

Evaluating the Effect of Temporary Casing on Drilled Shaft Rock Socket Friction

GRIP 2016 Presented by: Gray Mullins, Ph.D., P.E.

Civil & Environmental Engineering

Ultimate Side Resistance

- Usually designed as a function of the parent rock properties and characteristics:
 - UCS
 - Unconfined Compression Strength
 - Recovery
 - RQD
 - Split Tensile Strength

Ultimate Side Resistance

- O'Neill and Reese (1999) AASHTO (2012) $fmax = 0.65pa \sqrt{\frac{q_u}{p_a}}$ and $qu \le f'c$
- Kulhawy et al. (2005) Base of FHWA (2010) $fmax = C * p_a \sqrt{\frac{q_u}{p_a}}$ and $qu \le f'c$

• McVay et al. (1992) – Base of FDOT (2015) $fmax = \frac{1}{2}\sqrt{q_u}\sqrt{q_t}$ and $qu \le f'c$

Construction Effects (GRIP 2015) not addressed by design

- Excavation Equipment
- Reinforcement Bar Size and Cage Spacing
- Concrete properties
- Cased or Slurry Supported
- Vibrated or Oscillated Casing
- Slurry Type
- Slurry Exposure
- Temporary or Permanent Casing

Problem Statement

- Construction methods affect drilled shaft side shear resistance which is not fully addressed by design.
- The effects from full length or partial length temporary casing can present the same concern.
- The primary objective of this study is to <u>quantify the</u> <u>effects of temporary casing</u> installation and extraction on the resulting side shear in the portions of the rock sockets used to embed and seal the casing.

Study Motivation

455-15.7 Casings. Ensure casings are metal...

.... If temporary casing is advanced deeper than the minimum top of rock socket elevation shown in the Plans or actual top of rock elevation is deeper, withdraw the casing from the rock socket and overream the shaft. If the temporary casing cannot be withdrawn from the rock socket before final cleaning, <u>extend the</u> <u>length of rock socket</u> below the authorized tip elevation one-half of the distance between the minimum top of rock socket elevation or actual elevation if deeper, and the temporary casing tip elevation.

Scenarios

- Top of rock is not where the borings put it and so the rock socket has to start deeper,
- Operator inadvertently forces the casing deeper than planned although the "rock" is really pretty good
- Top of rock is technically where the borings put it, but the quality is so bad the casing must be advanced deeper to ensure a tight/adequate seal.

Casing Conditions

- Permanent
 - Full length
 - Partial length
- Temporary
 - Full length
 - Partial length
- Telescoping / Combination

Misconceptions

- Use of casing makes more predicable shaft
- No anomalies occur within permanent cased regions
- Temporary cased sections have more reliable cross sections

Slump Loss in Temporary Casing

Temporary Casing Removal

Quantifying the Effects

- How does temporary casing affect the resulting side shear?
- Does concrete flow out and form intimate bond with surrounding rock?

or

 Do residual fragments of crushed rock remain and get squeezed/trapped between outward flowing concrete?

Construction with temporary casing Effects of casing extraction

Construction of rock sockets Effects on the side resistance (O'Neill and Hassan, 1994)

Case Study 2

	Uncased	Cased	
Date constructed	7/15 and 7/16/09	7/20/09	
Load test date	7/31/09	8/3/09	
Reported Mobilized Capacity	4,183 kips	4,189 kips	
Maximum displacement	0.43in	0.37in	
Permanent displacement	0.10in	0.15in	

Top of Shaft Load – Displacement

Top Segment Unit Side Shear

Segment 2 Unit Side Shear

Segment 3 Unit Side Shear

Bottom Segment Unit Side Shear

Toe of Shaft Load – Displacement

Case Study 3 Castelli and Fan (2002)

Castelli and Fan (2002)

Test	Shaft	Maximum	Strain Gage	Limestone	Mobilized	Upward
Shaft	Diameter	O-cell load	Elevation	Classification and SPT	Side Shear	Disp.
No	(inches)	(tons)	(ft)	N-Value	(tsf)	(inches)
1 36		5 970	-18 to -21	Decomposed	0.5	0.94
				Limestone, N \approx 7		
	36		-21 to -25	Cemented Limestone, N \approx 50/1in to 50/5in	8.2	
			-25 to -28		19.0	
			-29 to -34.3		5.6*	
2 48			-17.7 to -	Decomposed	2.1*	
			21.7	Limestone, $N \approx 16$		
			-21.7 to -	Cemented Limestone,	< 0 *	
		25.6	N ≈ 50/3in	6.2*		
	48	1465	-25.6 to -	Cemented Limestone,	1/1*	0.50
			29.5	N \approx 50/3in	14.1*	
			-29.5 to - 32.3	Weakly Cemented	4.1*	
				Limestone, N \approx 20 to		
				50/4in		

* Failure was not observed on these segments.

Test Bed Preparation

- Target weaker limestone vulnerable to extended casing embedment
- Simulated limestone made from calcium carbonate / coquina shell combinations
- Casing installed with vibratory or drop hammer
- Use high strength pull out anchor rods

Saxena, 1982

Lime Chemical Reactions

 $CaO + H_2O \rightarrow Ca(OH)_2 + heat (slaked lime)$

 $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$

In Pounds:

 $1.00[Ca(OH)_2] + 0.6[CO_2] \rightarrow 1.35[CaCO_3] + 0.25[H_2O] + heat$

Full Scale Tests

- RW Harris' Miami Office has limestone near surface
- Pull out frame or Simply supported beam D1143 or D3689
- Rapid Load Test ASTM D7383

100 kip pullout frame

Questions?

