Evaluation of Static Resistance of Deep Foundations

FDOT BDV31-977-05 Principal Investigator:

Michael McVay, Ph.D.

Project Manager: Rodrigo Herrera, PE

Co-Principal Investigator: Jae Chung, Ph.D. BSI Director

Primary Researchers:

Thai Nguyen Anna Weina Lin Huang Vinh Le

² Tasks: FBDEEP Driven Pile Capacity Estimation

- 1. Compare FBDEEP Side, Tip and Total H-pile Predictions with DLT data for Florida soils and rock; make recommendations for improvements
- 2. Compare FBDEEP Side, Tip and Total Prestressed Concrete Pile Predictions with DLT data in Florida Limestone; make recommendations for improvements
- Compare FBDEEP Side, Tip and Total for Open Pipe Pile (24" < D < 54") Predictions with Static and Statnamic Load Test Data; make recommendations for improvements as well as evaluate other methods (API)

- 1) Pile Driving Hammers
- 2) Subsurface Variabilities
- 3) Plugging Conditions
- 4) Unloading Skin Frictions during Driving

Large Hammers would result in:

- less than 36 bpf at EOD (typical NBR=240-300 kips for H-piles)
- Easily cut through most soil types
 - \rightarrow pile would be too deep (>100') \rightarrow unloading skin friction
 - \rightarrow pile capacities do not appear to increase with depth
 - \rightarrow has to rely on end bearing (keep driving to find end bearing layer)

UF FLORIDA

H-Piles – Pile Driving Hammers

Example:

5

5.5-kip ram RMX = 240 to 300 kips Low blow counts Low strokes

H-Piles – Pile Driving Hammers

Example:

UNIVERSITY of

6

3-kip ram RMX = 240 to 300 kips OK blow counts OK strokes

(some low blow counts when stroke is high)

7 H-Piles – Pile Driving Hammers

Recommendations: Smaller Hammers (1.7 to 3.0 kip) are more suitable as H-piles are typically small and NBR is typically less than 400 kips.

However, Small Hammers are typically not abundantly available

Subsurface Variabilities

In many geological areas of Florida, the subsurface differs significantly even within a footer.

Therefore, the pile driving records/ results may or may not necessary reflect what was encountered in the soil borings

H-Piles – Subsurface Variabilities

H-Piles – Subsurface Variabilities

H-Piles – Subsurface Variabilities

Bo rin g	Elev. (ft)	SPT N	Hard LS Thicknes s	DLT EOD Pile behaviors	Comments
7L	-84	50/3"	2.5'	7L-Pile 27 practical refusal, approaching <mark>650 kips</mark>	Most competent limestone based on DLT EOD results. However based on Soil Boring, it is not the most competent
	-61	50/5"	10'	300 kips for 1 inch	
0D	-125	50/2"	7.5'	300 kips for 5 inches	
9N	-145	50/2"	12.5'	400 kips for 1 inch	Less competent limestone based
8L	-70	41 to 50/4"	15'	180 kips (behaved similar to zones where N=10 to 30)	on DLT EOD results. However based on Soil Borings, limestones are more competent
	-47	50/4"	5'	400 kips for 5 inches	than that at elevation -84 ft of
8R	-67	50/2"	5'	200 to 450 kips, however at elev -72'	boring 7L
	-82	50/1"	10'	400 kips for 5 inches	

H Piles Plug – or Unplugged

Example in Soft Limestone SPT N=26; L = 30-ft fs = 0.2 tsfPerimeter_{unplug} = 7.1 ft Perimeter_{plug} = 4.7 ft F_{s-unplug} = 7.1 * 30 * 0.2 = 43 tons F_{s-plug} = 28 tons qp = 30 tsf $A_{unplug} = 0.18 \text{ ft}^2$ $A_{plug} = 1.4 \text{ ft}^2$ Q_{t-plug} = 42 tons Q_{t-unplug} = 5 tons During Driving, due to high acceleration (approx a = 200g), the pile tends to cookie cut the soil (with soil having a large Inertial Force of I = Soil Mass * a keeping the soil mass "motionless" compared to the pile) $Ru_{driving} = F_{s-unplug} + Q_{t-unplug} = 48 tons$ $Ru_{plugged} = F_{s-plug} + Q_{t-plug} =$ 70 tons Thus, Dynamic Testing may show conservative results

- For very long (Deep Penetrated) H-piles, another phenomenon may arise: Skin Friction Unloading (will discuss later): Severe Unloading Skin Friction will cause DLT RMX to under-predict
- For H-piles in between 30 ft and 100 ft, DLT RMX may either under-predict or over-predict depending on Plug Conditions.

Plug Conditions

13

UNIVERSITY of

Resumed driving (due to splicing) after 7 days:

Blow #0 (of the restrike) show incredible increase in Total Capacity

(Blow #0 is the soft blow in the restrike,

where the stroke height is displayed as 0 feet in Dynamic Testing software)

Plug Conditions

15

During driving (EOD) the toe area may have been a half plug shape.

Due to setup (freeze) gains on skin frictions after a long wait time, the toe area is a full plugged box shape on BOR Blow #0,

Then the toe area is eroding away almost immediately to a half plug on the next immediate blows

 \rightarrow reiterates opinions of Hannigan et al. (2006) and Holloway and Beddard (1995) that soil plug depends on hammer dynamic responses, and thus EOD DLT capacities are not the true pile capacities.

Unloading Skin Friction during Driving

a) Blow #1

16

UF FLORIDA

b) Blow #10

Soil Setup Disappearance during Driving

EOD, Blows #1 and #10

Soil Freeze Setup can be destroyed almost immediately on H-Pile driving.

Impact driving may quickly destroy most of the skin friction setup (freeze) gain of H-pile resistances

→ Using FDOT Setcheck Criteria for 10 blows would not be able to prove pile capacity (1 blow exceeding NBR, next 5 exceeding 95%, then remaining exceeding 90%)

Unloading make the apparent total skin friction on the DLT RMX results much lower than the actual capacities. The addition of skin friction in the lower depths (as the pile penetrates to deeper depth) is being cancelled out by the unloading skin friction in the upper portion of the pile.

Therefore, if the pile is being driven much deeper, the RMX method capacity appear to not increase with depth until a very competent limestone layer is encountered to provide higher end bearing value.

PDI's PDA Manual Appendix A, Section 4.8: Unloading Skin Friction

Unloading Skin Friction during Driving

- Highly variable subsurface. Deep pile next to shallow pile.
- Plug conditions vary between Static and Dynamic conditions
- Freeze (setup) as well as the full toe plug could easily be destroyed by around blow #5 of BOR
- Due to skin friction unloading of exceptionally long piles, the DLT results under-predict
- → Discrepancies between DLT RMX results and FB-Deep are not necessary due to inadequacies of the FB-Deep formulas.
- \rightarrow Keep all current FB-Deep formulas.

However, some improvements needed...

Plug Conditions:

FB-Deep:

Soil Types 1 & 2:

Always unplugged \rightarrow Not reasonable as they have high friction during static loading High friction helps form the plug during static loading.

FB-Deep is opposite to recommendations by Tomlinson (1994), Hannigan et al (2006) Soil Type 2: Furthermore, borderline between Soils 2 and 3 is thin:

SP-SM (e.g. 12% fine) is Soil 3 SM (e.g. 13% fine) is Soil 2 Soil Type 3: Always Plug

Coyle, H M and Ungaro, R (1991) based on static load tests recommend half plug configuration

We performed analyses "half plug" conf on cases of no "unloading"

H-PILES FB-DEEP IMPROVEMENTS

Resistances (kips) Resistances (kips) 800^{10th} Str SW10-B8 400 480 560 640 720 130 260 390 520 650 ₩ 37 路 42 10th Str EB1 Pile 4 10th Str EB8 Pile 1 3 10th Str EB1 Pile 5 10th Str EB8 Pile 2 Elevation (ft) Elevation (ft) 10th Str EB8 Pile 1 10th Str EB8 Pile 2 ----- Capacity 50% plug Ŗ -47 -D- Davisson FB-Deep v2.04 88 22 86

<u>SPT N limit:</u> FB-Deep users can specify "local-experience" limit, of says 100 (very competent LS) or 35 (inconsistent shelves) instead of default of 60. Furthermore, diminish toe SPT N averaging for H-piles

8

788th Str SW1<u>0-B1</u>

5

UF FLORIDA

- Getting suitable hammers for H-piles
- EOD RMX resistance is not necessary similar to Long Term Static resistance (plug conditions / setup effects)
- If Soil Borings show high variability → piles can easily go deep (especially with large hammers)
 - → Deep penetrated pile may experience unloading of upper skin friction during driving. Thus EOD RMX may not show any increase in skin resistance as pile keep advances.

Collection of Concrete Piles in Florida Limestone Provided by Districts

Site	nformation	Insitu In	formation				
Project Number (Financial)	Project Site	# of Soil Borings	Predominant Soil Type	Dimension s (in)	Length (ft)	# of Piles with CAPWAP	# of BOR CAPWAP Analyses
242484-2-52-01	I-4/SR 408	58	Sand	18 & 24	90-107	112	N/A
210448-2-52-01	San Sebastian Bridge	11	Sand & Clay	24	38-111	111	N/A
211449-1-52-01	CR 229 over South Prong of St Mary's Ri	2	Sand & Clay	18	47-90	9	N/A
209293-2-52-01, 209294-1-52-01, 209294-9-52-01	SR 9B	121	Sand & Some Rock	24	45-119	183	N/A
208166-1-52-01	Plantation Oaks Boulevard over SR23	50	Sand & Rock	18	55-100	10	2
208466-2-52-01	SR 51	6	Clay & Rock	24	73-99	5	0
420809-3-52-01	I-595 Corridor Improvement Project	234	Sand & Rock	18 & 24	30-115	170	38
213304-3-52-01	I-95 Overland Bridge Replacement	133	Sand & Rock	24	22-66	5	2
406813-6-52-01	CR 245 over Olustee Creek	10	Sand & Rock	24	61-69	7	0
210687-3-52-01	SR 200 North of Callahan	11	Clay & Rock	24	36-66	25	9
429551-1-52-01	SR 200 South of Callanha	31	Sand & Rock	24	46-111	33	N/A
	I-95 over Snake Creek						4
249581-1-52-01	SR 826/836	17	Sand & Rock	24 & 30	80-110	177	20
	Total # of Soil Borings:	684	Total # o	f Piles with (CAPWAP Data:	847	75

Review of PCP Site Data

	Site Information	
roject Number (Financi	a Project Site	Site Review
242484-2-52-01	I-4/SR 408	Limestone observed at Elev60 in boring D-103 (I4 ramp D-D1), but no other borings show limestone and no pile tip into limestone.
210448-2-52-01	San Sebastian Bridge	Limestone observed at Elev52 to -59 ft (Thin Layer) in borings B-2,B-4, &B-6 Only. Also, most piles tip above -52 ft (i.e. piles NOT embedded into Limestone).
211449-1-52-01	CR 229 over South Prong of St Mary's Ri	No Limestone.
209293-2-52-01, 209294 1-52-01, 209294-9-52-01	- SR 9B	Little to No Limestone Observed (Thin to Very Thin Limestone Layers Observed; Observed in Some Borings Only).
208166-1-52-01	Plantation Oaks Boulevard over SR23	A thin layer of weathered limestone present at Elev10 to -25ft.
208466-2-52-01	SR 51	Limestone present but no CAPWAP durng set-check or re-strike.
420809-3-52-01	I-595 Corridor Improvement Project	Limestone present at Elev5 to -20ft and Elev40 to -60ft.
213304-3-52-01	I-95 Overland Bridge Replacement	Soft clayey sand is located above limestone layer.
406813-6-52-01	CR 245 over Olustee Creek	Limestone present but no CAPWAP during set-check or re-strike
210687-3-52-01	SR 200 North of Callahan	Piles tip above Gray Limestone Layer(s).
429551-1-52-01	SR 200 South of Callanha	Piles tip above Limestone Layer(s).
	I-95 over Snake Creek	Borings far from piles
N 249581-1-52-01	SR 826	Most piles tip between elev45 and -50 feet where competent/weathered limestone (Miami Ft. Thompson) is located; Weathered limestone with sand observed above it.

PCP End Bearing–Weathered Limestone with Sand

Project	Bridge #	Pile Name		Nearest Boring	Distance (ft)	Soil Type	Pile Size (in)	Qt (tsf)	Qt (ksf)	Tip_Elev (ft)	Average N (8B below)	Average N (3.5B below &8B above)	Average N Value 4B Below
	000031	Pier 3	Pile 14	BBZ8A-031-8	20	Weathered Limestone with Clean Sand	24	38.75	77.50	-69.06	31.00	27.60	32.40
	000107	End Bent 5	Pile 1	BBZ3-107-4	5	Weathered Limestone with Clean Sand	24	50.00	100.00	-27.03	40.00	26.42	20.40
			Pile 6	B15-N15	39	Weathered Limestone with Clean Sand	24	30.63	61.25	-31.86	25.80	25.60	39.00
		Dior 2	Pile 7	B15-N15	37	Weathered Limestone with Clean Sand	24	51.50	103.00	-31.93	45.00	19.50	39.00
	000112		Pile 8	B15-N15	33	Weathered Limestone with Clean Sand	24	33.25	66.50	-31.89	25.80	19.50	39.00
			Pile 9	B15-N15	30	Weathered Limestone with Clean Sand	24	29.50	59.00	-31.86	25.80	20.40	39.00
1 505		Pier 5S	Pile 1	BW-504	24	Weathered Limestone with Clean Sand	24	35.50	71.00	-42.58	36.30	10.20	40.00
I 595 🖛		Pier 3L	Pile 4	BBZ6-123-3	90	Weathered Limestone with Clean Sand	24	44.00	88.00	-60.26	32.40	45.00	36.00
	000122	Pier 4	Pile 6	BBZ6-123-4	25	Weathered Limestone with Clean Sand	24	32.00	64.00	-43.48	30.00	28.91	37.50
	000123		Pile 12	BBZ6-123-4	20	Weathered Limestone with Clean Sand	24	25.00	50.00	-43.48	30.00	28.91	37.50
			Pile 11	BBZ6-123-4	22	Weathered Limestone with Clean Sand	24	28.96	57.92	-34.63	22.00	18.00	32.50
	000119	End Bent 1	Pile 12	BW-601	25	Weathered Limestone with Clean Sand	24	25.82	51.64	-79.42	23.00	18.60	28.00
	860425	End Bent 1	Pile 13	BBZ7-425-1 & -2	100	Weathered Limestone with Clean Sand	24	40.11	80.23	-45.25	26.00	24.00	34.00
	800423	End Bent 5	Pile 12	BBZ7-425-5 & -4	40	Weathered Limestone with Clean Sand	24	39.78	79.56	-7.00	34.00	24.00	45.00
	Bridge 35	Pier 3	Test Pile 2	B-180	30	Weathered Limestone with Clean Sand	24	25.90	51.8	-43.75	24.80	26.50	45.00
	Bridge 30B	End Bent 3	Test Pile 6	B-30C-1	22	Weathered Limestone with Clean Sand	24	55.97	111.93	-49.78	31.60	38.42	45.00
SR 826	Bridge 30A	Pier 2	Test Pile 1	B-30A-2	30	Weathered Limestone with Clean Sand	24	59.88	119.75	-52.90	32.75	27.00	45.00
	Dridgo 24D	End Pont 2	Pile 1	B-24-1	15	Weathered Limestone with Clean Sand	24	11.27	22.53	-47.08	15.25	12.50	12.25
	biluge 24b	chu bellt Z	Pile 6	B-24-1	15	Weathered Limestone with Clean Sand	24	39.48	78.95	-47.42	15.25	12.50	12.25
	Bridge 29C	End Bent 2	Pile 11	B-29A-2	25	Weathered Limestone with Clean Sand	24	19.34	39.87	-29.20	10.40	14.40	11.30

PCP End Bearing–Weathered Limestone with Sand

SPT Blow Count

Average 3.5B below & 8B above

PCP End Bearing–Weathered Limestone with Soil Mixtures

Project	Bridge #	Bent Name	Pile No.	Pile Size	Nearest Boring	Qt (ksf)	Qt (Tsf)	Tip_Elev (ft)	Distance (ft)	8B Below	8B Above 3.5B Below	4B Below
	Bridge 3B	Pier 6	Inst. Pile 9	30	B-2-2	111.67	55.84	-42.19	47.00	65.40	38.00	42.30
	Bridge 7C	Eend Bent 3	Inst. Pile 14	24	B-7C-2	144.40	72.20	-47.09	97.00	87.80	59.60	85.00
	Bridge 9	Bent 10	Inst. Pile 27	24	B-9-7	205.72	102.86	-42.73	42.00	74.20	45.90	79.00
	Bridge 11	Pier 6	Prod Pile 5	24	B-11-4	194.65	97.33	-79.70	0.00	86.60	63.84	77.67
SR 826		Pier 3	Inst. Pile 10	24	B-19-6	134.32	67.16	-45.80	18.00	51.60	16.85	50.60
		Pier 3	Inst. Pile 15	24	B-19-6	115.80	57.90	-46.88	10.00	54.00	31.15	50.30
		Pier 3	Inst. Pile 28	24	B-19-6	136.32	68.16	-47.80	16.00	54.00	31.50	50.30
	Bridge 19	Pier 3	Inst. Pile 23	24	B-19-6	117.55	58.78	-47.38	24.00	54.00	31.15	50.30
		End Bent 5	Mon Pile 12	24	B-19-4	215.01	107.51	-46.05	20.00	86.20	67.90	98.66
		End Bent 5	Mon Pile 15	24	B-19-4	212.71	106.36	-45.66	6.00	99.20	60.33	100.00
		End Bent 5	Mon Pile 29	24	B-19-4	273.06	136.53	-46.62	27.00	86.20	67.90	100.00
	Pridgo 47	Bent 1	Test Pile 1	24	B-47-1	273.66	136.83	-54.21	15.00	100.00	68.50	100.00
	bridge 47	Bent 2	Test Pile 7	24	B-47-2	176.94	88.47	-48.62	18.00	98.00	74.80	100.00
	Bridge 43	End Bent 2	Test Pile 1	24	B-43-2	227.87	113.94	-46.83	16.00	69.40	57.70	84.00
		Pier 5S	Pile 3	24	BW-504	184.25	92.13	-38.51	25.00	66.00	34.00	69.00
	000112	Pier 5S	Pile 7	24	BW-504	164.50	82.25	-41.48	20.00	65.00	29.00	71.00
I-595		Pier 5N	Pile 3	24	BW-504	144.25	72.13	-56.00	25.00	55.00	40.00	70.00
	860378	End Bent 2L	Pile 1	24	BW-703	118.27	59.13	-43.17	29.00	55.00	47.00	60.00
	000033	End Bent 1	Pile 6	24	BBZ8B-033-1	146.70	73.35	-56.17	34.00	55.00	34.00	71.00
	000031	Pier 8L	Pile 9	24	BBZ8A-031-2	135.25	67.63	-58.90	20.00	55.00	45.00	100.00

UF FLORIDA

PCP End Bearing in Competent Limestone

PCP End Bearing in Limestone

PCP Side Friction in Limestone

Summary of PCP in Florida Limestone

1. PCP End Bearing:

- Change Averaging from 3.5B-8B to 4B Below
- Increase Limit of SPT N value to 100 Due to higher measured DLT tip resistances

2. PCP Side Resistance:

- PCPs in Limestone with mixed soils with N <45 is conservative (may wish to model Mixture with soil 2)
- PCP in competent Limestone, Limit of N=60 too conservative increase to N=100

- 2. D > 36":
 - Qs = unit skin friction x A outside surface area
 - \circ **Q**_{tip} = unit tip resistance x A_{ring}

Should D \leq 36" Be Used for D>36"?

Open Diameter Pipe Piles 24"<D<54"

									Soil Type								
Den int Name	Pile	Diam (m)	Thickness	DL 04	Pile	Pile Bottom	Derine Neuro	D:	(lay	S	and	Clay-Si	t-Sand	Ro	ck.	Load
Project Name	Name	Diam (in)	(in)	Ping %	length(ft)	Depth(ft)	Boring Name	Distance(It)	Depth Range(ft)	Percentage	Depth Range(ft)	Percentage	Depth Range(ft)	Percentage	Depth Range(ft)	Percentage	Test(kips)
Louisiana Highway 1 Improvements Phase 1B, LA, USA	T-3-1	30	0.63	>0.44 WH	195.00	173.20	BR-002	80.00	34-54	11.43%			0-34&54-175	88.57%			1597.00 ¹
I-880 Port of Oakland Connector Viaduct (Caltrans	TP-9	42	0.63	>0.4 WH	88.30	86.30	ieneralize d Borir	Unknown	0-13.5&18.5 60&67-90.5	86.74%	13.5- 18.5&60-67	13.26%					1253.00 ¹
Bindge No. 33-0612E), CA, USA							UTB-23MR	Unknown	61.25-66.50	5.52%			0-61.25&66.50- 95.01	94.48%			963.40 ²
							ID_63 UNK	Unknown	2.5-13&43- 51&66-137	69.71%	0-2.5&13- 41&51-57	26.64%	41-43&57-66	3.65%			
	PL-1	54	1.00	>0.9	165.20	132.20	ID_64 UNK	Unknown	0-102&25.5 44.5&94.5- 104.7&115. 5-141.7	46.30%	10.2- 20.5&59.5- 74.5&84.5- 94.5&104.79- 115.5	32.70%	20.5-25.5&44.5 59.5&74.5-84.5	21.35%			2783.00 ¹
Woodrow Wilson Bridge over Potomac River, VA & MD, US A	PL-2	42	1.00	>0.9	125.50	107.00	ID_64 UNK	Unknown	0-10.2&25.5 44.5&94.5- 104.7	35.02%	10.2- 20.5&59.5- 74.5&84.5- 94.5&104.79- 112.5	38.31%	20.5-25.5&44.5 59.5&74.5-84.5	26.67%			2788.00 ¹
USA							ID_65 UNK	Unknown	84-108	22.22%	7-12&62-67	9.26%	0-7&12-18&23- 28&38-62&67- 84	54.63%	18-23&28- 38	13.89%	-
							ID_64 UNK	Unknown	0-10.2&25.5 44.5	34.56%	10.2- 20.5&59.5- 74.5	29.94%	20.5-25.5&44.5 59.5	35.50%			,
	PL-3	36	1.00	>0.9	96.30	78.00	ID_65 UNK	Unknown			7-12&62-67	12.35%	0-7&12-18&23- 28&38-62&67- 81	65.43%	18-23&28- 38	22.22%	1597.00 *
Berenda Slough Bridge (Clatrans Bridge No. 41-	TP-1	42	0.63		106.00	103.00	ieneralize d Borir	50.00			0-60.5&70.5- 77	62.62%	60.5-70.5&77- 107	37.38%			1618.00 ¹
West Closura Complex Test	TP-9	24	0.50	>0.5	189.83	169.92	ALGS GS-08-2U	150.00					0-177.4	100.00%			811.20 ¹
	TP-11	30	0.63	>0.5 VH	190.00	177.42	ALGS GS-08-2U	150.00					0-179.9	100.00%			1215.00 ¹
Colff atmospheric Webser	TP-3	30	0.63	>0.5 VH	160.50	141.02	4	Unknown	0-169.3	100.00%							830.40 ¹
West Closure Complex, LA	TP-4	30	0.63	>0.4 WH	170.30	162.50	LGS GS-08-131	Unknown	0-169.3	100.00%							1060.00
USA	TP-5	30	0.63	>0.35 WH	161.00	140.33		Unknown	0-169.3	100.00%							899.60
Lagoon Bridge U.S.68/KY80,	TP-6 TPL-2	30 30	0.63	>0.35 WH	97.10	80.10	B-3004 UNK	Unknown 110.50	0-169.3 0-20.3&54.3 59.3	100.00% 29.69%			20.3-54.3&59.3 85.2	70.31%			830.40 ⁴
KI, USA							B-3051 UNK	52.50	18.7-24.2	6.79%					0-18.7&24.2 81	93.21%	
US Highway TH61/Mississippi River, MN,	TP-10	42	0.88	>0.3	194.00	190.00	B-09UNK B-10UNK	Unknown Unknown	8-64&99-13	45.26% 42.11%	0-18&64-99 0-27&72-97	27.89% 27.37%			139-190 132-190	26.84% 30.53%	4116.00 ³
	P-B-1	24	0.50	conc fill	127.70	86.90		Unknown			0-89	100.00%					1875.00 ³
T.H. 36 over the St. Croix	P-B-2	24	0.63	conc fill	127.40	86.60	T 205	Unknown			0-89	100.00%					2190.00 ³
River, MN, USA	P-B-3	42	0.88	.7 conc fill	140.00	140.00	1-205	Unknown			0-89	62.68%			89-142	37.32%	4128.00 ³
	P-B-4	42	0.75	.7 conc fill	140.00	140.00		Unknown			0-89	62.68%			89-142	37.32%	3750.00 ³
TH19 over the Mississippi	TP-3	42	0.88	>0.9	150.00	96.00	T12 UNK	Unknown	57-67	10.20%	0-57&67-98	89.80%					3750.00 ³
River, MN, USA	TP-5	42	0.88	>0.9	170.00	118.00	T12 UNK	Unknown	57-67	7.81%	0-57&67-118	84.38%			118-128	7.81%	3854.00 ³
							T19 UNK	Unknown			0-121.8	100.00%			1		

Open Diameter Pipe Piles 24"<D<54"

(Caltrans Bridge No. 35- 0054), CA, USA	TP-Site B	42	6.88		133.86	126.31	95-7	125	0-13.5&83.5 87.5&95.5- 117.5	29.81%	43.5-63.5	15.09%	13.5-43.5&63.5- 83.5&87.5- 95.5&117.5-	55.09%			1681.66 ¹
San Mateo-Hayward Bridge	TP-Site A	42	6.88		138.62	115.85	95-3	250	0- 56.2&114.5- 121.5	52.02%			56.2-114.5	47.98%			1544.74 ¹
						F			Depth Range(ft)	Perc entage	Depth Range(ft)	Percentage	Depth Range(ft)	Percentage	Depth Range(ft)	Percentage	,-)
Project Name	Pile Name	Diam(in)	Thickness (in)	Plug %	Pile length(ft)	Pile Bottom Depth(ft)	Boring Name	Distance(ft)	С	lay	s	and	Clay-Silt	t-Sand	Ro	:k	Load Test(kips)
												Soil	Туре				
	SP05	48	0.87	>0.04 VH	213.26	145.04	BH-SP	20.00	75.5-87	9.72%			143.7 0-75.5&87-118	90.28%			1213.00 ¹
Port of Toamasina Offshore Jetty, Republic of Madagascar	124	40	0.87	>0.64 VH	213.26	143.04	NP 04	32.00	87.03,104.66	11.64%			0-87.93&104.66	88 36%			2020.00.1
	4B	40	0.87	>0.95	213.26	147.97	NP-02	12.00	127.95-133.4	3.62%			0-127.95&133.4 149.6	96.38%			2205.00 ¹
Gas (SNG) Plant, KOREA	TP-3	36	0.28	No info	172.21	166.83	BH1	Unknown			0-154.2	81.71%	1542-187	18.29%			407.00 ⁻¹
Chiba, Japan	TP-2	31.5	0.64	0.98	157.48	133.07	B-2	Unknown	89.98- 118.16	6.49%	54.19&71.13- 89.98	55.76%	54.19-71.13	13.14%	118.16- 130.98	24.61%	1855.00 ¹
Hokkaido, Japan	TP-1	40	0.87	0.85	134.51	131.23	B-1	Unknown			0- 47.9&66.44- 83.79	46.80%	47.9- 66.44&83.79- 139.44	53.20%			3528.00 ¹
Chima	ST-2	36	0.79		262.47	259.51		Unknown	0-95.14	23.39%	118.11- 206.69&249. 34-406.824	60.48%	95.14- 118.11&206.69- 249.34	16.13%			3796.80 ¹
Jin Mao Building, Shanghai,	ST-1	36	0.79		262.47	289.19	ieneralized Borin	Unknown	0-95.14	23.39%	118.11- 206.69&249. 34-406.824	60.48%	95.14- 118.11&206.69- 249.34	16.13%			3447.00 ¹
	TP-E	30	0.50	>0.83	96.00	94.00	PLT-E	200.00	51-81.25	31.68%	0-5.5&20.5- 51&81.25- 95.5	52.62%	5.5-20.5	15.71%			1282.00 ¹
Legislative Route 795 section B-6 Philadelphia, PA, USA	TP-D	30	0.50	>0.87	86.20	84.00	B-620	200.00	0-16&34.5- 48.5&52.25- 74.5	60.93%	16- 34.5&48.5- 52.25&74.5-	39.07%					895.78 ¹
	TP-C	30	0.50	>0.92	64.20	62.00	PLT-C	250.00	41.25-56.5	23.46%	0- 41.25&56.5- 65	76.54%					1499.30 ¹
33-612E), CA, USA	IP9-27NC	42	0.63		97.00	93.00	UTB-05	13.40	0-22.5&49- 90&95-99.5	58.86%			22.5-49&90-95	41.14%			1288.00 ¹
Viaduct Maritime On/Off-	P6-17NC	42	0.75	>0.59	103.00	101.00	UTB-24A	12.20	81 2&86 2- 0-66.5	60.45%	002		84-110	23.65%	66.5-84.0	15.90%	1000 00 1
River, MN, USA	IP3-10NC	42	0.75	>0.54	98.00	95.00	UTB-161	5.50	16.2- 51.2&71.2-	47.53%	0-16.2&81.2-	32.32%	51.2-71.2&91.2- 105.2	20.15%			800.00 ¹
T.H 43 over the Mississippi	TP-1	42	0.75	>0.75	141.40	136.90	T-103	40.00			0-122	87.71%			122-139.1	12.29%	3720.60 ³

Current FBDEEP Open Pipe Predictions

		Diamete		Predi	icted Capacity (l	kips)	Meas	ured Capacity (k	ips)	Capwa	p Capacity (ki	ps)
Project Name	Pile Name	r (in)	Boring Name	Side Friction	Tip Resistance	Total Capacity	Side Friction	Tip Resistance	Total Capacity	Side Friction	Tip Resistance	Total Capacity
Louisiana Highway 1 Improvements Phase 1B, LA, USA	T-3-1	30	BR-002	1482.00	270.00	1752.00	1163.80	433.20	1597.00	843.00	115.00	958.00
I-880 Port of Oakland Connector Viaduct	TD 0	42	Generalized Boring	754.00	15.00	769.00			1253.00			
(Caltrans Bridge No. 33-0612E), CA, USA	11-9	42	UTB-23MR	1234.52	18.62	1253.14			963.40			
	PL - 1	54	ID_63 UNK	1900.00	52.00	1952.00	2000.00	783.00	2783.00			
		5.	ID_64 UNK	2572.00	50.50	2622.50	2000.00	783.00	2783.00			
Woodrow Wilson Bridge over Potomac River,	PL-2	42	ID_64 UNK	1555.00	44.20	1599.20	2000.00	788.00	2788.00			
VA & MD, USA			ID_65 UNK	1816.00	17.16	1833.16	2000.00	788.00	2788.00			
	PL-3	36	ID_64 UNK	811.16	406.50	1217.66			1597.00			
D 1 01 1 D 1 (01) D 1 N 41			ID_65 UNK	976.40	410.40	1386.80			1597.00			
Berenda Slough Bridge (Clatrans Bridge No. 41- 0009R),CA, USA	TP-1	42	B-1(Generalized Boring)	1022.84	15.74	1038.58			1618.00			
Gulf Intracoastal Waterway West Closure	TP-9	24	ALGSGS-08-2U	1354.66	158.44	1513.10			811.20	1152.00	49.00	1201.00
Complex Test Site 3, LA, USA	TP-11	30	ALGSGS-08-2U	1784.00	186.30	1970.30			1215.00	1286.00	130.00	1416.00
	TP-3	30		730.00	80.64	810.64			830.40	867.00	72.00	939.00
Gulf Intracoastal Waterway West Closure	TP-4	30	ALCSCS 08 1211	1012.00	100.70	1112.70			1060.00	1080.00	25.00	1105.00
Complex, LA, USA	TP-5	30	AL0303-08-130	720.00	80.00	800.00			899.60	814.00	42.00	856.00
	TP-6	30		722.00	80.30	802.30			830.40	876.00	74.00	950.00
Lagoon Bridge U.S. 68/KV80, KV, USA	TPL_2	30	B-3004 UNK	814.00	241.42	1055.42	1174.79	268.71	1443.00	593.00	74.00	667.00
Lagoon Diage 0.5.00/K100, K1, 05A	11 L-2	50	B-3051 UNK	672.00	266.40	938.40	1174.79	268.71	1443.00			
US Highway TH61/Mississinni River MN USA	TP-10	42	B-09UNK	1539.34	25.58	1564.92			4166.00			
			B-10UNK	1565.00	39.22	1604.22			4166.00			
	P-B-1	24		409.58	204.46	614.04			1875.00	181.00	884.00	1065.00
T.H. 36 over the St. Croix River, MN, USA	P-B-2	24	T-205	409.58	204.00	613.58	343.00	1847.00	2190.00	217.00	1029.00	1246.00
	P-B-3	42		815.40	52.74	868.14	983.00	3145.00	4128.00	797.00	2352.00	3149.00
	P-B-4	42		815.40	52.74	868.14	746.00	3044.00	3790.00	1014.00	2271.00	3285.00
TH 19 over the Mississippi River, MN, USA	TP-3	42	T12 UNK	997.72	34.78	1032.50	1100.00	2650.00	3750.00			
	TP-5	42	T12 UNK	1238.32	37.92	1276.24	1550.00	2200.00	3750.00			
			T19 UNK	924.00	42.80	966.80	1550.00	2200.00	3750.00			
T.H. 43 over the Mississippi River, MN, USA	TP-1	42	T-103	1172.61	26.35	1198.96			3720.60	1225.00	1610.00	2835.00
Port of Oakland Connector Viaduct Maritime	TP3-10NCI	42	UTB-161	666.64	13.24	679.88			800.00	655.00	296.00	951.00
On/Off-Ramps (Caltrans Bridge No. 33-612E),	TP6-17NCI	42	UTB-24A	966.00	17.26	983.26			1000.00	806.00	246.00	1052.00
CA, USA	TP9-27NCI	42	UTB-05	1204.00	17.80	1221.80			1288.00			
Legislative Route 795 section B-6 Philadelphia.	TP-C	30	PLT-C	730.40	185.36	915.76			1499.30			
PA, USA	TP-D	30	B-620	8/1.78	129.48	1001.26			895.78			
y = 14	IP-E	30	PLI-E	980.26	145.22	1125.48	2502.25	046.00	1282.00			
Jin Mao Building, Shanghai, China	ST-1	36	Generalized Boring	2629.00	370.84	2999.84	2502.35	946.22	3447.00			
	S1-2	36		2944.30	381.80	3326.10	3085.28	566.74	3796.80			
Hokkaido, Japan	TP-1	40	B-1 Or Generalized Boring	1624.00	27.18	1651.18	3089.00	441.00	3528.00			
Chiba, Japan	1P-2 TD-2	31.5	B-2(Generalized Boring)	210.00	310.60	1447.70	1278.00	618.75	1855.00			<u> </u>
Kwangyang Substitute Natural Gas (SNG) Plant,	1P-2 TD-2	28	BHI Or Generalized Boring	219.00	64.00	283.00			407.00			<u> </u>
KUREA	1P-3	36	BH1 Or Generalized Boring	407.04	89.44	496.48			674.00	(10.25	100.00	1010.25
Port of Toamasina Offshore Jetty, Republic of	48	40	NP-02	1532.00	23.00	1555.00			2205.00	619.35	400.00	1019.35
Madagascar	12A	40	NP-04	1/85.11	25.50	1810.61			2029.00	156.02	388.00	544.02
	5P05	48	BH-25	1388.82	57.24	1446.06	ļ		1213.00	380.40	348.00	/28.40

Current FB-DEEP Predictions

Current FB-DEEP Predictions

Modify FB-DEEP D>36" End Bearing to Same as D≤36"

Project Name	Blo Namo	Diameter	Paying Nama	Side Frict	ion (kips)	Tip Res (ki	sistance ps)		Total	Cipa	icity (kips)	
Project Name	rne Name	(in)	Bornig Name	Outer Skin	Inner Skin	Ring Tip	Full Tip	9	uter Skin + Inner Skin + Ring	Ou	ter Skin + Fu Tip	Measured
Louisiana Highway 1 Improvements Phase 1B, LA, USA	T-3-1	30	BR-002	1482.00	1420.25	22.03	270.00		2924.28		1752.00	1597.00
I-880 Port of Oakland Connector	TD 0	42	Generalized Boring	754.00	731.56	15.00	255.81		1500.56		1009.81	1253.00
Viaduct (Caltrans Bridge No. 33-	11-7	42	UTB-23MR	1234.52	1197.78	18.62	317.54		2450.92		1552.06	963.40
	DT_1	54	ID_63 UNK	1900.00	1829.63	52.00	715.25		3781.63		2615.25	2783.00
	11-1	54	ID_64 UNK	2572.00	2476.74	50.50	694.61		5099.24		3266.61	2783.00
Woodrow Wilson Bridge over Potomac	DI 2	42	ID_64 UNK	1555.00	1480.95	44.20	475.42		3080.15		2030.42	2788.00
River, VA & MD, USA	FL-2	42	ID_65 UNK	1816.00	1729.52	17.16	184.57	Т	3562.68		2000.57	2788.00
	DT 2	26	ID_64 UNK	811.16	766.10	43.91	406.50		1621.17		1217.66	1597.00
	PL-3	50	ID_65 UNK	976.40	922.16	44.33	410.40	Т	1942.89		1386.80	1597.00
Berenda Slough Bridge (Clatrans Bridge No. 41-0009R), CA, USA	TP-1	42	B-1(Generalized Boring)	1022.84	992.40	15.74	268.43	Ι	2030.98		1291.27	1618.00
Gulf Intraco astal Waterway West	TP-9	24	ALGSGS-08-2U	1354.66	1298.22	12.93	158.44		2665.80		1513.10	811.20
Closure Complex Test Site 3, LA, USA	TP-11	30	ALGSGS-08-2U	1784.00	1709.67	15.20	186.30		3508.87		1970.30	1215.00
	TP-3	30		730.00	699.58	6.58	80.64		1436.16		810.64	830.40
Gulf Intraco astal Waterway West	TP-4	30	ALCSCS 08 1211	1012.00	969.83	8.22	100.70		1990.05		1112.70	1060.00
Closure Complex, LA, USA	TP-5	30	ALGSGS-08-13U	720.00	690.00	6.53	80.00		1416.53		800.00	899.60
	TP-6	30		722.00	691.92	6.55	80.30		1420.47		802.30	830.40
Lagoon Bridge U.S.68/KY80, KY,	י זמיד	20	B-3004 UNK	814.00	759.73	31.12	241.42		1604.85		1055.42	1443.00
USA	IPL-2	50	B-3051 UNK	672.00	627.20	34.34	266.40		1333.54		938.40	1443.00
US Highway TH61/Mississippi River,	TD 10	42	B-09UNK	1539.34	1475.20	25.58	313.49		3040.12		1852.83	4166.00
MN, USA	1P-10	42	B-10UNK	1565.00	1499.79	39.22	480.65		3104.01		2045.65	4166.00
	P-B-1	24		409.58	392.51	16.70	204.46		818.79		614.04	1875.00
T.H. 36 over the St. Croix River, MN,	P-B-2	24	T 205	409.58	388.25	20.70	204.00		818.53		613.58	2190.00
USA	P-B-3	42	1-203	815.40	781.23	52.74	642.75		1649.37		1458.15	4128.00
	P-B-4	42	Ţ	815.40	786.28	52.74	751.78		1654.42		1567.18	3790.00
TH 19 over the Mississippi River, MN,	TP-3	42	T12 UNK	997.72	955.91	34.78	423.87		1988.41		1421.59	3750.00
USA	TD 5	42	T12 UNK	1238.32	1186.43	37.92	462.14		2462.67		1700.46	3750.00
	11-0	42	T19 UNK	924.00	885.28	42.80	521.61		1852.08		1445.85	3750.00
											\bigvee	

Modify FB-DEEP D>36" End Bearing to Same as D≤36"

Modify FB-DEEP D>36" End Bearing to Same as D≤36" and Limit N=100

Measured vs. Predicted Total Capacity 5000 ▲ Smaller Piles (D <= 36 in) Smaller Piles Count = 19 Bias = 1.15 Larger Piles (D > 36 in) Standard Deviation: R = 0.34 4000 Total Capacity (kip) COV = 0.30 Larger Piles Count=19 Bias = 1.25 3000 Standard Deviation: R = 0.39 COV = 0.31 Predicted 2000

Modify FB-DEEP D>36" End Bearing to Same as D≤36" and Limit N=100

43

UNIVERSITY of

Summary of Suggested Changes to FB-DEEP's Open Pipe Pile Analysis

1. End Bearing:

- Change Analysis for D>36"
- Consider Smaller of unit tip resistance times full cross-sectional area or unit skin friction x inner surface area plus unit tip resistance x ring area
- 2. SPT N Value Limit:
 - Raise Limit on N from 60 to 100

<u>a Method:</u>	$fs = \alpha \cdot Su$	α = adhesion factor
(API, 2011)	α is defined as:	Su = undrained shear
	$\alpha = 0.5 \cdot \Psi - 0.5$ for $\Psi \le 1.0$	strength
	$\alpha = 0.5 \cdot \Psi - 0.25$ for $\Psi > 1.0$	σ' - vortical officiative
	where $\Psi = s_u / (\sigma'_v)$	stress
	and $\alpha \leq 1.0$	
<u>β Method:</u>	$\mathbf{f}s = \boldsymbol{\beta} \cdot \boldsymbol{\sigma'}_{\mathrm{v}}$	$\beta = $ friction coefficient
(API, 2011)	where $\beta = f$ (density, soil)	$\sigma'_{\rm v}$ = vertical effective
	(see Table 6)	stress
End Bearing:	$q_p = Nc \cdot Su$	Su = undrained shear
(API, 2011)		strength
	$q_p = N\mathbf{q} \cdot {\sigma'}_{\mathrm{v}}$	<i>Nc</i> = cohesion bearing
		capacity factor
		<i>N</i> q= cohesionless bearing
		capacity factor

Soil Description	Side Friction Coefficient β (-)	Limiting Unit Side Resistance Values kPa (ksf)	Base Resistance Factor N _q (-)	Limiting Unit Base Resistance Values MPa (ksf)
Very loose sand Loose sand Loose sand-silt Medium dense silt Dense silt	Not applicable	Not applicable	Not applicable	Not applicable
Medium dense sand-silt	0.29	67 (1.4)	12	3 (60)
Medium dense sand Dense sand-silt	0.37	81 (1.7)	20	5 (100)
Dense sand Very dense sand-silt	0.46	96 (2.0)	40	10 (200)
Very dense sand	0.56	115 (2.4)	50	12 (250)

NOTE: The parameters listed in this table are intended as guidelines only. Where detailed information, such as CPT records, strength tests on high quality samples, model tests, or pile driving performance, is available, other values may be justified.

Other Analysis of Open End Pipe Piles – API (2011)

				Cido Tria	ion (line)	Tin D	istance			n a aitre (lain	`
		D : (Side Frict	ion (kips)	Tip Res	istance	Tot		ipacity (kips)
Project Name	Pile Name	Diameter (in)	Boring Name	Outer Skin	Inner Skin	Ring Tip	Full Tip	Outer Skin Inner Skin + R	- ing	Outer Skin + Full Tip	Measured
Louisiana Highway 1 Improvements Phase 1B, LA, USA	T-3-1	30	BR-002	834.72	799.94	39.55	484.74	1674.20	V	1319.46	1597.00
I-880 Port of Oakland Connector Viaduct (Caltrans Bridge No. 33-	TP-9	42	Generalized Boring UTB-23MR	1134.11	1100.36	17.75	302.73	1674.20		1319.46	1253.00 963.40
Berenda Slough Bridge (Clatrans Bridge No. 41-0009R),CA, USA	TP-1	42	B-1(Generalized Boring)	1595.15	1547.67	57.49	980.44	3200.31	A	2575.58	1618.00
Gulf Intracoastal Waterway West	TP-9	24	ALGSGS-08-2U	842.58	807.47	3.33	40.87	1653.38	Π	883.44	811.20
Closure Complex Test Site 3, LA,	TP-11	30	ALGSGS-08-2U	1136.18	1088.84	5.47	67.05	2230.49	П	1203.23	1215.00
	TP-3	30		836.59	801.73	5.44	66.68	1643.76	П	903.27	830.40
Gulf Intracoastal Waterway West	TP-4	30	AT CSCS 08 1211	1126.77	1079.82	7.05	86.42	2213.63	П	1213.18	1060.00
Closure Complex, LA, USA	TP-5	30	AL0505-00-150	823.75	789.42	5.04	61.78	1618.21	П	885.53	899.60
	TP-6	30		828.27	793.76	5.18	63.46	1627.21	П	891.73	830.40
Lagoon Bridge U.S.68/KY80, KY,		20	B-3004 UNK	1200.40	1120.37	33.03	256.24	2353.80	Π	1456.64	1443.00
USA	IPL-2	50	B-3051 UNK	1171.04	1092.97	40.39	313.37	2304.41	Π	1484.42	1443.00
US Highway TH61/Mississippi River,	TD 10*	42	B-09UNK	2597.87	2489.63	196.26	2405.28	5283.77	I	5003.15	4166.00
MN, USA	11-10	42	B-10UNK	2622.54	2513.27	196.26	2405.28	5332.07		5027.82	4166.00
	P-B-1*	24		357.90	342.99	62.80	769.69	763.69	V	1127.59	1875.00
T.H. 36 over the St. Croix River,	P-B-2*	24	T-205	353.37	334.97	78.12	769.97	766.46		1123.35	2190.00
MN, USA	P-B-3*	42	1-205	950.91	911.06	114.66	1397.35	1976.63		2348.26	4128.00
	P-B-4*	42		950.91	916.95	98.03	1397.35	1965.89	Λ	2348.26	3790.00
TH 19 over the Mississippi River,	TP-3*	42	T12 UNK	1158.12	1109.59	167.08	2036.19	2434.78	Ν	3194.31	3750.00
MN, USA	TP-5*	42	T12 UNK	1694.70	1623.68	187.05	2279.58	3505.43	Π	3974.28	3750.00
T.H. 43 over the Mississippi River, MN, USA	TP-1	42	T-103	2374.37	2289.57	167.53	2388.10	4831.48		4762.47	3720.60
Port of Oakland Connector Viaduct	TP3-10NCI	42	UTB-161	778.24	750.45	11.41	162.69	1540.10		940.93	800.00
Maritime On/Off-Ramps (Caltrans	TP6-17NCI	42	UTB-24A	995.31	959.77	8.50	121.23	1963.58		1116.54	1000.00
Bridge No. 33-612E), CA, USA	TP9-27NCI	42	UTB-05	1250.00	1212.80	11.61	197.92	2474.40		1447.92	1288.00
-	•	-					I				-

Note: * Piles with Su estimated from Sowers (1979)

UNIVERSITY of

Other Analysis of Open End Pipe Piles – API (2011)

Other Analysis of Open End Pipe Piles – API (2011)

1. Current FBDEEP:

- Side Resistance Bias =1.19 and COV =0.27
- Total Resistance Bias=1.75 and COV = 0.55
- 2. Suggested Changes to FBDEEP:
 - Adopting End Bearing D>36" as \rightarrow
 - Increase N limit from 60 to 100
 - \circ Total Resistance Bias = 1.20 and COV = 0.31
 - Side Resistance Bias = 1.09 and COV = 0.26
- 3. Other Method: API (2011):
 - Side Resistance Bias =1.07 and COV =0.23
 - Total Resistance Bias=1.11 and COV = 0.47

