

Implementation of Down-Hole Geophysical Testing for Rock Sockets

Dennis R. Hiltunen, Ph.D., P.E. Jian Zou, Ph.D.

Geotechnical Research in Progress, July 14-15, 2016

Objectives

Primary objective: Develop a test method to characterize subsurface conditions in the vicinity of a drilled shaft's rock socket from within a single borehole

- Task 1: Borehole Instrument
- Task 2: Inversion Software
- Task 3: Validation Experiments
 - Large laboratory block of synthetic limerock
 - > Newberry and Kanapaha test sites
- Task 4: Final Report

Task 1: Overview

- Develop a prototype instrument for geophysical characterization of a zone of rock around the periphery of a single borehole, including two major components:
 - A source for generating seismic (mechanical) waves
 - A receiver array for capturing the wavefield
- A Kalinski-style membrane system (M. Kalinski at UK) created to couple the receiver array to the borehole wall
 - A cylindrical membrane constrained on each end, (like a triaxial test specimen) with the receivers attached inside
 - The membrane then inflated within the borehole to couple the receivers with the borehole wall

Kalinski Borehole Receiver

b. exploded view

Borehole Receiver

- The receiver array will consist of 10 to 12 accelerometers in a line along the vertical sidewall of a borehole
- Both uniform and non-uniform spacing of the receivers will be considered

5

Borehole Source

- A source needed to generate a ring-type loading around the circumference of a borehole, which is consistent with the axisymmetric loading condition
- Piezoelectric cylinder source (high-frequency source good for rock characterization) selected to apply a uniformly-distributed ring loading within the borehole
- The source will be used to create wavefields from multiple shot locations along the length of a fixed receiver array to improve resolution

Piezoelectric Borehole Source

Thill (1978)

Piezoelectric Cylinders

Cylinder and Amplifier: 1st Generation

Cylinder and Amplifier: 2nd Generation

Combined Source/Receiver Concept

Task 2: Overview

 Develop an inversion software to create an image of the material adjacent to the borehole using measured (or synthetic) data

Plan View

Cross-Sectional View

Forward Model

- A forward model needed to predict motion versus time signatures occurred at each receiver position along the borehole sidewall (the so-called full waveforms)
- Finite element software package ABAQUS used in forward modeling
 - Axisymmetric forward model selected to predict the full waveforms
 - 3D forward model abandoned due to formidable computer time required for inversion

Inversion Scheme

- Full wave inversion (FWI) technology employed to create a 2D image along one radius from the borehole axis
 - The inversion conducted by minimizing least square error between the measured and predicted full waveforms based on a regularized Gauss-Newton method
- The nonlinear least square inversion scheme implemented in MATLAB
- The interface between ABAQUS (forward model) and MATLAB (inversion scheme) developed using Python script

Practical Strategies for FWI

- Regularized Gauss-Newton method is one of the local optimization techniques
- Two practical strategies used to help improve the quality of initial models and to find the global minimum:
 - Frequency filtering
 - Time windowing
- Frequency filtering, also known as the multiscale approach, builds a background model by inverting the low-frequency components in the data, and then increases the resolution by gradually adding high-frequency components
 - Key idea: reducing nonlinearity in the data

Frequency Filtering: Example

 Raw signal exhibited local "vibration"; three peaks existed in the frequency spectrum of the raw data

Frequency Filtering (Cont.)

 Time signal became smoother (more linear) after applying a lowpass filter; only lowest peak remained in the spectrum

Time Windowing

- Time windowing used to further reduce the nonlinearity: by starting inversion with a short time window at a low-frequency band; and then gradually increasing the time window and frequency bandwidth
- Using the filtered waveform in the prior example: (i) First window clipped at 2.5 ms; (ii) Second window at 5 ms; (iii) Full window corresponds to the entire length of the signal (8 ms)
 - Inversion started using the filtered data for the first window; After convergence, further inversion conducted using raw data
 - Then, the inversion continued with longer windows until full data set has been considered

Time Windowing (Cont.)

Example Simulations

- Example simulations used to illustrate effectiveness of the analysis software, including
 - Case 1: multilayered system w/o anomaly
 - Case 2: multilayered system w/ one ring-type anomaly
 - Case 3: multilayered system w/ two ring-type anomalies
- Synthetic records created using axisymmetric forward models and treated as field data
 - Each forward model divided into 36 pixels (9 by 4), resulting in 36 parameters; Each represents one shear wave velocity
 - A shock loading excited at the center of borehole side wall
 - Synthetic records obtained at predefined locations of a 10channel receiver array along the wall

Axisymmetric Forward Model

Schematic Loading and Layout of Receivers

Synthetic Records

- Axial component of particle displacement obtained at each location of the 10-channel receiver array for all three cases
- Velocity profiles reconstructed by means of inversion

Inversion Procedure

- Inversion conducted following four steps:
 - 1: 2-ms time window w/ a low-pass filter
 - 2: The same time window w/ no filter
 - 3: 4-ms time window w/ a low-pass filter
 - 4: The same time window w/ no filter
- For Step 1, initial velocity set to be 775 m/s throughout all 36 pixels;
 For the rest, the updated model obtained by end of the previous step was used as the initial model for the current step
- Convergence criterion set for each step using max. LSE (LSE_{max}); Also, max. iterations (k_{max}) specified to terminate the inversion as needed

Case 2: Multilayered Profile w/ One Anomaly

 The model comprised of nine layers with a varying velocity from 450 (the top) to 1000 (the middle) and back to 450 (the bottom).

23

Step 1: LSE < LSE_{max} (Converged at k = 20); k < k_{max}

Step 2: LSE < LSE_{max} (Converged at k = 38); k < k_{max}

Step 3: LSE < LSE_{max} (Converged at k = 49); k < k_{max}

Step 4: LSE < LSE_{max} (Converged at k = 12); k < k_{max}

Task 3: Overview

 Validation experiments: 1) Large laboratory block of synthetic limerock; and 2) Newberry and Kanapaha test sites

Synthetic limerock specimen

Synthetic Limerock Specimen

- Preliminary results
 - Vs = 935 m/s from FWI
- Free-free resonant column tests
 - Vp = 1500 m/s
 - Poisson's ratio = 0.2
 - Thus Vs = 890 m/s

Concluding Remarks

- Development of piezoelectric borehole source is in progress
- Analysis software developed and imaging capability of the software clearly demonstrated through example simulations with synthetic records
- Work on validation experiments using large laboratory block of synthetic limerock is in progress
- The inverse procedure may be revised when field measurements (known to have noises) are used; A final version of the analysis software will be delivered along with the final report

Thank You!!!

