSE based on void ratios of medium dense sand (Dr = 58%; D_{50} = 0.32 mm; γ = 102 pcf; Yamamuro et al. 2011)
 - Model prediction indicates that the extended DEM is applicable to simulation of coarse-grained soil with phi = 30° - 32°
 - Inter-granular sliding and rolling friction coefficients are parameters to simulate various shear strengths of macro-volumes.
 - Low restitution: constituent particle coulombic damping is prevalent.

Property	Value	Unit
Diameter	1.0	in
Density (by weight)	101	lb/ft ³
Bulk modulus	24	ksi
Inter-granular friction coefficient	0.47	
Coefficient of restitution	0.001	

Source for pile and sheet pile wall prototype object dimensions: Preliminary Task 3/Task 4 report, submitted Dec. 2016

- Boundary conditions:
 - Network of boundary spheres
 - Sides
 - Bottom
 - Confining Pressure
 - Maintains horizontal/vertical stresses
 - Incorporated as spring initial offsets
 - Spring-damper
 - Each translation DOF
 - Spring stiffness tributary to confinement
 - Dampers match sphere-sphere contact

Boundary condition modeling

• Simulation stage 1:

- Gravity acting on DEM assembly
- Geostatic stresses consistent with physical tests
- K_o = 0.5 -> Phi ~ 30°

30.2 ft

10.4 ft

- Driving
 - Pile tip depth: Matched staging • 1.3 ft to 17.8 ft 30.2 ft 10.4 ft 2.5 ft (typ.) 28 ft

Interior DEM assembly (elevation cutaway)

Driving

Interior DEM assembly (elevation cutaway)

- Computed stresses
 - Pile tip depth:

• 17.8 ft

Interior DEM assembly (elevation cutaway)

Preliminary load results during driving

Interior DEM assembly (elevation cutaway)

Measured vs computed envelopes

Task 3. Numerical Modeling

Next steps

- Scenario 1: Perform top-down load test simulations and compare to physical test results (August - September 2017)
- Scenarios 2-3: Incorporate SPW installation and removal into simulations (October - December 2017)

Thank you.

