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Introduction

• Effect of Sheet Pile Walls in the Vicinity of Driven Piles
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Introduction: Project Approach

• Identify design-relevant parameters for calculating 
pile capacities in the vicinity of SPWs

• Develop design charts and/or tabularized matrices 
for use in calculation of pile-capacity changes

• Methodology:
• Combined Discrete (soil) and Finite (pile and sheet pile wall) 

Element Analysis 

• Spectrum of model validation (laboratory and centrifuge 
testing) 



Introduction: Project Approach

• Phase I (12 months; July 2014 - June 2015)
• Task 1. Literature Review, Scenario Identification, and Field-Data 

Acquisition 

• Task 2. Numerical Modeling Schemes and Granular Soil Units 

• Phase II (18 months; July 2015 - December 2016)
• Task 3. Numerical Modeling of Driven foundation in Granular Soils

• Task 4. Physical Laboratory/Centrifuge Experimentation

• Task 5. Reporting of Findings and Design-Oriented Recommendations

• Task 6. Final Report



• Deliverables
• Development of a driven pile model

• Development of a pile and pre-driven SPW model (no removal)

• Development of a pile and pre-driven SPW model (w/ removal)

• Report of parametric study of pile-soil-SPW simulations
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Disturbed sand

Task 3. Numerical Modeling of Driven 
foundation in Granular Materials
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Task 3. Numerical Modeling of Driven 
foundation in Granular Materials

• High Strain Rate (HSR) Effects on stress-strain response and 
volumetric strains  (from Iskander et al., 2015)

Interpretation based on literature data



Task 3. Numerical Modeling of Driven 
foundation in Granular Materials

• High Strain Rate (HSR) Loading Effects

Numerical prediction of resultant loads

From Abrantes and Yamamoto (2002)                              DEA prediction of Resultant loads                                           



Example: ratio of tangential (kT) to normal (kN) contact stiffness

Task 3. Numerical Modeling of Driven foundation in 
Granular Materials
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Task 3. Numerical Modeling of Driven foundation in 
Granular Materials

High strain-rate triaxial compression test (900%/sec; 14.2 psi confinement)

217 psi

0 psi

Vertical stress



Task 3. Numerical Modeling of Driven 
foundation in Granular Materials

• Yamamuro et al. (2015) conducted HSR tests on crushed coral sand samples (Mean Dia. 0.32 
mm, Dr = 58%, and Uniformity Coeff. =2.18) under confining stress of 14.2 psi, and subjected 
to applied impact loads equivalent to 900 – 1750 %/sec strain rates.



Axial strain = 3.4% Axial strain = 6.5% Axial strain = 9.1% Axial strain = 12.4% Axial strain = 15.3%

XY – displacement snapshots

Z-stresses snapshots

Task 3. Numerical Modeling of Driven foundation in 
Granular Material: 900%/sec strain rate loading



Task 3. Numerical Modeling of Driven 
foundation in Granular Materials

• Mohr-Coulomb Failure Envelopes per Strain Rate Effects (Top: DEM, Bottom: Experiments)



Task 3. Numerical Modeling of Driven 
foundation in Granular Materials

• p-q diagram and comparison



• Discrete Spherical Element (DSE) Upscaling Efforts:

• Modeling DSE to match grain scale is not feasible for 
megascopic assemblies. 

• Requires ~1E+09 elements

• Current limits are ~1E+07 elements 

• Use Walton’s theory (1987) to estimate mesoscopic properties 
of upscaled DSE

Task 3. Numerical Modeling of Driven 
foundation in Granular Materials

1 in.

DSE diameters match physical 
grain size distribution

Agglomerate Upscaled DSE



Below is one of two upscaling approaches that are newly developed:

• Effective moduli for hydrostatic compression

• Perfectly smooth/Infinitely Rough spheres

• Effective material properties:

Task 3. Numerical Modeling of Driven 
foundation in Granular Materials

1
2 2 3

* *

4 2

1 3

10

n p

B


 



 
   

 
* *,   and  are effective Lame  constants,

 is the volume fraction,

 is the average coordination number,

 is the hydrostatic pressure,

 and  is a constant based on material properties of particl

where

n

p

B C

 





e spheres. 

 

 

1
2 2 3

*

4 2

1
2 2 3

*

4 2

3

10 2

5 3

10 2

C n p

B C B

B C n p

B C B











 
  

  

  
  

  

 

*
* * * *

* *

2
              

3 2
k


  

 
  





• Discrete Spherical Element (DSE) Upscaling Efforts:

• Upscaled properties used for DSE in pile driving model
• Upscaled weight matches agglomerate weight

• Loose to Medium Dense States

• Inter-granular sliding and rolling friction

• Low restitution: Coulombic damping is dominant

Task 3. Numerical Modeling of Driven 
foundation in Granular Materials

Property Value Unit

Radius 0.5 in

Density (by weight) 98 lb/ft3

Bulk modulus 22.5 ksi

Inter-granular friction coefficient 1.0
- -

Coefficient of restitution 0.001
- -



Task 3. Numerical Modeling of Driven 
foundation in Granular Materials

• Development of a driven pile model:

• FDOT standard pile shape
• 24 in. square/60 ft long: a limit of model size

• Assembly of monospheres
• 1 in. diameter

• Upscaled properties

• Cylindrical assembly
• 6.5 ft diameter

• 50 ft deep

• ~3.3 million spheres

• Unit weight of assembly under gravity
• ~105 pcf

• Avg. Internal Friction Angle ~30⁰

Driven pile model



Task 3. Numerical Modeling of Driven 
foundation in Granular Materials

• Development of a driven pile model:

• Network of boundary spheres
• Sides

• Bottom

• Confining Pressure
• Based on profile of volume-averaged stress
•

• Spring-damper
• Each translation DOF

• Stiffness small fraction of DSE bulk modulus

• Spring is critically damped

Network of boundary spheres

Spring-damper 
configuration



Task 3. Numerical Modeling of Driven 
foundation in Granular Materials

• Effect of boundary condition modeling:

Fixed boundary (5 blows) Local non-reflecting boundary (2 blows)
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Vertical stress
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• Development of a driven pile model:
• Three scenarios considered

Task 3. Numerical Modeling of Driven 
foundation in Granular Materials
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• Pile driving scenario:
• Triangular pulse load estimated from ICE Model I-46

• 44 blows per minute

Task 3. Numerical Modeling of Driven 
foundation in Granular Materials
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F(t)

Example load pulse (44 bpm)Pile hammer data sheet



• Initial loose-to-medium dense density states 

due to gravitational effects

Task 3. Numerical Modeling of Driven 
foundation in Granular Materials
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• Displaced granular mass

Task 3. Numerical Modeling of Driven 
foundation in Granular Materials
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• Pile driving scenario:
• Loads attributed to tip and skin are cataloged

Task 3. Numerical Modeling of Driven 
foundation in Granular Materials
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• Top-down load test scenario:
• Load increased linearly until plunging occurs
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• Top-down load test simulation:
• Comparison to single pile model in FB-MultiPier

• Driven pile in Reese sand 

• 40 ft embedment

• Avg. unit weight input as 105 pcf

• Avg. internal friction angle input as  30°

• Avg. ultimate skin friction input as 280 psf (FB-Deep analysis)

• Ultimate bearing failure load input as 100 kips (FB-Deep analysis)

Task 3. Numerical Modeling of Driven 
foundation in Granular Materials
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• Pile plunging scenario:
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foundation in Granular Materials
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• Pile pullout scenario:
• Load increased linearly until pullout occurs
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• Pile pullout scenario:
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• Parametric study of pile driving simulations:

• 3D simulations of megascopic assemblies can require millions 
of elements

• Approx. four days of run time in HiPerGator 2.0 Supercomputer to 
simulate one second

• 2D axisymmetric simulations can be used to streamline 
parametric study

• 1 to 2 orders of magnitude reduction in simulation time

• Can  be calibrated (bulk modulus; sliding friction)

• Can be benchmarked against 3D models

Task 3. Numerical Modeling of Driven 
foundation in Granular Materials



• A tool for parametric study of pile driving simulations in 2-D 
axisymmetry or plane-strain boundary conditions

• A case of loose packing under gravity: a homogeneous granular mass with internal 
friction angle ~20 deg.

Task 3. Numerical Modeling of Driven 
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Elevation view of 2D assembly
Geostatic stress
Left : Vertical stress

Right : Horizontal stress

Unit : psi
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Task 3. Numerical Modeling of Driven 
foundation in Granular Materials

• Parametric study of pile driving simulations:
• Boundary condition modeling

Left Boundary
Fully restrained

Right Boundary
Local non-reflecting boundary
Restrained out-of-plane

Bottom Boundary
Local non-reflecting boundary
Restrained out-of-plane.



• Parametric study of pile driving simulations:
• Pile modeling
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Standard prestressed pile (24 in. square) Symmetry model (solid elements)

Unit width ouf-of-plane



• Parametric study of pile driving simulations:

Task 3. Numerical Modeling of Driven 
foundation in Granular Materials
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• Parametric study of pile driving simulations:
• Horizontal displacement

Task 3. Numerical Modeling of Driven 
foundation in Granular Materials



• Remaining items

• Development of a sheet pile wall (SPW) FE model

• Perform and report parametric study of pile-soil-SPW 
simulations

• Establish three benchmark simulations for Task 4
• Pile

• Pile and pre-driven SPW model (no removal)

• Pile and pre-driven SPW model (w/ removal)

Task 3. Numerical Modeling of Driven 
foundation in Granular Materials



Introduction: Project Approach

• Phase I (12 months; July 2014 - June 2015)
• Task 1. Literature Review, Scenario Identification, and Field-Data 

Acquisition 

• Task 2. Numerical Modeling Schemes and Granular Soil Units 

• Phase II (18 months; July 2015 - December 2016)
• Task 3. Numerical Modeling of Driven foundation in Granular Soils

• Task 4. Physical Laboratory/Centrifuge Experimentation

• Task 5. Reporting of Findings and Design-Oriented Recommendations

• Task 6. Final Report



• Progress on Task 4:
• Calibration of LVDT and Pressure Transducers

• Repair/Procurement of instrumentation: stress gages and new 
load cells

Task 4. Physical Laboratory/Centrifuge 
Experimentation

Centrifuge - UF Reed Laboratory



• July/2016-September/2016: Standardize the 
laboratory test program: Protocols, 
Instrumentation, and Test Measurements

• October/2016-March/2017: Validate the 
centrifuge testing procedure, and conduct 
three benchmark simulations from Task 3

• April/2017-July/2017: Numerical parametric 
simulation per model calibration between 
physical centrifuge test measurements and 
simulation results

Plan for Tasks 4 and 5



Thanks!


