Strength Envelopes for Florida Rock and Intermediate Geomaterials

FDOT BDV31-977-51

Principal Investigators:

Michael McVay, Ph.D. Xiaoyu Song, Ph.D. **Project Manager:** Rodrigo Herrera, P.E.

Researchers:

Thai Nguyen, P.E. Scott Wasman, Ph.D. Kaiqi Wang

Tasks

Task 1 – Equipment setup

- Task 2 Field rock acquisition
- Task 3 Laboratory testing
- Task 4 Test results and analyses
- Task 5 Numerical modeling
- Task 6 Final report draft and closeout teleconference;

Task 7 – Final report.

Geology of Florida Surface Rocks:

Limestones Calcite mineral (Rhombohedral structure – cube of rhombi faces) Aragonite mineral (Orthorhombic structure)

Dolostones: Dolomite mineral

Marl or marlstone: Calcite mixed with soils and other earthy substances

Calcarenite (for example Anastasia formation)

UF FLORIDA

South Florida limestone: Hester & Schmoker (1985)

Other limestone in the world: Solenhofen limestone: Great Britain limestone: Salem/ Bedford limestone:

n = 0.05 n = 0.06n = 0.12 to 0.13

Table 3-3. Mineral specific gravities from literature

	Jumikis, 1983	Goodman, 1989	Lambe & Whitman,	Hester & Schmoker,
			1969	1985
Calcite	2.71 - 3.72	2.7	2.72	2.71
Aragonite				2.94
Dolomite	2.80 - 3.00	2.8-3.1	2.85	
Quartz		2.65	2.65	2.65

Table 3-6. Florida rock strengths with regards tostrength engineering classification

Strength Class	Q _u (ksi)	RMR _{str} Rating	Florida Rocks
A – Very high	> 32	15	
B – High	16-32	8-12	
C – Medium	8-16	5-7	Isolated Avon Park
D – Low	4-8	3-4	Avon Park, Ocala LS, Ft. Thompson,
E – Very low	<4	2-3	Ocala LS, Miami LS, Ft. Thompson, Key Largo LS, etc.

SHALLOW FOUNDATION – BEARING CAPACITY:

Carter and Kulhawy (1988):

 $p_u = \left[\sqrt{s} + \sqrt{m\sqrt{s} + s}\right] q_u$ for medium to strong rocks

 $p_u = mq_u$ for soft rock (s=0 for soft rock)

 $S = e^{(GSI-100)/(9-3D)}$

 $m = m_i e^{(GSI-100)/(28-14D)};$

D = disturbance factor caused by the rock removal methodology.

- D=0 if no disturbance (typical for shallow foundation excavation).
- D=1 for disturbance due to blasting techniques.

ROCK STRENGTH ENVELOP:

Hoek – Brown criteria: $\sigma'_1 = \sigma'_3 + q_u (m\sigma'_3/q_u + s)^a$ s and m: see equations 4 and 5. $a = 0.5 + (e^{-GSI/15} - e^{-20/3})/6$; Typically, a = 0.5

Lab tests:

- QU Tests
- BST (Brazilian Splitting Tension)
- Triaxial Tests
- Index Tests
- Carbonate Content Tests
- X-Ray Diffraction (XRD) tests

Task 1 - Triaxial Equipment

- 40-K load-frame
- 50-K load cell

- Displacement transducer (DCDT)
- Hoek cell with platens
- Hydraulic pump
- Oil pressure transducer
- Accumulator
- Volume Change Unit (VCU)

10 Triaxial Equipment

Triaxial Equipment

12

Task 2 - Field Rock Acquisition

Site	Address	Area	Geology			
1	I-75/ I-595	Davie (Broward)	QmoverlaysTqsu;Rockscoredtypicallybelow8-ft, identified asTqsu(Ft Thompson)			
2	SW 13th St	Miami	Qm (Miami); 0.5 miles from Ocean			
3	SR80 Bingham Island	West Palm	Qa (Anastasia)			
4	SR 5-Marvin Adams Way	Key Largo	Qk (Key Largo)			
5	SR 836 Ext - NW 12 St-MDX	Miami	Qm (Miami), poor induration			
6	SR 997-Krome Avenue	WIIaIIII	Qm (Miami), poor to moderate induration			

13

Historical qu – BST FDOT database

		District	Project Name
District	Project Name	3	Merritts Mill Pond US-90 SR-10
1	I-75 over Manatee River	3	SR-166 Rock Slope Design
1	I-75 over Golden Gate Canal	3	Fisher Creek Bridge CR 2203
1	Edison Farm	3	CR 166 Alligator Creek Bridge
2	SR-20 @ Lochloosa Creek, Alachua Co.	3	SR-8 (I-10) @ CR-286 High Mast
2	SR-25 @ Santa Fe River	3	Holmes Creek - Cr 166 Bridge
2	SR-10 @ CSX RR (Beaver St. Viaduct), Duval Co.	3	CR 12A (Kemp Road Bridge)
2	SR-9 (I-95) Overland	3	Natural Bridge over St. Marks River
2	SR-9 (I-95) Overland Bridge	3	SR-10 (US-90) over Yellow River
2	CR-326 @ Waccasa River	3	SR 71 over Rocky Creek
2	I-295 Dames Point Bridge	3	SR-20 @ BLOUNTSTOWN (APALACHICOLA RIVER)
2	I-295 Buckman Bridge	3	US-90 Victory Bridge
2	I-95 @ I-295 Cloverleaf	3	SR-2 Cowarts Creek
2	Acosta Bridge Research (Modulus)	3	SR-2 Marshall Creek Jackson Co.
2	I-95 Fuller Warren Bridge	3	SR-2 Spring Branch Jackson Co.
3	US-98 / SR-30 @ Wakulla River	3	SR-261 Capital Circle
3	BRIDGE #530022 US 98 OVER WAKULLA	3	US-98 / SR-30 @ ST. MARKS RIVER
3	Rob Forehand Road Over Little Creek	3	I-10 TOWER SITE @ SNEAD'S WEIGH STATION
3	Lost Creek Bridge #590048	6	NW 36th Street Bridge
3	I 10, SR 8 over Ochlockonee River	6	NW 12th Ave (SR 933) Miami River Bridge
3	I 10, SR 8 over Ochlockonee River1	6	MIC- People Mover Project
3	SR 63, US 27 Ochlockonee Relief Bridge	6	Verona Ave Bridge over Grand Canal
3	SR 8 over Choctawhatchee River	6	HEFT / SR 874 PD&E
3	SR-10 Bridge over Choctawhatchee River	6	Wall @ Service Rd. South of Snake Creek
3	I 10, SR 8 Over Apalachicola River	6	17th St. Causeway
3	I 10, SR 8 over Chipola River	6	96th St. & Indian Creek (Pump Station @ Bal Harbour)
3	SR-20 over Chipola River	6	Jewfish Creek
U	NIVERSITY of	6	NW 5th Street Bridge
	LOKIDA	6	Radio Tower Everglades Academy (Florida City)

- Apparent Dry Unit Weight and Apparent Mineral Unit Weight are obtained from Bulk Specific Gravity A/(B-C) and Apparent Specific Gravity A/(A-C) of the AASHTO T-85/ ASTM D6473/C97 for Rocks or Aggregates
- Bulk (True) Dry Unit Weight γ_{dt} = Dry weight/ Total cylinder volume, which includes vug volume

Lab Tests: Carbonate Content Tests

Florida method FM 5-514 :

Lab Tests: BST . . • Measured BST (psi) y = 1.000x $R^2 = 0.484$ n = 193 BST (psi) = $3.864 e^{0.03 \gamma} + 1.4$

- Correlation based on only 1 parameter: Bulk Dry Unit Weight γ_{dt}
- $R^2 = 0.48$

Lab Tests: BST

- Correlation based on 3 parameters:
 - 1. Bulk Dry Unit Weight γ_{dt}
 - Carbonate Content C: e^{0.5C} ranges from 1.35 to 1.65 for typical carbonate content
 - 3. Mineral bond link strengths; Suggested bond modification:

Formation	L
Ft. Thompson	0.60
Anastasia	1.30
Key Largo	1.50
Miami, poor induration	0.75
Miami, moderate induration	0.90
Miami, moderate/well	
induration	1.00

• Significant correlation improvement $R^2 = 0.72$ vs previously 0.48

Extend the correlation to FDOT Historical Data:

BST = 2.468L $e^{s\gamma} e^{0.5C} + 1.4$ with s = 0.03 for $\gamma_{dt} < 140$ pcf and s = 0.0328 for $\gamma_{dt} > 140$ (higher power for the denser rocks encountered at historical deep foundation projects)

UF FLORIDA

Volumetric behavior: Typically contractive, as most of our rocks are porous and low strength.

Some higher strength rocks / higher density rocks experience initial contraction, then dilation as the rock specimens fail in shear

Example: 4 South Florida formations, tested at approximately 200 psi chamber pressure

Example: Anastasia with Chamber Pressures = 50 to 300 psi

Regression back in Normal Space:ln(m) = blnr + athus $m = e^a r^b \pm CV_{\epsilon} r = 1.035 * r^{0.9722} \pm 0.2927 * r$

29

Miami

Preliminary suggested ϕ and c values (pending 25 additional future tests for South Florida).

<u>Additional note</u>: Results reduced from testable core pieces (L/D, etc.). Engineers should exercise conservative judgement with regards to rock core pieces that are not suitable for testing.

Drucker Prager model

Numerical modeling

Triaxial testing simulation

Parameters Table of triaxial test						
Loading steps		Initial Conditions		Boundary conditions		
Start Time	0	x_displacemnt	0 cm	fixed_surface	bot_surface	
End Time	1000	y_displacement	0 cm displacement top		top_surface	
Steps	50	confining pressure	1379	kPa (200psi)		
Material parameters						
Dry unit weight	15.71 kN/m^3 (100pcf)	Bulk Modulus	7660kPa (1111psi)			
Porosity	0.4	Poisson	0.2			
Cohesion	383.04 kPa (4tsf)	Friction Angle	35 dgree			

Triaxial testing simulation

Triaxial testing simulation

Simulation results

Laboratory testing results

Triaxial testing simulation

Simulation results

Laboratory testing results

Simulation results

Laboratory testing results

Numerical modeling

Strip footing simulation (2D)

Parameters Table of strip footing (2D)							
geometry size							
	length	height		stripfooting length			
	15 m	5 m		1 m			
Loa	ading steps	Initial Conditions		Boundary conditions			
Start Time	0	x_displacement	0	fixed_surface	1, 2, 5		
End Time	1000	y_displacement	0 displacement		4		
Steps	50	pressure	0				
Material parameters							
Dry unit weight	15.71 KN/m^3 (100pcf)	Bulk Modulus	7660kPa (1111psi)				
Porosity	0.4	Poisson	0.2				
Cohesion	383.04 kPa (4 tsf)	Friction Angle	35 dgree				

A strip footing model was simulated by using the boundary conditions which is fixed at the bottom left corner and added roller at both the rest points of bottom and points of two side surface. The strip footing was added at the top left corner. The initial condition like table shown above. The model size and element IDs as shown in following figure.

1

Numerical modeling

A. The material library will be modified to develop both stress-strain model and strength envelopes for Florida Limestone.

42 Numerical modeling 42 Next step tasks

B. The two different boundary value problems will be conducted:(a) strip footing resting on a deep limestone formation and resting on a finite limestone layer will be simulated.

(b) strip footing resting on two layers (limestone layer overlying sand layer) will be simulated.

The different strength envelope will be considered.

Variable shape of strip footing (L/B= $2\sim10$) will be considered in each type simulation.

