Bearing Capacity Factors for Shallow Foundations Subject to Combined Lateral and Axial Loading

FDOT Contract No. BDV31-977-66

FDOT Project Manager:

Larry Jones

Principal Investigator:

Scott Wasman, Ph.D.

Co-Principal Investigator:

Michael McVay, Ph.D.

Research Assistant:

Stephen Crawford

OUTLINE

1) BACKGROUND

2) OBJECTIVES

3) SURVEY OF CURRENT PRACTICE

Typical uses, lateral/axial load ratios, widths, embedment depths, etc.
4) GOVERNING BEARING CAPACITY EQUATIONS
5) SOIL

• A-3

6) THEORETICAL FAILURE SURFACE7) PROPOSED TEST SET-UP

- L/B=20, L/B=10, L/B=1
- Limitations
- Failure loads & G-Levels
- Foundation design
- Sensor placement (pressure transducers)

8) ECCENTRICITIES & INCLINATION SENARIOS

BACKGROUND:

- 1) AASHTO Specifications (10.6.3.1.2) make allowance for load inclination
 - Meyerhof (1953), Vesić (1973) and Hansen (1973) are considered, however based small scale experiments
- 2) AASHTO commentary (C10.6.3.1.2a) suggest inclination factors may be overly conservative
 - Embedment of $D_f/B = 1$ or deeper
 - Load inclination factors were derived for footings without embedment
 - Footing with modest embedment may omit load inclination factors
- 3) FHWA GEC No.6 indicates load inclination factors can be omitted if lateral and vertical load checked against their respective resistances
- 4) Resistance factors included in the AASHTO code were derived for vertical loads
 - Applicability to combined lateral/axial loads are currently unknown
 - Up to 75% reduction in Nominal Bearing Resistance computed with AASHTO load inclination factors

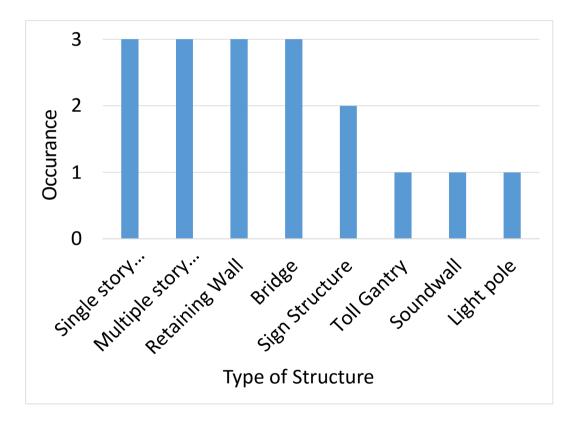
BACKGROUND:

- 5) NCHRP 651 on LRFD Design and Construction of Shallow Foundations for Highway Bridges
 - Identify and propose the concept of a combined failure state
 - Similar to beam/column interaction diagram
- 6) FDOT research project BDK75-977-22 completed in December 2013
 - Limited set of combined vertical and horizontal loads
 - Results indicated the inclination of resultant load had an experimentally proven effect on the bearing capacity of MSE walls

PROJECT OBJECTIVES:

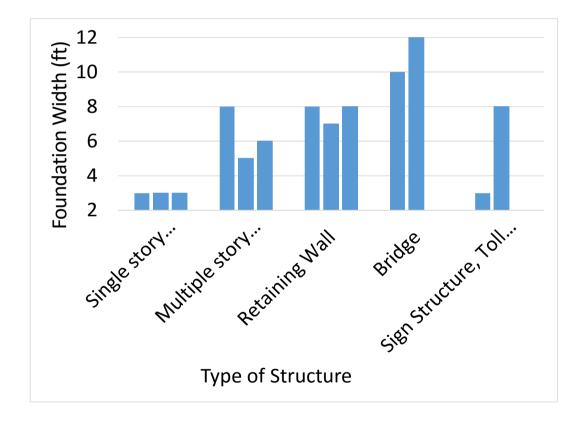
- 1) Task-1: Collect data on current practice (online survey)
 - B (width), L/B (length/width), embedment (Df), eccentricity
 - lateral/axial load combinations, soil types, unit weights
- 2) Task-2: Select foundation scenarios to test, design experiments and test apparatus
 - Select soil
 - Container and load frame
 - Plan experiments
- 3) Task-3: Conduct centrifuge tests
 - Experimentally measure bearing capacity through general shear failure

Soil	B, Width	L,	D, Depths	Axial/Lateral	Loading	Repetitions
Density		Lengths		Load Ratios	Locations	
2	1	2	2	2	2	2
Med	Average	L/B =1	Near	2 ratios at	Center &	Repeat each
Dense &	width	and	Surface,	center and	Near Edge	test (at a
Dense		L/B>3	Near B/2	eccentric	(eccentric)	minimum)

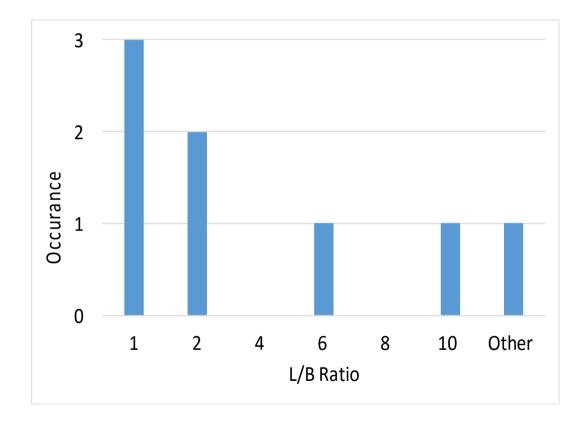


PROJECT OBJECTIVES:

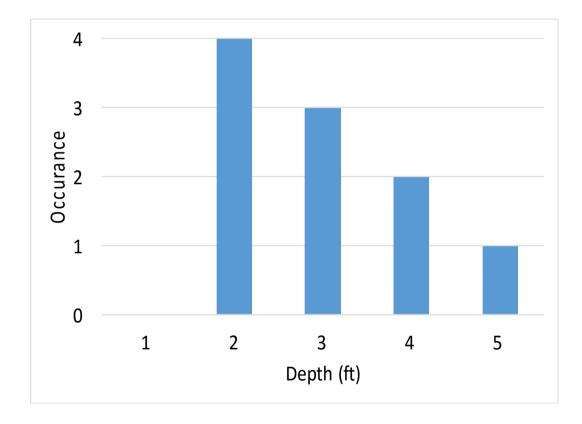
- 4) Task-4: Compare measured bearing capacity to predictions
 - AASHTO recommended equations
 - Other recommended equations in literature (NCHRP 651)
 - Identify equations/methods recommended for FDOT use
- 5) Tasks-5 and 6: Closeout Teleconference and Final Report



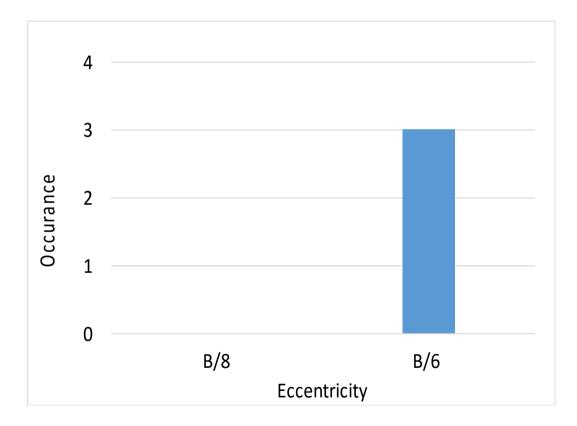
TYPICAL USE OF SHALLOW FOUNDATIONS



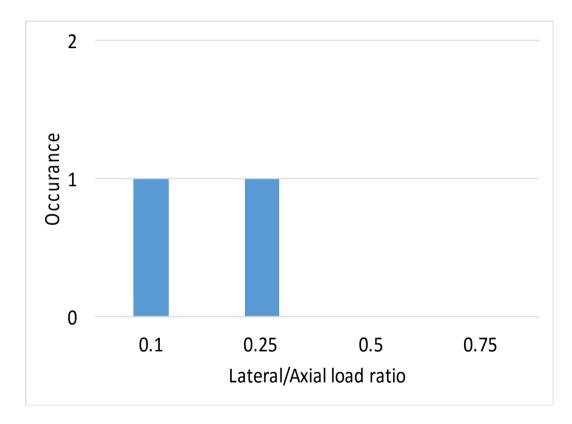
TYPICAL FOUNDATION WIDTH (B)



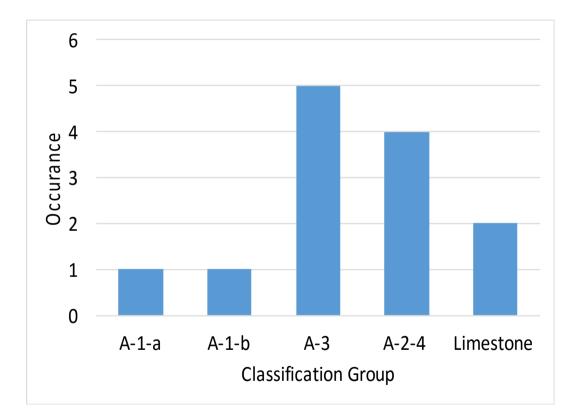
TYPICAL FOUNDATION LENGTH/WIDTH (L/B) RATIOS



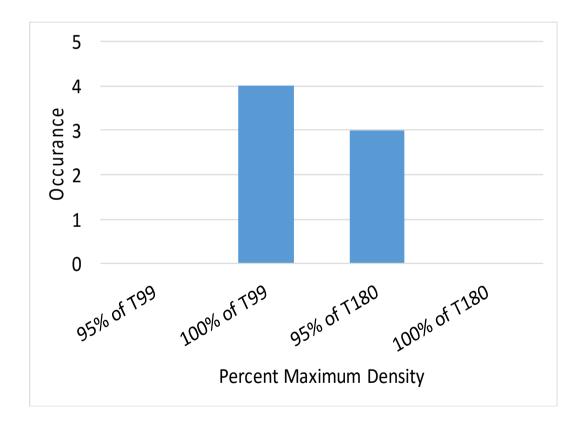
TYPICAL FOUNDATION EMBEDMENT DEPTH (D_f)



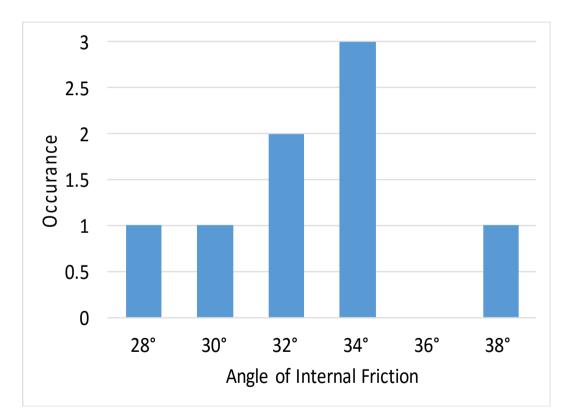
TYPICAL ECCENTRICITIES OBSERVED



TYPICAL LATERAL/AXIAL LOAD RATIOS



TYPICAL SOILS BENEATH THE FOOTINGS



TYPICAL SOILS DENSITY REQUIRMENT BENEATH FOOTINGS

TYPICAL SOIL FRICTION ANGLE (φ) BENEATH THE FOOTING

GOVERNING BEARING CAPACITY EQUATIONS

METHODS OF BEARING CAPACITY ESTIMATION

FDOT recommends analysis of shallow foundations be done in accordance with AASHTO LRFD Bridge Design Specifications

General bearing capacity equation recommended by AASHTO (2016)

$$q_n = cN_{cm} + \gamma D_f N_{qm} C_{wq} + 0.5\gamma B N_{\gamma m} C_{w\gamma}$$
 Eq.1

$$N_{cm} = N_c S_c i_c$$
 Eq.2

$$N_{qm} = N_q S_q d_q i_q$$
 Eq.3

$$N_{\gamma m} = N_{\gamma} S_{\gamma} i_{\gamma}$$
 Eq.4

$$N_q = e^{\pi \tan \phi_f} \tan^2 \left(45^\circ + \frac{\phi_f}{2} \right)$$
 Eq.5

$$N_{\gamma} = 2(N_q + 1)tan(\phi_f)$$
 Eq.6

FOUNDATION SCENARIOS (STRIP)

<u>FOR THE PURPOSE OF THIS STUDY (cohesionless soil):</u> $q_n = \gamma D_f N_{qm} + 0.5\gamma B N_{\gamma m}$

STRIP FOUNDATION AT SURFACE:

- $q_n = 0.5 \gamma B N_{\gamma m}$
- $D_f = 0$
- Measured $N_{\gamma m}$ Term
- Fcs, Fqs & $F_{\gamma s} \approx 1.00$
- L/B = 20 the shape factors S_q and S_γ are 1.03 and 0.98 (< 3% error)

STRIP FOUNDATION AT $D_f = B$: $q_n = \gamma D_f N_{qm} + 0.5\gamma B N_{\gamma m} \& N_{qm} = N_q S_q d_q i_q$ • $D_f = B$

- Measured N_{qm} & depth corrections, d_q
- $N_q \& N_\gamma$ are only functions of ϕ

Eq.8

Eq.7

FOUNDATION SCENARIOS (RECTANGLE)

<u>RECTANGLE FOUNDATION AT $D_f = 0 \& D_f = B$:</u> $N_{qm} = N_q S_q d_q i_q \& N_{\gamma m} = N_\gamma S_\gamma i_\gamma$

- $D_f = 0 \& D_f = B$
- Measured N_{am} & depth corrections, d_q
- $N_q \& N_\gamma$ are only functions of ϕ

RECTANGLE FOUNDATION with load inclination:

 $N_{qm} = N_q S_q d_q \mathbf{i}_q \& N_{\gamma m} = N_\gamma S_\gamma \mathbf{i}_\gamma$

•
$$D_f = 0 \& D_f = B$$

- Lateral/Axial load ratios: 0.1 & 0.25
- Isolate the inclination factors

RECTANGLE FOUNDATION AT with eccentricity:

$$N_{qm} = N_q S_q d_q i_q \& N_{\gamma m} = N_\gamma S_\gamma i_\gamma$$

- $D_f = 0 \& D_f = B$
- Lateral/Axial load ratios: 0.1 & 0.25
- Maximum eccentricity: B/6
- $B' = B 2 \cdot e_B$

FOUNDATION SCENARIOS (SQUARE)

<u>SQUARE FOUNDATION AT $D_f = 0 \& D_f = B$:</u> $N_{qm} = N_q S_q d_q i_q \& N_{\gamma m} = N_\gamma S_\gamma i_\gamma$

- $D_f = 0 \& D_f = B$
- Measured N_{qm} & depth corrections, d_q
- $N_q \& N_\gamma$ are only functions of ϕ

SQUARE FOUNDATION with load inclination:

 $N_{qm} = N_q S_q d_q \frac{i_q}{k} \& N_{\gamma m} = N_\gamma S_\gamma \frac{i_\gamma}{k}$

•
$$D_f = 0 \& D_f = B$$

- Lateral/Axial load ratios: 0.1 & 0.25
- Isolate the inclination factors

SQUARE FOUNDATION AT with eccentricity:

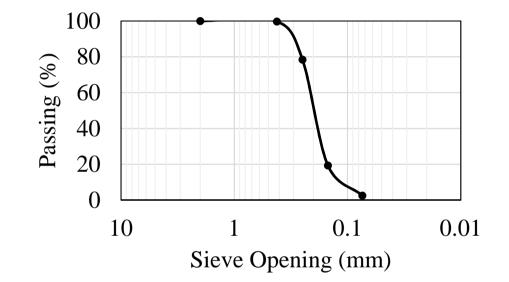
$$N_{qm} = N_q S_q d_q i_q \& N_{\gamma m} = N_\gamma S_\gamma i_\gamma$$

- $D_f = 0 \& D_f = B$
- Lateral/Axial load ratios: 0.1 & 0.25
- Maximum eccentricity: B/6
- $B' = B 2 \cdot e_B$

PROTOTYPE FOUNDATION SELECTION

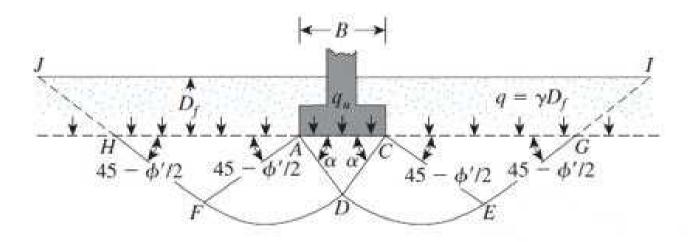
Prototype Size				
L/B	Width-B	Length- L	q _u	
	(ft)	(ft)	(psf)	
1	5	5	29990	
10	5	50	24112	
20	3	60	14272	

SELECTION PROCESS:


- Survey results (most common or average response)
- Test apparatus limitations
- Boundary conditions
- Ultimate bearing capacity calculation
 - Unit weight: 105 pcf
 - Friction angle: 32 deg

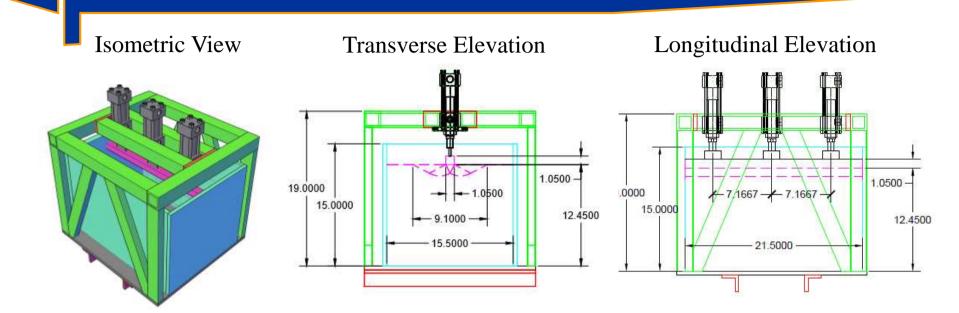
PROPOSED TEST SOIL

AASHTO CLASS: A-3


- Poorly graded sand
- Sand: 97.5%
- Silt: 2%
- Clay: 0.5%
- C_u: 1.67
- C_c: 1.35
- $G_s: 2.67$
- e_{min} : 0.53
- e_{max}: 0.84
- γ_{\min} : 90.7 pcf
- γ_{max} : 108.9 pcf
- $\phi: 30^\circ 34^\circ$ for $D_r: 60\%$ to > 85%
- USCS class: SP

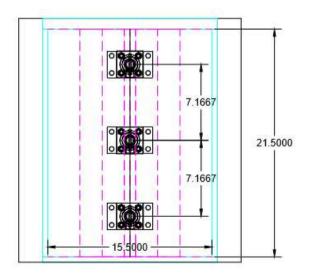
CENTRIFUGE CONTAINER DESIGN

- NO BOUADARY INFLUENCES ON BEARING CAPACITY
- CONTAINER DIMENSIONS > EXTENTS OF FAILURE SURFACE

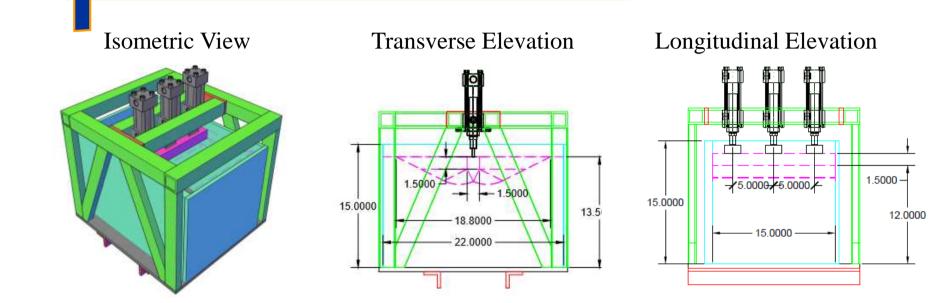


FAILURE SURFACE IS A FUNCTION OF:

- Foundation width: B
- Soil friction angle: φ
- Foundation embedment depth: D_f

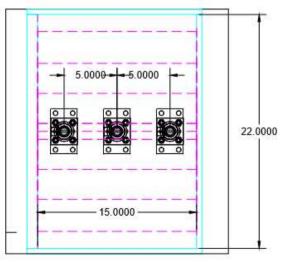


PROPOSED TEST CONDITION-1 (L/B = 20)

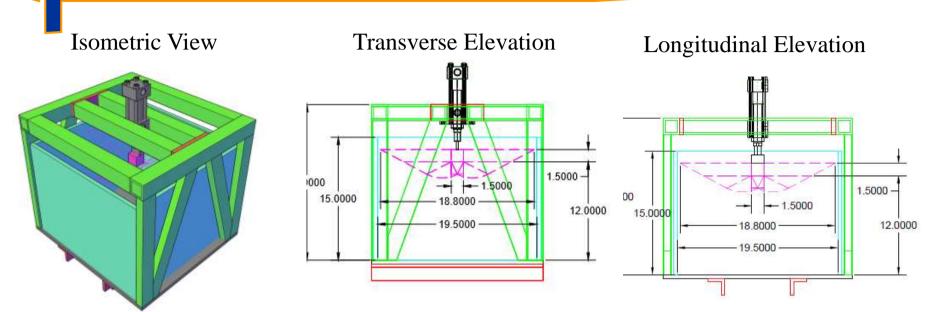


STRIP FOUNDATION				
15.5				
21.5				
15				
13.5				
9.10				
2290				
600				
34				

Plan View

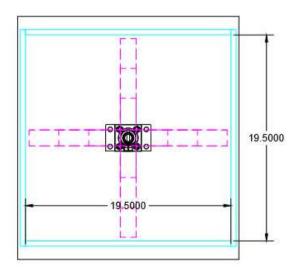


PROPOSED TEST CONDITION-2 (L/B =10)

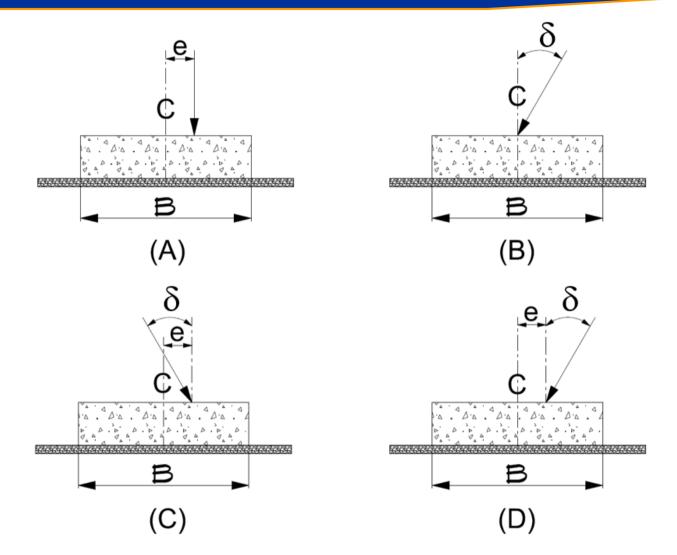


RECTANGLE FOUNDATION				
Interior container width, B (in)	15.0			
Interior container length, L (in)	22.0			
Interior container height, H _{cont.} (in)	15			
Soil height, H _{soil} (in)	13.5			
Failure surface length, (in)	18.8			
Total load on model foundation (lb)	3767			
Total design weight of test apparatus (lb)	600			
G-Level (G)	40			

Plan View

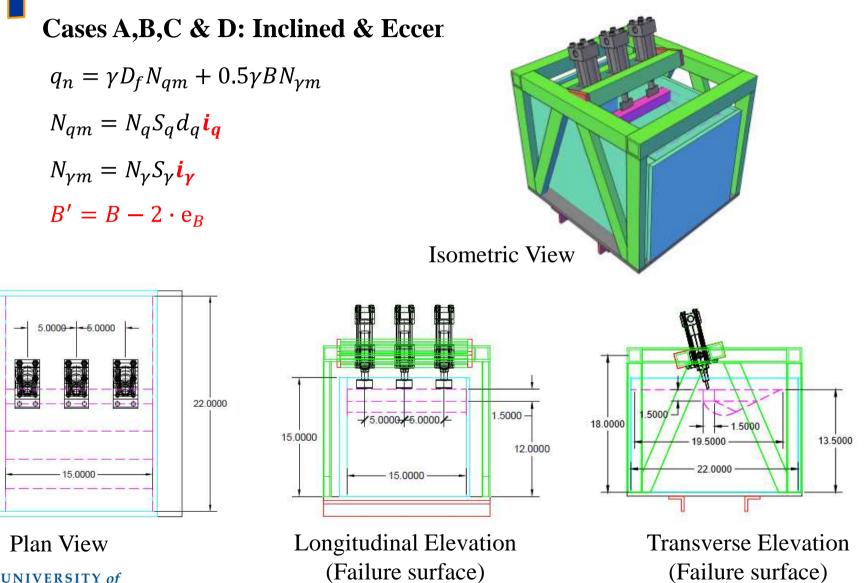


PROPOSED TEST CONDITION-3 (L/B =1)



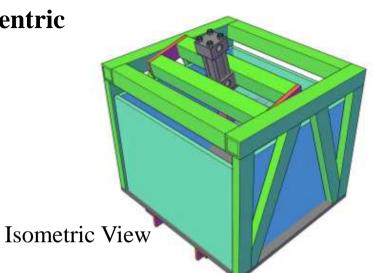
SQUARE FOUNDATION				
Interior container width, B (in)	19.5			
Interior container length, L (in)	19.5			
Interior container height, H _{cont.} (in)	15			
Soil height, H _{soil} (in)	13.5			
Failure surface length, (in)	18.8			
Total load on model foundation (lb)	469			
Total design weight of test apparatus (lb)	600			
G-Level (G)	40			

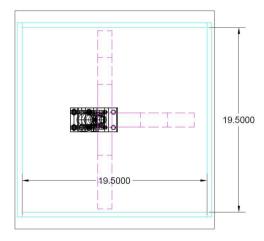
Plan View


ECCENTRICITY & INCLINATION SCENARIOS

Lateral/Axial Load Ratio: 0.1 and 0.25 Eccentricity: B/6

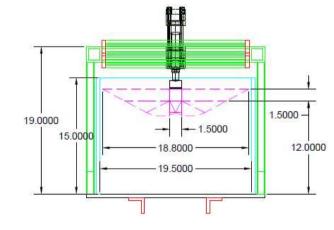
PROPOSED TEST CONDITION-2 (L/B =10)

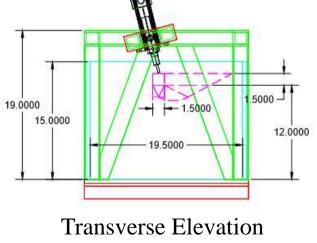



UF FLORIDA

PROPOSED TEST CONDITION-3 (L/B =1)

Cases A,B,C & D: Inclined & Eccentric

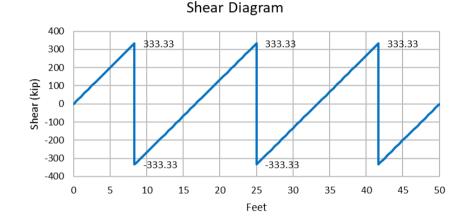

$$q_n = \gamma D_f N_{qm} + 0.5\gamma B N_{\gamma m}$$
$$N_{qm} = N_q S_q d_q \mathbf{i}_q$$
$$N_{\gamma m} = N_\gamma S_\gamma \mathbf{i}_\gamma$$
$$B' = B - 2 \cdot \mathbf{e}_B$$

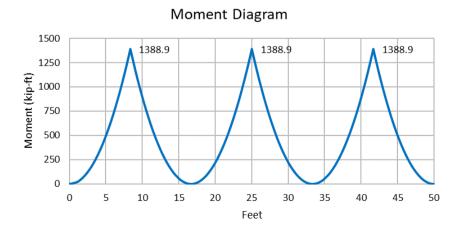


Plan View

Longitudinal Elevation (Failure surface)

(Failure surface)


FOUNDATION DESIGN FOR STIFFNESS


TEST-2 Rectangle Foundation (L/B=10): $q_u = 24 \text{ ksf}$

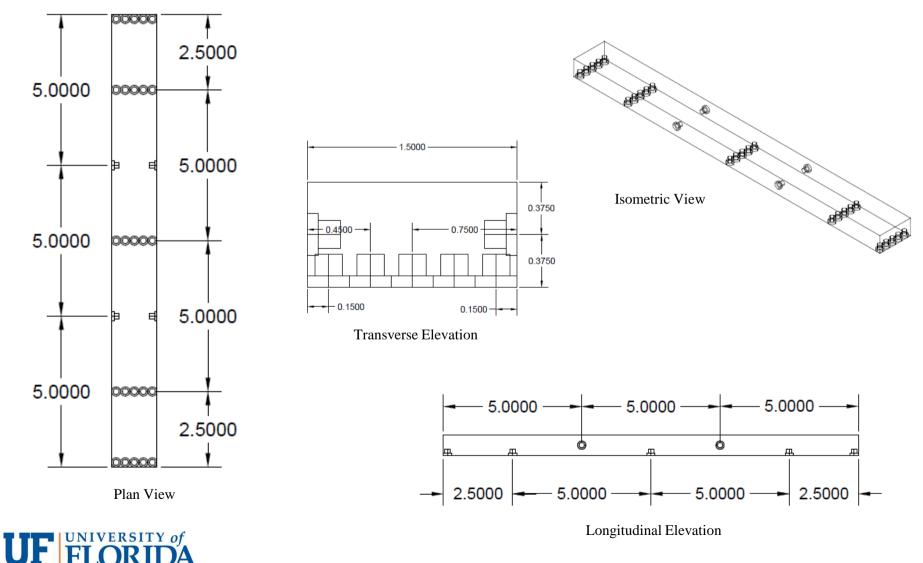
PROTOTYPE FOUNDATION:

- LRFD design
- Bearing capacity reduced by 2/3
- Bearing capacity = 8 ksf
- Effective moment of inertia determined for concrete
- Equivalent gross moment of inertia for aluminum
- Prototype aluminum foundation scaled to model size
- $E_c I_c = E_A I_A$

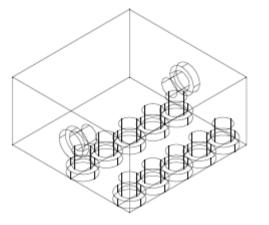
ET OD ID

MODEL FOUNDATION DESIGN

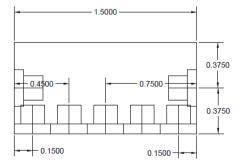
Model Foundation Size					
Туре	L/B	Width-B (in)	Length- L (in)	Height (in)	# Pressure Transducers (proposed)
Square	1	1.5	1.5	0.75	5
Rectangle	10	1.5	15	0.75	5
Strip	20	1.075	21.5	0.5	3


LOAD ACTUATORS

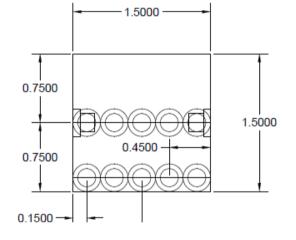
HYDRUALIC LOAD ACUATORS					
Medium Duty (Max 1500 psi)				Applied pressure (1000 psi)	
B (in)	Bore (in)	Rod Dia. (in)	Area (in ²)	Force (lb)	
2.5	2.00	1.000	3.14	3142	
2.3		1.375		5142	
	Heavy Duty (1	Applied pressure (2000 psi)			
B (in)	Bore (in)	Rod Dia. (in)	Area (in ²)	Force (lb)	
2.5	1.50	0.63	1.77	3534	
2.3	1.50	1.00	1.//	5554	

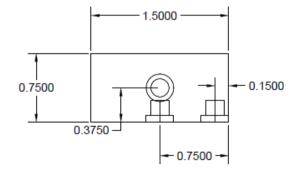

PRESSURE TRANSDUCER PLACEMENT

TEST-2 (L/B=10)



PRESSURE TRANSDUCER PLACEMENT


TEST-3 (L/B=1)


Isometric View

Transverse Elevation

Plan View

