Implementation of Down-Hole Geophysical Testing for Rock Sockets

Dennis R. Hiltunen University of Florida

FDOT GRIP

August 18, 2017

Workplan

Task 1: Borehole Instrument

- Source for generating seismic (mechanical) waves
- Receiver array for capturing the wavefield

Task 2: Inversion Software

- >ABAQUS forward model
- Stand-alone forward model for borehole geometry
- > Artificial neural network (ANN) trained by ABAQUS
- Task 3: Validation Experiments
 - Large laboratory block of synthetic limerock
 - Newberry and Kanapaha test sites
 - Task 4: Report

Inversion Software

- ABAQUS 2.5D FEM and regularized Gauss-Newton method
- Improved FEM element and mesh and streamlined inversion code
- Looked at open-source FEM, FD solution, and ANN
- Implemented 2.5D borehole model in Student Version of ABAQUS (free)
- Inversion shell in MATLAB

Kalinski Borehole Receiver

a. assembled view

tool cable hole for sealed hole for pneumatic accelerometer line wires O-ring O-ring groove latex membrane ġ one, two or three 19 orthogonal accelerometers glued to inside of membrane -6.4 cm-٠ O-ring O-ring groove

a. support frame

attach to

b. inflatable membrane

b. exploded view

Borehole Receiver

- • ×

- - -

5.0K

100m

H1, 2 X: 6.250 Y: 529.6m

4.0K

Piezoelectric Borehole Source

Thill (1978)

Piezoelectric Cylinders

CSL Sensor

Cylinder and Amplifier: First Draft

Cylinder and Amplifier: 2nd Generation

Cylinder and Amplifier: 3rd Generation

Acrylic Tube

Combined Source/Receiver Concept

Receiver Improvements

Synthetic Limerock Specimens

Synthetic Limerock Cylinder

Synthetic Limerock Borehole Model

Synthetic Limerock Borehole Model

Synthetic Limerock Borehole Model

Synthetic Limerock Block

- Full waveform tests on top surface
- Free-free resonant column tests on companion cylinder
 - Vp = 1500 m/s
 - Poisson's ratio = 0.2
 - > Thus Vs = 890 m/s

Synthetic Limerock Block

Synthetic Limerock Block

Next Activities

- 3-component accelerometers
- Repeatable, reusable coupling of borehole source
- Continue development of processing and inversion techniques on data from field experiments

Thank You!

