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Ultimate Side Resistance

¢ Usually designed as a function of the parent rock
properties and characteristics:
s UCS
s Unconfined Compression Strength
= Recovery
= RQD
s Split Tensile Strength



Ultimate Side Resistance

¢ (O’Neill and Reese (1999) — AASHTO (2012)
fmax = O.65pa\/% and qu < f'c

¢ Kulhawy et al. (2005) — Base of FHWA (2010)

fmax = C * pa\/§ and qu < f'c (C=0.63t0 1.00)

¢ McVay et al. (1992) — Base of FDOT (2015)
fmax = %\/q_u\/q_t and qu < f'c



Construction Effects (GRIP 2016)
not addressed by design

¢ Excavation Equipment

+ Reinforcement Bar Size and Cage Spacing
¢ Concrete properties

¢ Cased or Slurry Supported

¢ Vibrated or Oscillated Casing

¢ Slurry Type

¢ Slurry Exposure

¢ Temporary or Permanent Casing
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Problem Statement

¢ Construction methods affect drilled shaft side shear
resistance which 1s not fully addressed by design.

¢ The effects from full length or partial length temporary
casing can present the same concern.

¢ The primary objective of this study is to quantify the
effects of temporary casing installation and extraction
on the resulting side shear in the portions of the rock
sockets used to embed and seal the casing.




Study Motivation

455-15.7 Casings. Ensure casings are metal . . .

.. .. If temporary casing is advanced deeper than the minimum
top of rock socket elevation shown in the Plans or actual top of
rock elevation is deeper, withdraw the casing from the rock
socket and overream the shaft. If the temporary casing cannot be
withdrawn from the rock socket before final cleaning, extend the
length of rock socket below the authorized tip elevation one-half
of the distance between the minimum top of rock socket elevation
or actual elevation if deeper, and the temporary casing tip
elevation.




Field Scenarios

¢ Top of rock 1s not where the borings put 1t and
so the rock socket has to start deeper,

¢ Operator inadvertently forces the casing
deeper than planned although the “rock” is
really pretty good

¢ Top of rock 1s technically where the borings
put it, but the quality 1s so bad the casing must
be advanced deeper to ensure a tight/adequate
seal.



Casing Conditions

¢ Permanent
= Full length
s Partial length

¢ Temporary
= Full length
s Partial length

¢ Telescoping / Combination



Misconceptions

+ Use of casing makes more predicable shaft

¢ No anomalies occur within permanent cased
regions

¢ Temporary cased sections have more reliable
Cross sections



Slump Loss in Temporary
Casing
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Temporary Casing Removal
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Permanent casing
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Quantifying the Effects

¢ How does temporary casing affect the
resulting side shear?

* Does concrete flow out and form intimate
bond with surrounding rock?

or

¢ Do residual fragments of crushed rock remain

and get squeezed/trapped between outward
flowing concrete?



Construction with temporary casing
Effects of casing extraction
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Construction of rock sockets
Effects on the side resistance (O’Neill and Hassan, 1994)
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Displacement (in)
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Date constructed

Load test date

Reported Mobilized
Capacity

Maximum displacement

Permanent displacement

Case Study 2

Uncased
7/15 and 7/16/09
7/31/09
4,183 kips
0.431n

0.101n

Cased

7/20/09

8/3/09

4,189 kips

0.371n

0.151n
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Midpoint Displacement (in
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Midpoint Displacement (in

Comparison Segment Unit Side Shear
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Case Study 3 castelli and Fan (2002)
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Castelll and Fan (2002)

Test Shaft Maximum | Strain Gage Limestone Mobilized | Upward
Shaft | Diameter | O-cell load | Elevation | Classification and SPT | Side Shear Disp.
No (inches) (tons) (ft) N-Value (tsf) (inches)
Decomposed
18 t0-21 Limestone, N ~ 7 05
1 36 970 -21 to -25 Cemented Limestone, 8.2 0.94
291028 |\ 50/1in to 50/5in o
-29 to0 -34.3 5.6%
-17.7 to - Decomposed 5 1%
21.7 Limestone, N = 16 '
-21.7to - | Cemented Limestone, 6.2
25.6 N =~ 50/3in '
2 48 1465 -25.6 to - | Cemented Limestone, 14.1% 0.50
29.5 N =~ 50/31in '
Weakly Cemented
_2%'25;0 ] Limestone, N =~ 20 to 4.1%
50/4in

* Failure was not observed on these segments.

Inconclusive, side shear not fully developed



Research Approach

+ Find / create suitable sitmulated limestone

¢ Cast simulated limestone beds

¢ Construct 1/10% rock socketed shafts in beds
¢ Perform pull out tests

¢ Evaluate results



Initial Target Simulated Limestone
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Simulated Limestone Lab-Scale

¢ Target UCS 60 ps1 — 800 psi,

¢ Texture with porous texture.

. Mixing materials
Cement (0-800pcy)
Lime (100-500pcy)
C/L rat10 0.5 - 2
w/c ratio 1-3
Sand
Conquina and Oyster shells (increased porosity)

¢ Over 200 UCS tests
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Simulated Limestone

Field limestone cores




Test Bed Preparation

¢ Bulk supply of lime, cement, sand and
coquina shells

¢ Drilling equipment for 3 methods of casing
installation: driven, fine-tooth rotated and
coarse-tooth rotated

¢ High strength anchor bars
¢ Large volume mixer (each bed = 1cu yd)
¢ High strength shaft mix (1cu ft per shaft)



Test Beds

¢ 6 simulated limestone beds cast

¢ 42 1n. diameter, 23 1n. tall.

* UCS 60-850psi1

¢ Cement Content 170 — 680 pcy (1 — 4bags)
¢ Cement / Lime =1

*w/cl.6-3



Simulated Limestone Beds
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Simulated Limestone Beds
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Centering Rods




Small Scale Tests Setup
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Casing Types

Coarse-tooth Fine-tooth Driving Shoe




Small Scale Tests Setup

B C D
Coarse Fine Fine (insp) Driven
Coarse Fine Driven Driven (insp) Coarse (insp)
Coarse Fine Abandoned Driven
Coarse Fine Fine (insp) Driven
Coarse Fine Driven Driven (insp) Coarse (insp)

Coarse Fine Fine (insp) Driven

Driven (insp)

Driven (insp)

Driven (insp)

Driven (insp)



— Preforming and Driving Casing
M




Rotated Casing
Installation
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Casting Order

¢ Driven casing cast and removed first to
prevent consolidation / vibration of other
samples

¢ Rotated casings cast and removed second

¢ Controls last



Pullout Load Tests
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Side Shear (tsf)
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Side Shear (tsf)
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Results
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Side Shear (tsf)
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Ultimate Temp / Ultimate Control

Peak Ultimate Stress Minimum
Bed ID Casing Type Displacement . Residual Stress
. Ratio )
(in.) Ratio
Driven Casing 0.20 0.67 0.49
Bed | Fine-Tooth 0.30 0.69 0.54
Casing
Driven Casing 0.20 0.65 0.55
Bed 2 Coarse-Tooth -
: 2 0.53
Casing 0-27 @
Bed 3 Driven Casing 0.30 0.70 0.59
Driven Casing 0.47 0.69 0.66
Bed 4 Fme-"ljooth 0.60 0.72
Casing
Driven Casing 0.40 0.75 0.64
Bed 5 CoarseTTooth 0.20 0.75 0.61
Casing
Driven Casing 0.30 0.86 0.82
Bed 6 Fine-Tooth 0.37 0.81 0.37

Casing




Stress Ratio (driven)
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Average Stress Ratios

-

Peak Ultimate Stress Minimum
Casing Type Displacement : Residual Stress | Avg Stress Ratio
(in.) Ratio Ratio
0.20 0.67 0.49
0.30 0.70 0.59
: 0.20 0.65 0.55
Driven 0.47 0.69 0.66 0.72
0.40 0.75 0.64
0.30 0.86 0.82
0.30 0.69 0.54
Fine 0.60 0.95 0.72 0.82
0.37 0.81 0.37
0.20 0.75 0.61
Coarse 0.27 0.56 0.53 065
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Side Shear / UCS (dim.)
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Conclusions
+ Temporary casing does affect side shear 1n rock
sockets
¢ Small annulus fine rotated casing had least effect

¢ Driven with no annulus caused damage making 1t
more affected

¢ Large annulus coarse casing was most affected.

¢ Measured exceeded design capacity for all
samples

¢ Present specification reducing side shear to 50%
1s reasonable, no specimen fell below that level.



Full Scale Tests

¢ RW Harris’ Miami Oftfice has limestone near
surface

¢ Pull out frame or Simply supported beam
D1143 or D3689

¢ Rapid Load Test ASTM D7383
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Questions
How many GRIP presentations does this take?




