Effect of Proximity of Sheet Pile Walls on the Apparent Capacity of Driven Displacement Piles (BDV31 TWO 977-26)

Principal Investigator: Jae Chung^{1,2,3} Numerical Modeling: Michael Davidson^{1,2}, Nikhil Mishra^{2,3}, Yu Zhang^{2,3} Physical (Centrifuge) Modeling: Michael C. McVay³, Amirata Taghavi^{1,2}

¹ Bridge Software Institute (BSI), University of Florida, Gainesville, FL, USA
 ² Computer Laboratory for Granular Physics Studies, University of Florida, Gainesville, FL, USA
 ³ Geosystems Engineering, ESSIE, University of Florida, Gainesville, FL, USA

2016 Geotechnical Research in Progress (GRIP) Meeting Gainesville, Florida July 15, 2016

Agenda

Introduction

• Task 3 Activities

- Progress on Remaining Task 3 items
- Progress and Planning on Task 4

E·S·S·I·E

Introduction

• Effect of Sheet Pile Walls in the Vicinity of Driven Piles

E·S·S·I·E

Introduction: Project Approach

- Identify design-relevant parameters for calculating pile capacities in the vicinity of SPWs
- Develop design charts and/or tabularized matrices for use in calculation of pile-capacity changes

• Methodology:

- Combined Discrete (soil) and Finite (pile and sheet pile wall) Element Analysis
- Spectrum of model validation (laboratory and centrifuge testing)

·S·S·I·E

Introduction: Project Approach

- Phase I (12 months; July 2014 June 2015)
- Task 1. Literature Review, Scenario Identification, and Field-Data Acquisition
- Task 2. Numerical Modeling Schemes and Granular Soil Units

Phase II (18 months; July 2015 - December 2016)

- Task 3. Numerical Modeling of Driven foundation in Granular Soils
- Task 4. Physical Laboratory/Centrifuge Experimentation
- Task 5. Reporting of Findings and Design-Oriented Recommendations
- Task 6. Final Report

ŀS·S·I∙E

Deliverables

- Development of a driven pile model
- Development of a pile and pre-driven SPW model (no removal)
- Development of a pile and pre-driven SPW model (w/ removal)
- Report of parametric study of pile-soil-SPW simulations

 High Strain Rate (HSR) Effects on stress-strain response and volumetric strains (from Iskander et al., 2015)

Interpretation based on literature data

High Strain Rate (HSR) Loading Effects

From Abrantes and Yamamoto (2002)

Example: ratio of tangential (k_T) to normal (k_N) contact stiffness

High strain-rate triaxial compression test (900%/sec; 14.2 psi confinement)

• Yamamuro et al. (2015) conducted HSR tests on crushed coral sand samples (Mean Dia. 0.32 mm, Dr = 58%, and Uniformity Coeff. =2.18) under confining stress of 14.2 psi, and subjected to applied impact loads equivalent to 900 – 1750 %/sec strain rates.

Task 3. Numerical Modeling of Driven foundation in Granular Material: 900%/sec strain rate loading

Z-stresses snapshots

E·S·S·I·E

Mohr-Coulomb Failure Envelopes per Strain Rate Effects (Top: DEM, Bottom: Experiments)

p-q diagram and comparison

Strain Rate	Friction angle				
	Numerical Results		Yamamuro et al.		
	Peak	Constant Volume	Peak	Constant Volume	
Static	41.3	31.5 (cont.)	41.3	41.3	
900% per second	43.8	33.17	44.9	41.05	
1750% per second	48.4	35.1	45.9	33.4	

Strain rates	Slope of K_f – lines (ψ)		
	Numerical results	Yamamuro et al	
Static	33.75	33.75	
900% per second	34.7	34.9	
1750% per second	37.72	35.7	

- Discrete Spherical Element (DSE) Upscaling Efforts:
 - Modeling DSE to match grain scale is not feasible for megascopic assemblies.
 - Requires ~1E+09 elements
 - Current limits are ~1E+07 elements
 - Use Walton's theory (1987) to estimate mesoscopic properties of upscaled DSE

E·S·S·I·E

Below is one of two upscaling approaches that are newly developed:

- Effective moduli for hydrostatic compression
 - Perfectly smooth/Infinitely Rough spheres

$$\lambda^* = \mu^* = \frac{1}{10} \left(\frac{3\phi^2 n^2 p}{\pi^4 B^2} \right)^{\frac{1}{3}}$$
$$\lambda^* = \frac{C}{10(2B+C)} \left(\frac{3\phi^2 n^2 p}{\pi^4 B^2} \right)^{\frac{1}{3}}$$
$$\mu^* = \frac{(5B+C)}{10(2B+C)} \left(\frac{3\phi^2 n^2 p}{\pi^4 B^2} \right)^{\frac{1}{3}}$$

where, λ^* and μ^* are effective Lame' constants,

 ϕ is the volume fraction,

n is the average coordination number,

p is the hydrostatic pressure,

B and C is a constant based on material properties of particle spheres.

Effective material properties:

$$k^* = \lambda^* + \frac{2}{3}\mu^* \qquad \qquad \nu^* = \frac{\lambda^*}{2(\lambda^* + \mu^*)}$$

- Discrete Spherical Element (DSE) Upscaling Efforts:
 - Upscaled properties used for DSE in pile driving model
 - Upscaled weight matches agglomerate weight
 - Loose to Medium Dense States
 - Inter-granular sliding and rolling friction
 - Low restitution: Coulombic damping is dominant

Property	Value	Unit
Radius	0.5	in
Density (by weight)	98	lb/ft ³
Bulk modulus	22.5	ksi
Inter-granular friction coefficient	1.0	
Coefficient of restitution	0.001	

E·S·S·I·E

- Development of a driven pile model:
 - FDOT standard pile shape
 - 24 in. square/60 ft long: a limit of model size
 - Assembly of monospheres
 - 1 in. diameter
 - Upscaled properties
 - Cylindrical assembly
 - 6.5 ft diameter
 - 50 ft deep
 - ~3.3 million spheres
 - Unit weight of assembly under gravity
 - ~105 pcf
 - Avg. Internal Friction Angle ~30°

- Development of a driven pile model:
 - Network of boundary spheres
 - Sides
 - Bottom
 - Confining Pressure
 - Based on profile of volume-averaged stress
 - •
 - Spring-damper
 - Each translation DOF
 - Stiffness small fraction of DSE bulk modulus
 - Spring is critically damped

E·S·S·I·E

Network of boundary spheres

Effect of boundary condition modeling:

E·S·S·I·E

Local non-reflecting boundary (2 blows)

- Development of a driven pile model:
 - Three scenarios considered

• Pile driving scenario:

- Triangular pulse load estimated from ICE Model I-46
- 44 blows per minute

GE	Single-Actir	ng Diesel F	vile Hamme	
	 New ICE I-Series diesel hammers combine traditional German design with years of production experience. 			
	♦ Simple, reliable, low cost	-		
	 Time-proven German design 			
	· Simple, splash fuel-injection syste	m		
	 Four-position, adjustable fuel pump 			
· ♥ _	 Automatic lubrication to upper and lower cylinders 			
*	 Equipped with USA box lead guid 	des		
	 Uses standard ICE drive caps 			
Ĕ	 Optional hydraulic tripping device 			
	 Alcohol additive tank for winter of 	operation		
	 Swinging, fixed and sliding lead se 	t-ups available in	16 and 8 ft. sections	
a i f	 Four models of light to heavy-duty l 	ead spotters for pre	ecise pile positioning	
	Working Specifications			
	Ram weight	10,145 lbs	4602 kg	
	Minimum energy	52,260 lbs	70,855 Nm	
	Maximum stroke	12.12 ft	3.69 m	
	Speed (blows per minute)	36-53	36-53	
	Weights			
	Hammer with USA lead guides	22,751 lbs	10320 kg	
	Drive cap base	1,662 lbs 425 lbs	754 kg 193 kg	
	Cushion material	136 lbs	62 kg	
(4)	Typical pile insert (DCC-24)	2,381 lbs	768 kg	
	iypical operating weight	27,300 IDS	12,408 Kg	
	Capacities (adequate for normal day) Diesel fuel tank	21.9 gal	83.0 I	
	Lube oil tank	4.5 ga	17.0	
	Ether tank	1.0 gal	3.7 1	
	Dimensions of hammer	173.4	5270 mm	
	Length with trip guides	21.9 ft	6675 mm	
	Length with extension	18.9 ft	5770 mm	
	Diameter of anvil	26.0 in 37.5 in	660 mm 953 mm	
	Width for box leads	32.0 in	813 mm	
di ta in	Overall depth	36.2 in	92 mm	
	Centerline to rear Centerline to front	17.3 in	480 mm 440 mm	

Example load pulse (44 bpm)

Pile hammer data sheet

 Initial loose-to-medium dense density states due to gravitational effects

S·S·I·E

Driving

Pile

Iso-view with vertical stresses

Iso-view with force chain

0 in

4 in

Displaced granular mass

E·S·S·I·E

- Pile driving scenario:
 - Loads attributed to tip and skin are cataloged

Pile

Reaction forces along pile skin and tip during first pile blow

E.S.S.I.E

• Top-down load test scenario:

Load increased linearly until plunging occurs

Isometric view with vertical stresses

Isometric view with force chain

Plunging

S·S·I·E

Pile

- Top-down load test simulation:
 - Comparison to single pile model in FB-MultiPier
 - Driven pile in Reese sand
 - 40 ft embedment
 - Avg. unit weight input as 105 pcf
 - Avg. internal friction angle input as 30°
 - Avg. ultimate skin friction input as 280 psf (FB-Deep analysis)
 - Ultimate bearing failure load input as 100 kips (FB-Deep analysis)

View Control Was			
andrei Darten			
6 lobal Duta I-Poblism -Arohyto -Arohyto -Arohyto -Arohyto -Dysenics -Dysenics -Dysenics -Dysenics -Pite -Pite -Pite -Pite -Pite -Pite -Pite -Pite -Pite -Soft -Pite -Soft -Pite -Soft -Pite -Soft -Pite -Soft -Soft -Pite -Soft -Soft -Pite -Soft -S -Soft	Participant Distribution Sale Ingrading Participant Distribution Sale Ingrading Sale Sale Sale Sale Sale Sale Sale Sale	Г —->	
nil Edit - Soil Set 1			
Layer 1: (C3D Geren			

Plunging

Pile

///

• Pile plunging scenario:

E·S·S·I·E

Plunging

Pile

///

- Task 3. Numerical Modeling of Driven foundation in Granular Materials
- Pile pullout scenario:
 - Load increased linearly until pullout occurs

Isometric view with vertical stresses

Isometric view with force chain

Pullout

S·S·I·E

Pile

• Pile pullout scenario:

E·S·S·I·E

Pullout

Pile

- Parametric study of pile driving simulations:
 - 3D simulations of megascopic assemblies can require millions of elements
 - Approx. four days of run time in HiPerGator 2.0 Supercomputer to simulate one second
 - 2D axisymmetric simulations can be used to streamline parametric study
 - 1 to 2 orders of magnitude reduction in simulation time
 - Can be calibrated (bulk modulus; sliding friction)
 - Can be benchmarked against 3D models

E·S·S·I·E

- A tool for parametric study of pile driving simulations in 2-D axisymmetry or plane-strain boundary conditions
 - A case of loose packing under gravity: a homogeneous granular mass with internal friction angle ~20 deg.

Elevation view of 2D assembly

Geostatic stress Left : Vertical stress Right : Horizontal stress Unit : psi

E·S·S·I·E

• Parametric study of pile driving simulations:

Boundary condition modeling

Left Boundary

Fully restrained

<u>Bottom Boundary</u> Local non-reflecting boundary

Restrained out-of-plane.

<u>Right Boundary</u> Local non-reflecting boundary Restrained out-of-plane

- Parametric study of pile driving simulations:
 - Pile modeling

Standard prestressed pile (24 in. square)

Symmetry model (solid elements) Unit width ouf-of-plane

E.S.S.I.E

• Parametric study of pile driving simulations:

• Parametric study of pile driving simulations:

Horizontal displacement

E.S.S.I.E

Remaining items

Development of a sheet pile wall (SPW) FE model

- Perform and report parametric study of pile-soil-SPW simulations
- Establish three benchmark simulations for Task 4
 - Pile
 - Pile and pre-driven SPW model (no removal)
 - Pile and pre-driven SPW model (w/ removal)

Introduction: Project Approach

- Phase I (12 months; July 2014 June 2015)
- Task 1. Literature Review, Scenario Identification, and Field-Data Acquisition
- Task 2. Numerical Modeling Schemes and Granular Soil Units

Phase II (18 months; July 2015 - December 2016)

- Task 3. Numerical Modeling of Driven foundation in Granular Soils
- Task 4. Physical Laboratory/Centrifuge Experimentation
- Task 5. Reporting of Findings and Design-Oriented Recommendations
- Task 6. Final Report

ŀS·S·I∙E

Task 4. Physical Laboratory/Centrifuge Experimentation

• Progress on Task 4:

- Calibration of LVDT and Pressure Transducers
- Repair/Procurement of instrumentation: stress gages and new load cells

Centrifuge - UF Reed Laboratory

Plan for Tasks 4 and 5

- July/2016-September/2016: Standardize the laboratory test program: Protocols, Instrumentation, and Test Measurements
- October/2016-March/2017: Validate the centrifuge testing procedure, and conduct three benchmark simulations from Task 3
- April/2017-July/2017: Numerical parametric simulation per model calibration between physical centrifuge test measurements and simulation results

S·S·I·E

Thanks!

Engineering School of Sustainable Infrastructure & Environment

