THERMAL INTEGRITY PROFILING FOR AUGERED CAST-IN-PLACE PILES - IMPLEMENTATION PLAN

BDV25 977-34 GRIP 2017 Presented by Kevin Johnson, PhD

Civil & Environmental Engineering

Overview

- Background ACIP Piles
- Problem Statement
- Research Approach
- Field Work
- Analysis

- Conclusions
- Open Discussion

Source: Dan Brown et al., FHWA-HIF-07-03

ACIP Piles Construction

ACIP Piles Quality Control

Problem Statement

- Thermal Integrity Profiling (TIP) has proven to be an effective method for evaluating the as-built integrity of drilled shafts.
- However, TIP is rarely used for evaluating auger-cast-in-place (ACIP) piles, as current practices do not require installation of standard integrity access tubes.
- Current integrity methods for ACIP piles is limited, thus their FDOT use has been limited to foundations for sound walls.
 - GOAL: <u>Translate the use of thermal integrity technology</u> to an effective method for evaluating ACIP piles.

Research Approach

- Phase I Basis for Present Project
 - Literature Review
 - Numerical Modeling
 - Field Testing and Analysis
 - **Phase II Implementation**
 - On-site instrumentation and data collection
 - Analysis of data
 - Reporting / Conclusions / Recommendations

Site Details

- DFI Demonstration Study
- 18 ACIP Piles; 7 with TIP instrumentation
 - Tied Thermal Wires
 - Access Tubes (probe)
- Location: Okahumpka, FL (Berkel's Yard)
- Sizes: 18 and 24 inch diameter
- ◆ Lengths: 40 60ft

• Reinforcement: Single bar, cage or both

Pile Details

Pile	Diameter (in)	Length (ft)	Cage Length (ft)	Full Length Center Bar	Access Tubes	TIPV		
						Partial Length	Full Length	TIP Probe
E1	18	40	40	3" threaded		4	1	No
T1	18	60		3" threaded			1	No
C1	18	60	35	#11		4	1	No
L1	18	40	35	#11		4	1	No
T2	24	60		3" threaded			1	No
C2	24	60	35	#11	4 (Steel)	4	1	Partial Length
L2	24	40	35	#11	4 (PVC)	4	1	Partial Length

Tube and Wire Combined C-2 24in (left) L-2 24in (right)

Wire Only Instrumentation C-1 18in (left) L-1 18in (right)

Wire Only Instrumentation E-1 18in cage (left) 3in center bar (rt.)

Center Bar Instrumentation #11bars (left) 3in threaded bars (rt.)

Probe Testing

TΧ

Every 6hrs
Started 6hrs after casting
Piles C2 and L2
Auto-reeling system

Wire System (C2)

Wire System T1 (left) and T2 (right)

Wire System E1 (left) and L1 (right)

Comparison of Wire vs Probe

- Center Bar vs Cage Measurements
- Comparison of AME and manual grout volume records
- Tsoil vs Tzero temperature to radius predictions

Probe and Wire Data

Extraction Pile (E1)

Uniform Center Bar – Cage average Differential

Radius Evaluations

- Hyperbolic Temperature to Radius Relationship
- Simplified Linear Approximation
- Input Parameters
 - Placed Volume
 - Local Soil Temperature
 - Time of Evaluation
- Actual Field Measurement Comparison

Temperature to Radius Relationships

Extracted Pile (E-1)

Total Grout

Total minus vol. after grout return

Total minus initial pump count

Total minus vol. after return plus auger vol.

Summary

Probe and wire measurements agreed

- Center bar and cage measurements showed similar features.
- Center bars were off center below 20ft (not detected with cage measurements)
- Temperature to Radius Predictions from center bar and cage worked equally well (if centered)
- Tsoil method was shown to be best suited for small shafts or piles (e.g. diameter < 36in)

Conclusions

- While center bar measurements have the potential to accurately predict the as-built radius profile, centering devices should be more robust and spacing should be smaller
- Cage measurements are not affected in the same way

Volume of grout is essential for QA as well as the T-R predictions; present methods to measure pumped grout are accurate, but the amount of wasted grout is not accurately recorded.

Acknowledgments

- FDOT Project Manager
 - Dr. David Horhota
- FDOT Review Committee:
 - Juan Castellanos,
 - Larry Jones,

- Rodrigo Herrera, and
- Jose Hernando
- DFI Augered Cast-In-Place Pile Committee
- Berkel and Company Contractors
 - Morgan NeSmith

Figure F.1 Pile C1 Computed Radius from AME Data, Manual Grout Log, and TIP Data.

Figure F.2 Pile C2 Computed Radius from AME Data, Manual Grout Log, and TIP Data.

Figure F.3 Pile L1 Computed Radius from AME Data, Manual Grout Log, and TIP Data.

Figure F.4 Pile L2 Computed Radius from AME Data, Manual Grout Log, and TIP Data.

Figure F.5 Pile T1 Computed Radius from AME Data, Manual Grout Log, and TIP Data.

Figure F.6 Pile T2 Computed Radius from AME Data, Manual Grout Log, and TIP Data.

Figure F.7 Pile E1 Computed Radius from AME Data, Manual Grout Log, and TIP Dat

Type of PUMP COUNT input = 'INCREMENTAL':					Ι		GROUT VOLUMES				
DRILLING & GROUTING TA	DEPTH (ft)		SEGMENT	SOIL	GROUT	PUMP COUNT		INCREMENTAL		AL	ACCRUED
	Below Top	Top of	EL	Cond. S, M, or H	Pressure (psi)	INCR. (Per5ft)	ACCRUED (SUM)	Theor. (cu ft)	Actual		Actual
		- Segment	nt (ft, NGVD)						(cu ft)	% Theor.	(cu ft)
	0	(Pile TOP)	141.00	Soil Cond.: Start input at Pile TOP, Grout Pump Count: start input at Pile BOTTOM.							ITOM.
	5	- 0	136.00		185	13	178	8.84	10.21	116 %	139.86
	10	- 5	131.00		185	13	165	8.84	10.21	116 %	129.64
	15	- 10	126.00		185	14	152	8.84	11.00	124 %	119.43
	20	- 15	121.00		185	13	138	8.84	10.21	116 %	108.43
	25	- 20	116.00		185	13	125	8.84	10.21	116 %	98.21
	30	- 25	111.00		185	14	112	8.84	11.00	124 %	88.00
	35	- 30	106.00	ĺ	185	14	98	8.84	11.00	124 %	77.00
	40	- 35	101.00		185	13	84	8.84	10.21	116 %	66.00
	45	- 40	96.00		185	13	71	8.84	10.21	116 %	55.79
	50	- 45	91.00		185	13	58	8.84	10.21	116 %	45.57
	55	- 50	86.00	ĵ.	185	14	45	8.84	11.00	124 %	35.36
	60	- 55	81.00		185	31	31	8.84	24.36	276 %	24.36
		+									
		24			х. 2	0			101-110-111-1-1-1-0-0-1-110	1	
		7 5					1				
		÷				2	1			1	
B		5									
E		2	Ĵ.								
-		5								1	
		÷.	1		6 0						
	Pile BC	OTTOM @ de	pth = 60 ft	la:		178		106.03		132 %	139.86
					Total Pur	mp Strokes	Total Theo	r. Vol. (cf)	Actual/T	heor. (%)	Actual (cf)

Parameter vs. Depth

penetration withdrawal

