Application of Microbial Induced Calcite Precipitation (MICP) to Stabilize Florida High-Organic Matter Soils for Roadway Construction FDOT Contract No. BDV34 977-06

2017 Geotechnical Research in Progress Meeting August 17 – 18, 2017

Project Manager: Principal Investigator: Co-Principal Investigators: Collaborators:

Research Assistants:

David Horhota, Ph.D., P.E. Raphael Crowley, Ph.D., P.E. Andrew Zimmerman, Ph.D. Nick Hudyma, Ph.D., P.E. Scott Wasman, Ph.D. Jacob Fuller Matthew Davies

Motivation

- High organic content (OC) soil needs to be stabilized and treated to mitigate settlement
- Previous studies/attempts
 - Surcharging expensive (Wei et al. 1989)
 - Cut-and-replace often expensive and not feasible (Mullins 1996)
 - Geogrids and geotextiles tied to cement stabilized columns excessive differential settlements and column protrusions (Greene et al. 2013)
 - Soil mixing expensive and causes creep (Mullins and Gunaratne 2014)
 - Dynamic replacement effective at improving settlement and strength properties (Gunaratne et al. 1997)
 - Large amounts of binder (e.g., cement, lime kiln dust) may be necessary for high OC soil
 - Binder (lime kiln dust) may be a carcinogen (Button 2003)
- Need an effective, economically feasible, and sustainable solution!

Objectives

- <u>Determine Microbial Induced Calcite Precipitation (MICP) feasibility as an</u> <u>environmentally-friendly and sustainable method for treating Florida's OC soil for</u> <u>roadway construction</u>
- Establish procedure to create/test MICP stabilized soil
- Determine procedure and optimal conditions for microbes to stabilize FL OC soil
- Recommendations and guidelines for field test site/application (e.g. pilot project)

MICP – Governing Chemical Reactions

- Governing Reactions (Ureolytic Microbes):
 - $CO(NH_2)_2 + H_2O \rightarrow NH_2COOH + NH_3$
 - $NH_2COOH + H_2O \rightarrow NH_3 + H_2CO_3$
 - $2NH_3 + 2H_2O \leftrightarrow 2NH_4^+ + 2OH^-$
 - $H_2CO_3 \leftrightarrow HC = H^+$
 - $HC_{3}^{-} + H^{+} + 2NH_{4}^{+} + 2OH^{-} \leftrightarrow CO_{3}^{2-} + 2NH_{4}^{+} + 2H_{2}O$
- $Ca^{2+} + CO_3^{2-} \leftrightarrow CaCO_3$

Treatment Setup

UF Treatment Cells

UNF

- Components:
 - Acrylic test cells that split down the middle
 - Peristaltic pump that pumps feed stock (urea & calcium chloride solution) to the specimens
 - Erlenmeyer flasks for effluent after feeding

UF

Generalized Treatment Procedure

- 1. Plate and grow bacteria (*Sporosarcina pasteurii*) using growth media (yeast, ammonium sulfate, and tris)
- 2. Autoclave fluid and add bacteria
- 3. Pump bacteria onto soil; wait so that bacteria have time to attach to soil particles
- 4. Feed bacteria every 6 of hours with nutrient broth (urea solution)

Sand Treatments – Preliminary Testing

- 66 columns tested with varying conditions including different
 - pHs
 - Number of feed times
 - Bacteria strains
 - Pumping methods (top versus bottom of tube)
 - Grain sizes
 - Bacteria attachment times
 - Aeration
 - Bacteria concentrations/volumes
 - Initial growth media
- Once methodology had been determined, 14 additional columns treated for physical property testing

Preliminary Testing – Lessons Learned

- Organism health/vitality appears to play a critical role cementation success
- Attachment time also appears to be critically important
- Aeration appeared to have little effect
- Four feedings per day produces more cementation than two feedings per day
- Much cementation/precipitation variability observed as a function of specimen height; thought to be the result of pore clogging

Treated Sand – Selected Photographs

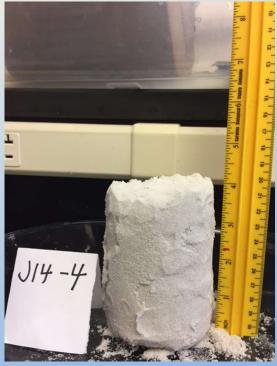
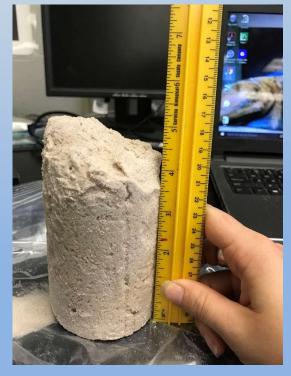
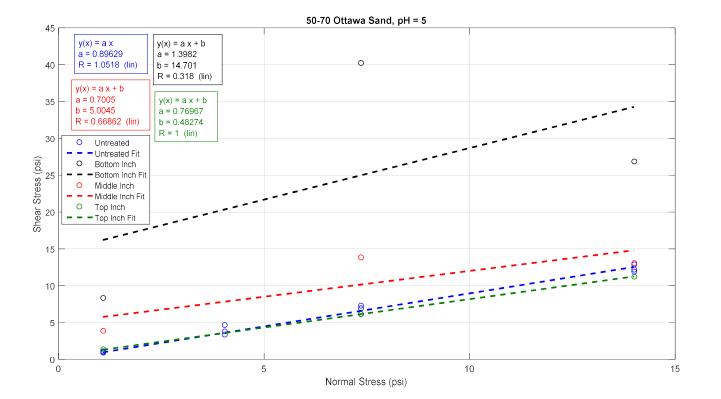



Figure 1-2. Specimen J14-4 after treatment UNF

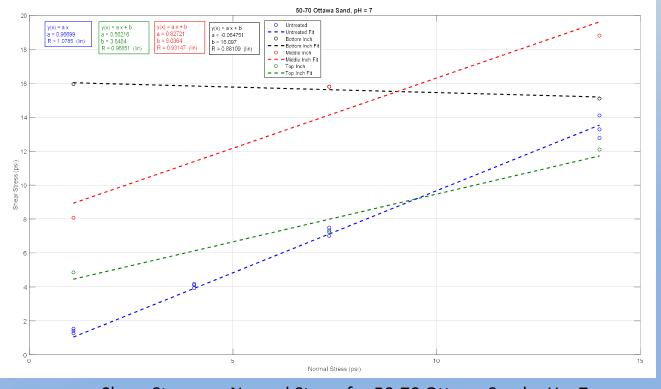
Specimens J15-0 and J15-4 after treatment



Specimen J11-X after treatment

UF

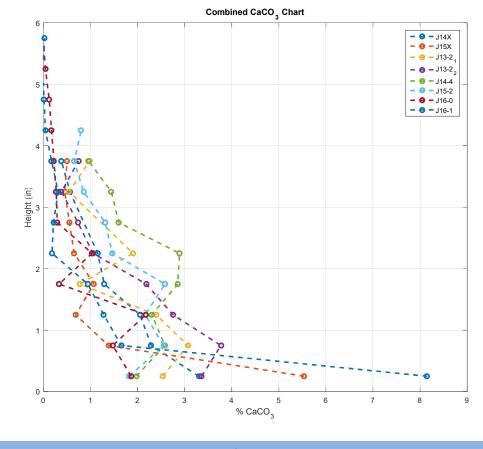
Direct Shear Test Results


Shear Stress vs. Normal Stress for 50-70 Ottawa Sand, pH = 5

UF

W UNF

Direct Shear Results

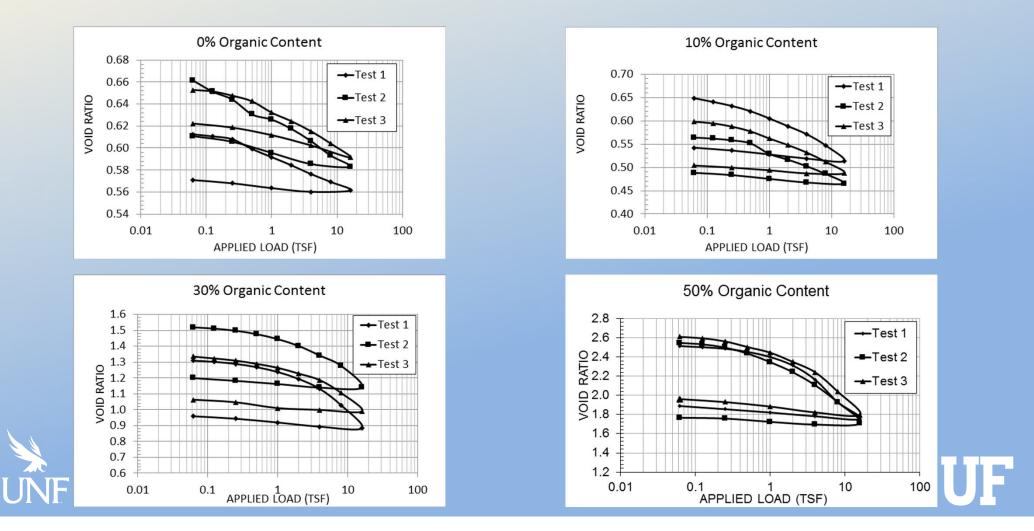

Shear Stress vs. Normal Stress for 50-70 Ottawa Sand, pH = 7

UF

UNF

Treated Sand – Variability in Precipitate

- Maximum cementation at the bottom of specimens due to pore clogging
- After ~4 inches very little cementation
- Need to examine physical property tests as a function of specimen height as well


% CaCO₃ vs. Height for various sand specimens

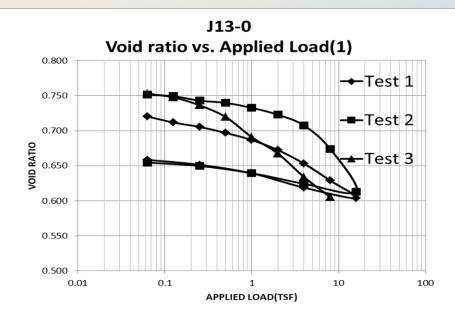
UF

Preliminary Organic Treatment

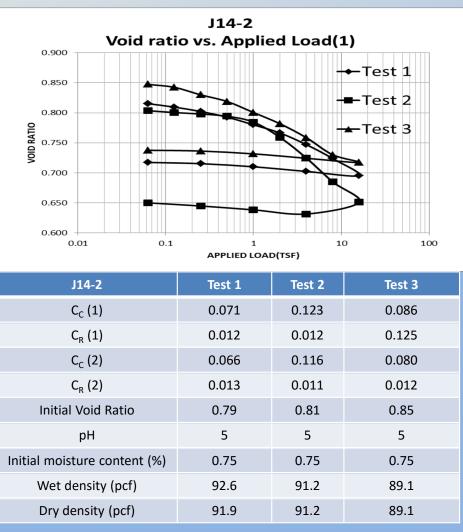
- 27 Columns treated with OC varying 10% to 50%
- Results were inconsistent, although experimentation underway to address these issues.

Consolidation: Untreated Soil

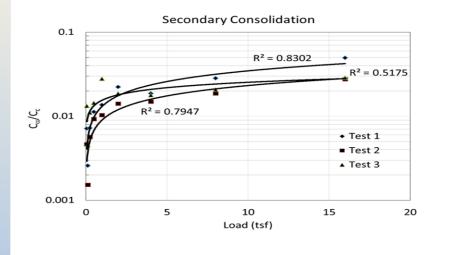
Consolidation, Untreated Soil

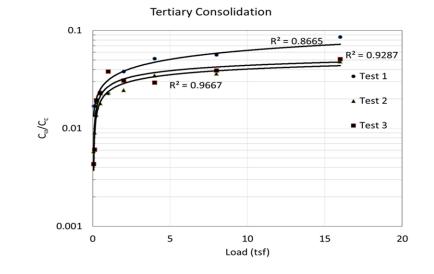

Property	0% OC		10% OC		30% OC		50% OC					
	Test 1	Test 2	Test 3	Test 1	Test 2	Test 3	Test 1	Test 2	Test 3	Test 1	Test 2	Test 3
Cc	0.025	0.040	0.037	0.095	0.062	0.066	0.41	0.334	0.326	0.679	0.659	0.738
Cr	0.007	0.017	0.017	0.014	0.013	0.011	0.042	0.036	0.018	0.059	0.0523	0.089
e _o	0.614	0.667	0.678	0.66	0.57	0.60	1.33	1.53	1.34	2.52	2.58	2.62
w _{initial} (%)	9.2	9.7	10.05	24.7	30.5	31.3	67.8	67	68.9	88.9	87.8	89.3
γ _w (pcf)	111.49	109.69	108.07	97.9	108.6	106.9	84.0	78.1	84.2	57.2	56.0	56.1
γ _d (pcf)	102.10	99.99	98.20	78.5	83.3	81.4	50.1	46.8	49.9	30.3	29.8	29.6
Gs		2.64			2.09			1.87			1.71	
рН	7		5		5		5					

UNF


Consolidation: Summary of Results, Untreated 50/70 Ottawa Sand

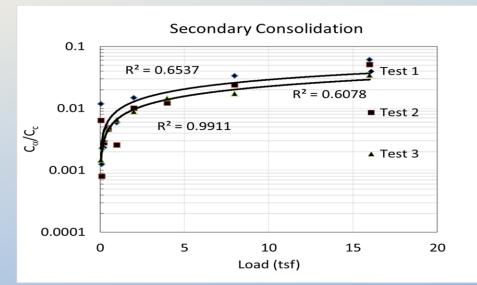
Properties	Current Research (2017)	Simpson (2014)	Feng and Montoya (2014)	Lin et al. (2015)	
Gs	2.64	2.65	2.65	2.65	
D ₁₀	0.21	0.25	N/A	0.26	
D ₃₀	0.25	0.26	N/A	0.31	
D ₅₀	0.27	0.26	0.22	0.44	
D ₆₀	0.28	0.27	N/A	0.37	
C _U	1.33	1.07	1.40	1.43	
C _c	1.06	1.02	0.90	1.01	
C _c (Compression Index)	0.025, 0.025 (Test 1)				
	0.040, 0.040 (Test 2)	0.05	0.06	0.024	
	0.037, 0.039 (Test 3)	0.03	0.00	0.024	
C _R (Recompression Index)	0.007, 0.007 (Test 1)				
	0.017, 0.017 (Test 2)	0.005	0.04	0.0010	
	0.017, 0.015 (Test 3)	0.003	0.04	0.0010	
Initial Void Ratio	0.614 (Test 1)				
	0.667 (Test 2)	0.66	0.75	0.73	
	0.678 (Test 3)	0.00	0.75	0.75	

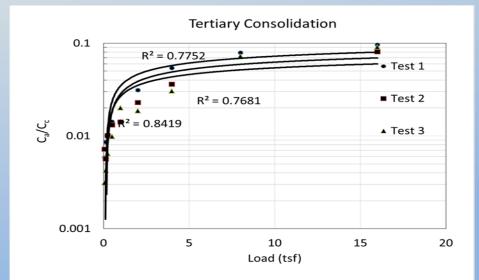

Consolidation: Treated Sand



J13-0	Test 1	Test 2	Test 3
C _c	0.077	0.156	0.103
C _R	0.022	0.022	0.020
Initial Void Ratio	0.72	0.75	0.75
рН	7	7	7
Initial moisture content (%)	0.45	0.45	0.44
Wet density (pcf)	96.2	95.0	94.2
Dry density (pcf)	95.7	94.5	93.7

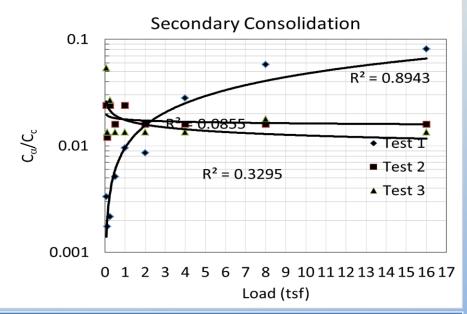
Secondary and Tertiary Compression: 10% Organic Content

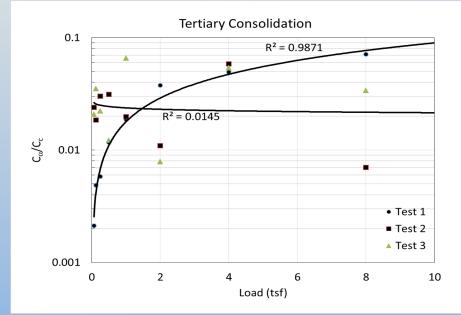




Averages – Secondary Consolidation						
	Test 1 Test 2		Test 3			
C _a	0.0014	0.00069	0.0011			
C _{ae}	0.00082	0.00044	0.00071			
C_a/C_c	0.018	0.011	0.017			
C _{ae} /OC	0.0081	0.0044	0.0071			

Averages – Tertiary Consolidation						
	Test 1	Test 3				
C _a	0.0028	0.0013	00016			
C _{ae}	0.0017	0.00093	0.0011			
C_a/C_c	0.037	0.025	0.027			
C _{ae} /OC	0.017	0.0092	0.011			


Secondary and Tertiary Compression: 30% Organic Content



Averages – Secondary Consolidation				Averages – Tertiary Consolidation			
	Test 1	Test 2	Test 3		Test 1	Test 2	Test 3
C _a	0.0058	0.0049	0.0036	C _a	0.012	0.0091	0.0098
C _{ae}	0.0025	0.0019	0.0015	C _{ae}	0.0052	0.0036	0.0042
C_a/C_c	0.017	0.013	0.010	C _a /C _c	0.035	0.024	0.028
C _{ae} /OC	0.0083	0.0064	0.0051	C _{ae} /OC	0.017	0.012	0.014

Secondary and Tertiary Compression: 50% Organic Content

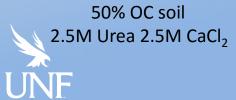
Averages – Secondary Consolidation						
	Test 1 Test 2		Test 3			
C _a	0.015	0.011	0.013			
C _{ae}	0.0042	0.0032	0.0036			
C_a/C_c	0.022	0.018	0.020			
C _{ae} /OC	0.0080	0.0063	0.0071			

Averages – Tertiary Consolidation						
	Test 1	Test 2	Test 3			
C _a	0.023	0.015	0.016			
C _{ae}	0.0066	0.0042	0.0053			
C_a/C_c	0.034	0.025	0.029			
C _{ae} /OC	0.013	0.0084	0.011			

UNF New Treatment Options

UNF Treatment Cells

- Were using two strains purchased from ATCC & USDA
- New approaches
 - Strains distributed by USDA
 Strain
 - New Method: Deep Soil Treatment
 - Possible enzyme treatment option


Organics – Percolation Method

Post Treatment Dry

Deep Soil Treatment - New Approach

WNF

24hr Run

Ottawa Sand

10% OC Soil

30% OC Soil

50% OC Soil



Post Treatment Percolation Method

10% OC Soil

30% OC Soil

50% OC Soil

Organics – Future Direction(s)

- Explain why sporosarcina likes silica more than OC.
 - SEM to look for calcification points and particle bridging
 - Surface area effects to cause a morphological change in the bacteria to induce calcite formation. Use of Surfactants to modify the soil surface tension.
 - CT progressive scans of calcite precipitation in situ.
 - Compression chamber to prevent CO₂ escape thus possibly increasing homogeneity and calcite yield.
 - Enzyme treatment of OC soils with knowledge of above without having to deal with a living orgnaism.

Summary

- Ottawa treatment
 - Have shown success comparative to previous studies
 - Completed DST
 - Consolidation in progress
 - Beginning triaxial soon
- Organics treatment
 - Underway
 - Preliminary results presented

- More collaborative treatment process
 - Treating at UF/UNF
 - Expanding treatment options
- Increasing productivity/success
 - Introducing more treatment options
 - Multiple treatments at a time

UF

Thank You!

Questions?

