

FLORIDA INSTITUTE OF TECHNOLOGY - CIVIL ENGINEERING DEPARTMENT

FLORIDA DEPARTMENT OF TRANSPORTATION BDV28 977-04

Development and Testing of the Miniaturized Pressuremeter Test for Use in Unbound Pavement Layers

Principal Investigator: Paul J. Cosentino, Ph.D., P.E. Primary Researchers: Alaa Shaban, Ph.D. Postdoc, Thaddeus Misilo, Jacob Jansen Project Manager: David J. Horhota, Ph.D., P.E.

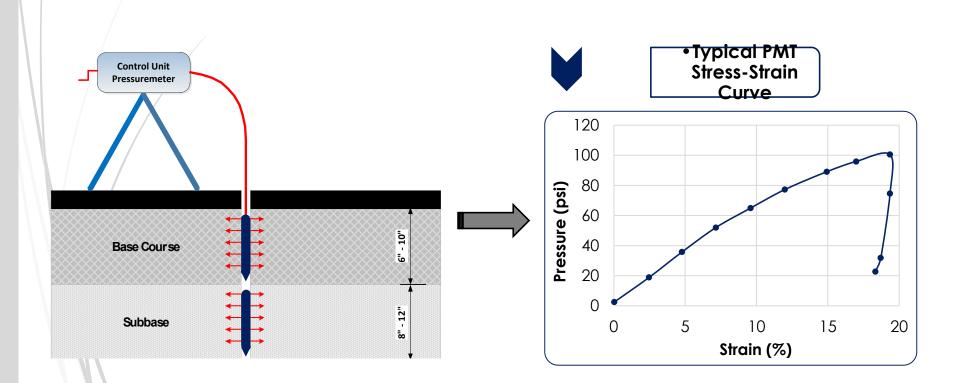
[2016-GRIP MEETING]

Problem Statement

Testing Limitations of NDG

Radioactive source.

Usage requires significant administrative effort.



Produces density and moisture content not strength and stiffness.

Research Objective

The objective is to develop a miniaturized PMT field test that can be completed in about five minutes to measure stress-strain pavement material responses.

Literature Search

Miniaturize the Pressuremeter Probe

Determine Field Testing Sites

Conduct Field Comparison Testing

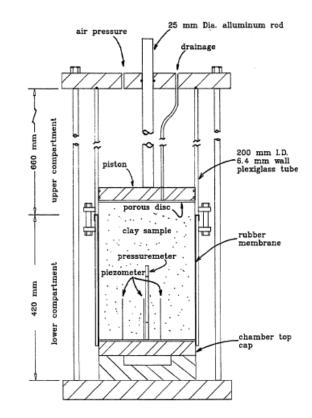
Conduct Laboratory Comparison Testing

Analyze and Finalize MiniPMT Testing Results

Complete Final Report

Project Schedule

RESEARCH	1-Nov	1-Dec	1-Jan	1-Feb	1-Mar	1-Apr	######	1-Jun	1-Jul	1-Aug	1-Sep	1-Oct	1-Nov	1-Dec	1-Jan	1-Feb	1-Mar	1-Apr	######	1-Jun	1-Jul	1-Aug	1-Sep	1-Oc
TASK	2015	2015	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017
Task 1 Literature Search	1	2	3	4																				<u> </u>
Task 2 Miniaturization of PMT Probe		1	2	3	4	5	6	7	8	9	10													
Task 3 Determine Field Testing Sites				1	2	3	4	5	6															
Task 4 Conduct Field Comparison Testing					1	2	3	4	5	6	7	8	9	10	11	12	13	14						
Task 5 Conduct Laboratory Comparison Testing		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15								
Task 6 Draft Final Report and Technology Transf																		1	2	3	4			
Task 7 Final Report																						1	2	3


[Deliverables/Schedule]

Background / Lit Search

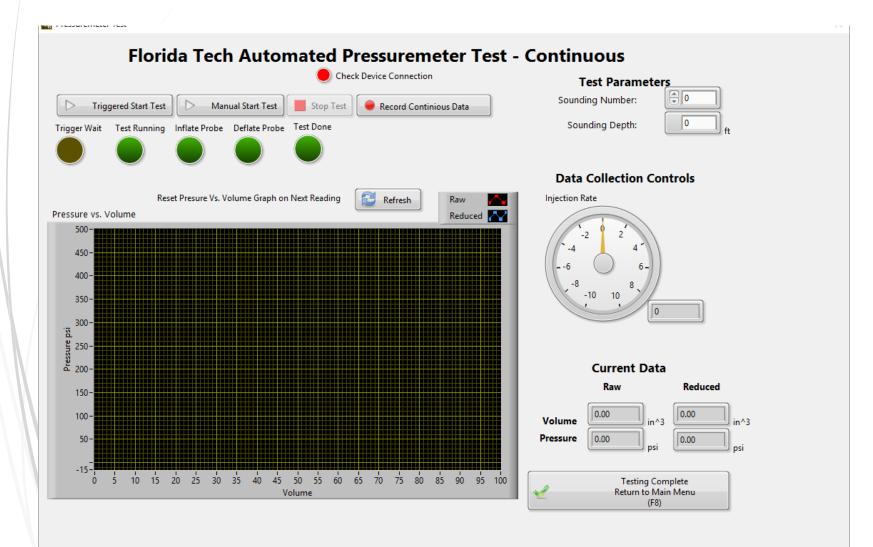
Field Quality Control

- Falling Weight Deflectometer
- Lightweight Deflectometer
- Klegg Impact Hammer
- Nuclear Density Gauge
- Dynamic Cone Penetrometer
- Miniature Pressuremeter
 - Purdue University
 - 4.73 inches x 0.473 inches

Miniaturization of PMT Probe

- Should fit into the same size hole as the NDG.
- Should test the entire pavement layer.
 - Research limited to 6 & 12 inch probes.
- Prove the new probe provides consistent results.
- Determine if correlations exist between other field tests and mini-PMT.

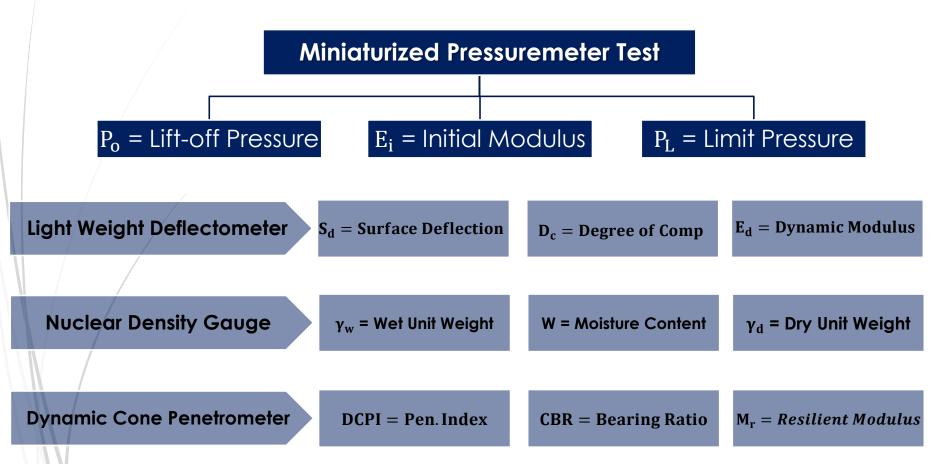
Miniature Probe Designs



New Mini-PMT Test Procedure

- Develop and Validate a Continuous PMT Test
 - Constant Strain Rate Test
 - 20 50 cc injected volume
 - Automatic Estimation of E_0 , P_0 and P_L^*
 - Software Guides Operator Through Test Sequence

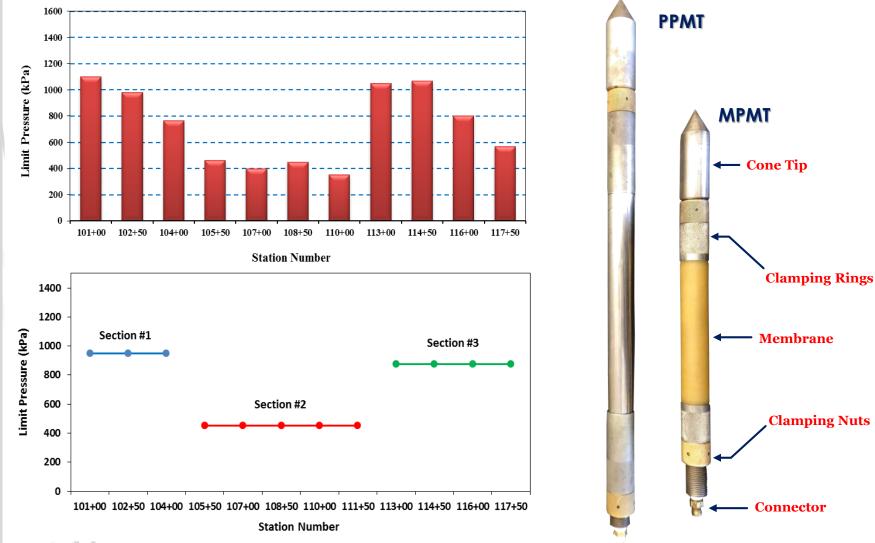
Continuous Test Software



Determine Field Testing Sites

- Field Testing Sites approximately 60 minutes from Melbourne, FL
- Site should have 6 or 12 inch Base and / or Subbase Layers
- Ability to conduct:
 - Standard Pencel and Mini PMT
 - Lightweight / Falling Weight Deflectometers
 - Dynamic Cone Testing
 - Density Testing
- Current Site
 - Campus test sites Preliminary equipment evaluation
 - Heritage Parkway, Palm Bay

Field Comparison Testing



Field Testing Measurements

Pavement Layer	Stren	gth Paran	neters	Compaction Parameters					
Soil Property	Mr	Ed	Ei	CBR	PL	Ро	DC	γd	w
Subgrade Soils	ſ	ſ	ſ	ſ	ſ	ſ	ſ	ſ	ſ
	DCP	LWD	MPMT	DCP	MPMT	MPMT	LWD	NDG	NDG
Base Course	Ļ	t	t	t	t	t	t	t	t

Mean =
$$\frac{\sum x_i}{N}$$
 Std. = $\sqrt{\frac{\sum (x_i - \overline{x})^2}{N}}$ **COV** = $\frac{\text{Std}.}{\text{Mean}}$

Determining Consistency of Field Testing Measurements

Laboratory Testing Measurements

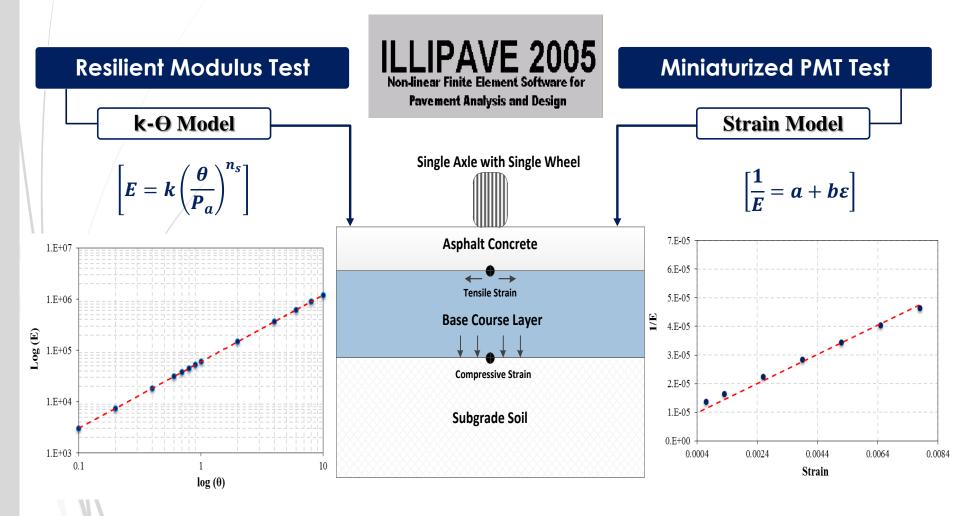
Grain Size Distribution

- American Society for Testing and Materials (ASTM D6913-2009)
- American Association of State Highway and Transportation Officials (AASHTO T 331)

Atterberg Limits

- American Society for Testing and Materials (ASTM D4318-2010)
- American Association of State Highway and Transportation Officials (AASHTO T 89)

Optimum Density and Moisture Content


- American Society for Testing and Materials (ASTM D1557-2012)

- American Association of State Highway and Transportation Officials (AASHTO T 180)

Limerock Bearing Ratio

- Florida Department of Transportation (FDOT FM 5-515)

Laboratory Testing Measurements

QUESTIONS?