Microbial Induced Calcite Precipitation to Stabilize Florida High-Organic Soils

Presented by: Raphael Crowley, Ph.D., P.E. Assistant Professor University of North Florida Department of Construction Management Building 50, Room 2400 Jacksonville, FL 32224 r.crowley@unf.edu Co-PIs: Andrew Zimmerman, Ph.D., University of Florida, Geology Department, azimmer@ufl.edu

Nick Hudyma, Ph.D., P.E., University of North Florida, School of Engineering, <u>nhudyma@unf.edu</u>

Florida Department of Transportation Geotechnical Research in Progress (GRIP) Meeting, August 20-21, 2015

David Horhota, Ph.D., P.E. Project Manager

Motivation for Research

- High-OM soil needs to be stabilized
- Previous studies/attempts
 - Ground tire rubber (GTR) not successful
 - Soil-mixed vertical columns expensive
 - Cut-and-replace often not feasible
 - Lime Kiln Dust (LKD) may be a carcinogen
- Need a sustainable, cost-effective solution!

Microbial Induced Calcite Precipitation

- Governing Reactions (Ureolytic Microbes):
 - $CO(NH_2)_2 + H_2O \rightarrow NH_2COOH + NH_3$
 - $NH_2COOH + H_2O \rightarrow NH_3 + H_2CO_3$
 - $2NH_3 + 2H_2O \leftrightarrow 2NH_4^+ + 2OH^-$
 - $H_2CO_3 \leftrightarrow HCO_3^- + H^+$
 - $HCO_{3}^{-} + H^{+} + 2NH_{4}^{+} + 2OH^{-} \leftrightarrow CO_{3}^{2-} + 2NH_{4}^{+} + 2H_{2}O$

Project Objectives

- Determine MICP's feasibility as an environmentally-friendly and sustainable method for treating Florida's high-OM soils for roadway construction
- Tasks will include literature review; MICP column experiment; create stabilized sand using ureolytic microbes; experimentation with native/non-ureolytic microbes; optimize MICP procedure; high-OM soil column treatment

Task 1 – Literature Review

S. Pasteurii Photograph (Bang 2014)

500µm

Result of precipitation and nucleation (Qabany et al. 2012)

Task 1 – Literature Review

MICP Photographs (DeJong 2012)

Fully-Cemented Specimen (Qabany et al. 2012)

Task 2 – MICP Column Experiment

Proposed MICP Setup

Task 3 – Produce and Characterize MICP-Stabilized Sand and OM-Rich Soils using Ureolytic Microbes

- Sporosarcina Pasteurii aerated, "fed" with urea, and pumped through soil tube
- pH and inorganic C analysis used to monitor development
- XRD used to evaluate solid product mineralogy
- Triaxial, scanning electron microscopy (SEM), permeability tests

Task 3 – Equipment for Analysis

Dr. Zimmerman and Organic Geochemistry Lab at UF

Task 3 – Equipment for Analysis

UNF Geotech Lab Equipment

Task 4 – Optimization

• pH, urea-microbe ratios, food sources, etc. will be varied to produce *soils of greatest stability*

Task 5 – Native Microbes

- Microbe introduction good; Bio-stimulation better!
- Techniques
 - Fe reducer Shewanella oneidensis
 - Sulfate-reducing bacteria treated with Na₂ and sodium dithionite
 - Microbes isolated from Florida aquifer and measured for sulfate/acetate consumption
- Testing same tests used for *S. Pasteurii* specimens
- <u>http://www.cnn.com/2015/05/14/tech/bioconcrete-delft-jonkers/</u>

Timeline

Task Description	Anticipated Timeframe (months)
Project Kickoff Meeting	1
Task 1 – Literature Review	3
Task 2 – Laboratory column experiment	1
Task 3 – Ureolytic microbe treatment/testing	7
Task 4 – Optimization	4
Task 5 – Native/non-ureolytic microbe treatment/testing	4
Task 6 – Draft Final Report	1
Task 7 – Final Report	3
Total Duration of Project	24

QUESTIONS?

