

Field Device to Measure Viscosity, Density, and Other Slurry Properties in Drilled Shafts

GRIP 2016 Presented by: Gray Mullins, Ph.D., P. E. UNIVERSITY OF SOUTH FLORIDA.

Civil & Environmental Engineering

Problem Statement

- Drilled excavation requires slurry that falls within a set of parameters regarding density, viscosity, pH and sand content; typically, each slurry property is tested using a unique, separate test method.
- Slurry properties are measured every 2 hours for the first 8 hours and 4 hours thereafter.
- A downhole device to measure all properties real time may improve data quality and expedite construction.
- Establish method to automate each test

FDOT Standard Specifications for Road and Bridge Construction Section 455-15.8

	Item to be measured	Range of Results at 68°F	Test Method
Mineral slurries	Density	64 to 73 lb/ft ³ (in fresh water environment) 66 to 75 lb/ft ³ (in salt water environment)	Mud density balance: FM 8-RP13B-1
	Viscosity	30 to 50 seconds	Marsh Cone Method: FM 8-RP13B-2
	pH	8 to 11	Electric pH meter or pH indicator paper strips: FM 8-RP13B-4
	Sand Content	4% or less	FM 8-RP13B-3

	Mixed Polymer Slurry Properties			
Polymer slurries	Item to be measured	Range of Results at 68°F	Test Method	
	Density	62 to 64 lb/ft ³		
		(fresh water)	Mud density balance:	
		64 to 66 lb/ft ³	FM 8-RP13B-1	
		(salt water)		
	Viscosity	Range Published By The Manufacturer	Marsh Cone Method:	
		for Materials Excavated	FM 8-RP13B-2	
	pH	Range Published By The Manufacturer	Electric pH meter or pH	
			indicator paper strips:	
		for Waterial's Excavated	FM 8-RP13B-4	
	Sand Content	0.5% or less	FM 8-RP13B-3	

Existing Method to Measure Density

Standard mud balance

How to Automate Density Measurements

- Hydrostatic Pressure Differential
 - By comparing pressure data from two points with a known elevation difference, density can be calculated using:

$$\rho = \frac{\Delta P}{g(h_2 - h_1)}$$

- Archimedes Principle
 - By monitoring the buoyant force created by a "float" of known volume, the density of the surrounding fluid may be calculated using the following equation:

 $F_{buoyancy} = \rho_{fluid} * V_{displaced}$

Viscosity Viscometer Measurements

Newtonian fluids -Viscosity

Shear-thinning fluids -Apparent viscosity -Gel strength -Yield point

View from above

Viscosity Marsh Funnel Measurements

- Time (sec) required for 1qt of fluid to flow from standardized 3/16in orifice of a funnel.
- Pressure ranges from 0.8 0.5psi
- Flow ranges from 0.6 0.2gpm (26 to 75 sec)

How to Automate Viscosity Measurements

- Different viscosity slurries have unique flow vs pressure curves
- For the same flow rate, a more viscous material causes higher pressure to be developed.

Sand Content

Fixed volume of slurry is sieved wet washed through 200 sieve.

NOTE: Volumetric Sand Content

Indirect measure of suspended solids

How to Automate Sand Content Measurements

- If the viscosity of a pure bentonite slurry is known, a corresponding density can be expected.
- Any density increase above pure bentonite can be attributed to the suspended solids.
- Sand content is a portion of suspended solids.

Sand content from density and viscosity

Approach

- Proof of concept
- Component Development
- System Fabrication
- Lab and Field Testing

Slurry Column Tests (Falling Head)

Bunnantunnannan

Slurry Column Tests

- Bentonite slurry viscosity
 - ranged from 26 (water) to 90 sec/qt
- Flow rates (12ft falling head)
 - 0 to 2gpm
- Density
 - 64 to 71 pcf
- Sand contents
 - 0.25 to 10% by volume

Pressure (psi)

40 Second Marsh Funnel

Test Batch Summary

Batch	Average Marsh Funnel Test (sec)	Average Sand Content (%)	Density (lb/ft ³)
No Sand	40.03	.25	64.81
Sand	39.3	6.58	68.24

Use density measurements to determine gravimetric sand content

Flow Meter

0.00

.....

Pressurized Flow Tests

Pressure Transducer

High Flow Nozzles

High Flow / Pressurized

- Bentonite slurry viscosity
 - ranged from 30 to 140 sec/qt
- Flow rates (pumped)
 - 0 to 23gpm
- Density
 - 64 to 66 pcf
- Sand contents
 - 0.25% pure bentonite only

Select System Orifice

- Small orifice is affected most by changes in viscosity
- Large orifice less affected by debris
- Selection of system orifice based on balancing positive benefits
- Need largest possible pressure difference relative to transducer sensitivity

Low Flow Nozzles

Optimum Nozzle Selection

System Concepts GRIP 2015

- "dive bell"
 - Pressure
 - Flow
 - Density
 - Depth measured topside

Downhole self contained

Downhole Component Selection Considerations

- Pressure transducer(s)
 - Differential vs absolute
- Flow meter
 - Magnetic flux, Doppler, paddle wheel, ultra sonic
- Pump type and size
 - Centrifugal, diaphragm, peristaltic, Archimedes screw, piston pump
- Component power requirements
 - AC, DC, hydraulic, pneumatic
- Power source (top side power vs on-board batteries)

Downhole Component Selection Considerations

- Pressure transducer(s)
 - Differential
- Flow meter
 - Magnetic flux
- Pump type and size
 - **Centrifugal** with variable flow
- Component power requirements
 - **DC** (24-32, 10-15, 12 or 24VDC)
- Power source (2 On-board batteries; 12 or 24)

Power Requirements

- Onboard batteries 12 VDC
- 5 amps require large, heavy wire to combat voltage drop over a 100ft distance of cable.
- Component input requirements do not fall within the same range.
 - 12 VDC for pump
 - 10-15 VDC for flow meter
 - 24-32 VDC for both pressure transducers

Description	Power Dequirement	Reqd. No. Cable	Output Type
	Kequirement	Conductors	
Pump	12 or 24VDC	None for operation	N/A
Pump relay	12VDC triggered by computer system	2	N/A
Flow meter	10-15VDC	2 or 4 (for both output)	4-20mA current or digital counts
Nozzle pressure	24-32VDC	2	0-5VDC
Density pressure	24-32VDC	2	0-5VDC
Battery Charge	12 or 24VDC top to bottom feed	2	N/A
Battery Monitor	N/A	2	N/A
Pump Speed Control	N/A	3	N/A

Power Requirements (continued)

Boost Converter

- Input Voltage (3 to 35vdc)
 - 12.8 V (battery)

- Output Voltage (3.5 to 35_{VDC})
 - 30.4 V (chosen)

Concept Device

Differential Pressure Transducer (density)

Computerized DAQ System (CDS)

Computerized DAQ System (CDS)

Down Hole Unit (DHU)

Component	Sensor	Harness	DAQ
	White	Orange	2L
Density PI	Green	Red	2H
	White	Pink	3L
FIOW P1	Green	Purple	3Н
	White	Green	N/A
Elow Mator	Green	Gray	N/A
Flow Meter	Brown	Yellow	5L
	Blue	Brown	5H
	Yellow	Blue	N/A
Pump Controller	Red	Bl-Gray	N/A
	Black	Bl-Green	N/A
Hot Line	Red	Bl-Brown	4H
Hot Lille	Black	Bl-Yellow	4L
Monitor	Red	Bl-Blue	1H
Dalay	Red	White	N/A
кетау	Black	Black	N/A

Transmitter / diaphragm purging

- Very repeatable
- Actually two overlapping test curves at each viscosity
- 2nd order polynomial fit
- Slice this graph vertically at tenth points

• Constant flow rate curves

- Constant flow rate curves
- Natural logarithm fit

• Plot of coefficients and constants of trend lines

◆ Coef ■ Const

 $y = 2.1619 \ln(x) - 5.3863$ $R^2 = 0.9973$

- $y = 1.9457 \ln(x) 5.1771$ $R^2 = 0.9988$
- $y = 1.6979 \ln(x) 4.7794$ $R^2 = 0.999$

 $y = 1.4185 \ln(x) - 4.1933$ $R^2 = 0.9988$ $y = 1.1076 \ln(x) - 3.4187$ $R^2 = 0.9981$

Equations from previous slide

Example for 0.32 gpm:

Coefficient: = $-1.5786x^2 + 3.8987x + 0.391$ = 1.477

Constant: = $9.4229x^2 - 12.457x - 1.3042$ = -4.326

$$P = 1.477 \ln V - 4.326$$

0.3gpm P = 1.4185 ln(V) - 4.1933

$$viscosity = e^{\left(\frac{P - (-4.326)}{1.477}\right)}$$

Given a measured pressure of 1.7 psi: viscosity = 59.1 s

Calibration test shows predicted viscosity curve throughout flow range

Field Testing – Shaft Simulator

System Check (water)

Test Procedure

 Nozzle pressure required depth corrected offset

Field Testing – Procedure

- 1. Take baseline density pressure before introduction
- 2. Introduce device into hole, lower to first depth
- 3. Take baseline viscosity pressure at zero flow rate
- 4. Increase flow rate to desired test range, wait for stabilization (e.g. 0.25-0.35gpm)
- 5. Take pressure and flow rate data until average is stable (10 sec)
- 6. Reduce flow rate to zero and move on to next depth
- 7. Repeat steps 3-6 at subsequent depths

Field Testing – Shaft Simulator

Differential Pressure Transducer (density)

Field Testing – Sarasota

Field Testing – Sarasota

Field Testing – Ft. Myers

Field Testing – Ft. Myers

Second Generation

- Smaller unit
- Displaced volume / load cell
- Same pump, flow and nozzle pressure

Conclusions / Lessons Learned

- Viscosity measurement system very stable.
- Density from differential hydrostatic pressure not a trivial pursuit.
 - Any bubbles will delay and skew pressure readings
 - Different length capillary tubes will cause temperature related drift in readings.
 - Transmitter to sensor elevations must be same on both sides of sensor.
- Displaced volume system shows promise
- Gravimetric suspended solids may be better measure of "sand content"
 - Poorly graded vs well graded suspended can have significant difference on actual "sand content"
 - Silt content, presently unmeasured, is detected with new system.
- Experimental prototypes were fast and easy to use.

Questions?

