FIELD TESTING AND CALIBRATION OF THE VERTICAL INSITU PERMEAMETER (VIP)

PI: Dr. Ana Mohseni CO-PI: Dr. Raphael Crowley Consultant: Dr. Harald Klammler Postdoctoral Associate: Dr. Michael Rodgers Graduate Student: Aminta Velasquez

GRIP August 17, 2017

VIP PROJECT

Objective

- Implement a simple field procedure for measuring hydraulic conductivity
- VIP has been successfully field demonstrated and validated at four DOT sites
 - FDOT Test Method FM 5-614
- Areas for improvement
 - $\circ\,$ Delivers an "average" conductivity rather than independent values of k_v and ${\bf k_h}$
 - Difficulty driving the probe in certain soils

ADDITIONAL TASKS

- 1. Identification of an appropriate pressure measurement system
- 2. Development of computer-aided drawings (CAD) for the proposed probe
- 3. Fabrication of a PVC-prototype and possible adjustments of injection system
- 4. Testing of PVC-prototype at the DOT test pit
- 5. Fabrication of a steel probe
- 6. Final report

IMPROVED VAHIP

- Advances in flow theory provide potential for estimating vertical and horizontal permeability k_v and k_h under saturated conditions
- **Simple** mechanical design (no moving parts)
- Automated data acquisition using pressure transducers (no hand readings)
- Potentially capable of reaching greater depths (reduced probe diameter)
- Potentially insensitive to smearing and compaction near probe surface

PROBE DESIGN

ASSESMENT OF HORIZONTAL AND VERTICAL PERMEABILITY

- The head ratios only depend on:
 - Probe radius a
 - Screen length s
 - Anisotropy ratio $\rho^2 = \frac{k_v}{k_h}$

ASSESMENT OF HORIZONTAL AND VERTICAL PERMEABILITY

- By knowing
 - Shape Factor F
 - $_{\circ}\,$ Injection Head φ_{0}
 - Injection Flow rate Q
- Horizontal conductivity can be estimated followed by the vertical component

$$k_h = \frac{Q}{\varphi_0 F}$$

$$k_v = k_h \rho^2$$

ASSESMENT OF HORIZONTAL AND VERTICAL PERMEABILITY

- The ratio of two head observations along the probe is independent of possible clogging at the injection screen
- Observation heads and *ρ* can be used to estimate effective injection head (after screen losses)
- As before, knowing ρ, Q and φ_{eff} are used to estimate k_h and subsequently k_v

LABORATORY TESTING

- A PVC prototype was fabricated and tested in barrels with three different anisotropy scenarios generated by alternating high and low conductivity layers
 - Scenario 1: coarse sand (no layering)
 - Scenario 2: 1 cm of sand between one layer of fabric
 - Scenario 3: 1 cm of sand between two layers of fabric

SCENARIO 1 RESULTS

Test	k _h (cm/s)	k _h (cm/s)	k _h (cm/s)	k _{h avg} (cm/s)	k _v (cm/s)	k _v (cm/s)	k _v (cm/s)	k _{v avg} (cm/s)
1	0.078	0.044	0.031	0.051	0.014	0.026	0.046	0.028
2	0.053	N/A	N/A	0.053	0.016	N/A	N/A	0.016
3	0.12	0.099	0.070	0.096	0.011	0.012	0.015	0.013
4	0.088	0.063	0.047	0.066	0.013	0.018	0.025	0.019
5	0.059	0.052	0.048	0.053	0.021	0.024	0.027	0.024
6	0.080	N/A	N/A	0.080	0.014	N/A	N/A	0.014
7	0.068	0.042	N/A	0.055	0.018	0.033	N/A	0.026
8	N/A	0.055	0.069	0.062	N/A	0.033	0.024	0.028
	0.078	0.059	0.053		0.015	0.024	0.028	
	Average	0.065				0.022		
inde	Avg from pendent test	0.069				0.025		

SCENARIO 2 RESULTS

Test	k _h (cm/s)	k _h (cm/s)	k _h (cm/s)	k _{h avg} (cm/s)	k _v (cm/s)	k _v (cm/s)	k _v (cm/s)	k _{v avg} (cm/s)
1	N/A	0.44	N/A	0.44	N/A	0.015	N/A	0.015
2	N/A	0.031	N/A	0.031	N/A	0.016	N/A	0.016
3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
4	N/A	0.21	N/A	0.21	N/A	0.016	N/A	0.016
5	0.15	0.29	N/A	0.22	0.020	0.014	N/A	0.017
6	0.065	0.20	N/A	0.13	0.035	0.013	N/A	0.024
7	0.12	0.39	N/A	0.26	0.023	0.013	N/A	0.018
	0.11	0.26	N/A		0.026	0.015	N/A	
	Average	0.21				0.018		
inde	Avg from pendent test	0.14				0.018		

SCENARIO 3 RESULTS

Test	k _h (cm/s)	k _h (cm/s)	k _h (cm/s)	k _{h avg} (cm/s)	k _v (cm/s)	k _v (cm/s)	k _v (cm/s)	k _{v avg} (cm/s)
1	0.23	0.15	0.073	0.15	0.0097	0.012	0.020	0.014
2	0.27	0.13	0.063	0.15	0.011	0.015	0.030	0.019
3	0.76	0.20	0.071	0.34	0.010	0.014	0.033	0.019
4	0.12	N/A	N/A	0.12	0.018	N/A	N/A	0.018
5	0.19	N/A	N/A	0.19	0.012	N/A	N/A	0.012
6	0.14	N/A	N/A	0.14	0.015	N/A	N/A	0.015
	0.29	0.16	0.069		0.012	0.014	0.027	
	Average	0.20				0.015		
inde	Avg from pendent test	0.17				0.015		

k _h (cm/s)	k _v (cm/s)
0.17	0.014
0.17	0.015

SUMMARY

- The VAHIP provided horizontal and vertical permeability estimates under saturated conditions that are in good agreement with those obtained by independent a constant head test.
- Differences were observed between single estimates. However, in most of the cases, the single estimates were within the same order of magnitude.
- Possible factors affecting estimates
 - For the middle transducer only two decimals were recorded (2.1 cm resolution)
 - o In order to avoid sand disturbance relatively low injection rates were used

UPCOMING TASKS

- Test PVC prototype and injection mechanism in DOT test pit using layers of high and low conductivity sand to emulate anisotropic conductivity
- Manufacture steel probe (in progress)
- Test steel probe in DOT test pit

THANK YOU